WorldWideScience

Sample records for high pressure coolant injection

  1. High Pressure Coolant Injection system risk-based inspection guide for Hatch Nuclear Power Station

    International Nuclear Information System (INIS)

    DiBiasio, A.M.

    1993-05-01

    A review of the operating experience for the High Pressure Coolant Injection (HPCI) system at the Hatch Nuclear Power Station, Units 1 and 2, is described in this report. The information for this review was obtained from Hatch Licensee Event Reports (LERs) that were generated between 1980 and 1992. These LERs have been categorized into 23 failure modes that have been prioritized based on probabilistic risk assessment considerations. In addition, the results of the Hatch operating experience review have been compared with the results of a similar, industry wide operating, experience review. This comparison provides an indication of areas in the Hatch HPCI system that should be given increased attention in the prioritization of inspection resources

  2. High Pressure Coolant Injection (HPCI) system risk-based inspection guide: Pilgrim Nuclear Power Station

    International Nuclear Information System (INIS)

    Shier, W.; Gunther, W.

    1992-10-01

    A review of the operating experience for the High Pressure Coolant Injection (HPCI) system at the Pilgrim Nuclear Power Station is described in this report. The information for this review was obtained from Pilgrim Licensee Event Reports (LERs) that were generated between 1980 and 1989. These LERs have been categorized into 23 failure modes that have been prioritized based on probabilistic risk assessment considerations. In addition, the results of the Pilgrim operating experience review have been compared with the results of of a similar, industry wide operating experience review. this comparison provides an indication of areas in the Pilgrim HPCI system that should be given increased attention in the prioritization of inspection resources

  3. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  4. Browns Ferry Nuclear Plant: variation in test intervals for high-pressure coolant injection (HPCI) system

    International Nuclear Information System (INIS)

    Christie, R.F.; Stetkar, J.W.

    1985-01-01

    The change in availability of the high-pressure coolant injection system (HPCIS) due to a change in pump and valve test interval from monthly to quarterly was analyzed. This analysis started by using the HPCIS base line evaluation produced as part of the Browns Ferry Nuclear Plant (BFN) Probabilistic Risk Assessment (PRA). The base line evaluation showed that the dominant contributors to the unavailability of the HPCI system are hardware failures and the resultant downtime for unscheduled maintenance. The effect of changing the pump and valve test interval from monthly to quarterly was analyzed by considering the system unavailability due to hardware failures, the unavailability due to testing, and the unavailability due to human errors that potentially could occur during testing. The magnitude of the changes in unavailability affected by the change in test interval are discussed. The analysis showed a small increase in the availability of the HPCIS to respond to loss of coolant accidents (LOCAs) and a small decrease in the availability of the HPCIS to respond to transients which require HPCIS actuation. In summary, the increase in test interval from monthly to quarterly does not significantly impact the overall HPCIS availability

  5. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-01-01

    To support the development of a Probabilistic Safety Assessment (PSA) model usable in Riskinformed Applications (RIA) for Korea Standard Nuclear power Plants (KSNP), we have performed a thermal hydraulic analysis of Aggressive Secondary Cooldown (ASC) in a 2-inch Small Break Loss Of Coolant Accident (SBLOCA) with a total loss of High Pressure Safety Injection (HPSI). The present study focuses on the estimation of the success criteria of ASC, and the enhanced understanding of the detailed thermal hydraulic behavior and phenomena. The results have shown that the Reactor Coolant System (RCS) pressure can be reduced to the Low Pressure Safety Injection (LPSI) operation conditions without core damage. It was also shown that more relaxed success criteria compared to those in the previous PSA models of KSNP could be used in the new PSA model. However, it was found that the results could be affected by various parameters related with ASC operation, i.e., reference temperature for the calculation of the cooldown rate and its control method

  6. Aging study of boiling water reactor high pressure injection systems

    International Nuclear Information System (INIS)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  7. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    International Nuclear Information System (INIS)

    Wong, S.; DiBiasio, A.; Gunther, W.

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failure modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant

  8. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.; DiBiasio, A.; Gunther, W. [Brookhaven National Lab., Upton, NY (United States)

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failure modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.

  9. Evaluation of a coolant injection into the in-vessel with a RCS depressurization by using SCDAP/RELAP5

    International Nuclear Information System (INIS)

    Rae-Joon, Park; Sang-Baik, Kim; Hee-Dong, Kim

    2007-01-01

    As part of the evaluations of a severe accident management strategy, a coolant injection in the vessel with a reactor coolant system (RCS) depressurization has been evaluated by using the SCDAP/RELAP5 computer code. Two high pressure sequences of a small break loss of coolant accident (LOCA) without safety injection (SI) and a total loss of feed water (LOFW) accident have been analyzed in optimized power reactor OPR-1000. The SCDAP/RELAP5 results have shown that only one train operation of a high pressure safety injection at 30,000 seconds with a RCS depressurization by using one condenser dump valve at 6 minutes after an entrance of the severe accident management guidance prevents a reactor vessel failure for the small break LOCA without SI. In this case, only train operation of the low pressure safety injection (LPSI) without the high pressure safety injection (HPSI) does not prevent a reactor vessel failure. Only one train operation of the HPSI at 20,208 seconds with a RCS depressurization by using two safety depressurization system valves at 40 minutes after an initial opening of the safety relief valve prevents a reactor vessel failure for the total LOFW. (authors)

  10. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  11. Thermal hydraulic analysis of aggressive secondary cooldown in small break loss of coolant accident with total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, S. J.; Im, H. K.; Yang, J. U.

    2003-01-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). To use RIA, the present study focuses on the detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study is to evaluate the success criteria of Aggressive Secondary Cooldown (ASC) in Small Break Loss Of Coolant Accident (SBLOCA) with total loss of High Pressure Safety Injection (HPSI) and to enhance the understanding of related thermal hydraulic behavior and phenomena. The accident scenario was 2 inch coldleg break LOCA without HPSI, with 1/2 Low Pressure Safety Injection (LPSI), and performing ASC limited by 55.6 .deg. C /hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip, which successively reaches the LPSI condition for about 1.5hr after starting ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria 1204.4 .deg. C (2200 .deg. F). In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that operator should maintain the adequate ASC operation. However, it is necessary to evaluate uncertainties arisen from the related parameters of the ASC operation

  12. High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: a review

    Science.gov (United States)

    Liu, Wentao; Liu, Zhanqiang

    2018-03-01

    Machinability improvement of titanium alloy Ti-6Al-4V is a challenging work in academic and industrial applications owing to its low thermal conductivity, low elasticity modulus and high chemical affinity at high temperatures. Surface integrity of titanium alloys Ti-6Al-4V is prominent in estimating the quality of machined components. The surface topography (surface defects and surface roughness) and the residual stress induced by machining Ti-6Al-4V occupy pivotal roles for the sustainability of Ti-6Al-4V components. High-pressure coolant (HPC) is a potential choice in meeting the requirements for the manufacture and application of Ti-6Al-4V. This paper reviews the progress towards the improvements of Ti-6Al4V surface integrity under HPC. Various researches of surface integrity characteristics have been reported. In particularly, surface roughness, surface defects, residual stress as well as work hardening are investigated in order to evaluate the machined surface qualities. Several coolant parameters (including coolant type, coolant pressure and the injection position) deserve investigating to provide the guidance for a satisfied machined surface. The review also provides a clear roadmap for applications of HPC in machining Ti-6Al4V. Experimental studies and analysis are reviewed to better understand the surface integrity under HPC machining process. A distinct discussion has been presented regarding the limitations and highlights of the prospective for machining Ti-6Al4V under HPC.

  13. Impact of high-pressure coolant supply on chip formation in milling

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lakner, T.

    2017-10-01

    Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.

  14. Assessment of Loss-of-Coolant Effect on Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Won Young; Park, Joo Hwan; Kim, Bong Ghi

    2009-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. This causes the pressurized liquid coolant in the channel to void and therefore give rise to a reactivity transient in the event of a break or fault in the coolant circuit. In particular, all CANDU reactors are well known to have a positive void reactivity coefficient and thus this phenomenon may lead to a positive feedback, which can cause a large power pulse. We assess the loss-of-coolant effect by coolant void reactivity versus fuel burnup, four factor parameters for fresh fuel and equilibrium fuel, reactivity change due to the change of coolant density and reactivity change in the case of half- and full-core coolant

  15. Coolant Mixing in a Pressurized Water Reactor: Deboration Transients, Steam-Line Breaks, and Emergency Core Cooling Injection

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael; Grunwald, Gerhard; Hoehne, Thomas; Kliem, Soeren; Rohde, Ulrich; Weiss, Frank-Peter

    2003-01-01

    The reactor transient caused by a perturbation of boron concentration or coolant temperature at the inlet of a pressurized water reactor (PWR) depends on the mixing inside the reactor pressure vessel (RPV). Initial steep gradients are partially lessened by turbulent mixing with coolant from the unaffected loops and with the water inventory of the RPV. Nevertheless the assumption of an ideal mixing in the downcomer and the lower plenum of the reactor leads to unrealistically small reactivity inserts. The uncertainties between ideal mixing and total absence of mixing are too large to be acceptable for safety analyses. In reality, a partial mixing takes place. For realistic predictions it is necessary to study the mixing within the three-dimensional flow field in the complicated geometry of a PWR. For this purpose a 1:5 scaled model [the Rossendorf Coolant Mixing Model (ROCOM) facility] of the German PWR KONVOI was built. Compared to other experiments, the emphasis was put on extensive measuring instrumentation and a maximum of flexibility of the facility to cover as much as possible different test scenarios. The use of special electrode-mesh sensors together with a salt tracer technique provided distributions of the disturbance within downcomer and core entrance with a high resolution in space and time. Especially, the instrumentation of the downcomer gained valuable information about the mixing phenomena in detail. The obtained data were used to support code development and validation. Scenarios investigated are the following: (a) steady-state flow in multiple coolant loops with a temperature or boron concentration perturbation in one of the running loops, (b) transient flow situations with flow rates changing with time in one or more loops, such as pump startup scenarios with deborated slugs in one of the loops or onset of natural circulation after boiling-condenser-mode operation, and (c) gravity-driven flow caused by large density gradients, e.g., mixing of cold

  16. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-03-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). The present study focuses on detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model using RIA for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study in this year is to evaluate the success cri-teria of Aggressive Secondary Cooldown (ASC) in a Small Size Loss Of Coolant Accident (SBLOCA) without HPSI and to enhance the understanding of related thermal hydraulic behavior and phenomena. An effort was made to evaluate the system success criteria and a mission time for the recovery action by an operator to prevent the core damage for that accident scenario. The accident scenario for KSNP was a 2 inch coldleg break LOCA with a total loss of High Pressure Safety Injection (HPSI) and 1/2 Low Pressure Safety Injection (LPSI) available and perform-ing ASC limited by 55.6 .deg. C/hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip. It successively reached the LPSI condition for about 1.5hr after starting the ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria of 1204.4 .deg. C (2200 .deg. F). Sensitivity studies were performed for (1) cool-ant average temperature parameters, (2) ASC operation control method, (3) operation start time, (4) 1 inch break size. The present analysis identified thermal hydraulic phenomena and parameters affecting on the behavior, which consist of coolant break flow and inventory, parameters governing secondary heat removal, ASC operation control method, and its reference temperature parameters. In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that an operator should maintain the ade-quate ASC operation. However, it is necessary to evaluate the uncertainties arisen from the

  17. Performance Analysis of Multi Stage Safety Injection Tank

    International Nuclear Information System (INIS)

    Shin, Soo Jai; Kim, Young In; Bae, Youngmin; Kang, Han-Ok; Kim, Keung Koo

    2015-01-01

    In general the integral reactor has such characteristics, the integral reactor requires a high flow rate of coolant safety injection at the initial stage of the accident in which the core level is relatively fast decreased, A medium flow rate of coolant safety injection at the early and middle stages of the accident in which the coolant discharge flow rate is relatively large due to a high internal pressure of the reactor vessel, and a low flow rate of coolant safety injection is required at the middle and late stages of the accident in which the coolant discharge flow rate is greatly reduced due to a decreased pressure of the reactor vessel. It is noted that a high flow rate of the integral reactor is quite smaller compared to a flow rate required in the commercial loop type reactor. However, a nitrogen pressurized safety injection tank has been typically designed to quickly inject a high flow rate of coolant when the internal pressure of the reactor vessel is rapidly decreased, and a core makeup tank has been designed to safely inject at a single mode flow rate due to a gravitational head of water subsequent to making a pressure balance between the reactor vessel and core makeup tank. As a result, in order to compensate such a disadvantage, various type systems are used in a complicated manner in a reactor according to the required characteristic of safety injection during an accident. In the present study, we have investigated numerically the performance of the multi stage safety injection tank. A parameter study has performed to understand the characteristics of the multi stage safety injection tank. The performance of the multi stage safety injection tank has been investigated numerically. When an accident occurs, the coolant in the multi stage safety injection tank is injected into a reactor vessel by a gravitational head of water subsequent to making a pressure balance between the reactor and tank. At the early stages of the accident, the high flow rate of

  18. Performance Analysis of Multi Stage Safety Injection Tank

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo Jai; Kim, Young In; Bae, Youngmin; Kang, Han-Ok; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In general the integral reactor has such characteristics, the integral reactor requires a high flow rate of coolant safety injection at the initial stage of the accident in which the core level is relatively fast decreased, A medium flow rate of coolant safety injection at the early and middle stages of the accident in which the coolant discharge flow rate is relatively large due to a high internal pressure of the reactor vessel, and a low flow rate of coolant safety injection is required at the middle and late stages of the accident in which the coolant discharge flow rate is greatly reduced due to a decreased pressure of the reactor vessel. It is noted that a high flow rate of the integral reactor is quite smaller compared to a flow rate required in the commercial loop type reactor. However, a nitrogen pressurized safety injection tank has been typically designed to quickly inject a high flow rate of coolant when the internal pressure of the reactor vessel is rapidly decreased, and a core makeup tank has been designed to safely inject at a single mode flow rate due to a gravitational head of water subsequent to making a pressure balance between the reactor vessel and core makeup tank. As a result, in order to compensate such a disadvantage, various type systems are used in a complicated manner in a reactor according to the required characteristic of safety injection during an accident. In the present study, we have investigated numerically the performance of the multi stage safety injection tank. A parameter study has performed to understand the characteristics of the multi stage safety injection tank. The performance of the multi stage safety injection tank has been investigated numerically. When an accident occurs, the coolant in the multi stage safety injection tank is injected into a reactor vessel by a gravitational head of water subsequent to making a pressure balance between the reactor and tank. At the early stages of the accident, the high flow rate of

  19. Pressure behavior in nuclear reactor containment following a loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Khattab, M; Ibrahim, N A; Bedrose, C D [Reactors department, nuclear research center, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    The scenarios of pressure variation following a loss of coolant accident (LOCA) inside the containment of pressurized water reactor (PWR) have been investigated. Critical mass flow rushing out from high pressure leg through pipe break is used to calculate the rate of coolant. The energy added to the containment atmosphere is determined to specify the rate of growth of pressure and temperature. The seniors of small, medium and large LOCA at 2%, 15%, and 25% flow released are investigated. Safety water spray system is initiated as the pressure reaches the containment design safety limit at about 3 bar to depressurise and to cooldown the system and thereby to reduce the concentration of radioactivity release in the containment atmosphere. The pressure response before and after operation of safety spray system is predicted in each size of LOCA using a typical design of westinghouse PWR system. The heat removal from the containment environment is rejected into the sump by drop-wise condensation mechanism. The effect of initial droplets diameters injected from the nozzles of the spray system is investigated. The results show that the droplet diameter of 3 mm gives best performance. 6 figs.

  20. Pressure behavior in nuclear reactor containment following a loss of coolant accident

    International Nuclear Information System (INIS)

    Khattab, M.; Ibrahim, N.A.; Bedrose, C.D.

    1995-01-01

    The scenarios of pressure variation following a loss of coolant accident (LOCA) inside the containment of pressurized water reactor (PWR) have been investigated. Critical mass flow rushing out from high pressure leg through pipe break is used to calculate the rate of coolant. The energy added to the containment atmosphere is determined to specify the rate of growth of pressure and temperature. The seniors of small, medium and large LOCA at 2%, 15%, and 25% flow released are investigated. Safety water spray system is initiated as the pressure reaches the containment design safety limit at about 3 bar to depressurise and to cooldown the system and thereby to reduce the concentration of radioactivity release in the containment atmosphere. The pressure response before and after operation of safety spray system is predicted in each size of LOCA using a typical design of westinghouse PWR system. The heat removal from the containment environment is rejected into the sump by drop-wise condensation mechanism. The effect of initial droplets diameters injected from the nozzles of the spray system is investigated. The results show that the droplet diameter of 3 mm gives best performance. 6 figs

  1. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 3. Behaviour of high pressure coolant injection system (HPCI) based on thermodynamic model

    International Nuclear Information System (INIS)

    Maruyama, Shigenao

    2014-01-01

    In order to clarify the process of Accident of Fukushima Nuclear Plants, an accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 3 is analyzed from the data open to the public. Phase equilibrium process model was introduced in which the vapor and water are at saturation point in the vessels. The present accident scenario assumes that the high pressure coolant injection system (HPCI) did not worked properly, but the steam in the reactor pressure vessel (RPV) leaked through the turbine of HPCI to the suppression chamber since 12/3/2011 12:35. It is assumed that the Tsunami flooded the torus room where the suppression chamber was placed. Proposed accident scenario agrees with the data of the plant parameters obtained just after the accident. It is estimated that the water injection by HPIC was stopped since around at 13/3 19:00 and the water level in RPV decreased since then. It is estimated that the RPV broke at 14/3 8:55 and water could injected from fire engines due to the depression due to the rupture of RPV. There was little water left in RPV at the time of the rupture. If the present scenario is correct, the behavior that operators in the plant stopped HPCI at 13/3 2:42 did not affect seriously on the RPV rupture. If HPCI was working properly until the operators stopped it, the plant parameters obtained in the accident cannot be explained. (author)

  2. Coolant make-up device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In a coolant make-up device, an opening of a pressure equalizing pipeline in a pressure vessel is disposed in coolants above a reactor core and below a usual fluctuation range of a reactor vessel water level. Further, a float check valve is disposed to the pressure equalizing pipeline for preventing coolants in the pressure vessel flowing into the pipeline. If the water level in the pressure vessel is lowered than the setting position for the float check valve, the float drops by its own weight to open the opening of the pressure equalizing pipeline. Then, steams in the pressure vessel are flown into the pipeline, to equalize the pressure between a coolant storage tank and the pressure vessel of the reactor. Coolants in the coolant storage tank is injected to the pressure vessel by way of the water injection pipeline due to the difference of the pressure head between the water level in the coolants storage tank and the water level in the pressure vessel. If the coolants are lowered than the setting position for the float check value, the float check valve does not close unless the water level is recovered to the setting position for the float valve and, accordingly, the coolant make-up is continued. (N.H.)

  3. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  4. Pressure behaviour in a nuclear reactor containment following a loss of coolant accident

    International Nuclear Information System (INIS)

    KHattab, M.S.; Ibrahim, N.A.; Bedrose, S.D.

    1994-01-01

    The scenarios of pressure variation following a loss of coolant accident (LOCA) inside the containment of pressurized water reactor (PWR) have been investigated. Critical mass flow rushing out from high pressure leg through pipe break, is used to calculate the rate of coolant. The energy added to the containment atmosphere is determined to specify the rate of growth of pressure and temperature. The scenarios of small, medium and large LOCA at 2%, 15% and 25% flow released are investigated. Safety water spray system is initiated as the pressure reaches the containment design safety limit at about 3 bar to depressurise and to cooldown the system and thereby to reduce the concentration of radioactivity release in the containment atmosphere. The pressure response before and after operation of safety spray system is predicted in each size of LOCA using a typical design of westinghouse PWR system. The results of large LOCA showed good agreement with westinghouse calculations of the same design. The heat removal from the containment environment is rejected into the sump by drop-wise condensation mechanism. The effect of initial droplets diameters injected from the nozzles of the spray system is investigated. The results show that the droplet diameter of 3 mm gives best performance. 6 figs., 1 tab

  5. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  6. Evaluation of Coolant Injection Procedure in the Severe Accident Management Strategy of APR1400

    International Nuclear Information System (INIS)

    Cho, Yongjin; Lim, Kukhee; Song, Sungchu; Lee, Sukho; Hwang, Taesuk

    2013-01-01

    A coolant injection strategy in the severe accident management guideline (SAMG) of APR1400 relates to immediate coolant injection into RCS (Reactor Coolant System) or injection following the recovery of secondary coolant inventory. This strategy could play important role in accident mitigation and radiological consequences. In this study, appropriateness of the strategy was evaluated using MELCOR1.8.6 and several sensitivity studies of the key parameters were performed. Analysis for APR1400 using MELCOR 1.8.6 was performed to evaluate the effectiveness of accident management strategies and the following conclusions were identified. Sequential operation of secondary and RCS injection may not be the best strategy and the simultaneous injection of secondary and RCS injection could be more preferable. At least, the RCS injection should start before complete drainage of water in the safety injection tank using mobile pumps. In this study, the effectiveness of timing of operator action has been examined and the amount of injection flowrate needs to be studied in the future

  7. Low pressure injection sequence sensitivity study of the M1 module of MEDICI

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.; Norkus, J.K.; Welzbacker, R.T.

    1985-01-01

    In order to assess the consequences of a PWR containment failure and the ensuing radiological source term following a severe reactor accident, it is necessary to understand the ex-vessel behavior of the molten core. The M1 module of MEDICI models the dynamic fuel-coolant mixing, energetic interaction, and ejection of fuel and coolant from the reactor cavity following such an accident. A sensitivity study of the low pressure injection sequence was performed utilizing a Box-Behnken statistical design to treat five sets of input variables considered to be significant in the mixing and steam explosion processes. The low pressure injection sequence was studied in which the molten corium is modeled as a pour stream entering the cavity without entraining or sweeping out fuel or coolant

  8. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  9. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  10. Analysis of thermo-hydraulic behavior of coolant during discharge of pressurized high-temperature water

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Sobajima, Makoto; Sasaki, Shinobu; Onishi, Nobuaki; Shiba, Masayoshi

    1978-01-01

    The present report describes results of the analysis of the LOFT semiscale experiment No. 1011 using remodeled RELAP-3 code, performed at the Idaho National Engineering Laboratory to simulate a postulated loss-of-coolant accident in a pressurized water reactor. It was clarified through the analysis that coolant behavior during blowdown was influenced variously by the system components in the primary loop, comparing with coolant discharge from a pressure vessel. Good agreement was obtained between experimental and analytical results when phase separation was assumed in upper plenum and downcomer, since experimental data indicated existence of liquid level in those parts. It was also found that the use of the Wilson's equation to calculate bubble rise velocity and the use of discharge coefficient as the function of fluid quality at break location to calculate discharge flow rate resulted in good agreement with experimental data. (auth.)

  11. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  12. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  13. Long-term follow-up of high-pressure injection injuries to the hand

    NARCIS (Netherlands)

    Wieder, Anat; Lapid, Oren; Plakht, Ygal; Sagi, Amiram

    2006-01-01

    High-pressure injection injury is an injury caused by accidental injection of substances by industrial equipment. This injury may have devastating sequelae. The goal of this study was to assess the long-term outcome of high-pressure injection injury to the hand. In this historical prospective study,

  14. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  15. Light extinction method on high-pressure diesel injection

    Science.gov (United States)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  16. High converter pressurized water reactor with heavy water as a coolant

    International Nuclear Information System (INIS)

    Ronen, Y.; Reyev, D.

    1983-01-01

    There is an increasing interest in water breeder and high converter reactors. The increase in the conversion ratio of these reactors is obtained by hardening the neutron spectrum achieved by tightening the reactor's lattice. Another way of hardening the neutron spectrum is to replace the light water with heavy water. Two pressurized water reactor fuel cycles that use heavy water as a coolant are considered. The first fuel cycle is based on plutonium and depleted uranium, and the second cycle is based on plutonium and enriched uranium. The uranium ore and separative work unit (SWU) requirements are calculated as well as the fuel cycle cost. The savings in uranium ore are about40 and 60% and about40% in SWU for both fuel cycles considered

  17. High pressure injection injuries: an overview.

    Science.gov (United States)

    Fialkov, J A; Freiberg, A

    1991-01-01

    Injuries resulting from the use of high pressure injectors and spray guns are relatively rare; however, the potential tissue damage caused by the injury as well as the extent of the injury itself may go unrecognized by the primary physician. The purpose of this paper is to inform the emergency physician of the nature and standard management of this type of injury. A basic understanding of the pathophysiology of the high pressure injection injury (HPII) is essential in avoiding the mistakes in management that have been reported in the literature. The emergency management of the HPII includes: evaluation and immobilization, tetanus and antimicrobial prophylaxis, supportive and resuscitative measures, analgesia, and minimizing the time to definitive surgical treatment.

  18. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  19. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  20. High pressure common rail injection system modeling and control.

    Science.gov (United States)

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Aqueous Boric acid injection facility of PWR type reactor

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi; Iwami, Masao.

    1996-01-01

    If a rupture should be caused in a secondary system of a PWR type reactor, pressure of a primary coolant recycling system is lowered, and a back flow check valve is opened in response to the lowering of the pressure. Then, low temperature aqueous boric acid in the lower portion of a pressurized tank is flown into the primary coolant recycling system based on the pressure difference, and the aqueous boric acid reaches the reactor core together with coolants to suppress reactivity. If the injection is continued, high temperature aqueous boric acid in the upper portion boils under a reduced pressure, further urges the low temperature aqueous boric acid in the lower portion by the steam pressure and injects the same to the primary system. The aqueous boric acid stream from the pressurized tank flowing by self evaporation of the high temperature aqueous boric acid itself is rectified by a rectifying device to prevent occurrence of vortex flow, and the steam is injected in a state of uniform stream. When the pressure in the pressurized tank is lowered, a bypass valve is opened to introduce the high pressure fluid of primary system into the pressurized tank to keep the pressure to a predetermined value. When the pressure in the pressurized tank is elevated to higher than the pressure of the primary system, a back flow check valve is opened, and high pressure aqueous boric acid is flown out of the pressurized tank to keep the pressure to a predetermined value. (N.H.)

  2. Analysis of large break loss of coolant accident with simultaneous injection into cold leg and hot leg

    International Nuclear Information System (INIS)

    Luo Bangqi

    1997-01-01

    When a large break loss of coolant accident occurs, the most part of the safety injection water injected into the cold leg by the safety injection system will flow through the channel between the pressure vessel and the barrel out of the break into the containment, only a little part of the safety injection water can flow into the reactor core. If the safety injection can inject into both the cold leg and the hot leg simultaneously, the safety injection water injected from the cold leg will flow into the core more easily, because the safety injection water injected from the hot leg will carry out more heat from the upper plenum and the core, so the upper plenum and the core is depressed. In addition, a small part of the safety injection water injected from the hot leg will flow down in the core after impinging the guide tubes in the upper plenum, so the core will get more safety injection water than only cold leg injection, and the core will be much safer

  3. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  4. High-Pressure Injection Injuries to the Hand

    Directory of Open Access Journals (Sweden)

    Davod Jafari

    2016-07-01

    Full Text Available Background High-pressure injections into the hand, burden devastating and permanent functional impairments. Many materials including paint, paint thinner, gasoline, oil and grease are reported as the causative agents. These injuries need multiple procedures and reconstructions most of the time and 40% of the injuries may end with amputation of the injured part. Objectives The aim of this study was to report the treatment outcomes and methods of treatments of patients with high-pressure injection injuries of the hand. Methods We retrospectively reviewed the medical records, imaging files and demographic data of patients, who were treated at our center due to the high-pressure injuries to their hands. We recorded the kind of the injected materials, time to the first treatment procedure, times of operation, and methods of their treatments. The outcomes of the injuries as well as the deficiency of the digital joints motion were also reported. Results Nine cases with high-pressure injury of the hand were enrolled in this study. All patients were male with mean age of 26.88 ± 7.52. Mean follow-up time was 28.55 ± 12.49 months. The dominant hand was the right side in seven patients and left in two patients. Injury was in the left hand of seven patients and right hand of two patients. Index finger was the most common involved part (five cases followed by the thumb (two cases. Injected material was grease in seven cases, water-base paint and water, each in one case.Mean time delay to the first treatment procedure was 29.16 ± 25.66 hours for seven patients. This was exceptionally long for two patients (seven days and 24 months. Type of treatment was debridement and skin graft for three cases, debridement and cross finger flap for two cases, debridement for two cases and nerve graft for one case. Amputation of the necrotic digit was performed for one case. Mean hospitalization time was 8.33 ± 3.64 days for all patients.Mean total active range of motion

  5. Theoretical study of hydraulic jump during circular horizontal hot leg injection in pressurized water reactor

    International Nuclear Information System (INIS)

    El Hawary, Shehab; Abu-Elyazeed, Osayed S.M.; Fahmy, Adel Alyan; Meglaa, Khairy

    2016-01-01

    Highlights: • The model is developed to predict the occurrence of onset hydraulic jump in a circular pipe. • Theoretical results are in agreement with experimental results and theory. • Effects of diameter of the injection pipe, Froude number and injected coolant mass are studied. - Abstract: One important phenomenon occurring during Loss of Coolant Accident (LOCA) is Counter-Current Flow Limitation (CCFL). The incidence of such CCFL is introduced by the onset of hydraulic jump. In the present work, a one dimensional model was modified to fit circular hot channel. The model was used to study the factors affecting the initial Froude number, the location of the occurrence of the hydraulic jump, and the critical coolant flow depth during circular horizontal hot leg injection in US-APWR Mitsubishi Reactor. The results showed good agreement with published experimental data of the Upper Plenum Test Facility (UPTF) at Mannheim, Germany. It was found that higher injected coolant mass flow rate increases the initial Froude number, the location of the occurrence of the hydraulic jump, and the critical injection depth divided by the diameter of the injection pipe. Such behavior is thought to be due to the increase of the inertia force by increasing of the injected coolant mass flow rate and the inverse of the diameter of the injection pipe. It was found also that, the location of the occurrence of hydraulic jump increases with decreasing load effect. Therefore, these results reveal that the avoidance of CCFL as well as hydraulic jump through hot leg at maximum load can be achieved by decreasing the distance between the injection point and the pressure vessel to below 0.3 m, and with diameter of 4 in (10.16 cm) as the design diameter of the injection pipe in US-APWR Mitsubishi Reactor. Moreover, the maximum critical depth (56 cm) is less than the diameter of the hot leg (78.74 cm) at an injected coolant mass flow of 400 kg/s, and with diameter of 4 in (10.16 cm) as the

  6. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    International Nuclear Information System (INIS)

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  7. Analysis of a water-coolant leak into a very high-temperature vitrification chamber

    International Nuclear Information System (INIS)

    Felicione, F. S.

    1998-01-01

    A coolant-leakage incident occurred during non-radioactive operation of the Plasma Hearth Process waste-vitrification development system at Argonne National Laboratory when a stray electric arc ruptured az water-cooling jacket. Rapid evaporation of the coolant that entered the very high-temperature chamber pressurized the normally sub-atmospheric system above ambient pressure for over 13 minutes. Any positive pressurization, and particularly a lengthy one, is a safety concern since this can cause leakage of contaminants from the system. A model of the thermal phenomena that describe coolant/hot-material interactions was developed to better understand the characteristics of this type of incident. The model is described and results for a variety of hypothetical coolant-leak incidents are presented. It is shown that coolant leak rates above a certain threshold will cause coolant to accumulate in the chamber, and evaporation from this pool can maintain positive pressure in the system long after the leak has been stopped. Application of the model resulted in reasonably good agreement with the duration of the pressure measured during the incident. A closed-form analytic solution is shown to be applicable to the initial leak period in which the peak pressures are generated, and is presented and discussed

  8. Safety assessment of the SMART design during SBLOCA tests using the high pressure safety injection pump of the SMART-ITL facility

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yoon, Eun-Koo; Shin, Yong-Cheol; Min, Kyoung-Ho; Park, Jong-Kuk; Choi, Nam-Hyun; Bang, Yun-Gon; Seo, Chan-Jong; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SMART is a small-sized integral pressurized light water reactor designed by the Korea Atomic Energy Research Institute (KAERI) from 1997 and received standard design approval (SDA) by the Korean regulatory body in July 2012. Single reactor pressure vessel contains all of the main components including a pressurizer (PZR), steam generators (SG) and reactor coolant pumps (RCP) without any large-size pipes. Several tests to verify a safety and performance of SMART design were carried out. This paper introduces a comparison with three SBLOCA tests. Overall thermal-hydraulic phenomena were observed and showed a traditional trend to decrease a system pressure and temperature. A collapsed water level of the hot side indicated that the safety injection system was successfully operated to recover the reactor coolant system (RCS) and protect the core uncover. An SBLOCA test simulating a guillotine break on the SIS, SCS, and PSV was performed. It was enough to keep a steady-state condition before the SBLOCA test begins. An actuation signal as the boundary condition was properly simulated during the transient test. The scenarios of the SBLOCA in the SMART design were reproduced well using the SMART-ITL facility. The safety injection is effective to protect the core uncover as well as to cool down the RCS. All of the measured parameters show reasonable behaviors.

  9. Safety assessment of the SMART design during SBLOCA tests using the high pressure safety injection pump of the SMART-ITL facility

    International Nuclear Information System (INIS)

    Bae, Hwang; Ryu, Sung Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yoon, Eun-Koo; Shin, Yong-Cheol; Min, Kyoung-Ho; Park, Jong-Kuk; Choi, Nam-Hyun; Bang, Yun-Gon; Seo, Chan-Jong; Yi, Sung-Jae; Park, Hyun-Sik

    2016-01-01

    SMART is a small-sized integral pressurized light water reactor designed by the Korea Atomic Energy Research Institute (KAERI) from 1997 and received standard design approval (SDA) by the Korean regulatory body in July 2012. Single reactor pressure vessel contains all of the main components including a pressurizer (PZR), steam generators (SG) and reactor coolant pumps (RCP) without any large-size pipes. Several tests to verify a safety and performance of SMART design were carried out. This paper introduces a comparison with three SBLOCA tests. Overall thermal-hydraulic phenomena were observed and showed a traditional trend to decrease a system pressure and temperature. A collapsed water level of the hot side indicated that the safety injection system was successfully operated to recover the reactor coolant system (RCS) and protect the core uncover. An SBLOCA test simulating a guillotine break on the SIS, SCS, and PSV was performed. It was enough to keep a steady-state condition before the SBLOCA test begins. An actuation signal as the boundary condition was properly simulated during the transient test. The scenarios of the SBLOCA in the SMART design were reproduced well using the SMART-ITL facility. The safety injection is effective to protect the core uncover as well as to cool down the RCS. All of the measured parameters show reasonable behaviors

  10. Transient performance analysis of pressurized safety injection tank with a partition

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of safety injection tanks with a partition is evaluated. • Effects of key design parameters are scrutinized. • Distinctive features of the flow in multi-unit safety injection tanks are explored. - Abstract: A parametric study has been performed to evaluate the functional performance of a pressurized multi-unit safety injection tank, which would be considered as one of the candidates for a passive safety injection system in a nuclear power plant. The influences of key design parameters including the orifice size, initial gas fraction, and resistance coefficients and operating condition on the injection flow rate are scrutinized with a discussion of the relevant flow features such as the choked flow of gas through an orifice and two interconnected regions of differing gaseous pressure. The obtained results indicate that a multi-unit safety injection tank can passively control the injection flow rate and provide a stable safety injection over a relatively long period even in the case of drastic depressurization of a reactor coolant system

  11. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  12. High performance experiments on high pressure supersonic molecular beam injection in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Yao Lianghua; Dong Jiafu; Zhou Yan; Feng Beibing; Cao Jianyong; Li Wei; Feng Zhen; Zhang Jiquan; Hong Wenyu; Cui Zhengying; Wang Enyao; Liu Yong

    2004-01-01

    Supersonic molecular beam injection (SMBI) was first proposed and demonstrated on the HL-1 tokamak and was successfully developed and used on HL-1M. Recently, new results of SMBI experiments were obtained by increasing the gas pressure from 0.5 to over 1.0 MPa. A stair-shaped density increment was obtained with high-pressure multi-pulse SMBI that was similar to the density evolution behaviour during multi-pellet injection. This demonstrated the effectiveness of SMBI as a promising fuelling tool for steady-state operation. The penetration depth and injection speed of the high-pressure SMBI were roughly measured from the contour plot of the Hα emission intensity. It was shown that injected particles could penetrate into the core region of the plasma. The penetration speed of high-pressure SMBI particles in the plasma was estimated to be about 1200 m s -1 . In addition, clusters within the beam may play an important role in the deeper injection. (author)

  13. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle

  14. Study on primary coolant system depressurization effect factor in pressurized water reactor

    International Nuclear Information System (INIS)

    Ji Duan; Cao Xuewu

    2006-01-01

    The progression of high-pressure core melting severe accident induced by very small break loss of coolant accident plus the loss of main feed water and auxiliary feed water failure is studied, and the entry condition and modes of primary cooling system depressurization during the severe accident are also estimated. The results show that the temperature below 650 degree C is preferable depressurization input temperature allowing recovery of core cooling, and the available and effective way to depressurize reactor cooling system and to arrest very small break loss of coolant accident sequences is activating pressurizer relief valves initially, then restoring the auxiliary feedwater and opening the steam generator relief valves. It can adequately reduce the primary pressure and keep the capacity loop of long-term core cooling. (authors)

  15. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  16. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    International Nuclear Information System (INIS)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-01-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications

  17. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  18. Accident tolerant high-pressure helium injection system concept for light water reactors

    International Nuclear Information System (INIS)

    Massey, Caleb; Miller, James; Vasudevamurthy, Gokul

    2016-01-01

    Highlights: • Potential helium injection strategy is proposed for LWR accident scenarios. • Multiple injection sites are proposed for current LWR designs. • Proof-of-concept experimentation illustrates potential helium injection benefits. • Computational studies show an increase in pressure vessel blowdown time. • Current LOCA codes have the capability to include helium for feasibility calculations. - Abstract: While the design of advanced accident-tolerant fuels and structural materials continues to remain the primary focus of much research and development pertaining to the integrity of nuclear systems, there is a need for a more immediate, simple, and practical improvement in the severe accident response of current emergency core cooling systems. Current blowdown and reflood methodologies under accident conditions still allow peak cladding temperatures to approach design limits and detrimentally affect the integrity of core components. A high-pressure helium injection concept is presented to enhance accident tolerance by increasing operator response time while maintaining lower peak cladding temperatures under design basis and beyond design basis scenarios. Multiple injection sites are proposed that can be adapted to current light water reactor designs to minimize the need for new infrastructure, and concept feasibility has been investigated through a combination of proof-of-concept experimentation and computational modeling. Proof-of-concept experiments show promising cooling potential using a high-pressure helium injection concept, while the developed choked-flow model shows core depressurization changes with added helium injection. Though the high-pressure helium injection concept shows promise, future research into the evaluation of system feasibility and economics are needed.Classification: L. Safety and risk analysis

  19. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  20. Effect of cavitation in high-pressure direct injection

    Science.gov (United States)

    Aboulhasanzadeh, Bahman; Johnsen, Eric

    2015-11-01

    As we move toward higher pressures for Gasoline Direct Injection and Diesel Direct Injection, cavitation has become an important issue. To better understand the effect of cavitation on the nozzle flow and primary atomization, we use a high-order accurate Discontinuous Galerkin approach using multi-GPU parallelism to simulate the compressible flow inside and outside the nozzle. Phase change is included using the six-equations model. We investigate the effect of nozzle geometry on cavitation inside the injector and on primary atomization outside the nozzle.

  1. Evaluation of High Pressure Components of Fuel Injection Systems Using Speckle Interferometry

    OpenAIRE

    Basara, Adis

    2007-01-01

    The modern high pressure fuel injection systems installed in engines provide a highly efficient combustion process accompanied by low emissions of exhaust gases and an impressive level of dynamic response. The design and development of mechanical components for such systems pose a great challenge, since they have to operate under extremely high fluctuating pressures (e.g. up to 2000 bar) for a long lifetime (more than 1000 injections per minute). The permanent change between a higher and a lo...

  2. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  3. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  4. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon

    2013-03-25

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.

  5. Research on Coolant Radiochemistry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Kim, W. H.; Yeon, J. W.; Jung, Y. J.; Choi, K. C.; Choi, K. S.; Park, Y. J.; Cho, Y. H.

    2007-06-01

    The final objective of this study is to develop a method for reducing radioactive materials formed in the reactor coolant circuit. This second stage research was categorized into the following three subgroups: the development of the estimation technique of microscopic chemical variation at high temperatures and pressures, the fundamental study on the thermodynamics at high temperatures and pressures, and the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD. First, in the development of the estimation technique of microscopic chemical change at high temperatures and pressures, the technique for measuring coolant chemistry such as pH, conductivity and Eh was developed to be appropriate for the high temperature and pressure condition. The coolant chemistry measuring system including the self-devised high temperature pH sensor can be applied to the field of nuclear reactor and contribute on a large scale in the automation of the coolant chemistry control and the establishment of the real-time on-line measuring technique. Secondly, the dissociation constant of water and the solubility of metal oxides were measured in the fundamental study on the thermodynamics at high temperatures and pressures. Finally, in the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD, the careful investigation of the deposition phenomena of micro particles on the cladding surface showed that subcooled boiling and the dissolved hydrogen are the main factors responsible for the growth of CRUD. In addition, the basis was provided for the construction of a new particle behavior model in the reactor coolant circuit

  6. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  7. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  8. Compressed air injection technique to standardize block injection pressures.

    Science.gov (United States)

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.

  9. Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming

    International Nuclear Information System (INIS)

    Poran, Arnon; Tartakovsky, Leonid

    2015-01-01

    This article discusses the concept of a direct-injection ICE (internal combustion engine) with thermo-chemical recuperation realized through SRM (steam reforming of methanol). It is shown that the energy required to compress the reformate gas prior to its injection into the cylinder is substantial and has to be accounted for. Results of the analysis prove that the method of reformate direct-injection is unviable when the reforming is carried-out under atmospheric pressure. To reduce the energy penalty resulted from the gas compression, it is suggested to implement a high-pressure reforming process. Effects of the injection timing and the injector's flow area on the ICE-SRM system's fuel conversion efficiency are studied. The significance of cooling the reforming products prior to their injection into the engine-cylinder is demonstrated. We show that a direct-injection ICE with high-pressure SRM is feasible and provides a potential for significant efficiency improvement. Development of injectors with greater flow area shall contribute to further efficiency improvements. - Highlights: • Energy needed to compress the reformate is substantial and has to be accounted for. • Reformate direct-injection is unviable if reforming is done at atmospheric pressure. • Direct-injection engine with high-pressure methanol reforming is feasible. • Efficiency improvement by 12–14% compared with a gasoline-fed engine was shown

  10. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  11. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-10-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  12. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  13. Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohmmad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

  14. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the 13 N content in the containment atmosphere. 13 N is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/ 13 N+ 4 He. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium 13 N concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  15. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/Nl3+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  16. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1979-08-01

    The present paper deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process H1+016 → N13+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m -3 and 7 kBq m -3 for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge (Li) flow detector assembly operated at elevated pressure. (Auth.)

  17. Analysis of containment pressure and temperature changes following loss of coolant accident (LOCA)

    International Nuclear Information System (INIS)

    Nguyen Van Thai; Kieu Ngoc Dung

    2015-01-01

    This paper present a preliminary thermal-hydraulics analysis of AP1000 containment following loss of coolant accident events such as double-end cold line break (DECLB) or main steam line break (MSLB) using MELCOR code. A break of this type will produce a rapid depressurization of the reactor pressure vessel (primary system) and release initially high pressure water into the containment followed by a much smaller release of highly superheated steam. The high pressure liquid water will flash and rapidly pressurize the containment building. The performance of passive containment cooling system for steam removal by condensation on large steel containment structure is a major contributing process, controlling the pressure and temperature maximum reached during the accident event. The results are analyzed, discussed and compared with the similar work done by Sandia National Laboratories. (author)

  18. APPLICATION OF MULTIHOLE PRESSURE PROBE FOR RESEARCH OF COOLANT VELOCITY PROFILE IN NUCLEAR REACTOR FUEL ASSEMBLIES

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2015-01-01

    Full Text Available Development of heat and mass transfer intensifiers is a major engineering task in the design of new and modernization of existing fuel assemblies. These devices create lateral mass flow of coolant. Design of intensifiers affects both the coolant mixing and the hydraulic resistance. The aim of this work is to develop a methodology of measuring coolant local velocity in the fuel assembly models with different mixing grids. To solve the problems was manufactured and calibrated multihole pressure probe. The air flow velocity measuring method with multihole pressure probe was used in the experimental studies on the coolant local hydrodynamics in fuel assemblies with mixing grids. Analysis of the coolant lateral velocity vector fields allowed to study the formation of the secondary vortex flows behind the mixing grids, and to determine the basic laws of coolant flow in experimental models. Quantitative data on the coolant flow velocity distribution obtained with a multihole pressure probe make possible to determine the magnitude of the flow lateral velocities in fuel rod gaps, as well as to determine the distance at which damping occurs during mixing. 

  19. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  20. Modern high pressure gas injection centrifugal compressor for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Amin [Worley Parsons Services Pty Ltd, Brisbane, NSW (Australia). Mechanical Dept.

    2011-12-15

    This article covers different design, manufacturing, performance and reliability aspects of modern high pressure gas re-injection centrifugal compressor units. Advances and recent technologies on critical areas such as rotor dynamics, anti-surge system, rotating stall prevention, auxiliary systems, material selection, shop performance tests and gas sealing are studied. Three different case studies for modern re-injection machines including 12 MW, 15 MW and 32 MW trains are presented. (orig.)

  1. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  2. Simulation of small break loss of coolant accident using relap 5/ MOD 2 computer code

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1992-01-01

    An assessment of relap 5 / MOD 2/Cycle 36.05 best estimate computer code capabilities in predicting the thermohydraulic response of a PWR following a small break loss of coolant accident is presented. The experimental data base for the evaluation is the results of Test S-N H-3 performed in the semi scale MOD-2 c Test facility which modeled a 0.5% small break loss of coolant accident with an accompanying failure of the high pressure injection emergency core cooling system. A conclusion was reached that the code is capable of making small break loss of coolant accident calculations efficiently. However, some of the small break loss of coolant accident related phenomena were not properly predicted by the code, suggesting a need for code improvement.9 fig., 3 tab

  3. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  4. Coupled analysis of passive safety injection and containment filtered venting for passive decay heat removal - 15140

    International Nuclear Information System (INIS)

    Kim, S.H.; Ham, J.H.; Jeong, Y.H.; Chang, S.H.

    2015-01-01

    Lots of interests for the safety of nuclear power plants have risen these days. The safety has to be continuously reviewed and enhanced in nuclear power plants currently operating as well as those designed and constructed in future. After the Fukushima accidents, many additional safety systems which can be applied to nuclear power plants in operation have been proposed. Those include alternating power source such as movable diesel generators and DC batteries in non-safety grade. Also, emergency preparedness for the prevention of a core damage accident was proposed to cope with the extended-SBO (station blackout) by using fire protection systems. In order to prevent the release of radioactive materials, safety systems for preserving the integrity of containment were proposed in two views of cooling and venting containment. Two approaches are effective for mitigating a severe accident. The design concept installing big water tanks besides containment at high level was proposed for various safety functions. One of the functions in the system is to inject the coolant from the elevated tank into a reactor vessel in the case of loss of coolant accident. When the pressure in reactor coolant system is sufficiently low, the coolant can be injected by gravity. If not, the depressurization in reactor vessel would be needed considering the containment pressure. Containment cooling in conventional pressurized water reactors is dependent on containment cooling pumps and sprays. Additional containment cooling systems cannot be simply and easily applied in the current nuclear power plants without major modifications. Therefore, for the operation of passive safety injection system, containment filtered venting system can be adopted for the depressurization of containment. In the design and operation of the passive safety injection system and the containment filtered venting system, main operating points related with open and close pressures in the filtered venting system were

  5. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study.

    Science.gov (United States)

    Tsui, Ban C H; Knezevich, Mark P; Pillay, Jennifer J

    2008-01-01

    High injection pressures have been associated with intraneural injection and persistent neurological injury in animals. Our objective was to test whether a reported simple compressed air injection technique (CAIT) would limit the generation of injection pressures to below a suggested 1,034 mm Hg limit in an in vitro model. After ethics board approval, 30 consenting anesthesiologists injected saline into a semiclosed system. Injection pressures using 30 mL syringes connected to a 22 gauge needle and containing 20 mL of saline were measured for 60 seconds using: (1) a typical "syringe feel" method, and (2) CAIT, thereby drawing 10 mL of air above the saline and compressing this to 5 mL prior to and during injections. All anesthesiologists performed the syringe feel method before introduction and demonstration of CAIT. Using CAIT, no anesthesiologist generated pressures above 1,034 mm Hg, while 29 of 30 produced pressures above this limit at some time using the syringe feel method. The mean pressure using CAIT was lower (636 +/- 71 vs. 1378 +/- 194 mm Hg, P = .025), and the syringe feel method resulted in higher peak pressures (1,875 +/- 206 vs. 715 +/- 104 mm Hg, P = .000). This study demonstrated that CAIT can effectively keep injection pressures under 1,034 mm Hg in this in vitro model. Animal and clinical studies will be needed to determine whether CAIT will allow objective, real-time pressure monitoring. If high pressure injections are proven to contribute to nerve injury in humans, this technique may have the potential to improve the safety of peripheral nerve blocks.

  6. The study of two methods for high pressure injection in CT enhancement to display the aortic dissecting aneurysm

    International Nuclear Information System (INIS)

    Wang Yang; Zhu Bin; Zhang Zhen

    2008-01-01

    Objective: To discuss the consequences of two different methods of high pressure injection in CT contrast enhancement to display the aortic dissecting aneurysm. Methods: 100 patients underwent Lightspeed 16 MS CT with contrast enhancement of Stellant D high pressure injector (Medrad), injecting speed of 4.0 mL/s and 80 ml dosage of contrast medium. All patients were divided into A and B groups with 50 in each. The single high pressure injection was applied to A group without isotonic Na chloride flush. B group underwent the same high pressure injection and followed by isotonic Na chloride flush. The method of evaluation was carried out by double blind observation. Results: A group revealed radiologic artifact up to 40 cases with positive rate of 80%. B group demonstrated the same kind of radiologic artifact in 26 cases with positive rate of 52%. Conclusions: Using normal saline (sodium chloride solution)flush after high pressure injection of contrast medium during MSCT angiography is obviously better to demonstrate the internal structures of treatvessels. (authors)

  7. Experiment data report for LOFT large-break loss-of-coolant experiment L2-5

    International Nuclear Information System (INIS)

    Bayless, P.D.; Divine, J.M.

    1982-08-01

    Selected pertinent and uninterpreted data from the third nuclear large break loss-of-coolant experiment (Experiment L2-5) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)] commercial PWR operations. Experiment L2-5 simulated a double-ended offset shear of a cold leg in the primary coolant system. The primary coolant pumps were tripped within 1 s after the break initiation, simulating a loss of site power. Consistent with the loss of power, the starting of the high- and low-pressure injection systems was delayed. The peak fuel rod cladding temperature achieved was 1078 +- 13 K. The emergency core cooling system re-covered the core and quenched the cladding. No evidence of core damage was detected

  8. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  9. System Study: High-Pressure Safety Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  10. Partial Discharge Measurements in HV Rotating Machines in Dependence on Pressure of Coolant

    Directory of Open Access Journals (Sweden)

    I. Kršňák

    2002-01-01

    Full Text Available The influence of the pressure of the coolant used in high voltage rotating machines on partial discharges occurring in stator insulation is discussed in this paper. The first part deals with a theoretical analysis of the topic. The second part deals with the results obtained on a real generator in industrial conditions. Finally, theoretical assumptions and obtained results are compared.

  11. The corrosion products in the coolant circuits of pressurized water nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of the corrosion products formed in the primary and secondary coolant circuits of light-water pressurized reactors are reviewed. The problem induced by the pollution of coolants and metallic surface are examined. Then, the recommendations to follow to minimize the disturbing effects of this pollution by the corrosion products are indicated [fr

  12. Analysis Of Primary Coolant Suction Side Pressure In The Delay Chamber Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto

    2000-01-01

    Delay chamber is a tank to delay flow that located in the primary cooling suction side of RSG-GAS. A void occurred when operation reactor caused by too high the delta P at inlet suction pump. The condition may be avoided by using one line mode of the cooling flow. The analysis show that void volume in the delay chamber is occurred because the coolant negative pressure lowers the saturation pressure should be avoided though decreasing the delta P until about 0.1 bar at about 45 exp 0 C. Solution suggested are to use bypass flow from the spent fuel to the delay chamber. Coolant temperature can be also decreased by decreasing the power level of the reactor as well as improving the heat exchanger and cooling tower performances

  13. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2017-08-15

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  14. On the transient pressure build-up in the full pressure safety shell of watercooled nuclear reactors after a loss of coolant accident

    International Nuclear Information System (INIS)

    Mansfeld, G.

    1979-08-01

    The thermo-and fluid-dynamic processes in a multichamber full pressure safety containment during a loss of coolant accident have been investigated. Comparison of the calculations carried out with the computer programs, in which ZOCO VI was used as being representative of similar programs, with the experimental results pointed out discrepancies in the determination of time dependent pressure, pressure difference and temperature curves. This led to the development of a new theoretical model and a program COFLOW which pays particular attention to the fluid dynamic processes in the initial phase of a loss of coolant accident. It can also be used to determine the maximum containment pressure towards the end of a loss of coolant accident. Comparison of the COFLOW results with experiments has shown that COFLOW provides a model and a procedure by which the physical processes in a multichamber full pressure safety containment can be simulated satisfactorily

  15. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  16. Pressure Fluctuations in a Common-Rail Fuel Injection System

    Science.gov (United States)

    Rothrock, A M

    1931-01-01

    This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.

  17. Precision tubes for high-pressure diesel injection lines; Praezisrohre fuer Hochdruck-Dieseleinspritzleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, M.; Lechtenfeld, U.; Zaremba, A. [Mannesmann Praezisrohr GmbH, Hamm (Germany)

    2008-03-15

    The requirements on diesel injection lines raise because of increasing customers demands and more rigid environmental laws. In this context higher injection pressures effect both aspects positively. One important condition for increasing pressure levels is the economical provision of suitable injection lines. To reach this aim, Mannesmann Praezisrohr GmbH developed precision tubes for injection lines, which are fulfilling these increasing requirements. (orig.)

  18. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  19. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Science.gov (United States)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  20. Modelling of the work processes high-pressure pump of common rail diesel injection system

    Directory of Open Access Journals (Sweden)

    Botwinska Katarzyna

    2016-01-01

    Full Text Available Common rail injection systems are becoming a more widely used solution in the fuel systems of modern diesel engines. The main component and the characteristic feature of the system is rail injection of the fuel under high pressure, which is passed to the injector and further to the combustion chamber. An important element in this process is the high-pressure pump, continuing adequate pressure in the rail injection system. Common rail (CR systems are being modified in order to optimise their work and virtual simulations are a useful tool in order to analyze the correctness of operation of the system while varying the parameters and settings, without any negative impact on the real object. In one particular study, a computer simulation of the pump high-pressure CR system was made in MatLab environment, based on the actual dimensions of the object – a one-cylinder diesel engine, the Farymann Diesel 18W. The resulting model consists of two parts – the first is responsible for simulating the operation of the high-pressure pump, and the second responsible for simulation of the remaining elements of the CR system. The results of this simulation produced waveforms of the following parameters: fluid flow from the manifold to the injector [m3/s], liquid flow from the manifold to the atmosphere [m3/s], and manifold pressure [Pa]. The simulation results allow for a positive verification of the model and the resulting system could become a useful element of simulation of the entire position and control algorithm.

  1. The origin and magnitude of pressures in fuel-coolant interactions

    International Nuclear Information System (INIS)

    Heer, W.; Jakeman, D.; Smith, B.L.

    1987-01-01

    A number of small scale experiments to simulate fuel coolant interaction (FCI) effects have been carried out using Freon and water. Contrary to the predictions of most current FCI models, only modest pressure transients are observed within the interaction region itself but large pressure spikes, near to or above critical Freon pressure, are seen at the boundaries of the region. Similar pressure amplification effects have been noticed in parallel experiments involving two phase mixtures. It is suggested that in both cases a water hammer type effect is the cause of the pressure spikes. These observations could form the basis of new thinking in FCI modelling. (author)

  2. Behavior of pressure rise and condensation caused by water evaporation under vacuum at high temperature

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Yamazaki, Seiichiro; Fujii, Sadao

    1998-01-01

    Pressure rise and condensation characteristics during the ingress-of-coolant event (ICE) in fusion reactors were investigated using the preliminary ICE apparatus with a vacuum vessel (VV), an additional tank (AT) and an isolation valve (IV). A surface of the AT was cooled by water at RT. The high temperature and pressure water was injected into the VV which was heated up to 250degC and pressure and temperature transients in the VV were measured. The pressure increased rapidly with an injection time of the water because of the water evaporation. After the IV was opened and the VV was connected with the AT, the pressure in the VV decreased suddenly. From a series of the experiments, it was confirmed that control factors on the pressure rise were the flushing evaporation and boiling heat transfer in the VV, and then, condensation of the vapor after was effective to the depressurization in the VV. (author)

  3. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  4. Emulation study on system characteristic of high pressure common-rail fuel injection system for marine medium-speed diesel engine

    Science.gov (United States)

    Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua

    2018-05-01

    In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.

  5. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T; Grunwald, G

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  6. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  7. Upper plenum dump during reflood in PWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Sudo, Yukio; Griffith, Peter.

    1981-01-01

    Upper plenum dump during reflood in a large break loww-of-coolant accident of PWR is studied with the emergency core coolant injection into the upper plenum in addition to the cold leg. Transient experiments were carried out by injecting water into the upper plenum and the simple analysis based on a one-dimensional model was done using the drift flux model in order to investigate the conditions under which water dump through the core occurs during reflood. The most significant result is an upper plenum dump occurs when the pressure (hydrostatic head) in the upper plenum is greater than that in the lower plenum. Under those circumstances the flow regime isco-current down flow in which the upper plenum is rapidly emptied. On the other hand, when the upper plenum pressure (hydrostatic head) is less than the lower plenum pressure (hydrostatic head), the co-current down flow is not realized but a counter-current flow occurs. With subcooled water injection to the upper plenum, co-current down flow is realized even when the upper plenum hydrostatic head is less than the lower plenum hydrostatic head. The importance of this effect varies according to the magnetude of water subcooling. (author)

  8. Management of large scale coolant channel replacement programme for Indian PHWRs

    International Nuclear Information System (INIS)

    Bhatnagar, V.K.; Chadda, S.K.; Arya, R.C.

    1994-01-01

    Coolant channel assemblies form most important core components of pressurised heavy water reactors. Zirconium alloy pressure tube which form part of coolant channel assemblies are subjected to environment of high neutron flux, high pressure and temperature. Under those operating environmental conditions, the pressure tubes material undergoes degradation of metallurgical and mechanical properties in addition to dimensional changes. The coolant channels are subjected to an in-service inspection (ISI) programme for monitoring the health particularly of the pressure tubes. The en-mass replacement of pressure tubes is needed after most of the pressure tubes show unacceptable conditions for an assured safe and reliable operation. An overview of various issues pertaining to this aspect is presented. (author). 4 figs

  9. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  10. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  11. Mechanical energy yields and pressure volume and pressure time curves for whole core fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, P [United Kingdom Atomic Energy Authority, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1979-10-15

    In determining the damage consequences of a whole core Fuel-Coolant Interaction (FCI), one measure of the strength of a FCI that can be used and is independent of the system geometry is the constant volume mixing mechanical yield (often referred to as the Hicks-Menzies yield), which represents a near upper limit to the mechanical work of a FCI. This paper presents a recalculation of the Hicks-Menzies yields for UO{sub 2} and sodium for a range of initial fuel temperatures and fuel to coolant mass ratios, using recently published UO{sub 2} and sodium equation of state data. The work presented here takes a small number of postulated FCIs with as wide range as possible of thermal interaction parameters and determines their pressure-volume P(V) and pressure-time P(t) relations, using geometrical constraints representative of the reactor. Then by examining these P(V) and P(t) curves a representative pressure-relative volume curve or range of possible curves, for use in containment analysis, is recommended

  12. Primary coolant feed and bleed operating regions for the Midland Plant

    International Nuclear Information System (INIS)

    Tsai, M.S.

    1985-01-01

    Operating regions for primary coolant feed and bleed cooling are developed for the Midland Plant using core decay heat, the high-pressure injection (HPI) system capacity, and flow rate relief through the power-operated relief valve (PORV). This mode of cooling is used for accident scenarios in which the normal core cooling means of a nuclear power plant is lost because of loss of water inventory in the steam generators. The HPI flow is based on the capacities of one and two pumps. Saturated steam, saturated water, and subcooled water are considered to be possible states of the fluid being relieved through the PORV. In estimating the PORV relief rate, flow equations are derived from the Electric Power Research Institute test data obtained from the same model and size valve that is used in the Midland Plant. For easy reference by operators, the operating region is displayed on a plane of reactor coolant system pressure and temperature. The technique developed for the Midland Plant provides a convenient method for examining the feed and bleed cooling capability for a nuclear power plant that employs a pressurized water reactor system

  13. Influence of Zn injection on corrosion behavior and oxide film characteristics of 304 stainless steel in borated and lithiated high temperature water

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei

    2012-09-01

    Water chemistry of the reactor coolant system plays a major role in maintaining safety and reliability of light water reactor nuclear power plants (NPPs). Zn water chemistry into pressurized water reactors (PWRs) in order to reduce the radiation buildup in primary coolant system has been widely applied, and the reduction effect has been experimentally confirmed. Zn injection can also lessen the corrosion phenomena in high temperature pressurized water by changing oxide films formed on components materials. Both the radiation buildup and material corrosion resistance in PWR coolant system are closely dependent on the oxide films formed. However, the influence of Zn injection on the chemical composition and structure of the oxide films on their protective properties is still a matter of considerable debate. The influence of Zn injection on corrosion inhibition and environmental degradation has not been fully clarified yet. Therefore, the understanding of corrosion behaviour, oxide film characteristics and their protective property is of significance to clarify the environmentally assisted material failure problems in NPPs. In the present work, oxide films formed on nuclear-grade 304 SS exposed to borated and lithiated high temperature water environments at 300 deg. C up to 4000 h with or without 10 ppb Zn injection were investigated ex-situ. Without Zn injection, the oxide films mainly consisted of Fe 3 O 4 and FeCr 2 O 4 . With Zn injection, ZnFe 2 O 4 and ZnCr 2 O 4 were detected in the oxide films at the initial stage of immersion and ZnCr 2 O 4 became dominant after long-term immersion. It was believed that the above Zn-Fe and Zn-Cr spinel oxides were formed by substitution reactions between Zn 2+ and Fe 2+ . At the initial stage of immersion, water chemistry significantly affected the formation of the oxide films. Once a stable oxide film formed, it is rather difficult to change its structure through changing water chemistry. The potential-pH diagrams for Zn

  14. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  15. N13 - based reactor coolant pressure boundary leakage system

    International Nuclear Information System (INIS)

    Dissing, E.; Marbaeck, L.; Sandell, S.; Svansson, L.

    1980-05-01

    A system for the monitoring of leakage of coolant from the reactor coolant pressure boundary and auxiliary systems to the reactor containment, based on the detection of the N13 content in the atmosphere, has been tested. N13 is produced from the oxyegen of the reactor water via the recoil photon nuclear process H1 + 016 + He4. The generation of N13 is therefore independent of fuel element leakage and of the corrosion product content in the water. In the US AEC regulatory guide 1.45 has a leakage increase of 4 liter/ min been suggested as the response limit. The experiments carried out in Ringhals indicate, that with the accomplishment of minor improvements in the installation, a 4 liter/min leakage to the containment will give rise to a signal with a random error range of +- 0.25 liter/min, 99.7 % confidence level. (author)

  16. Primary break with total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Cordelle, F.; Champ, M.; Pochard, R.

    1988-10-01

    The probabilitic safety assessment of a 900 MW plant has displayed the potential importance, with regard to the risk, of intermediate primary breaks with failure of the high pressure safety injection system. The probability of such sequence is about 10 -6 /plant X year. Therefore, it is necessary to establish: - if this sequence can lead to core melt down, - if clad ruptures can occur. This event must be taken into account to determine the repair time of contaminated systems. For these studies, a three inch equivalent diameter break is considerd, as this is the most sensitive in its category with regard to these phenomena. In addition to the above objectives, the purpose of these studies is to evaluate the sensitivity of the results to the following parameters: - the time limit at which the operator starts cooling down the plant via the steam generators. Two calculations have been made with the RELAP code (1 and 2) and two with the CATHARE code (3 and 4) - the pump trip time. Four calculations have been made with the CATHARE code (5, 6, 7 and 8). In the case of failure of only one high pressure safety injection file, 6 calculations have been made with the CATHARE code, concerning the influence of pump trip time (9, 10, 11, 12, 13 and 14)

  17. Computational Investigation of Novel Tip Leakage Mitigation Methods for High Pressure Turbine Blades

    Science.gov (United States)

    Ibrahim, Mounir; Gupta, Abhinav; Shyam, Vikram

    2014-01-01

    This paper presents preliminary findings on a possible approach to reducing tip leakage losses. In this paper a computational study was conducted on the Energy Efficient Engine (EEE) High Pressure Turbine (HPT) rotor tip geometry using the commercial numerical solver ANSYS FLUENT. The flow solver was validated against aerodynamic data acquired in the NASA Transonic Turbine Blade Cascade facility. The scope of the ongoing study is to computationally investigate how the tip leakage and overall blade losses are affected by (1) injection from the tip near the pressure side, (2) injection from the tip surface at the camber line, and (3) injection from the tip surface into the tip separation bubble. The objective is to identify the locations on the tip surface at which to place appropriately configured blowing keeping in mind the film cooling application of tip blowing holes. The validation was conducted at Reynolds numbers of 85,000, 343,000, and 685,000 and at engine realistic flow conditions. The coolant injection simulations were conducted at a Reynolds number of 343,000 based on blade chord and inlet velocity and utilized the SST turbulence model in FLUENT. The key parameters examined are the number of jets, jet angle and jet location. A coolant to inlet pressure ratio of 1.0 was studied for angles of +30 deg, -30 deg, and 90 deg to the local free stream on the tip. For the 3 hole configuration, 3 holes spaced 3 hole diameters apart with length to diameter ratio of 1.5 were used. A simulation including 11 holes along the entire mean camber line is also presented (30 deg toward suction side). In addition, the effect of a single hole is also compared to a flat tip with no injection. The results provide insight into tip flow control methods and can be used to guide further investigation into tip flow control. As noted in past research it is concluded that reducing leakage flow is not necessarily synonymous with reducing losses due to leakage.

  18. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon; Chung, Suk-Ho

    2013-01-01

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled

  19. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  20. Simulation of coolant mixing in pressure vessel reactors

    International Nuclear Information System (INIS)

    Hoehne, T.

    2003-06-01

    The work was aimed at the experimental investigation and numerical simulation of coolant mixing in the downcomer and the lower plenum of PWRs. Generally, the coolant mixing is of relevance for two classes of accident scenarios - boron dilution and cold water transients. For the investigation of the relevant mixing phenomena, the Rossendorf test facility ROCOM has been designed. ROCOM is a 1:5 scaled Plexiglas trademark model of the PWR Konvoi allowing conductivity measurements by wire mesh sensors and velocity measurements by the LDA technique. The CFD calculations were carried out with the CFD-code CFX-4. For the design of the facility, calculations were performed to analyze the scaling of the model. It was found, that the scaling of 1:5 to the prototype meets both: physical and economical demands. Flow measurements and the corresponding CFD calculations in the ROCOM downcomer under steady state conditions showed a Re number independency at nominal flow rates. The flow field is dominated by recirculation areas below the inlet nozzles. Transient flow measurements with high performance LDA-technique showed in agreement with CFX-4 results, that in the case of the start up of a pump after a laminar stage large vortices dominate the flow. In the case of stationary mixing, the maximum value of the averaged mixing scalar at the core inlet was found in the sector below the inlet nozzle, where the tracer was injected. At the start-up case of one pump due to a strong impulse driven flow at the inlet nozzle the horizontal part of the flow dominates in the downcomer. The injection is distributed into two main jets, the maximum of the tracer concentration at the core inlet appears at the opposite part of the loop where the tracer was injected. Additionally, the stationary three-dimensional flow distribution in the downcomer and the lower plenum of a VVER-440/V-230 reactor was calculated with CFX-4. The comparison with experimental data and an analytical mixing model showed a

  1. Qualifying Elbow Meters for High Pressure Flow Measurements in an Operating Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chan, A.M.; Maynard, K.J.; Ramundi, J.; Wiklung, E.

    2006-01-01

    To support the installation and use of elbow meters to measure the high pressure emergency coolant injection flow in an operating nuclear station, a test program was performed to qualify: (i) the 'hot' tapping procedure for field application and (ii) the use of elbow meters for accurate flow measurements over the full range of station ECI flow conditions. This paper describes the design conditions and major components of a flow loop used for the elbow meter calibrations. Typical test results are presented and discussed. (authors)

  2. High temperature and high performance light water cooled reactors operating at supercritical pressure, research and development

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.; Katsumura, Y.; Yamada, K.; Shiga, S.; Moriya, K.; Yoshida, S.; Takahashi, H.

    2003-01-01

    The concept of supercritical-pressure, once-through coolant cycle nuclear power plant (SCR) was developed at the University of Tokyo. The research and development (R and D) started worldwide. This paper summarized the conceptual design and R and D in Japan. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical fossil fired power plants (FPP) in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil fired power plants will be fully utilized for SCR. The high temperature, supercritical-pressure light water reactor is the logical evolution of LWR. Boiling evolved from circular boilers, water tube boilers and once-through boilers. It is the reactor version of the once-through boiler. The development from LWR to SCR follows the history of boilers. The goal of the R and D should be the capital cost reduction that cannot be achieved by the improvement of LWR. The reactor can be used for hydrogen production either by catalysis and chemical decomposition of low quality hydrocarbons in supercritical water. The reactor is compatible with tight lattice fast core for breeders due to low outlet coolant density, small coolant flow rate and high head coolant pumps

  3. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  4. Disruption mitigation with high-pressure helium gas injection on EAST tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Qian, J. P.; Zhuang, H. D.; Zeng, L.; Duan, Y.; Shi, T.; Wang, H.; Sun, Y.; Xiao, B. J.

    2018-03-01

    High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time  ⩽150 μs, capable of injecting up to 7 × 1022 particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N_He≃ N_plasma ) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N_He≃ 40× N_plasma ) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (˜7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.

  5. Pressure thermal shock analysis for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Galik, G.; Kutis, V.; Jakubec, J.; Paulech, J.; Murin, J.

    2015-01-01

    The appearance of structural weaknesses within the reactor pressure vessel or its structural failure caused by crack formation during pressure thermal shock processes pose as a severe environmental hazard. Coolant mixing during ECC cold water injection was simulated in a detailed CFD analysis. The temperature distribution acting on the pipe wall internal surface was calculated. Although, the results show the formation of high temperature differences and intense gradients, an additional structural analysis is required to determine the possibility of structural damage from PTS. Such an analysis will be the subject of follow-up research. (authors)

  6. A study on the effect of fluidic device installed in a safety injection tank on thermal-hydraulic phenomena of large break loss of coolant accident

    International Nuclear Information System (INIS)

    Chung, Young Jong; Bae, Kyoo Hwan; Song, Jin Ho; Sim, Suk Ku; Park, Jong Kyun

    1999-03-01

    The performance of the Safety Injection Tank (SIT) with fluidic device (advanced SIT) is analyzed for the large break loss of coolant accident (LBLOCA) using RELAP5/MOD3.1-KREM. First the case is analyzed using the conventional SIT. Among various cases the case with 4-split downcomer, discharge coefficient Cd=0.6, MCP trip with reactor trip and break location of cold leg discharge side with the pressurizer is found to be the most limiting case. For the same condition, the advanced SIT results the similar PCT, however it can maintain adequately the liquid level in the downcomer. By changing the ECCS location from the current injection to the cold leg elevations, PCT is improved by 75 K. (Author). 6 refs., 4 tabs., 54 figs

  7. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  8. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

    NARCIS (Netherlands)

    Baert, R.S.G.; Klaassen, A.; Doosje, E.

    2010-01-01

    Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

  9. Investigation of coolant mixture in pressurized water reactors at the Rossendorf mixing test facility ROCOM

    International Nuclear Information System (INIS)

    Grunwald, G.; Hoehne, T.; Prasser, H.M.; Richter, K.; Weiss, F.P.

    1999-01-01

    During the so-called boron dilution or cold water transients at pressurized water reactors too weakly borated water or too cold water, respectively, might enter the reactor core. This results in the insertion of positive reactivity and possibly leads to a power excursion. If the source of unborated or subcooled water is not located in all coolant loops but in selected ones only, the amount of reactivity insertion depends on the coolant mixing in the downcomer and lower plenum of the reactor pressure vessel (RPV). Such asymmetric disturbances of the coolant temperature or boron concentration might e.g. be the result of a failure of the chemical and volume control system (CVCS) or of a main steam line break (MSLB) that does only affect selected steam generators (SG). For the analysis of boron dilution or MSLB accidents coupled neutron kinetics/thermo-hydraulic system codes have been used. To take into account coolant mixing phenomena in these codes in a realistic manner, analytical mixing models might be included. These models must be simple and fast running on the one hand, but must well describe the real mixing conditions on the other hand. (orig.)

  10. Simulation of a large break loss of coolant (LBLOCA), without actuation of the emergency injection systems (ECCS) for a BWR-5

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Lopez M, R.

    2015-09-01

    In this paper the analysis of scenario for the loss of coolant case was realized with break at the bottom of a recirculation loop of a BWR-5 with containment type Mark II and a thermal power of 2317 MWt considering that not have coolant injection. This in order to observe the speed of progression of the accident, the phenomenology of the scenario, the time to reach the limit pressure of containment venting and the amount of radionuclides released into the environment. This simulation was performed using the MELCOR code version 2.1. The scenario posits a break in one of the shear recirculation loops. The emergency core cooling system (ECCS) and the reactor core isolation cooling (Rcic) have not credit throughout the event, which allowed achieve greater severity on scenario. The venting of the primary containment was conducted via valve of 30 inches instead of the line of 24 inches of wet well, this in order to have a larger area of exhaust of fission products directly to the reactor building. The venting took place when the pressure in the primary containment reached the 4.5 kg/cm 2 and remained open for the rest of the scenario to maximize the amount released of radionuclides to the atmosphere. The safety relief valves were considered functional they do not present mechanical failure or limit their ability to release pressure due to the large number of performances in safety mode. The results of the analysis covers about 48 hours, time at which the accident evolution was observed; behavior of level, pressure in the vessel and the fuel temperature profile was analyzed. For progression of the scenario outside the vessel, the pressure and temperature of the primary containment, level and temperature of the suppression pool, the hydrogen accumulation in the container and the radionuclides mass released into the atmosphere were analyzed. (Author)

  11. Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications

    Directory of Open Access Journals (Sweden)

    Bruce Chehroudi

    2012-01-01

    Full Text Available Pressure and temperature of the liquid rocket thrust chambers into which propellants are injected have been in an ascending trajectory to gain higher specific impulse. It is quite possible then that the thermodynamic condition into which liquid propellants are injected reaches or surpasses the critical point of one or more of the injected fluids. For example, in cryogenic hydrogen/oxygen liquid rocket engines, such as Space Shuttle Main Engine (SSME or Vulcain (Ariane 5, the injected liquid oxygen finds itself in a supercritical condition. Very little detailed information was available on the behavior of liquid jets under such a harsh environment nearly two decades ago. The author had the opportunity to be intimately involved in the evolutionary understanding of injection processes at the Air Force Research Laboratory (AFRL, spanning sub- to supercritical conditions during this period. The information included here attempts to present a coherent summary of experimental achievements pertinent to liquid rockets, focusing only on the injection of nonreacting cryogenic liquids into a high-pressure environment surpassing the critical point of at least one of the propellants. Moreover, some implications of the results acquired under such an environment are offered in the context of the liquid rocket combustion instability problem.

  12. Integrated equipment for increasing and maintaining coolant pressure in primary circuit of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sykora, D.

    1986-01-01

    An open heat pump circuit is claimed connected to the primary circuit. The pump circuit consists of a steam pressurizer with a built-in steam distributor, a compressor, an expander, a reducing valve, an auxiliary pump, and of water and steam pipes. The operation is described and a block diagram is shown of integrated equipment for increasing and maintaining pressure in the nuclear power plant primary circuit. The appropriate entropy diagram is also shown. The advantage of the open pump circuit consists in reducing the electric power input and electric power consumption for the steam pressurizers, removing entropy loss in heat transfer with high temperature gradient, in the possibility of inserting, between the expander and the auxiliary pump, a primary circuit coolant treatment station, in simplified design and manufacture of the high-pressure steam pressurizer vessel, reducing the weight of the steam pressurizer by changing its shape from cylindrical to spherical, increasing the rate of pressure growth in the primary circuit. (E.S.)

  13. Simulation of a loss of coolant accident with hydroaccumulator injection

    International Nuclear Information System (INIS)

    1988-10-01

    An essential component of nuclear safety activities is the analysis of postulated accidents which are taken as a design basis for a facility. This analysis is usually carried out by using complex computer codes to simulate the behaviour of the plant and to calculate vital plant parameters, which are then compared with the design limits. Since these simulations cannot be verified at the plant itself, computer codes must be validated by comparing the results of calculations with experimental data obtained in test facilities. The IAEA, having identified the need for experimental data due to the difficulties of building integral test facilities and the high costs of these experiments, has accepted the offer of the Hungarian Academy of Sciences and organized two standard problem exercises. In these exercises, experimental data from the simulation of a 7.4% break loss of coolant accident was compared with analytical prediction of the behaviour of the facility calculated with computer codes. The second standard problem exercise involved a similar test, with the exception that in this case hydroaccumulator of the safety injection system were allowed to inject water in the system as anticipated in the design of the plant. This document presents a complete overview of the Second Standard Problem Exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many inter-related steps, therefore, no general conclusion on optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation. 22 refs, figs and tabs

  14. Interfacing systems loss of coolant accident (ISLOCA) pressure capacity methodology and Davis-Besse results

    International Nuclear Information System (INIS)

    Wesley, D.A.

    1991-01-01

    A loss of coolant accident resulting from the overpressurization by reactor coolant fluid of a system designed for low-pressure, low-temperature service has been identified as a potential contributor to nuclear power plant risk. In this paper, the methodology developed to assess the probability of failure as a function of internal pressure is presented, and sample results developed for the controlling failure modes and locations of four fluid systems at the Davis-Besse Plant are shown. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The variability in the probability of failure is included, and the estimated leak rates or leak areas are given for the controlling modes of failure. For this evaluation, all failures are based on quasistatic pressures since the probability of dynamic effects resulting from such causes as water hammer have been initially judged to be negligible for the Davis-Besse plant ISLOCA

  15. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  16. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  17. Modelling the effect of injection pressure on heat release parameters and nitrogen oxides in direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Yüksek Levent

    2014-01-01

    Full Text Available Investigation and modelling the effect of injection pressure on heat release parameters and engine-out nitrogen oxides are the main aim of this study. A zero-dimensional and multi-zone cylinder model was developed for estimation of the effect of injection pressure rise on performance parameters of diesel engine. Double-Wiebe rate of heat release global model was used to describe fuel combustion. extended Zeldovich mechanism and partial equilibrium approach were used for modelling the formation of nitrogen oxides. Single cylinder, high pressure direct injection, electronically controlled, research engine bench was used for model calibration. 1000 and 1200 bars of fuel injection pressure were investigated while injection advance, injected fuel quantity and engine speed kept constant. The ignition delay of injected fuel reduced 0.4 crank angle with 1200 bars of injection pressure and similar effect observed in premixed combustion phase duration which reduced 0.2 crank angle. Rate of heat release of premixed combustion phase increased 1.75 % with 1200 bar injection pressure. Multi-zone cylinder model showed good agreement with experimental in-cylinder pressure data. Also it was seen that the NOx formation model greatly predicted the engine-out NOx emissions for both of the operation modes.

  18. On natural circulation in High Temperature Gas-Cooled Reactors and pebble bed reactors for different flow regimes and various coolant gases

    International Nuclear Information System (INIS)

    Melesed'Hospital, G.

    1983-01-01

    The use of CO 2 or N 2 (heavy gas) instead of helium during natural circulation leads to improved performance in both High Temperature Gas-Cooled Reactors (HTGR) and in Pebble Bed Reactors (PBR). For instance, the coolant temperature rise corresponding to a coolant pressure level and a rate of afterheat removal could be only 18% with CO 2 as compared to He, for laminar flow in HTGR; this value would be 40% in PBR. There is less difference between HTGR and PBR for turbulent flows; CO 2 is found to be always better than N 2 . These types of results derived from relationships between coolant properties, coolant flow, temperature rise, pressure, afterheat levels and core geometry, are obtained for HTGR and PBR for various flow regimes, both within the core and in the primary loop

  19. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  20. Contact condensation effects in the main coolant pipe

    International Nuclear Information System (INIS)

    Haefner, W.; Fischer, K.

    1990-01-01

    Contact condensation effects may occur in a pressurized water reactor (PWR) after a loss of coolant accident (LOCA) when emergency core cooling (ECC) water is injected contact with escaping steam which is generated within the core. The condensation which takes place may cause a sudden depressurization leading to the formation of water slugs. The interaction between the transient condensation and the inertia of the flow may also result in large amplitude flow and pressure oscillations. These contact condensation effects are of great importance for the mass flow distribution and the coolant water supply to the reactor core. To examine those complex processes, large computer codes are necessary. The development and verification of analytical models requires greatly simplified flow boundary conditions from experiments and a sufficiently large base of experimental data. Separate models have been developed for interfacial exchange of mass, momentum and energy with respect to the associated flow regime. Therefore, an adequate description of the condensation process requires the modeling of two different topics: the prediction of the flow regime and the calculation of the interfacial exchange. (author)

  1. Experiment data report for Semiscale Mod-1 Test S-05-4 (alternate ECC injection test)

    International Nuclear Information System (INIS)

    Collins, B.L.; Feldman, E.M.

    1977-03-01

    Recorded test data are presented for Test S-05-4 of the Semiscale Mod-1 alternate emergency core coolant injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-4 was conducted from initial conditions of 2266 psia and 543 0 F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the cold leg of each loop and into the vessel upper plenum to simulate emergency core coolant injection in a PWR. The upper plenum coolant injection was scaled according to the heat stored in the metal mass of the upper plenum

  2. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  3. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  4. REMIX: a computer program for temperature transients due to high pressure injection after interruption of natural circulation

    International Nuclear Information System (INIS)

    Iyer, K.; Nourbakhsh, H.P.; Theofanous, T.G.

    1986-05-01

    This report describes the features and use of several computer programs developed on the basis of the Regional Mixing Model (RMM). This model provides a phenomenologically-based analytical description of the stratified flow and temperature fields resulting from High Pressure Safety Injection (HPI) in the stagnated loops of a Pressurized Water Reactor (PWR). The basic program is called REMIX and is intended for thermally-induced stratification at low Froude number injections. The REMIX-S version is intended for solute-induced stratification with or without thermal effects as found in several experimental simulations. The NEWMIX program is a derivative of REMIX representing the limit of maximum possible mixing within the cold leg and is intended for high Froude number injections. The NEWMIX-S version accounts for solute effects. Listings of all programs and sample problem input and output files are included. 10 refs

  5. [Results of treatment for high-pressure injection hand injuries].

    Science.gov (United States)

    Zyluk, A; Walaszek, I

    2000-01-01

    High-pressure injection injuries of the hand have a reputation for being dangerous for individual fingers and even for whole hand. Usually appearing innocuous at presentation because of small puncture entry wound, these injuries result in severe damage of most internal structures in finger and hand due to extensive penetration of injected substance. This paper reviews the outcome of the treatment of such injuries in 10 patients: 9 sustained injection of toxic paint, and one lead shot. All the patients were operated on: eight a few hours after injury and two with 3 days delay. The surgical technique included wide exposure from site of injection up to the farthest place in which foreign substance was seen. Thorough debridment of injected material and contaminated tissue was performed with careful preservation of neurovascular structures and tendons. Wounds were not closed, but managed by open technique. In all patients wounds healed well: in 3 by secondary intention, in 6 by delayed closure and 2 were covered by skin grafts. No amputation was performed. Final results were assessed form 1.5 to 3.5 years after initial injury (mean at 2.5 years). Two patients complained of moderate pain related to the weather, five of cold intolerance and two of impaired sensation on fingertips. Active range of motion of affected fingers was in whole group from 90% to 104% (mean 97%) of the range of motion of unaffected fingers from the other side. Range of motion of the wrist (2 patients) was 76% and 117% of range of motion of the other side. Pinch grip strength was from 81% to 116% (mean 99%), and global grip strength from 77% to 119% (mean 97%) of the other side. All patients went back to their previous jobs and periods of sick leave were from 2 weeks to 6 months (mean 3 mo). Excellent results achieved in this study--full functional recovery in 9 of 10 patients confirm the effectiveness of aggressive treatment by open wound technique of such injuries.

  6. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  7. Formation and hydraulic effects of deposits in high temperature sodium coolant systems

    International Nuclear Information System (INIS)

    Yunker, W.

    1976-01-01

    Deposition of sodium impurities in the high temperature (600 0 C), high flow (Reynolds Number approximately equal to 8 x 10 4 ) regions of a sodium coolant circuit is being studied to determine its possible hydraulic effects. Increases in flow impedance (pressure drop/volume flow 2 ) of up to 30 percent have been detected in an annular flow sensor. The apparatus and preliminary results of these tests are presented. Continuing tests are to specifically identify the materials involved and the system conditions under which the formations occur

  8. Vent clearing during a simulated loss-of-coolant accident in Mark I boiling-water-reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1978-01-01

    The response of the pressure-suspension containment system of Mark I boiling-water reactors to a loss-of-coolant accident (LOCA) is being studied. This response is a design basis for light-water nuclear reactors. Part of the study is being carried out on a 1 / 5 -scale experimental facility that models the pressure-suppression containment system of the Peach Bottom 2 nuclear power plant. The test series reported here focused on the initial or air-clearing phase of a hypothetical LOCA. Measured forces, measured pressures, and the hydrodynamic phenomena (observed with high-speed cameras) show a logical interrelationship

  9. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  10. Image processing analysis of combustion for D. I. diesel engine with high pressure fuel injection. ; Effects of air swirl and injection pressure. Nensho shashin no gazo shori ni yoru koatsu funsha diesel kikan no nensho kaiseki. ; Swirl oyobi funsha atsuryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, I. (Japan Automobile Research Institute, Inc., Tsukuba (Japan)); Tsujimura, K.

    1994-02-25

    This paper reports an image processing analysis of combustion for a high-pressure direct injection diesel engine on the effects of air swirl and injection pressure upon combustion in the diesel engine. The paper summarizes a method to derive gas flow and turbulence strengths, and turbulent flow mixing velocity. The method derives these parameters by detecting movement of brightness unevenness on two flame photographs through utilizing the mutual correlative coefficients of image concentrations. Five types of combustion systems having different injection pressures, injection devices, and swirl ratios were used for the experiment. The result may be summarized as follows: variation in the average value of the turbulent flow mixing velocities due to difference in the swirl ratio is small in the initial phase of diffusion combustion; the difference is smaller in the case of high swirl ratio than in the case of low swirl ratio after the latter stage of the injection; the average value is larger with the higher the injection pressure during the initial stage of the combustion; after termination of the injection, the value is larger in the low pressure injection; and these trends agree with the trend in the time-based change in heat generation rates measured simultaneously. 6 refs., 14 figs., 2 tabs.

  11. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    Science.gov (United States)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  12. Numerical analysis of coolant mixing in the pressure vessel of WWER-440 type nuclear reactors

    International Nuclear Information System (INIS)

    Boros, I.; Aszodi, A.

    2003-01-01

    The precise description of the coolant mixing processes taking place in the reactor pressure vessel (RPV) of pressurized water nuclear reactors has an essential importance during power operation, as well as in case of incidental or accidental conditions. In this paper the detailed CFD model of the pressure vessel of a WWER-440 type reactor and calculations performed with this RPV model are presented. The CFD model of the pressure vessel contains all the important internal structural elements of the RPV. Sensitivity study on the effect of these elements was also carried out. Both steady-state and transient calculation were performed using the CFD code CFX-5.5.1. The results of the steady-state calculations give the so called mixing factors, i.e. the effect of each single primary loop at the core inlet. The mixing factors can be given for nominal circumstances (i.e. all main coolant pumps are working) or in case of less than six working MCPs. In order to validate the model the calculated mixing factors are compared with the values measured in the Paks NPP (Authors)

  13. Injection Pressure as a Marker of Intraneural Injection in Procedures of Peripheral Nerves Blockade

    Directory of Open Access Journals (Sweden)

    Ilvana Vučković

    2006-11-01

    Full Text Available The blockade of peripheral nerves carries a certain risk of unwanted complications, which can follow after unintentional intraneural injection of a local anesthetic. Up till today, the research of measuring injection pressure has been based on animal models, even though the histological structure of periphery nerve is different for animal and human population, so the application pressure which presages intraneural injection in human population is still unknown. As material in performing this study there have been used 12 Wistar rats and 12 delivered stillborns. After bilateral access to the median nerve, we applied 3 ml of 2% lidocaine with epinephrine, with the help of automatic syringe charger. The needle was at first placed perineural on one side, and then intraneural on the other side of both examination groups. During every application the pressure values were monitored using the manometer, and then they were analyzed by special software program BioBench. All perineural injections resulted with the pressure < or = 27.92 kPa, while the majority of intraneural injections were combined with the injectionpressure > or = 69.8 kPa. The difference between intraneural and perineural injection pressures for the two different examination groups (rats and delivered stillborns was not statistically significant (P>0.05. As prevention from intraneural injections today are in use two methods: the method of causing paresthesia or the method of using the peripheral nerve stimulator. However the nerve injury can still occur, independent from the technique used. If our results are used in clinical practice on human population, than the high injection pressure could be the markerof intraneural lodging of a needle.

  14. Nonstationary pressure build up in full-pressure containments after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Mansfeld, G.

    1977-01-01

    The time histories of pressure, temperature and pressure difference during the pressure build up phase of a loss-of-coolant accident (LOCA) in the primary system in full-pressure containments of water cooled nuclear power reactors are treated. These are important for the design of such containments. The experiments within the German research program RS 50 ''Druckverteilung im Containment'' offered, for the first time, the opportunity to observe experimentally fluid-dynamic processes in a multiple divided full-pressure containment, and to test at the same time, computer codes which serve to describe the physical processes during the LOCA. The comparison of the results calculated by the computer codes ZOCO VI and DDIFF with the experimental results showed apparent deviations by special arrangements of the compartments and the vent flow paths of a model containment for the calculation of time dependent pressure-, temperature- and pressure difference-histories. The deviations lead to the development of the analytical model and computer code COFLOW. This new model was primarily designed to deal with the fluid-dynamic processes in the beginning phase of the blowdown as maximal pressure differences appear. Furthermore, it can be used to determine the maximum containment pressure, as well as for long term calculations. The analytical model and computer code COFLOW shows a better correlation between theory and experiment than previous codes

  15. Vent clearing during a simulated loss-of-coolant accident in a Mark I boiling-water reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1978-01-01

    In this test series, drywell pressurization rate, drywell overpressure, downcomer submergence, and overall vent system loss coefficient were varied to quantify the primary load sensitivities in the pressure suppression system. Extensive tests were conducted on a unique three-dimensional 1/5 scale model of the pressure suppression system a MARK-I BWR. They were focused on the initial or air cleaning phase of a hypothetical loss of coolant accident. As a result of the complete measurement system employed including multiple high speed cameras, the logical interrelationship between measured forces, measured pressures, and the hydrodynamic phenomena observed in high speed photographic pictures were established. The quantitative values from the 1/5 scale experiments can be applied to full scale plants using established scaling laws. (author)

  16. Investigation of small break loss-of-coolant phenomena in a small scale nonnuclear test facility

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Fauble, T.J.; Harvego, E.A.

    1980-01-01

    A small-scale nonnuclear integral test facility designed to simulate a pressurized water reactor (PWR) system was used to evaluate the effects of a small break loss-of-coolant accident (LOCA) on the system thermal-hydraulic response. The experiment approximated a 2.5% (11-cm diameter) communicative break in the cold leg of a PWR, and included initial conditions which were similar to conditions in a PWR operating at full power. The 2.5% break size ensured that the nominal break flow rate was greater than the high pressure injection system (HPIS) flow rate, thus providing the potential for a continuous system depressurization. The sequence of events was similar to that used in evaluation model analysis of small break loss-of-coolant accidents, and included simulated reactor scram and loss of offsite power. Comparisions of experimental data with computer code calculations are used to demonstrate the capabilities and limitations of integral system calculations used to predict phenomena which can be important in the assessment of a small break LOCA in a PWR

  17. The effect of coolant quantity on local fuel–coolant interactions in a molten pool

    International Nuclear Information System (INIS)

    Cheng, Songbai; Matsuba, Ken-ichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Tohru; Tobita, Yoshiharu

    2015-01-01

    Highlights: • We investigate local fuel–coolant interactions in a molten pool. • As water volume increases, limited pressurization and mechanical energy observed. • Only a part of water is evaporated and responsible for the pressurization. - Abstract: Studies on local fuel–coolant interactions (FCI) in a molten pool are important for severe accident analyses of sodium-cooled fast reactors (SFRs). Motivated by providing some evidence for understanding this interaction, in this study several experimental tests, with comparatively larger difference in coolant volumes, were conducted by delivering a given quantity of water into a simulated molten fuel pool (formed with a low-melting-point alloy). Interaction characteristics including the pressure-buildup as well as mechanical energy release and its conversion efficiency are evaluated and compared. It is found that as water quantity increases, a limited pressure-buildup and the resultant mechanical energy release are observable. The performed analyses also suggest that only a part of water is probably vaporized during local FCIs and responsible for the pressurization and mechanical energy release, especially for those cases with much larger water volumes

  18. Atucha I nuclear power plant: Probabilistic safety study. Loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Perez, S.S.

    1987-01-01

    The plant response to the group of events 'large coolant loss' in order to evaluate the associated risk is analyzed. The event that covers all events of similar sequence due to its evolution features, being also the most demanded, is selected as starting event. The representative event is the 'guillotine type rupture of cold primary branch'. An annual occurrence frequency of 10/year is assumed for this event. The safety systems, when the event occurs, must assure the reactor shutdown and the core cooling, creating a heat sink to remove the decay heat. The annual frequency of core meltdown due to great loss of coolant is obtained multiplying the annual frequency of the starting event by the probability of failure of involved safety systems. By means of failure trees, the following is obtained: a) probability of failure to demand of the boron injection shutdown system = 4 x 10 -2 ; b) probability of failure to demand of the high pressure safety injection = 3 x 10 -3 ; c) probability of emergency cooling system failure = 4.4 x 10 -2 . Therefore, the three possible sequences of core meltdown have the following frequencies: λ 1 = 4 x 10 -6 /year λ 2 = 3 x 10 -7 /year λ 3 = 4.4 x 10 -6 /year. (Author)

  19. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    Science.gov (United States)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  20. Integrated main coolant pumps for pressurized-water reactors

    International Nuclear Information System (INIS)

    Wieser, R.

    1975-01-01

    The efficiency of an integrated main coolant pump for PWR's is increased. For this purpose, the pump is installed eccentric relative to the vertical axis of the U-type steam generator in the three-section HP chamber in such a way that its impeller wheel and the shell of the latter penetrate into the outlet chamber. The axis of the pump lies in the vertical plane of symmetry of the outlet chamber of the steam generator. The suction tube is arranged in the outlet chamber. To allow it to be installed, it is manufactured out of several parts. The diffusor tube, which is also made of several components, is attached to the horizontal separation plate between the outlet chamber and the pressure chamber so as to penetrate into it. To improve the outflow conditions at the diffusor tube, a plowshare-shaped baffle shield is installed between the diffusor tube and the HP chamber. Moreover, in order to improve the outflow conditions from the pump and from the pressure chamber, the outflow opening of the pressure chamber is put into the cylindrical shell of the HP chamber. In this way, the tensioning anchor is located between the pump and the outlet opening. (DG/RF) [de

  1. The choice between two designs for the safety-injection system of a pressurized-water reactor, using probabilistic methods

    International Nuclear Information System (INIS)

    Villemeur, Alain

    1982-01-01

    A probabilistic study has been carried out to compare two designs for the safety-injection circuit of a pressurized-water reactor. It appears that unavailability of the circuit after an accident involving loss of coolant decreases little when one moves from a 2-line to a 3-line system. These results are compared with the disadvantages arising from increased redundancy, and in particular the increased cost of the installations. The 2-line circuit appears the optimum one on the basis of cost and reliability criteria. It has been chosen for the 1300-MWe units [fr

  2. Experimental investigation of the effects of blowing conditions and Mach number on the unsteady behavior of coolant ejection through a trailing edge cutback

    International Nuclear Information System (INIS)

    Barigozzi, Giovanna; Armellini, Alessandro; Mucignat, Claudio; Casarsa, Luca

    2012-01-01

    Highlights: ► Flow visualization and PIV documented the presence of large coherent structures. ► The presence of coherent structures is documented up to the vane trailing edge. ► Shape and direction of rotation of vortices change with injection conditions. ► Vortices morphology influences the film cooling effectiveness distributions. ► A Mach number increase moves vortices closer to the wall. - Abstract: The present paper shows the results of an experimental investigation into the unsteadiness of coolant ejection at the trailing edge of a highly loaded nozzle vane cascade. The trailing edge cooling scheme features a pressure side cutback with film cooling slots, stiffened by evenly spaced ribs in an inline configuration. Cooling air is also ejected through two rows of cylindrical holes placed upstream of the cutback. Tests were performed with a low inlet turbulence intensity level (Tu 1 = 1.6%), changing the cascade operating conditions from low speed (M 2is = 0.2) up to high subsonic regime (M 2is = 0.6), and with coolant to main stream mass flow ratio varied within the 0.5–2.0% range. Particle Image Velocimetry (PIV) and flow visualizations were used to investigate the unsteady mixing process taking place between coolant and main flow downstream of the cutback, up to the trailing edge. For all the tested conditions, the results show the presence of large coherent structures, which presence is still evident up to the trailing edge. Their shape and direction of rotation change with injection conditions, as a function of coolant to mainstream velocity ratio, strongly influencing the thermal protection capability of the injected coolant flow. The Mach number increase is only responsible for a positioning of such vortical structures closer to the wall, while the Strouhal number almost remains unchanged.

  3. Development and validation of a model for high pressure liquid poison injection for CANDU-6 shutdown system no.2

    International Nuclear Information System (INIS)

    Rhee, B.-W.; Jeong, C.J.; Choi, J.H.; Yoo, S.-Y.

    2002-01-01

    In CANDU reactor one of the two reactor shutdown systems is the liquid poison injection system which injects the highly pressurized liquid neutron poison into the moderator tank via small holes on the nozzle pipes. To ensure the safe shutdown of a reactor it is necessary for the poison curtains generated by jets provide quick, and enough negative reactivity to the reactor during the early stage of the accident. In order to produce the neutron cross section necessary to perform this work, the poison concentration distribution during the transient is necessary. In this study, a set of models for analyzing the transient poison concentration induced by this high pressure poison injection jet activated upon the reactor trip in a CANDU-6 reactor moderator tank has been developed and used to generate the poison concentration distribution of the poison curtains induced by the high pressure jets injected into the vacant region between the calandria tube banks. The poison injection rate through the jet holes drilled on the nozzle pipes is obtained by a 1-D transient hydrodynamic code called, ALITRIG, and this injection rate is used to provide the inlet boundary condition to a 3-D CFD model of the moderator tank based on CFX4.3, an AEA Technology CFD code, to simulate the formation and growth of the poison jet curtain inside the moderator tank. For validation, the current model is validated against a poison injection experiment performed at BARC, India and another poison jet experiment for Generic CANDU-6 performed at AECL, Canada. In conclusion this set of models is considered to predict the experimental results in a physically reasonable and consistent manner. (author)

  4. Dryout heat flux in a debris bed with forced coolant flow from below

    International Nuclear Information System (INIS)

    Bang, Kwang-Hyun; Kim, Jong-Myung

    2004-01-01

    The objective of the present study is to experimentally investigate the enhancement of dryout heat flux in debris beds with coolant flow from below. The experimental facility consists mainly of an induction heater (40 kW, 35 kHz), a double-wall quartz-tube test section containing steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of particle bed was achieved by induction heating. This paper reports the experimental data for 5 mm particle bed and 300 mm bed height. The dryout heat rate data were obtained of both top-flooding case and forced coolant injection from below with the injection mass flux up to 1.5 kg/m 2 s. For the top-flooded case, the volumetric dryout heat rate was about 4 MW/m 3 and it increased as the rate of coolant injection from below was increased. At the coolant injection mass flux of 1.5 kg/m 2 s, the volumetric dryout heat rate was about 10 MW/m 3 , the enhancement factor was more than two. (author)

  5. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level

  6. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  7. Development of in-situ laser cutting technique for removal of single selected coolant channel from pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Vishwakarma, S.C.; Upadhyaya, B.N.

    2016-01-01

    We report on the development of a pulsed Nd:YAG laser based cutting technique for removal of single coolant channel from pressurized heavy water reactor (PHWR). It includes development of special tools/manipulators and optimization of laser cutting process parameters for cutting of liner tube, end fitting, bellow lip weld joint, and pressure tube stubs. For each cutting operation, a special tool with precision motion control is utilized. These manipulators/tools hold and move the laser cutting nozzle in the required manner and are fixed on the same coolant channel, which has to be removed. This laser cutting technique has been successfully deployed for removal of selected coolant channels Q-16, Q-15 and N-6 of KAPS-2 reactor with minimum radiation dose consumption and in short time. (author)

  8. Pumps for German pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dernedde, R.

    1984-01-01

    The article describes the development of a selection of pumps which are used in the primary coolant system and the high-pressure safety injection system and feed water system during the past 2 decades. The modifications were caused by the step-wise increasing power output of the plants from 300 MW up to 1300 MW. Additional important influences were given be the increased requirements for quality assurance and final-documentation. The good operating results of the delivered pumps proved that the reliability is independent of the volume of the software-package. The outlook expects that consolidation will be followed by additional steps for the order processing of components for the convoy pumps. KW: main coolant pump; primary system; boiler feed pump; reactor pump; secondary system; barrel insert pump; pressure water reactor; convoy pump; state of the art.

  9. Influence of fuel injection pressures on Calophyllum inophyllum methyl ester fuelled direct injection diesel engine

    International Nuclear Information System (INIS)

    Nanthagopal, K.; Ashok, B.; Karuppa Raj, R. Thundil

    2016-01-01

    Highlights: • Effect of injection pressure of Calophyllum inophyllum biodiesel is investigated. • Engine characteristics of 100% Calophyllum inophyllum biodiesel has been performed. • Calophyllum inophyllum is a non-edible source for biodiesel production. • Increase in injection pressure of biodiesel, improves the fuel economy. • Incylinder pressure characteristics of biodiesel follows similar trend as of diesel. - Abstract: The trend of using biodiesels in compression ignition engines have been the focus in recent decades due to the promising environmental factors and depletion of fossil fuel reserves. This work presents the effect of Calophyllum inophyllum methyl ester on diesel engine performance, emission and combustion characteristics at different injection pressures. Experimental investigations with varying injection pressures of 200 bar, 220 bar and 240 bar have been carried out to analyse the parameters like brake thermal efficiency, specific fuel consumption, heat release rate and engine emissions of direct injection diesel engine fuelled with 100% biodiesel and compared with neat diesel. The experimental results revealed that brake specific fuel consumption of C. inophyllum methyl ester fuelled engine has been reduced to a great extent with higher injection pressure. Significant reduction in emissions of unburnt hydrocarbons, carbon monoxide and smoke opacity have been observed during fuel injection of biodiesel at 220 bar compared to other fuel injection pressures. However oxides of nitrogen increased with increase in injection pressures of C. inophyllum methyl ester and are always higher than that of neat diesel. In addition the combustion characteristics of biodiesel at all injection pressures followed a similar trend to that of conventional diesel.

  10. Hydrogen injection device in BWR type reactor

    International Nuclear Information System (INIS)

    Takagi, Jun-ichi; Kubo, Koji.

    1988-01-01

    Purpose: To reduce the increasing ratio of main steam system dose rate due to N-16 activity due to excess hydrogen injection in the hydrogen injection operation of BWR type reactors. Constitution: There are provided a hydrogen injection mechanism for injecting hydrogen into primary coolants of a BWR type reactor, and a chemical injection device for injecting chemicals such as methanol, which makes nitrogen radioisotopes resulted in the reactor water upon hydrogen injection non-volatile, into the pressure vessel separately from hydrogen. Injected hydrogen and the chemicals are not reacted in the feedwater system, but the reaction proceeds due to the presence of radioactive rays after the injection into the pressure vessel. Then, hydrogen causes re-combination in the downcomer portion to reduce the dissolved oxygen concentration. Meanwhile, about 70 % of the chemicals is supplied by means of a jet pump directly to the reactor core, thereby converting the chemical form of N-16 in the reactor core more oxidative (non-volatile). (Kawakami, Y.)

  11. A single-stage high pressure steam injector for next generation reactors: test results and analysis

    International Nuclear Information System (INIS)

    Cattadori, G.; Galbiati, L.; Mazzocchi, L.; Vanini, P.

    1995-01-01

    Steam injectors can be used in advanced light water reactors (ALWRs) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of steam injectors, that would take advantage of the available energy from primary steam without the introduction of any rotating machinery. The reference application considered in this work is a high pressure safety injection system for a BWR; a water flow rate of about 60 kg/s to be delivered against primary pressures covering a quite wide range up to 9 MPa is required. Nevertheless, steam driven water injectors with similar characteristics could be used to satisfy the high pressure core coolant makeup requirements of next generation PWRs. With regard to BWR application, an instrumented steam injector prototype with a flow rate scaling factor of about 1:6 has been built and tested. The tested steam injector operates at a constant inlet water pressure (about 0.2 MPa) and inlet water temperature ranging from 15 to 37 o C, with steam pressure ranging from 2.5 to 8.7 MPa, always fulfilling the discharge pressure target (10% higher than steam pressure). To achieve these results an original double-overflow flow rate-control/startup system has been developed. (Author)

  12. Small break LOCA [loss of coolant accident] mitigation for Bellefonte

    International Nuclear Information System (INIS)

    Bayless, P.D.; Dobbe, C.A.

    1986-01-01

    Several 5-cm (2-in.) diameter cold leg break loss coolant accidents for the Bellefonte nuclear plant were analyzed as part of the Severe Accident Sequence Analysis Program. The transients assumed various system failures, and included the S 2 D sequence. Operator actions to mitigate the S 2 D transient were also investigated. The transients were analyzed until either core damage began or long-term decay heat removal was established. The S 2 D sequence was analyzed into the core damage phase of the transient. The analyses showed that the flow from one high pressure injection pump was necessary and sufficient to prevent core damage in the absence of operator actions. Operator actions were also able to prevent core damage for the S 2 D sequence

  13. Analytical prediction on the pump-induced pulsating pressure in a reactor coolant pipe

    International Nuclear Information System (INIS)

    Lee, K.B.; Im, I.Y.; Lee, S.K.

    1992-01-01

    An analytical method is presented for predicting the amplitudes of pump-induced fluctuating pressures in a reactor coolant pipe using a linear transformation technique which reduces a homogeneous differential equation with non-homogeneous boundary conditions into a nonhomogeneous differential equation with homogeneous boundary conditions. At the end of the pipe, three types of boundary conditions are considered-open, closed and piston-spring supported. Numerical examples are given for a typical reactor. Comparisons of measured pressure amplitudes in the pipe with model prediction are shown to be in good agreement for the forcing frequencies. (author)

  14. Consideration of hot channel factors in design for providing operating margins on coolant channel outlet temperature

    International Nuclear Information System (INIS)

    Sharma, V.K.; Surendar, C.; Bapat, C.N.

    1994-01-01

    The Indian Pressurized Heavy Water Reactors (IPHWR) are horizontal pressure tube reactors using natural uranium oxide fuel in the form of short (495 mm) clusters. The fuel clusters in the Zr-Nb pressure tubes are cooled by high pressure, high temperature and subcooled circulating heavy water. Coolant flow distribution to individual channels is designed to match the power distribution so as to obtain uniform coolant outlet temperature. However, during operation, the coolant outlet temperature in individual channels deviate from their nominal value due to: tolerances in process design; effects of grid frequency on the pump speed; deviation in channel powers from the nominal values due to on-power fuelling and movement of reactivity devices, and so on. Thus an operating margin, between the highest permissible and nominal coolant outlet temperatures, is required taking into account various hot channel factors that contribute to higher coolant outlet temperatures. The paper discusses the methodology adopted to assess various hot channel factors which would provide optimum operating margins while ensuring sub-cooling. (author)

  15. A simulation experiment and analysis on the effects of in-coherence in fuel coolant interaction

    International Nuclear Information System (INIS)

    Kondo, S.; Togo, Y.; Iwamura, T.

    1976-01-01

    Experimental and analytical studies were conducted to investigate effects of incoherence (space time behavior of molten fuel) on molten fuel coolant interaction. In experiments, a 2 mm diameter molten tin jet was injected upward into the water in a slender tank. The results were analyzed based on the pressure records and high speed photographs. The pressure records indicated that there were two types of interaction between molten jet and water, intermittent explosion mode and continuous one. The explosion mode appeared when the temperature of molten tin was above 350 0 C or so and that of water was below 70 0 C or so. The high speed photograph indicated that an establishment of a stable jet column was necessary for an explosive interaction and that a bubble like region grew and collapsed at the root of the jet in accordance with the generation of pressure pulse. It was found that the mass of metal which contributed to the vapor explosion was only a small part of the injected metal in the case of jet injection type contact mode and this was the reason why the gross thermal to mechanical energy conversion ratio was around 0.03% in this type of contact mode, though this ratio was around 2% if only the part of record around the pressure pulse was taken into consideration. In the analysis part, a multi-channel FCI model was developed to evaluate the spatial incoherence effect on pressure at subassembly exit. The calculated pressure trace indicated that the spatial incoherence has considerable effects for an evaluation of structure response under FCI pressure loading. (auth.)

  16. Cavity Pressure Behaviour in Micro Injection Moulding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2010-01-01

    as well as with the filling of the cavity by the polymer melt. In this paper, two parameters derived from cavity pressure over time (i.e. pressure work). The influence of four µIM parameters (melt temperature, mould temperature, injection speed, aand packing pressure) on the two pressure-related outputs...... has been investigated by moulding a micro fluidic component on three different polymers (PP, ABS, PC) using the design of experiment approach. Similar trends such as the effects of a higher injection speed in decreasing the pressure work and of a lower temperature in decreasing pressure rate have been......Process monitoring of micro injection moulding (µIM) is of crusial importance to analyse the effect of different parameter settings on the process and to assess its quality. Quality factors related to cavity pressure can provide useful information directly connected with the dyanmics of the process...

  17. Gaseous poison injection device

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko; Inada, Ikuo.

    1983-01-01

    Purpose: To rapidly control the chain reaction due to thermal neutrons in a reactor core by using gaseous poisons as back-up means for control rod drives. Constitution: Gaseous poisons having a large neutron absorption cross section are used as back-up means for control rod drives. Upon failure of control rod insertion, the gaseous poisons are injected into the lower portion of the reactor core to control the reactor power. As the gaseous poisons, vapors at a high temperature and a higher pressure than that of the coolants in the reactor core are injected to control the reactor power due to the void effects. Since the gaseous poisons thus employed rapidly reach the reactor core and form gas bubbles therein, the deccelerating effect of the thermal neutrons is decreased to reduce the chain reaction. (Moriyama, K.)

  18. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  19. Effects of zinc injection on electrochemical corrosion and cracking behavior of stainless steels in borated and lithiated high temperature water

    International Nuclear Information System (INIS)

    Wu Xinqiang; Liu Xiahe; Han Enhou; Ke Wei

    2014-01-01

    Zinc (Zn) injection water chemistry (ZWC) adopted in primary coolant system in pressurized water reactors (PWRs) is to reduce the radiation buildup as well as retard the corrosion degradation in high temperature pressurized water through improving the characteristics of oxide scales formed on components materials. However, Zn injection involved corrosion and cracking behavior and related mechanisms are still under discussion. The understanding of Zn-bearing oxide scale characteristics and their protective property is of significance to clarify the environmentally assisted material failure problems in PWRs power plants. In the present work, in-situ potentiodynamic polarization curves and electrochemical impedance spectra measurements in high temperature borated and lithiated water as well as ex-situ X-ray photoelectron spectroscopy analyses have been done to investigate the effects of temperature (R.T.-603 K), pH T value at 573 K (6.9-7.4) and Zn-injection concentration (0-150 ppb) on electrochemical corrosion behavior and oxide scale characteristics of nuclear-grade stainless steels. The protective property of oxide scales under Zn-free and Zn-injected conditions degraded with increasing temperature, with Cr-rich oxide layer playing a key role on retarding further corrosion. The composition of oxide scales appeared slightly pH T dependent: rich in chromites and ferrites at pH T =6.9 and pH T =7.4, respectively. The corrosion rate decreased significantly in the high pH T value solution with Zn injection due to the formation of thin and compact oxide scales. The ≤50 ppb Zn injection could significantly affect the formation of Zn-bearing oxides on the surfaces, while >50 ppb Zn injection showed no obvious influence on the oxide scales. A modified point defect model was proposed to discuss the effects of injected Zn concentrations on the oxide scales in high temperature water. A 10 ppb Zn injection obviously decreased the intergranular cracking susceptibility of

  20. Experimental investigation of the concomitant injection of gasoline and CNG in a turbocharged spark ignition engine

    International Nuclear Information System (INIS)

    Momeni Movahed, M.; Basirat Tabrizi, H.; Mirsalim, M.

    2014-01-01

    Highlights: • Concomitant injection of gasoline and CNG is compared with gasoline and CNG modes. • BSFC, HC and CO emissions of the concomitant injection are lower than gasoline mode. • Deteriorations of the concomitant injection are negligible compared to gasoline mode. • Cylinder peak pressure and heat loss to coolant of the concomitant injection are lower than CNG mode. • Some shortcomings in CNG mode can be solved by changing the spark timing and lambda. - Abstract: Concomitant injection of gasoline and CNG is a new concept to overcome problems of bi-fueled spark ignition engines, which operate in single fuel mode, either in gasoline or in CNG mode. This experimental study indicates how some problems of gasoline mode such as retarded ignition timings for knock prevention and rich air–fuel mixture for component protection can be resolved with the concomitant injection of gasoline and CNG. Results clearly show that the concomitant injection improves thermal efficiency compared to gasoline mode. On the other hand, simultaneous injection of gasoline and CNG reduces some problems of CNG mode such as high cylinder pressure and heat loss to the engine coolant. This decreases the stringent requirements for thermal and mechanical strength of the engine components in CNG mode. In addition, it is shown that by modifying the spark advance and air fuel ratio in CNG mode, the engine operation improves in terms of NOx emissions and maximum in-cylinder pressure as the concomitant injection does. Nevertheless, new requirements such as an intercooler with higher cooling capacity are implied to the engine configuration. Finally, the most important concerns in control strategies of the engine control unit for a vehicle with concomitant injection of gasoline and CNG are discussed

  1. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  2. Analysis of accidental loss of pool coolant due to leakage in a PWR SFP

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2015-01-01

    Highlights: • Accidental loss of pool coolant due to leakage in a PWR SFP was studied using MAAP5. • The effect of emergency ventilation on the accident progression was investigated. • The effect of emergency injection on the accident progression was discussed. - Abstract: A large loss of pool coolant/water accident may be caused by extreme accidents such as the pool wall or bottom floor punctures due to a large aircraft strike. The safety of SFP under this circumstance is very important. Large amounts of radioactive materials would be easily released into the environment if a severe accident happened in the SFP, because the spent fuel pool (SFP) in a PWR nuclear power station (NPS) is often located in the fuel handing building outside the reactor containment. To gain insight into the loss of pool coolant accident progression for a pressurized water reactor (PWR) SFP, a computational model was established by using the Modular Accident Analysis Program (MAAP5). Important factors such as Zr oxidation by air, air natural circulation and thermal radiation were considered for partial and complete drainage accidents without mitigation measures. The calculation indicated that even if the residual water level was in the active fuel region, there was a chance to effectively remove the decay heat through axial heat conduction (if the pool cooling system failed) or steam cooling (if the pool cooling system was working). For sensitivity study, the effects of emergency ventilation and water injection on the accident progression were analyzed. The analysis showed that for the current configuration of high-density storage racks, it was difficult to cool the spent fuels by air natural circulation. Enlarging the space between the adjacent assemblies was a way of increasing air natural circulation flow rate and maintaining the coolability of SFP. Water injection to the bottom of the SFP helped to recover water inventory, quenching the high temperature assemblies to prevent

  3. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  4. Experiment data report for Semiscale Mod-1 Test S-05-3 (alternate ECC injection test)

    International Nuclear Information System (INIS)

    Feldman, E.M.; Patton, M.L. Jr.; Sackett, K.E.

    1977-03-01

    Recorded test data are presented for Test S-05-3 of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-3 was conducted from initial conditions of 2263 psia and 545 0 F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the cold leg sides of the intact and broken loops and into the vessel upper plenum to simulate emergency core coolant injection in a PWR. For Test S-05-3, specifically the effects of upper plenum coolant injection on core thermal and system response were being investigated

  5. Recommended HPI [High Pressure Injection] rates for the TMI-2 analysis exercise (0 to 300 minutes)

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1987-09-01

    An international analysis exercise has been organized to evaluate the ability of nuclear reactor severe accident computer codes to predict the TMI-2 accident sequence and core damage progression during the first 300 minutes of the accident. A required boundary condition for the analysis exercise is the High Pressure Injection or make-up rates into the primary system during the accident. Recommended injection rates for the first 300 minutes of the accident are presented. Recommendations for several sensitivity studies are also presented. 6 refs., 5 figs., 1 tab

  6. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  7. Cold leg injection reflood test results in the SCTF Core-I under constant system pressure

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Iwamura, Takamichi; Sobajima, Makoto; Osakabe, Masahiro; Ohnuki, Akira; Abe, Yutaka; Murao, Yoshio.

    1990-08-01

    The Slab Core Test Facility (SCTF) was constructed to investigate two-dimensional thermal-hydrodynamics in the core and the interaction in fluid behavior between the core and the upper plenum during the last part of blowdown, refill and reflood phases of a postulated loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). The present report describes the analytical results on the system behavior observed in the SCTF Core-I cold leg injection tests, S1-14 (Run 520), S1-15 (521), S1-16 (522), S1-17 (523), S1-20 (530), S1-21 (531), S1-23 (536) and S1-24 (537), performed under constant system pressure condition during transient. Major discussion items are: (1) steam binding, (2) U-tube oscillations, (3) bypass of ECC water (4) core cooling behavior, (5) effect of vent valve and (6) other parameter effects. These results give us very useful information and suggestion on reflood behavior. (author)

  8. Pressure suppression device

    International Nuclear Information System (INIS)

    Yoshida, Toyokazu.

    1976-01-01

    Purpose: To provide a pressure suppression device for a gas cooled reactor wherein the coolant is discharged in a reactor building by a loss-of-coolant accident or the like, the increase in the pressure and temperature is controlled and thermal energy of the discharged coolant of high temperature and high pressure can be absorbed. Constitution: A low heat source unit is provided at the upper part in an inner space of a reactor building provided around the reactor, and at the upper part of the low heat source unit a stirring fan for mixing gas within the building, and a low heat source circulating the low heat source through a pipe is connected to the low heat source unit. The low heat source unit is provided with the pipe arranged in a spiral shape at the upper part of the space of the unit, and a large number of fins are provided at the outer surface of the pipe for increasing the transmission area and improve the heat exchange. When the coolant of high temperature and high pressure has been lost in the building, the thermal energy of the coolant is absorbed by the low heat source unit. (Aizawa, K.)

  9. Design of Safety Injection Tanks Using Axiomatic Design and TRIZ

    International Nuclear Information System (INIS)

    Heo, Gyunyoung; Jeong, Yong Hoon

    2008-01-01

    Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)

  10. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  11. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1975-01-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The analytical model used for the program is described. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc. 11 references. (U.S.)

  12. Analysis of a Natural Circulation in the Reactor Coolant System Following a High Pressure Severe Accident at APR1400

    International Nuclear Information System (INIS)

    Kim, Han Chul; Cho, Yong Jin; Park, Jae Hong; Cho, Song Won

    2011-01-01

    Under a high temperature and pressure condition during a severe accident, hot leg pipes or steam generator tubes could fail due to creep rupture following natural circulation in the Reactor Coolant System (RCS) unless depressurization of the system is performed at a proper time. Natural circulation in the RCS can be a multi-dimensional circulation in the reactor vessel, a partial loop circulation of two-phase flow from the core up to steam generators (SGs), or circulation in the total loop. It can delay the reactor vessel failure time by removing heat from the reactor core. This natural phenomenon can be hardly simulated with a single flow path model for the hot spots of the RCS, since it cannot deal with the counter-current flow. Thus it may estimate accident progression faster than reality, which may cause troubles for optimized implementation of severe accident management strategies. An earlier damage in the RCS other than the reactor pressure vessel may make subsequent behaviors of hydrogen or fission products in the containment quite different from the single reactor vessel failure. Therefore, a RCS model which treats natural circulation is needed to evaluate the RCS response and the safety depressurization strategy in a best-estimate way. The aim of this study is to develop a detailed model which allows natural circulation between the reactor vessel and steam generators through hot legs, based on the existing APR1400 RCS model. The station blackout sequence was selected to be the representative high-pressure scenario. Sensitivity study on the effect of node configuration of the upper plenum and addition of cross flow paths from the upper plenum to the hot legs were carried out. This model is described herein and representative calculation results are presented

  13. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure

    International Nuclear Information System (INIS)

    Wang Xiangang; Huang Zuohua; Kuti, Olawole Abiola; Zhang Wu; Nishida, Keiya

    2010-01-01

    Spray characteristics of biodiesels (from palm and cooked oil) and diesel under ultra-high injection pressures up to 300 MPa were studied experimentally and analytically. Injection delay, spray penetration, spray angle, spray projected area and spray volume were measured in a spray vessel using a high speed video camera. Air entrainment and atomization characteristics were analyzed with the quasi-steady jet theory and an atomization model respectively. The study shows that biodiesels give longer injection delay and spray tip penetration. Spray angle, projected area and volume of biodiesels are smaller than those of diesel fuel. The approximately linear relationship of non-dimensional spray tip penetration versus time suggests that the behavior of biodiesel and diesel sprays is similar to that of gaseous turbulent jets. Calculation from the quasi-steady jet theory shows that the air entrainment of palm oil is worse than that of diesel, while the cooked oil and diesel present comparable air entrainment characteristics. The estimation on spray droplet size shows that biodiesels generate larger Sauter mean diameter due to higher viscosity and surface tension.

  14. Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure

    International Nuclear Information System (INIS)

    Liu Shi-Jie; Lin Zhi-Yong; Sun Ming-Bo; Liu Wei-Dong

    2011-01-01

    The thrust vectoring ability of a continuous rotating detonation engine is numerically investigated, which is realized via increasing local injection stagnation pressure of half of the simulation domain compared to the other half. Under the homogeneous injection condition, both the flow-field structure and the detonation wave propagation process are analyzed. Due to the same injection condition along the inlet boundary, the outlines of fresh gas zones at different moments are similar to each other. The main flow-field features under thrust vectoring cases are similar to that under the baseline condition. However, due to the heterogeneous injection system, both the height of the fresh gas zone and the pressure value of the fresh gas in the high injection pressure zone are larger than that in the low injection pressure zone. Thus the average pressure in half of the engine is larger than that in the other half and the thrust vectoring adjustment is realized. (fundamental areas of phenomenology(including applications))

  15. The light water integral reactor with natural circulation of the coolant at supercritical pressure B-500 SKDI

    International Nuclear Information System (INIS)

    Silin, V.A.; Voznesensky, V.A.; Afrov, A.M.

    1993-01-01

    Pressure increase in the primary circuit over the critical value gives a possibility to construct the B-500SKDI (500 MWe) lightwater integral reactor with natural circulation of the coolant in the vessel with a diameter less than 5 m. The given reactor has a high safety level, simple operability, its specific capital cost and fuel expenditure being lower as compared to a conventional PWR. The development of the reactor is carried out taking into consideration verified technical decisions of current NPPs on the basis of Russian LWR technology. (orig.)

  16. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  17. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    Science.gov (United States)

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  18. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  19. Direct vessel inclined injection system for reduction of emergency core coolant direct bypass in advanced reactors

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Lee, Jong G.; Suh, Kune Y.

    2006-01-01

    Multidimensional thermal hydraulics in the APR1400 (Advanced Power Reactor 1400 MWe) downcomer during a large-break loss-of-coolant accident (LBLOCA) plays a pivotal role in determining the capability of the safety injection system. APR1400 adopts the direct vessel injection (DVI) method for more effective core penetration of the emergency core cooling (ECC) water than the cold leg injection (CLI) method in the OPR1000 (Optimized Power Reactor 1000 MWe). The DVI method turned out to be prone to occasionally lack in efficacious delivery of ECC to the reactor core during the reflood phase of a LBLOCA, however. This study intends to demonstrate a direct vessel inclined injection (DVII) method, one of various ideas with which to maximize the ECC core penetration and to minimize the direct bypass through the break during the reflood phase of a LBLOCA. The 1/7 scaled down THETA (Transient Hydrodynamics Engineering Test Apparatus) tests show that a vertical inclined nozzle angle of the DVII system increases the downward momentum of the injected ECC water by reducing the degree of impingement on the reactor downcomer, whereby lessening the extent of the direct bypass through the break. The proposed method may be combined with other innovative measures with which to ensure an enough thermal margin in the core during the course of a LBLOCA in APR1400

  20. Experimental study on spray break-up and atomization processes from GDI injector using high injection pressure up to 30 MPa

    International Nuclear Information System (INIS)

    Lee, Sanghoon; Park, Sungwook

    2014-01-01

    Highlights: • We obtain distribution of droplet velocity and diameter using PDPA system. • Transition of a jet break-up processes is visualized using Nd:Yag sheet laser system. • Elevated injection pressure can activate a jet break-up processes. • A limit in injection pressure to enhance droplet atomization is observed. -- Abstract: This paper focuses on the influence of injection pressures up to 30 MPa on single liquid jet break-up and atomization processes. For this purpose, a single jet from a multi-hole GDI injector has been characterized performing visualization and PDPA (phase Doppler particle analyzer) experiments. Using a thin sheet of light generated by a Nd:Yag laser and capturing a sequence of jet development images with a CCD camera, the internal structure was visualized. In order to quantify the droplet diameter and velocity, a 2-D PDPA system were carried out in addition to the spray visualization. Analyzing the images of the internal structure of jet and the result of PDPA, including droplet diameter and velocity distribution with increasing injection pressure up to 30 MPa, the elevated injection pressure on a jet break-up and atomization was characterized. Our experimental results show the existence of a leading edge of the jet observed at the initial stage of injection. This phenomenon revealed relatively large droplets ahead of the main jet then disappeared quickly as lose the droplets momentum. Furthermore, for all injection pressures, unique ‘branch-like structure’ was observed when the jet was fully developed. This structure had many counter rotating branches related to the effect of air-entrainment and rapidly broken down into droplet clusters and droplets. Especially, as increased injection pressure, the time to exhibit the structure and distance between two branches were decreased. In addition, based on the results of droplet diameter and velocity distribution at various injection pressures, we confirmed that the injection

  1. Optimum injection pressure of a cavitating jet on introduction of compressive residual stress into stainless steel

    International Nuclear Information System (INIS)

    Soyama, Hitoshi; Nagasaka, Kazuya; Takakuwa, Osamu; Naito, Akima

    2011-01-01

    In order to mitigate stress corrosion cracking of components used for nuclear power plants, introduction of compressive residual stress into sub-surface of the components is an effective maintenance method. The introduction of compressive residual stress using cavitation impact generated by injecting a high speed water jet into water was proposed. Water jet peening is now applying to reduce stress corrosion cracking of shrouds in the nuclear power plants. However, accidental troubles such as dropping off the components and cutting of the pipes by the jet occurred at the maintenance. In order to peen by the jet without damage, optimum injection pressure of the jet should be revealed. In the case of 'cavitation peening', cavitation is generated by injecting the high speed water jet into water. As working pressure at the cavitation peening is the pressure at cavitation bubble collapse, the injection pressure of the jet is not main parameter. The cavitation impact is increasing with the scale of the jet, i.e., scaling effect of the cavitation. It was revealed that the large scale jet at low injection pressure can introduce compressive residual stress into stainless steel comparing with the small scale jet at high injection pressure. As expected, a water jet at high injection pressure might make damage of the components. Namely, in order to avoid damage of the components, the jet at the low injection pressure will be suit for the introduction of compressive residual stress. In the present paper, in order to make clear optimum injection pressure of the cavitating jet for the introduction of compressive residual stress without damage, the residual stress of stainless steel treated by the jet at various injection pressure was measured by using an X-ray diffraction method. The injection pressure of the jet p 1 was varied from 5 MPa to 300 MPa. The diameter of the nozzle throat of the jet d was varied from 0.35 mm to 2.0 mm. The residual stress changing with depth was

  2. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  3. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  4. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  5. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  6. Simulation of Spray Injection in the Pressurizer Using RELAP5

    Directory of Open Access Journals (Sweden)

    S. Dibyo

    2017-08-01

    Full Text Available A modeling research using Relap5 to assess the pressurizer of a pressurized water reactor(PWR power plant has been performed. The heater and water injection systems in the pressurizer system of the PWRare of greatimportance for system pressure control.The heater is designed to increase the pressure while the water sprayer injection is to perform depressurization. Most of studies conducted in the past mainly focused on determining the effects of nozzle spray design and droplet size using testing loops. The purpose of this simulation is to analyze the spray injection flow rate against the pressure characteristics of the pressurizer using RELAP5. Through this approach, the optimum injection flow rate of full scale plant pressurizer can be analyzed. The parameters investigated are pressure and temperature.In RELAP5, the pressurizer tank wasmodeled with six volume nodes and the heater was modeled by using heat structure. In the model, the sprayer takes water from the cold leg to inject it into the top of tank region.The resultsshowedthat the mass flow of about 4 kg/s is the mosteffectivevalueto limit pressure in the pressurizer to below 15.7 MPa. However, the flow rates of 8 kg/s and more cause overpressure. This simulation is usefulto complement the data related to the water flow rate injection systems of the pressurizer. Normal 0 false false false EN-US X-NONE X-NONE Possibility of a pressurized water reactor concept with highly inherent heat removal following capability

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Murao, Yoshio

    1995-01-01

    If the core power inherently follows change in heat removal rate from the primary coolant system within small thermal expansion of the coolant which can be absorbed in a practical size of pressurizer, reactor systems may have more safety and load following capability. In order to know possibility and necessary conditions of a concept on reactor core and primary coolant system of a pressurized water reactor (PWR) with such 'highly inherent heat removal following capability', transient analyses on an ordinary two-loop PWR have been performed for a transient due to 50% change in heat removal with the RETRAN-02 code. The possibility of a PWR concept with the highly inherent heat removal following capability has been demonstrated under the conditions of the absolute value of ratio of the coolant density reactivity coefficient to the Doppler reactivity coefficient more than 10x10 3 kg·cm 3 which is two to three times larger than that at beginning of cycle (BOC) in an ordinary PWR and realized by elimination of the chemical shim, the 12% lower average linear heat generation rate of 17.9 kW/m, and the 1.5 times larger pressurizer volume than those of the ordinary PWR. (author)

  7. Method of decontaminating primary coolant circuits

    International Nuclear Information System (INIS)

    Ishibashi, Masaru; Sumi, Masao.

    1981-01-01

    Purpose: To eliminate hard contaminated layers as well as soft contaminated layers without injuring substrate materials, upon decontamination of radiation contaminated portions in equipments and pipeways constituting primary coolant circuits. Constitution: High pressure water from a high pressure pump is jetted out from the nozzle of a spray gun to the radiation contaminated portions in equipments, for example, to the surface of water chamber in a vapor evaporator. High pressure pure water or aqueous boric acid is jetted out from the periphery and boric oxide particles (of about 1 - 100 μ particle size) are jetted out from the center of the nozzle of the spray gun. The particles (blasting material) jetted out together with the high pressure water impinge on the contaminated surfaces to remove the contaminated layers. Upon impingement, the high pressure water acts as the shock absorber for the blasting material and, after the impingement, it flows down to the bottom of the water chamber, and the blasting material is dissolved in the high pressure water. (Horiuchi, T.)

  8. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  9. Experimental verification of integrated pressure suppression systems in fusion reactors at in-vessel loss-of-coolant events

    International Nuclear Information System (INIS)

    Takase, K.; Akimoto, H.

    2001-01-01

    An integrated ICE (Ingress-of-Coolant Event) test facility was constructed to demonstrate that the ITER safety design approach and design parameters for the ICE events are adequate. Major objectives of the integrated ICE test facility are: to estimate the performance of an integrated pressure suppression system; to obtain the validation data for safety analysis codes; and to clarify the effects of two-phase pressure drop at a divertor and the direct-contact condensation in a suppression tank. A scaling factor between the test facility and ITER-FEAT is around 1/1600. The integrated ICE test facility simulates the ITER pressure suppression system and mainly consists of a plasma chamber, vacuum vessel, simulated divertor, relief pipe and suppression tank. From the experimental results it was found quantitatively that the ITER pressure suppression system is very effective to reduce the pressurization due to the ICE event. Furthermore, it was confirmed that the analytical results of the TRAC-PF1 code can simulate the experimental results with high accuracy. (author)

  10. The solid coolant and prospects of its use in innovative reactors

    International Nuclear Information System (INIS)

    Dmitriev, A.M.; Deniskin, V.P.

    2010-01-01

    The progress of nuclear power demands consideration and development of innovative projects of the reactors having the increased level of safety due to their immanent properties allowing to provide high parameters. One of interesting and perspective offers is the use of a solid substance as a coolant. Use of the solid coolant of a nuclear reactor core has significant advantages among which an opportunity of movement of the coolant in the core under action of gravities and absence of necessity to have superfluous pressure in the jacket, that in turn means small metal consumption of construction, decrease in risk of emergency and its consequences. Cooling of the core with the help of solid substance is possible at performance of the certain conditions connected to features of the solid coolant. The major requirements are: the uniform continuous movement and minimal fluctuation of its density on every site of the core; high mechanical durability and wear resistance of particles; as well as good parameters of heat exchange, i.e. high heat conductivity and thermal capacity of the coolant material at the core operating conditions

  11. Results of zinc injection test for Hamaoka Unit-1

    International Nuclear Information System (INIS)

    Kani, K.; Masuda, H.; Hayashi, Y.; Sudo, S.; Yamazaki, K.

    1998-01-01

    A zinc injection test was preformed at Hamaoka Nuclear Power Station Unit-1 for suppressing radiation dose rate on primary coolant recirculation piping after the replacement of piping. Zinc ion was injected by using injection system where Depleted Zinc Oxide was dissolved in carbonated water. Controllability of the system was sufficient to maintain concentration of zinc in primary water. The concentration of zinc in the primary coolant was controlled from 1 ppb to 5 ppb gradually. The increasing trend of concentration of Co-60 in the coolant was suppressed at zinc concentration of 3 ppb. It is evaluated that the deposition coefficient of Co-60 onto the surface of primary coolant recirculation piping was suppressed to one-third of previous cycle in average, and one-fourth of that just before injection start at zinc concentration of 5 ppb. We concluded that zinc injection is effective for suppressing dose rate on the primary coolant piping and no adverse effect occurs by zinc injection up to 5 ppb in the primary coolant. (J.P.N.)

  12. Chaotic behavior of water column oscillator simulating pressure balanced injection system in passive safety reactor

    International Nuclear Information System (INIS)

    Morimoto, Y.; Madarame, H.; Okamoto, K.

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI) proposed a passive safety reactor called the System-integrated Pressurized Water Reactor (SPWR). In a loss of coolant accident, the Pressurizing Line (PL) and the Injection Line (IL) are passively opened. Vapor generated by residual heat pushes down the water level in the Reactor Vessel (RV). When the level is lower than the inlet of the PL, the vapor is ejected into the Containment Vessel (CV) through the PL. Then boronized water in the CV is injected into the RV through the IL by the static head. In an experiment using a simple apparatus, gas ejection and water injection were found to occur alternately under certain conditions. The gas ejection interval was observed to fluctuate considerably. Though stochastic noise affected the interval, the experimental results suggested that the large fluctuation was produced by an inherent character in the system. A set of piecewise linear differential equations was derived to describe the experimental result. The large fluctuation was reproduced in the analytical solution. Thus it was shown to occur even in a deterministic system without any source of stochastic noise. Though the derived equations simulated the experiment well, they had ten independent parameters governing the behavior of the solution. There appeared chaotic features and bifurcation, but the analytical model was too complicated to examine the features and mechanism of bifurcation. In this study, a new simple model is proposed which consists of a set of piecewise linear ordinary differential equations with only four independent parameters. (authors)

  13. Opportunities and challenges in green house gases reduction using high pressure direct injection of natural gas

    International Nuclear Information System (INIS)

    Ouellette, P.

    2001-01-01

    In an effort to reduce Greenhouse Gases, Westport Innovations is developing a high pressure direct injection (HPDI) technology for gaseous fuels. This technology adapts the diesel cycle for gaseous fuels, since the diesel cycle provides high efficiency, high low-speed torque, fast transient capabilities and reliability. Because of their high efficiency, diesels are very favorable from a Greenhouse Gas (GHG) point of view, however they remain challenged by high nitrogen oxides (NOx) and particulate matter (PM) emissions. When directly injecting natural gas, NOx and PM emissions can be reduced by approximately 50% while maintaining the performance of the diesel engine. This allows the use of abundant and historically cheaper natural gas. Because of its lower carbon content per unit energy, natural gas also offers further GHG reduction over the diesel if the efficiency is preserved and if methane emissions are low. This paper discusses development efforts at Westport for several applications including on-highway trucks, light-duty delivery trucks and power generation

  14. LOFT/LP-SB-3, Loss of Fluid Test, Cold Leg Break LOCA, No High Pressure injection System (HPIS)

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: The sixth OECD LOFT experiment was conducted on 5 March 1984. It simulated a 1.8-in cold leg break LOCA with no HPIS available. This experiment was designed mainly for investigation of plant recovery effectiveness using secondary bleed and feed during core uncover and addressed accumulator injection at low pressure differentials. 3 - Experimental limitations or shortcomings: Short core and steam generator, excessive core bypass, other scaling compromises, and lack of adequate measurements in certain areas

  15. Numerical study of hot-leg ECC injection into the upper plenum of a pressurized water reactor

    International Nuclear Information System (INIS)

    Daly, B.J.; Torrey, M.D.; Rivard, W.C.

    1981-01-01

    In certain pressurized water reactor (PWR) designs, emergency core coolant (ECC) is injected through the hot legs into the upper plenum. The condensation of steam on this subcooled liquid stream reduces the pressure in the hot legs and upper plenum and thereby affects flow conditions throughout the reactor. In the present study, we examine countercurrent steam-water flow in the hot leg to determine the deceleration of the ECC flow that results from an adverse pressure gradient and from momentum exchange from the steam by interfacial drag and condensation. For the parameters examined in the study, water flow reversal is observed for a pressure drop of 22 to 32 mBar over the 1.5 m hot leg. We have also performed a three-dimensional study of subcooled water injection into air and steam environments of the upper plenum. The ECC water is deflected by an array of cylindrical guide tubes in its passage through the upper plenum. Comparisons of the air-water results with data obtained in a full scale experiment shows reasonable agreement, but indicates that there may be too much resistance to horizontal flow about the columns because of the use of a stair-step representation of the cylindrical guide tube cross section. Calculations of flow past single columns of stair-step, square and circular cross section do indicate excessive water deeentrainment by the noncircular column. This has prompted the use of an arbitrary mesh computational procedure to more accuratey represent the circular cross-section guide tubes. 15 figures

  16. Study on a corrosion products behavior with zinc injection in PWR primary circuit based on the crud investigation in actual plant

    International Nuclear Information System (INIS)

    Hisamune Kenji; Nambu Tohru; Akutagawa Daisuke; Nagata Nobuaki; Shimizu, Yuichi; Nagamine, Kunitaka; Kogawa Noritaka

    2012-09-01

    Zinc injection into the reactor coolant of Pressurized Water Reactor (PWR) is one of the most effective techniques for removing radioactive cobalt from the chromite type spinel oxides in the inner layer of reactor coolant component surfaces. Many documents have reported that zinc injection applied plants have generally achieved positive dose rate reduction effects for the reactor coolant components and piping. Tsuruga Nuclear Power Plant unit 2 (hereafter Tsuruga unit 2) which applied zinc injection in 2005 has also achieved good dose reduction effects in most primary coolant piping. However, some piping without dose-rate reduction effects exist, it has come to an issue to plan radiation exposure reduction measures for the works around relevant piping. To plan a reasonable dose-rate reduction measures for respective components and piping in primary systems, it is considered necessary to understand the dose-rate reduction effects of zinc injection mechanically. Therefore, the surface oxides/deposits on piping and fuel cladding tubes with operational histories under zinc injection were investigated. As a result of the investigation, the changes in specific aspects of oxide layers and CRUDs are found as follow: - Owing to long-term zinc injection, deposits and oxides on the primary coolant piping are extremely reduced, the boundary between the outer oxide layer and the inner oxide layer become unclear with the thinning of the outer oxide layers. - At a Pressurizer Spray Piping, the dose-rate increases than before zinc injection. The oxide layers have the same 3-layer construction as before zinc injection, and the surface concentration of the radioactive cobalt is high. - At the fuel cladding tube surfaces, what is observed is the amount of metal nickel decrease and the chromium composition increase in the spinel type oxide From these results, it is suggested that, the oxide layers composed principally of zinc chromite spinel grow up on the pipe surface with zinc

  17. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  18. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  19. Small break loss of coolant accident analysis of advanced PWR plant designs utilizing DVI line venturis

    International Nuclear Information System (INIS)

    Kemper, Robert M.; Gagnon, Andre F.; McNamee, Kevin; Cheung, Augustine C.

    1995-01-01

    The Westinghouse Advanced Passive and evolutionary Pressurizer Water Reactors (i.e. AP600 and APWR) incorporate direct vessel injection (DVI) of emergency core coolant as a means of minimizing the potential spilling of emergency core cooling water during a loss of coolant accident (LOCA). As a result, the most limiting small break LOCA (SBLOCA) event for these designs, with respect core inventory makeup capability, is a postulated double ended rupture of one of the DVI lines. This paper presents the results of a design optimization study that examines the installation of a venturi in the DVI line as a means of limiting the reactor coolant lost from the reactor vessel. The comparison results demonstrate that by incorporating a properly sized venturi in the DVI line, core uncovery concerns as a result of a DVI line break can be eliminated for both the AP600 and APWR plants. (author)

  1. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  2. Analysis of events related to cracks and leaks in the reactor coolant pressure boundary

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Antonio, E-mail: Antonio.Ballesteros-Avila@ec.europa.eu [JRC-IET: Institute for Energy and Transport of the Joint Research Centre of the European Commission, Postbus 2, NL-1755 ZG Petten (Netherlands); Sanda, Radian; Peinador, Miguel; Zerger, Benoit [JRC-IET: Institute for Energy and Transport of the Joint Research Centre of the European Commission, Postbus 2, NL-1755 ZG Petten (Netherlands); Negri, Patrice [IRSN: Institut de Radioprotection et de Sûreté Nucléaire (France); Wenke, Rainer [GRS: Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH (Germany)

    2014-08-15

    Highlights: • The important role of Operating Experience Feedback is emphasised. • Events relating to cracks and leaks in the reactor coolant pressure boundary are analysed. • A methodology for event investigation is described. • Some illustrative results of the analysis of events for specific components are presented. - Abstract: The presence of cracks and leaks in the reactor coolant pressure boundary may jeopardise the safe operation of nuclear power plants. Analysis of cracks and leaks related events is an important task for the prevention of their recurrence, which should be performed in the context of activities on Operating Experience Feedback. In response to this concern, the EU Clearinghouse operated by the JRC-IET supports and develops technical and scientific work to disseminate the lessons learned from past operating experience. In particular, concerning cracks and leaks, the studies carried out in collaboration with IRSN and GRS have allowed to identify the most sensitive areas to degradation in the plant primary system and to elaborate recommendations for upgrading the maintenance, ageing management and inspection programmes. An overview of the methodology used in the analysis of cracks and leaks related events is presented in this paper, together with the relevant results obtained in the study.

  3. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  4. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  5. Experiment data report for Semiscale Mod-1 Test S-05-1 (alternate ECC injection test)

    International Nuclear Information System (INIS)

    Feldman, E.M.; Patton, M.L. Jr.; Sackett, K.E.

    1977-02-01

    Recorded test data are presented for Test S-05-1 of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-1 was conducted from initial conditions of 2263 psia and 544 0 F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the vessel lower plenum to simulate emergency core coolant injection in a PWR, with the flow rate based on system volume scaling

  6. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  7. Device for preventing coolant in a reactor from being lost

    International Nuclear Information System (INIS)

    Maruyama, Hiromi; Matsumoto, Tomoyuki.

    1975-01-01

    Object: To prevent all of coolant from being lost from the core at the time of failure in rupture of pipe in a recirculation system to cool the core with the coolant remained within the reactor. Structure: A valve, which will be closed when a water level of the coolant within the core is in a level less than a predetermined level, is provided on a recirculating water outlet nozzle in a pressure vessel to thereby prevent the coolant from being lost when the pipe is broken, thus cooling the core by means of reduced-pressure boiling of coolant remained within the core and boiling due to heat, and restraining core reactivity by means of void produced at that time. (Kamimura, M.)

  8. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  9. Method of determination of thermo-acoustic coolant instability boundaries in reactor core at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, Volodymyr; Kolykhanov, Viktor; Kovryzhkin, Yuriy

    2007-01-01

    The regulatory body of Ukraine, the National Atomic Energy Company and the Scientific and Production Centre have led team-works concerned with previously unstudied factors or phenomena affecting reactor safety. As a result it is determined that the thermo-acoustic coolant instability conditions can appear in the core at definite operating WWER regimes. Considerable cyclic dynamic loads affect fuel claddings over thermo-acoustic pressure oscillations. These loads can result in inadmissible cassette design damage and containment damage. Taking into account calculation and experimental research authors submit a method of on-line assessment of WWER core state concerning thermo-acoustic coolant instability. According to this method, the thermo-acoustic coolant instability appearance conditions can be estimated using normal registered parameters (pressure, temperature, heat demand etc.). At operative modes, a WWER-1000 core is stable to tracheotomies oscillations, but reduction of coolant discharge through the core for some times can result in thermo-acoustic coolant instability. Thermo-acoustic instability appears at separate transitional modes concerned with reactor scram and unloading/loading at all power units. When thermo-acoustic instability begins in transitional modes, core elements are under influence of high-frequency coolant pressure pulsations for a long time (tens of hours)

  10. Post injection pressures in well treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G

    1967-06-05

    Behavior of wellhead pressure immediately after injection of liquids or slurries in well completion and workover treatments can often indicate the success of the operation. Since the rate of wellhead pressure build-down after injection is related to the permeability of the exposed formation to the treating fluid, interpretation of success or failure of the fluid to communicate with the reservoir is possible. Treatments designed to plug-up or clean-out formation flow channels can both be evaluated. Early appreciation can speed completion and workover operations. An explanation of the phenomena of increasing bottomhole treating pressure during fracture-type treatments, and the change in it throughout the life of a well, will result in better understanding of basic fracturing mechanics. On-the-job observations of decreasing rate of pressure build-down after increments of stage squeeze cementing will help the well-site engineer to vary the volume of increments of slurry and the duration of each stage.

  11. Design of Safety Injection Tanks Using Axiomatic Design and TRIZ

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyunyoung [Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701 (Korea, Republic of); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2008-07-01

    Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)

  12. Pressure tube reactor

    International Nuclear Information System (INIS)

    Susuki, Akira; Murata, Shigeto; Minato, Akihiko.

    1993-01-01

    In a pressure tube reactor, a reactor core is constituted by arranging more than two units of a minimum unit combination of a moderator sealing pipe containing a calandria tube having moderators there between and a calandria tube and moderators. The upper header and a lower header of the calandria tank containing moderators are communicated by way of the moderator sealing tube. Further, a gravitationally dropping mechanism is disposed for injecting neutron absorbing liquid to a calandria gas injection portion. A ratio between a moderator volume and a fuel volume is defined as a function of the inner diameter of the moderator sealing tube, the outer diameter of the calandria tube and the diameter of fuel pellets, and has no influence to intervals of a pressure tube lattice. The interval of the pressure tube lattice is enlarged without increasing the size of the pressure tube, to improve production efficiency of the reactor and set a coolant void coefficient more negative, thereby enabling to improve self controllability and safety. Further, the reactor scram can be conducted by injecting neutron absorbing liquid. (N.H.)

  13. Experimental investigation of coolant and poisoned moderator mixing due to a simulated pressure tube/calandria tube fishmouth rupturing an overpoisoned guaranteed shutdown state

    International Nuclear Information System (INIS)

    Mackinnon, J.C.; Fortman, R.A.; Hadaller, G.I.

    1997-01-01

    During a guaranteed shutdown state (GSS) in a CANDU reactor, there must be sufficient negative reactivity to ensure subcriticality in the event of a process failure. In one of the acceptable states, the reactor is kept subcritical by a high concentration of a neutron-absorbing chemical (the poison gadolinium nitrate) dissolved in the moderator (i.e., the moderator is guaranteed overpoisoned). A postulated accident scenario which is considered as a part of reactor safety analysis is the rupture of a fuel channel (i.e., a pressure tube/calandria tube break) when the reactor is in a GSS. If one of the channels in the core breaks (requiring a simultaneous failure of both the pressure tube and the surrounding calandria tube), coolant from the primary heat transport system will be discharged into the moderator, causing an associated displacement of fluid through relief ducts at the top of the calandria vessel. The incoming (unpoisoned) coolant may mix quickly with the moderator, or may mix slowly while displacing poisoned moderator through the relief ducts. The effectiveness of mixing generally depends on the break location, the coolant discharge rate and the moderator circulation. If an in-core loss of coolant accident occurred while the reactor is in this overpoisoned state, it must be guaranteed that even with the dilution of the poison by the incoming coolant the reactor will remain subcritical on both a local and global basis. This paper presents an overview of an experimental program in progress at the Moderator Test Facility at Stern Laboratories to investigate coolant/poison mixing for a simulated in-core fishmouth pressure tube/calandria tube rupture. The nominal system at the same temperature as the heavily poisoned moderator, i.e., a depressurised 'cold' state. The results presented are those obtained during the commissioning of the modified Test Facility. The contents of the paper are as follows. First, the objectives of the experimental program are

  14. Organic coolants and their applications to fusion reactors

    International Nuclear Information System (INIS)

    Gierszewski, P.; Hollies, B.

    1986-08-01

    Organic coolants offer a unique set of characteristics for fusion applications. Their advantages include high-temperature (670 K or 400 degrees C) but low-pressure (2 MPa) operation, limited reactivity with lithium and lithium-lead, reduced corrosion and activation, good heat-transfer capabilities, no magnetohydrodynamic (MHD) effects, and an operating temperature range that extends to room temperature. The major disadvantages are decomposition and flammability. However, organic coolants have been extensively studied in Canada, including nineteen years with an operating 60-MW organic-cooled reactor. Proper attention to design and coolant chemistry controlled these potential problems to acceptable levels. This experience provides an extensive data base for design under fusion conditions. The organic fluid characteristics are described in sufficient detail to allow fusion system designers to evaluate organic coolants for specific applications. To illustrate and assess the potential applications, analyses are presented for organic-cooled blankets, first walls, high heat flux components and thermal power cycles. Designs are identified that take advantage of organic coolant features, yet have fluid decomposition related costs that are a small fraction of the overall cost of electricity. For example, organic-cooled first walls make lithium/ferritic steel blankets possible in high-field, high-surface-heat-flux tokamaks, and organic-cooled limiters (up to about 8 MW/m 2 surface heating) are a safer alternative to water cooling for liquid metal blanket concept. Organics can also be used in intermediate heat exchanger loops to provide efficient heat transfer with low reactivity and a large tritium barrier. 55 refs

  15. Improvement of lifetime availability through design, inspection, repair and replacement of coolant channels of Indian Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Rupani, B.B.; Sinha, R.K.

    1998-01-01

    This paper covers an overview of the work carried out for the life management of the coolant channels of Indian Pressurised Heavy Water Reactors. In order to improve maintainability of the coolant channels and reduce down time needed for periodical creep adjustment, improved design of channel hardware were developed. The modular insulation panel, designed as a substitute for the jig saw panels, reduces the time needed for accessing the space around the end-fitting significantly. A compact mechanical snubber has been developed to totally eliminate the need for periodic creep adjustment. In addition, the paper also describes the technologies developed for performing some special inspection, repair and replacement tasks for the coolant channels. These include systems for garter spring repositioning by Mechanical Flexing Technique for fresh reactors and Integrated Garter Spring Repositioning System for operating reactors. A tooling system, developed for in-situ retrieval of sliver scrape samples from pressure tubes, is also described. These samples can be analysed in laboratories to yield valuable information on hydrogen concentration in pressure tube material. The current and planned activities towards development of technologies for improvement of the life time availability of the power plants are addressed. (author)

  16. Experiment data report for Semiscale Mod-1 Test S-05-2 (alternate ECC injection test)

    International Nuclear Information System (INIS)

    Feldman, E.M.; Collins, B.L.; Sackett, K.E.

    1977-02-01

    Recorded test data are presented for Test S-05-2 of the Semiscale Mod-1 alternate emergency core coolant (ECC) injection test series. This test is one of several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-2 was conducted from an initial cold leg fluid temperature of 545 0 F and an initial pressure of 2263 psia. A simulated double-ended offset shear cold leg break was used to investigate core and system response to a depressurization and reflood transient with ECC injection at the intact loop pump suction and broken loop cold leg. A reduced lower plenum volume was used for this test to more accurately represent the lower plenum of a PWR, based on system volume scaling. System flow was set to achieve a core fluid temperature differential of 65 0 F at a core power level of 1.44 MW. The flow resistance of the intact loop was based on core area scaling. An electrically heated core with a slightly peaked radial power profile was used in the pressure vessel to simulate the predicted surface heat flux of nuclear fuel rods during a loss-of-coolant accident

  17. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  18. Effect of Intra Vitreal Injection of Bevacizumab on Intra-Occular Pressure

    International Nuclear Information System (INIS)

    Jaffar, S.; Tayyab, A.; Matin, Z. I.; Masrur, A.; Naqaish, R.

    2016-01-01

    Background: Bevacizumab has been in use as a therapeutic agent for macular oedema for several years. While its efficacy has been well documented, its use has been shown to cause a transient rise in the intra-ocular pressure. The aim of this study was to evaluate the long term effect of intra-vitreal injection of Bevacizumab on Intra-ocular pressure. Methods: One hundred eyes (n=100) of one hundred patients, requiring intra-vitreal injection of Bevacizumab for diabetic macular oedema were recruited from Shifa Foundation Community Health Centre (SFCHC) between January and December 2014. Patients of glaucoma, ocular hyper-tension, known allergy to Bevacizumab or had injections of Bevacizumab prior to the study were excluded. Intra-ocular pressure was measured using a Goldmann applanation tonometer, prior to, and at six and twelve months after the injection. The pre- and post- injection Intra-ocular pressure was entered into the database. Test of significance was applied to investigate whether there was a significant change in intra-ocular pressure after the injection. Results: The mean age of the patient was 56.97 years (±14.97). The mean intra-ocular pressure was 13.86 (±3.16) mmHg before injection, while post-injection mean Intra-Ocular pressure was 14.21 (±3.12) mmHg and 13.79 (±3.07) at six and twelve months respectively. Between baseline and six months there was a statistically significant difference in intra-ocular pressure (p=0.03), while no significant difference existed in the intra-ocular pressure between baseline and twelve months (p=0.92). Conclusion: Intra-vitreal injection of Bevacizumab is associated with a statically significant rise in intra-ocular pressure at six months, while no significant difference was seen at twelve months compared to baseline. (author)

  19. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  20. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  1. Failure rates in Barsebaeck-1 reactor coolant pressure boundary piping. An application of a piping failure database

    International Nuclear Information System (INIS)

    Lydell, B.

    1999-05-01

    This report documents an application of a piping failure database to estimate the frequency of leak and rupture in reactor coolant pressure boundary piping. The study used Barsebaeck-1 as reference plant. The study tried two different approaches to piping failure rate estimation: 1) PSA-style, simple estimation using Bayesian statistics, and 2) fitting of statistical distribution to failure data. A large, validated database on piping failures (like the SKI-PIPE database) supports both approaches. In addition to documenting leak and rupture frequencies, the SKI report describes the use of piping failure data to estimate frequency of medium and large loss of coolant accidents (LOCAs). This application study was co sponsored by Barsebaeck Kraft AB and SKI Research

  2. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  3. Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant

    International Nuclear Information System (INIS)

    Amiri, Ahmad; Sadri, Rad; Shanbedi, Mehdi; Ahmadi, Goodarz; Kazi, S.N.; Chew, B.T.; Zubir, Mohd Nashrul Mohd

    2015-01-01

    Highlights: • A potentially mass production method is introduced for preparing EG-treated GNP. • A promising car radiator coolant in the presence of neutral media synthesized. • Car engine can work in lower temperature via high-performance coolant. • The ratio of convective to conductive heat transfer is unique. • New economical product with high performance index is introduced. - Abstract: An electrophilic addition reaction under microwave irradiation was developed as a promising, quick and cost-effective approach to functionalize Graphene Nanoplatelets (GNP) with ethylene glycol (EG). EG-treated GNP was synthesized to reach a promising dispersibility in the water–EG media without negative effects of acid-treatment. Surface functionality groups and the morphology of chemically-functionalized GNP were characterized by the vibration spectroscopies, temperature-programmed study, and microscopic method. Despite the fact that the main structures of GNP were remained reasonably intact, characterization results consistently verified the functionalization of GNP with EG functionalities. As new kinds of high-performance engine coolant, the EG-treated GNP based water–EG coolant (GNP-WEG) was prepared and its thermo-physical and rheological properties are evaluated. In particular, the thermal conductivity, viscosity, specific heat capacity, and density of all samples were experimentally measured to evaluate the thermal performance of the GNP-WEG coolant. The data showed insignificant increases in the pressure drop at different temperatures and concentrations, low friction factor, lack of corrosive condition, and the performance index larger than 1. In addition, no momentous change in the pumping power in the presence of GNP-WEG confirmed that it can be an appropriate alternative coolant for different thermal equipment in terms of economy and performance

  4. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1976-06-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The report describes the analytical model used for the program. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The user is required to input the description of the discharge of coolant, the boiling of residual water by reactor decay heat, the superheating of steam passing through the core, and metal-water reactions. The reactor building is separated into liquid and vapor regions. Each region is in thermal equilibrium itself, but the two may not be in thermal equilibrium; the liquid and gaseous regions may have different temperatures. The reactor building is represented as consisting of several heat-conducting structures whose thermal behavior can be described by the one-dimensional multi-region heat conduction equation. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc

  5. Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A

    NARCIS (Netherlands)

    Matheis, Jan; Hickel, S.

    2018-01-01

    We present and evaluate a two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vapor-liquid equilibrium calculations and can represent the coexistence of supercritical states and

  6. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  7. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change

    International Nuclear Information System (INIS)

    He, Fei; Wang, Jianhua

    2014-01-01

    Highlights: • Five states during the transpiration cooling are discussed. • A suit of applicable program is developed. • The variations of the thickness of two-phase region and the pressure are analyzed. • The relationship between heat flux and coolant mass flow rate is presented. • An approach is given to define the desired case of transpiration cooling. - Abstract: The mechanism of transpiration cooling with liquid phase change is numerically investigated to protect the thermal structure exposed to extremely high heat flux. According to the results of theoretical analysis, there is a lower critical and an upper critical external heat flux corresponding a certain coolant mass flow rate, between the two critical values, the phase change of liquid coolant occurs within porous structure. A strongly applicable self-edit program is developed to solve the states of fluid flow and heat transfer probably occurring during the phase change procedure. The distributions of temperature and saturation in these states are presented. The variations of the thickness of two-phase region and the pressure including capillary are analyzed, and capillary pressure is found to be the main factor causing pressure change. From the relationships between the external heat flux and coolant mass flow rate obtained at different cooling cases, an approach is given to estimate the maximal heat flux afforded and the minimal coolant consumption required by the desired case of transpiration cooling. Thus the pressure and coolant consumption required in a certain thermal circumstance can be determined, which are important in the practical application of transpiration cooling

  8. An improved apparatus for pressure-injecting fluid into trees

    Science.gov (United States)

    Garold F. Gregory; Thomas W. Jones

    1975-01-01

    Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.

  9. Loss of Coolant Accidents (LOCA): Study of CAREM Reactor Response

    International Nuclear Information System (INIS)

    Gonzalez, Jose; Gimenez, Marcelo

    2000-01-01

    We analyzed the neutronic and thermohydraulic response of CAREM25 reactor and the safety systems involved in a Loss Of Coolant Accident (LOCA).This parametric analysis considers several break diameters (1/2inch, 3/4inch, 1inch, 1.1/2inch and 2inches) in the vapor zone of the Reactor Pressure Vessel.For each accidental sequence, the successful operation of the following safety systems is modeled: Second Safety System (SSS), Residual Heat Removal System (RHRS) and Safety Injection System (SIS). Availability of only one module is postulated for each system.On the other hand, the unsuccessful operation of all safety systems is postulated for each accidental sequence.In both cases the First Shutdown System (FSS) actuates, and the loss of Steam Generator secondary flow and Chemical and Control of Volume System (CCVS) unavailability are postulated.Maximum loss of coolant flow, reactor power and time for safety systems operation are analyzed, as well as its set point parameters.We verified that safety systems are dimensioned to satisfy the 48 hours cooling criteria

  10. Compressed air injection technique to standardize block injection pressures : [La technique d'injection d'air comprimé pour normaliser les pressions d'injection d'un blocage nerveux].

    Science.gov (United States)

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes ( 18G, 20G, 21 G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed. Présentement, aucune technique normalisée ne permet de vérifier les pressions d'injection pendant les blocages nerveux périphériques. Nous voulions vérifier si une technique d'injection d'air comprimé, utilisant un modèle in vitro fondé sur la loi de Boyle et du matériel propre à l'anesthésie régionale, pouvait maintenir avec régularité les

  11. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    OpenAIRE

    Hwang Bae; Dong Eok Kim; Sung-Uk Ryu; Sung-Jae Yi; Hyun-Sik Park

    2017-01-01

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are s...

  12. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  13. Failure rates in Barsebaeck-1 reactor coolant pressure boundary piping. An application of a piping failure database

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, B. [RSA Technologies, Vista, CA (United States)

    1999-05-01

    This report documents an application of a piping failure database to estimate the frequency of leak and rupture in reactor coolant pressure boundary piping. The study used Barsebaeck-1 as reference plant. The study tried two different approaches to piping failure rate estimation: 1) PSA-style, simple estimation using Bayesian statistics, and 2) fitting of statistical distribution to failure data. A large, validated database on piping failures (like the SKI-PIPE database) supports both approaches. In addition to documenting leak and rupture frequencies, the SKI report describes the use of piping failure data to estimate frequency of medium and large loss of coolant accidents (LOCAs). This application study was co sponsored by Barsebaeck Kraft AB and SKI Research 41 refs, figs, tabs

  14. An evaluation of debris mobility within a PWR reactor coolant system during the recirculation mode

    International Nuclear Information System (INIS)

    Andreychek, T.S.

    1987-01-01

    To provide for the long-term cooling of the nuclear core of a Pressurized Water Rector (PWR) following a hypothetical Loss-of-Coolant Accidnet (LOCA), water is drawn from the containment sump and pumped into the reactor coolant system (RCS). It has been postulated that debris from the containment, such as dirt, sand, and paint from containment walls and in-containment equipment, could be carried into the containment sump due to the action of the RCS coolant that escapes from the breach in the piping and then flows to the sump. Once in the sump, this debris could be pumped into the Safety Injection System (SIS) and ultimately the RCS itself, causing the performance of the SIS to be degraded. Of particular interest is the potential for core blockage that may occur due to debris transport into the core region by the recirculating flow. This paper presents a method of evaluating the potential for debris from the sump to form core blockages under recirculating flow conditions following a hypothetical LOCA for a PWR

  15. Coolant mixing in pressurized water reactors. Proceedings

    International Nuclear Information System (INIS)

    Hoehne, T.; Grunwald, G.; Rohde, U.

    1998-10-01

    For the analysis of boron dilution transients and main steam like break scenarios the modelling of the coolant mixing inside the reactor vessel is important. The reactivity insertion due to overcooling or deboration depends strongly on the coolant temperature and boron concentration. The three-dimensional flow distribution in the downcomer and the lower plenum of PWR's was calculated with a computational fluid dynamics (CFD) code (CFX-4). Calculations were performed for the PWR's of SIEMENS KWU, Westinghouse and VVER-440 / V-230 type. The following important factors were identified: exact representation of the cold leg inlet region (bend radii etc.), extension of the downcomer below the inlet region at the PWR Konvoi, obstruction of the flow by the outlet nozzles penetrating the downcomer, etc. The k-ε turbulence model was used. Construction elements like perforated plates in the lower plenum have large influence on the velocity field. It is impossible to model all the orifices in the perforated plates. A porous region model was used to simulate perforated plates and the core. The porous medium is added with additional body forces to simulate the pressure drop through perforated plates in the VVER-440. For the PWR Konvoi the whole core was modelled with porous media parameters. The velocity fields of the PWR Konvoi calculated for the case of operation of all four main circulation pumps show a good agreement with experimental results. The CFD-calculation especially confirms the back flow areas below the inlet nozzles. The downcomer flow of the Russian VVER-440 has no recirculation areas under normal operation conditions. By CFD calculations for the downcomer and the lower plenum an analytical mixing model used in the reactor dynamic code DYN3D was verified. The measurements, the analytical model and the CFD-calculations provided very well agreeing results particularly for the inlet region. The difficulties of analytical solutions and the uncertainties of turbulence

  16. Steam CFD simulation of injection in suppression pool

    International Nuclear Information System (INIS)

    Naveen Samad, A.M.; Ghosh, Sumana

    2015-01-01

    Boiling water reactor (BWR) is one of the common types of electricity generating nuclear reactor. Suppression pool system is a major component of the BWR which has to be designed efficiently for the safe operations. During some accidents like Loss of Coolant Accident (LOCA) large amount of steam are injected to the pressure suppression system resulting in increase in temperature of the pool and thereby increasing the pressure. The present work discuss about the Computational Fluid Dynamics (CFD) simulation of steam injected to the wet well of BWR through the blow down pipes and there by investigating the hydrodynamic and thermal characteristics of the system. The simulations were carried out for three different steam injection velocities. The numerical simulations were performed with ANSYS FLUENT using multiphase 3D Volume of Fluid (VOF) model and k-ε model was adopted for modelling turbulence flow. (author)

  17. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Thermo- and fluid-dynamic effects

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, André, E-mail: a.seeliger@hszg.de [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Alt, Sören; Kästner, Wolfgang; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Kryk, Holger; Harm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany)

    2016-08-15

    Highlights: • Borated coolant supports corrosion at zinc-coated installations in PWR after LOCA. • Dissolved zinc is injected into core by ECCS during sump recirculation phase. • Corrosion products can reach and settle at further downstream components. • Corrosion products can cause head losses at spacers and influence decay heat removal. • Preventive procedures were tested at semi-technical scale facilities. - Abstract: Within the framework of the German reactor safety research, generic experimental investigations were carried out aiming at thermal-hydraulic consequences of physicochemical mechanisms, caused by dissolution of zinc in boric acid during corrosion processes at hot-dip galvanized surfaces of containment internals at lower coolant temperatures and the subsequent precipitation of solid zinc borates in PWR core regions of higher temperature. This constellation can occur during sump recirculation operation of ECCS after LOCA. Hot-dip galvanized compounds, which are installed inside a PWR containment, may act as zinc sources. Getting in contact with boric acid coolant, zinc at their surfaces is released into coolant in form of ions due to corrosion processes. As a long-term behavior resp. over a time period of several days, metal layers of zinc and zinc alloys can dissolve extensively. First fundamental studies at laboratory scale were done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Their experimental results were picked up for the definition of boundary conditions for experiments at semi-technical scale at the Hochschule Zittau/Görlitz (HSZG). Electrical heating rods with zircaloy cladding tubes have been used as fuel rod simulators. As near-plant core components, a 3 × 3 configuration of heating rods (HRC) and a shortened, partially heatable PWR fuel assembly dummy were applied into cooling circuits. The HRC module includes segments of spacers for a suitable representation of a heating channel geometry. Formations of different solid

  18. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  19. Evaluation of the gravity-injection capability for core cooling after a loss-of-SDC event

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    1999-01-01

    In order to evaluate the gravity-drain capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Young Gwang Units 3 and 4 were reviewed. The six cases of possible gravity-drain paths using the water of the refueling water storage tank (RWST) were identified and the thermal hydraulic analyses were performed using RELAP5/MOD3.2 code. The core cooling capability was dependent on the gravity-drain paths and the drain rate. In the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. However, in the cases with the injection path and opening on the cold leg side, the core coolant continued boiling although the system pressure remains atmospheric after gravity-injection because the cold water injected from the RWST was bypassed the core region. In the cases with the higher pressurizer opening than the RWST water level, the system was also pressurized by the water-hold in the pressurizer and the core was uncovered because the gravity-injection from the RWST stopped due to the high system pressure. In addition, from the sensitivity study on the gravity-injection flow rates, it was found that about 54 kg/s of RWST drain rate was required to maintain the core cooling. Those analysis results would provide useful information to operators coping with the event

  20. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  1. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  2. Experiment data report for Semiscale Mod-1 Test S-05-5 (alternate ECC injection test)

    International Nuclear Information System (INIS)

    Collins, B.L.; Patton, M.L. Jr.; Sackett, K.E.

    1977-04-01

    Recorded test data are presented for Test S-05-5 of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-5 was conducted from initial conditions of 2263 psia and 537 0 F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the cold leg of the intact and broken loops to simulate emergency core coolant injection in a PWR. The upper plenum was vented through a reflood bypass line interconnecting the hot and cold legs of the broken loop

  3. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  4. Fabrication of High Temperature and High Pressure Vessel for the Fuel Test

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Sim, Bong Shick; Shon, Jae Min; Ahn, Seung Ho; Yoo, Seong Yeon

    2007-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR and CANDU nuclear power plants has been developed and installed in HANARO, KAERI. It is consisted of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS which is located inside the pool is divided into 3-parts; they are in-pool pipes, IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The localization of the IVA is achieved by manufacturing through local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique of the instrument lines has been checked for its functionality and yield. A IVA has been manufactured by local technique and will be finally tested under out of the high temperature and high pressure test

  5. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  6. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  7. Study of air entrainment in high pressure spray: optics diagnostics and application to the Diesel injection; Etude de l'entrainement d'air dans un spray haute pression: diagnostics optiques et application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Arbeau, A.

    2004-12-15

    The actual development of the engine must reply to a will of fuel consumption reduction and to norms more and more strict concerning the pollutant emissions. Although the Diesel engines are efficient, the NO{sub x} and particle emissions mainly come from the existence of wealthy fuel zone preventing an optimal combustion. Therefore, the air / fuel mixing preparation, highly controlled by the air entrainment in spray, is essential. In this context, we have developed metrological tools in order to analyse the air entrainment mechanism in a dense spray. The Particle Image Velocimetry (PIV) technique is first applied to a conical spray with an injection pressure less than 100 bars to study the air entrainment in spray. A transfer of the methodologies allows then the characterisation and the understanding of the air entrainment mechanism in high pressure full spray (injection pressure less than 1600 bars) type Diesel one. The influence of injection parameters (injection pressure and back pressure) on the mixing rate is studied. The increase of the injection pressure from 800 to 1600 bars implies an increase of the mixing rate of 60 %. Moreover, the thermodynamic conditions of the ambient air, simulated by the chamber back pressure, widely favours the mixing rate. Actually, this latter increases of 350 % when the chamber back pressure varies from 1 to 7 bars. The experimental results do not follow classical laws of air entrainment in one-phase flow jet with variable density, but are in good agreement with an integral model for air entrainment in an axisymmetric full spray. Finally, the Fluorescence Particle Image Velocimetry (FPIV) is introduced in order to extend the PIV application field in dense two-phase flows. (author)

  8. Zinc injection on the EDF pressurized light water reactors. Current results and operating experience feedback

    International Nuclear Information System (INIS)

    Piana, Olivier; Duval, Arnaud; Moleiro, Edgar; Benfarah, Moez; Bretelle, Jean-Luc; Chaigne, Guy

    2014-01-01

    Nowadays, zinc injection, as well as pH management and hydrogen control, is increasingly considered as an essential element of PWR Primary Water Chemistry worldwide. After a first implementation of zinc injection at Bugey 2 since 2004 and Bugey 4 since 2006, EDF decided to extend this practice, which constitutes a modification of primary circuit chemical conditioning, to other units of its fleet. Currently, 15 among the 58 reactors of the French fleet are injecting depleted zinc acetate into the primary coolant water. Three main goals were identified at the beginning of this program. Indeed, the expected benefits of zinc injection were: Reduction of the rate of generalized corrosion and mitigation of stress corrosion cracking initiation on nickel based alloys (Material goal). Curative or preventive reduction of radiation sources to which workers are exposed (Radiation fields' goal). Mitigation of the AOA or CIPS risks by reduction of corrosion products releases and mitigation of crud deposition (Fuel protection goal). To monitor the zinc addition, EDF has defined a complete survey program concerning: chemistry and radiochemistry responses (primary coolant monitoring of corrosion and fission products and calculation of zinc injected, zinc removed and zinc incorporated in RCS surfaces) ; radiation fields (dose rates and deposited activities measurements) ; materials (statistical analysis of SG tube cracks) ; fuel (oxide thickness measurements and visual exams) ; effluents (corrosion products releases and isotopic distribution follow up) ; wastes (radiochemical characterization of filters). This paper will detail the present results of this monitoring program. It appears that the expected benefits of zinc injection have yet to be fully realized; further operating experience will be required in order to fully evaluate its impact. (author)

  9. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  10. Bandwidth of reactor internals vibration resonance with coolant pressure oscillations

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    In a few decades a significant increase in a part of an electricity development on the NPP will require NPP to be operated in non full capacity modes and increase in operation time in transitive modes. Operating in such conditions as compared to the operation on a constant mode will lead to the increase in cyclic dynamical loading. In water cooled water moderated reactors these loading are realized as low-cyclic and high-cyclic loadings. High-cyclic loadings increases are caused by a raised vibration in non stationary modes of operation. It is known, that in some modes of a non full capacity reactor high-cyclic dynamic loadings can increase. It is obvious, that the development of management technologies is necessary for the life time management operation. In the context of this problem one of the main tasks are revealing and the prevention of the conditions of the occurrence of the operation leading to the resonant interaction of the coolant fluctuations and the equipment, reactor vessel (RV), fuel assemblies (FA) and reactor internals (RI) vibration. To prevent the appearance of the conditions for resonance interaction between the fluid flow and the equipments, it is necessary to provide the different frequencies for the self oscillations in the separated elements of the circulating system and also in the parts of the system formed by the comprising of these elements. While solving these problems it is necessary to have a theoretical and settlement substantiation of an oscillation frequency band of coolant outside of which there is no resonant interaction. The presented work is devoted to finding the solution of this problem. There are results of theoretical an estimation of width of such band as well as the examples of a preliminary quantitative estimation of Q - factors of coolant acoustic oscillatory circuit formed by the equipment of the NPP. The accordance of results had been calculated with had been measured are satisfied for practical purposes. These

  11. Pressurization of a compartment due to the rupture of coolant piping

    International Nuclear Information System (INIS)

    Kot, C.A.; Hsieh, B.J.

    1993-01-01

    The pressurization and venting of enclosed compartments due to the accidental rupture of coolant piping is a safety problem common to many nuclear facilities. The processes associated with such an accident are very complex, involving, in general, transient multiphase flows, interactions and mixing between the incoming flows and the gases in the compartment, and heat transfer with the surroundings. Since pipe rupture is associated with many phenomenological uncertainties, elaborate 3-D thermal-hydraulic modeling and extensive calculational efforts are not warranted for many design applications. It is then more appropriate to rely. on simplified, global analysis approaches which can provide reasonably conservative estimates of the structural loads and flow processes, and which can readily be used in parameter/design studies. The objective of this paper is to present such an approach

  12. Design of Reactor Coolant Pump Seal Online Monitoring System

    International Nuclear Information System (INIS)

    Ah, Sang Ha; Chang, Soon Heung; Lee, Song Kyu

    2008-01-01

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation

  13. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  14. Methodologies and technologies for life assessment and management of coolant channels of Indian pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Rupani, B.B.; Sinha, S.K.; Sinha, R.K.

    2002-01-01

    Zirconium alloy coolant channels are central to the design of Indian Pressurised Heavy Water Reactors (PHWRs) and form the individual pressure boundaries. These coolant channels consist of horizontal pressure tubes made of zirconium alloys, which are separated from cold calandria tubes using garter spring spacers. High temperature heavy water coolant flows through the pressure tube which supports the fuel bundles. A typical coolant channel in a PHWR is shown. These pressure tubes are subjected to several life limiting degradation mechanisms like creep and growth, hydrogen pick-up, reduction in fracture toughness and delayed hydride cracking phenomena because of their operation under high temperature, high stress and high fast neutron flux environment. Considering the early onset of these degradation mechanisms in Zircaloy-2 pressure tubes used in the early generation of Indian PHWRs, the life management of these coolant channels becomes a challenging task, involving multidisciplinary R and D efforts in areas like analytical modelling of degradation mechanisms, evolution of methodologies for assessment of fitness for service and, tools and techniques for remote on line monitoring of integrity, maintenance and replacement. The degradation mechanisms have been modelled and incorporated into specially developed computer codes, such as SCAPCA for irradiation induced creep and growth deformation modelling, HYCON for hydrogen pick-up modelling, BLIST for hydrogen diffusion, blister nucleation and growth modelling and CEAL for assessment of leak before break behaviour. These codes have been validated with respect to the results of in-service inspection and post irradiation examination. Development of analytical models actually paved the way for the evolution of more refined methodologies for assessing the safe residual life of coolant channel. Information gathered from various experiments simulating the degradation mechanisms, results of post-irradiation examination of the

  15. Analysis of an ultrasonic level device for in-core Pressurized Water Reactor coolant detection

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1981-01-01

    A rigorous semi-empirical approach was undertaken to model the response of an ultrasonic level device (ULD) for application to in-core coolant detection in Pressurized Water Reactors (PWRs). An equation is derived for the torsional wave velocity v/sub t phi/ in the ULD. Existing data reduction techniques were analyzed and compared to results from use of the derived equation. Both methods yield liquid level measurements with errors of approx. 5%. A sensitivity study on probe performance at reactor conditions predicts reduced level responsivity from data at lower temperatures

  16. Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

    Directory of Open Access Journals (Sweden)

    Li Yuquan

    2017-02-01

    Full Text Available The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA, the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the

  17. Comparative experiments to assess the effects of accumulator nitrogen injection on passive core cooling during small break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Li, YuQuan; Hao, Botao; Zhong, Jia; Wan Nam [State Nuclear Power Technology R and D Center, South Park, Beijing Future Science and Technology City, Beijing (China)

    2017-02-15

    The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME)—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative

  18. Coolant radiolysis studies in the high temperature, fuelled U-2 loop in the NRU reactor

    International Nuclear Information System (INIS)

    Elliot, A.J.; Stuart, C.R.

    2008-06-01

    An understanding of the radiolysis-induced chemistry in the coolant water of nuclear reactors is an important key to the understanding of materials integrity issues in reactor coolant systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issue. In this respect, modelling the radiolysis chemistry has been successful enough to allow progress to be made. This report contains a description of the water radiolysis tests performed in the U-2 loop, NRU reactor in 1995, which measured the CHC under different physical conditions of the loop such as temperature, reactor power and steam quality. (author)

  19. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  20. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  1. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  2. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  3. Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kanzleiter, T.F.

    1976-01-01

    For the design of an LWR containment one of the important conditions to be considered is the rapid rise of internal pressure and temperature caused by a loss-of-coolant accident (LOCA) of the primary cooling system. The phenomena occurring within a containment during a LOCA are currently investigated through experiments with a model containment. The experimental results are compared with the results of model calculations to improve the calculational methods. An experimental facility was built, consisting of a primary coolant circuit and a special model containment. The model containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m 3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross sections. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiments a PWR configuration with nine compartments has been installed. The model scales of the compartment volumes and the overflow areas are about 1 : 64 compared to the 1200 MW PWR plant Biblis A. (Auth.)

  4. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  5. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  6. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  7. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  8. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  9. Studies on Microscopic Structure of Diesel Sprays under Atmospheric and High Gas Pressures

    Directory of Open Access Journals (Sweden)

    D. Deshmukh

    2014-06-01

    Full Text Available In the present work, the spray structure of diesel from a 200-μm, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean Diameter (SMD is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.

  10. Method and apparatus for suppressing water-solid overpressurization of coolant in nuclear reactor power apparatus

    International Nuclear Information System (INIS)

    Aanstad, O.J.; Sklencar, A.M.

    1983-01-01

    A reactor-coolant relief valve is opened for increase in mass influx if the rate of change of coolant pressure exceeds a setpoint during a predetermined interval, if, during this interval, the coolant temperature is less than a setpoint and if the level of the fluid in the pressurizer is above a predetermined setpoint (water-solid state). (author)

  11. Analysis on transient hydrodynamic characteristics of cavitation process for reactor coolant pump

    International Nuclear Information System (INIS)

    Wang Xiuli; Wang Peng; Yuan Shouqi; Zhu Rongsheng; Fu Qiang

    2014-01-01

    The reactor coolant pump hydrodynamic characteristics at different cavitation conditions were studied by using flow field analysis software ANSYS CFX, and the corresponding data were processed and analyzed by using Morlet wavelet transform and fast Fourier transform. The results show that gas content presents the law of exponential function with the pressure reduction or time increase. In the cavitation primary condition, the pulsation frequency of head for the reactor coolant pump is mainly low frequency, and the main frequency of pressure pulsation is still rotation frequency while the effect of the pressure pulsation caused by cavitation on main frequency is not obvious. With the development of cavitation, the pressure fluctuation induced by cavitation becomes more serious especially for the main frequency, secondary frequency and pulsating amplitude while the head pulsation frequency is given priority to low frequency pulse. Under serious cavitation condition, the head pulsation frequency is given priority to irregular changes of pulse high frequency, and also contains almost regular changes of low frequency. (authors)

  12. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  13. Thermal shock studies associated with injection of emergency core coolant in pressurized water reactors

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bolt, S.E.; Iskander, S.K.

    1977-01-01

    Studies to determine the accuracy of calculational techniques for predicting crack initiation and arrest in PWR vessels due to thermal shock from ECC injection are described. The reference calculational model is reviewed, the experimental program and facilities are described, and some thermal shock experiments and results are discussed

  14. Consistent further development of the high pressure diesel fuel injection systems for passenger cars; Konsequente Weiterentwicklung der Hochdruck-Pkw-Dieseleinspritzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Warga, Johann; Pauer, Thomas; Boecking, Friedrich; Gerhardt, Juergen; Leonhard, Rolf [Robert Bosch GmbH, Stuttgart-Feuerbach (Germany). Diesel Systems

    2011-07-01

    Since the introduction of common rail technology in modern diesel engines for passenger cars there have been many changes and technological revolutions. Solely the continuous increase of the maximum injection pressure has remained unchanged as a guarantee for further engine performance improvement. Whether for down-sizing or for just simply increase the engine power or to reduce CO2 or to improve emissions: In all aspects the injection pressure can offer possible degrees of freedom. Besides, parallel to this continuous increase of injection pressure, the requirements concerning other injection system features have also continuously further developed. This paper focuses on the achievability of EU6 applications, among others, with the new Bosch 2000 bar solenoid valve injector, innovative nozzle technologies as e.g. with improved spray hole geometry or the modular concept common rail pump CP4. Current engine tests with pressures up to 2500 bar prove clearly the further advantages of pressure increase in diesel engines for passenger cars. In addition to the hydraulic components, system approaches in combination with electronic control, sensors and innovative control algorithms are increasingly in focus aiming to improve system accuracy and robustness. (orig.)

  15. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  16. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  17. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  18. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  19. Brazing of Sealing for Instrumentation Feed through of high Pressure Vessel

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ahn, S. H.; Joung, C. Y.; Lee, J. M.; Lee, C. Y.

    2011-01-01

    Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. It is composed of an In-Pile test Section(IPS) and an Out- Pile System(OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that could safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has loaded IP-1 hole in HANARO has a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants and the same temperature, pressure and flow conditions. Sensors installed on the inside of IPS to send a signal transmission MI-Cables to the outside for instrumentation is through the pressure boundary. Therefore, pressure boundary should be maintained in the sealing performance. Brazing is typically lower than the melting point of material without melting the material almost would be like welding when it is necessary to use. It is commonly used to use BAg(ASME II SFA-5.8 UNS-P07563) filler metal, but corrosion occurs containing a large quantity of copper in Bag, and when contact with the coolant, the coolant water quality is influenced. Therefore, using BNi-2(ASME II SFA-5.8 UNS-N99620) filler metal is considered. Brazing at the Sealing Plug in the top of IPS was considered for Mi-cable's integrity and to maintain the pressure boundary. After brazing is performed, brazing the Mi-cable integrity and pressure boundary sealing performance was tested

  20. Brazing of Sealing for Instrumentation Feed through of high Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H. Y.; Ahn, S. H.; Joung, C. Y.; Lee, J. M.; Lee, C. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. It is composed of an In-Pile test Section(IPS) and an Out- Pile System(OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that could safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has loaded IP-1 hole in HANARO has a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants and the same temperature, pressure and flow conditions. Sensors installed on the inside of IPS to send a signal transmission MI-Cables to the outside for instrumentation is through the pressure boundary. Therefore, pressure boundary should be maintained in the sealing performance. Brazing is typically lower than the melting point of material without melting the material almost would be like welding when it is necessary to use. It is commonly used to use BAg(ASME II SFA-5.8 UNS-P07563) filler metal, but corrosion occurs containing a large quantity of copper in Bag, and when contact with the coolant, the coolant water quality is influenced. Therefore, using BNi-2(ASME II SFA-5.8 UNS-N99620) filler metal is considered. Brazing at the Sealing Plug in the top of IPS was considered for Mi-cable's integrity and to maintain the pressure boundary. After brazing is performed, brazing the Mi-cable integrity and pressure boundary sealing performance was

  1. Experiments on the behaviour of thermite melt injected into sodium: Final report on the THINA test results

    International Nuclear Information System (INIS)

    Huber, F.; Kaiser, A.; Peppler, W.

    1994-01-01

    During hypothetical accidents of fast breeder reactors the core melts and part of the core material inventory is ejected into the upper coolant plenum. As a consequence, a fuel to coolant thermal interaction occurs between the melt and the sodium. A series of simulating experiments was carried out in KfK/IRS to improve the knowledge about the phenomenology of molten fuel/coolant interactions and to support theoretical work on the safety of fast breeder reactors. In the tests, a thermite melt of up to 3270 K is injected from below into a sodium pool the temperature of which is between 770 and 820 K. The masses of the melt and the sodium are about five and 150 kg, respectively. Thermal interactions have been observed to occur as a sequence of small local pressure events mainly during the melt injection. Large-scale vapour explosions have not been observed. Generally, the conversion ratios of thermal to mechanical energy have been low. (author)

  2. Simulation of the aspersion system of the core at high pressure (HPCS) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Vargas O, D.; Chavez M, C.

    2012-10-01

    A high-priority topic for the nuclear industry is the safety, consequently a nuclear power plant should have the emergency systems of cooling of the core (ECCS), designed exclusively to enter in operation in the event of an accident with coolant loss, including the design base accident. The objective of the aspersion system of the core at high pressure (HPCS) is to provide in an autonomous way the cooling to the core maintaining for if same the coolant inventory even when a small break is presented that does not allow the depressurization of the reactor and also avoiding excessive temperatures that affect the shielding of the fuel. The present work describes the development of the model and the simulation of the HPCS using the RELAP/SCDAP code. During the process simulation, for the setting in march of the system HPCS in an accident with coolant loss is necessary to implement the main components of the system taking into account what unites them, the main pump, the filled pump, the suction and injection valves, pipes and its water sources that can be condensed storage tanks and the suppression pool. The simulation of this system will complement the model with which counts the Analysis Laboratory in Nuclear Reactors Engineering of the UNAM regarding to the nuclear power plant of Laguna Verde which does not have a detailed simulation of the emergency cooling systems. (Author)

  3. THYDE-B1/MOD1: a computer code for analysis of small-break loss-of-coolant accident of boiling water reactors

    International Nuclear Information System (INIS)

    Muramatsu, Ken; Akimoto, Masayuki

    1982-08-01

    THYDE-B1/MOD1 is a computer code to analyze thermo-hydraulic transients of the reactor cooling system of a BWR, mainly during a small-break loss-of-coolant accidnet (SB-LOCA) with a special emphasis on the behavior of pressure and mixture level in the pressure vessel. The coolant behavior is simulated with a volume-and-junction method based on assumptions of thermal equilibrium and homogeneous conditions for two-phase flow. A characteristic feature of this code is a three-region representation of the state of the coolant in a control volume, in which three regions, i.e., subcooled liquid, saturated mixture and saturated steam regions are allowed to exist. The regions are separated by moving boundaries, tracked by mass and energy balances for each region. The interior of the pressure vessel is represented by two volumes with three regions: one for inside of the shroud and the other for outside, while other portions of the system are treated with homogeneous model. This method, although it seems to be very simple, has been verified to be adequate for cases of BWR SB-LOCAs in which the hydraulic transient is relatively slow and the cooling of the core strongly depends on the mixture level behavior in the vessel. In order to simulate the system behavior, THYDE-B1 is provided with analytical models for reactor kinetics, heat generation and conduction in fuel rods and structures, heat transfer between coolant and solid surfaces, coolant injection systems, breaks and discharge systems, jet pumps, recirculation pumps, and so on. The verification of the code has been conducted. A good predictability of the code has been indicated through the comparison of calculated results with experimental data provided by ROSA-III small-break tests. This report presents the analytical models, solution method, and input data requirements of the THYDE-B1/MOD1 code. (author)

  4. In reactor performance of defected zircaloy-clad U3Si fuel elements in pressurized and boiling water coolants

    International Nuclear Information System (INIS)

    Feraday, M.A.; Allison, G.M.; Ambler, J.F.R.; Chalder, G.H.; Lipsett, J.J.

    1968-05-01

    The results of two in-reactor defect tests of Zircaloy-clad U 3 Si are reported. In the first test, a previously irradiated element (∼5300 MWd/ tonne U) was defected then exposed to first pressurized water then boiling water at ∼270 o C. In the second test, an unirradiated element containing a central void was defected, waterlogged, then exposed to pressurized water for 50 minutes. Both tests were terminated because of high activity in the loop coolant detected by both gamma and delayed neutron monitors. Post-irradiation examination showed that both elements had suffered major sheath failures which were attributed to the volume increase accompanying the formation of large quantities of corrosion product formed by the reaction of water with the hot central part of the fuel. It was concluded that the corrosion resistance of U 3 Si at 300 o C is not seriously affected by irradiation, but the corrosion rate increases rapidly with temperature. (author)

  5. Study on severe accident induced by large break loss of coolant accident for pressureized water reactor

    International Nuclear Information System (INIS)

    Zhang Longfei; Zhang Dafa; Wang Shaoming

    2007-01-01

    Using the best estimate computer code SCDAP/RELAP5/MOD3.2 and taking US Westinghouse corporation Surry nuclear power plant as the reference object, a typical three-loop pressurized water reactor severe accident calculation model was established and 25 cm large break loss of coolant accident (LBLOCA) in cold and hot leg of primary loop induced core melt accident was analyzed. The calculated results show that core melt progression is fast and most of the core material melt and relocated to the lower plenum. The lower head of reactor pressure vessel failed at an early time and the cold leg break is more severe than the hot leg break in primary loop during LBLOCA. (authors)

  6. Method for removing cesium from aqueous liquid, method for purifying the reactor coolant in boiling water and pressurized water reactors and a mixed ion exchanged resin bed, useful in said purification

    International Nuclear Information System (INIS)

    Otte, J.N.A.; Liebmann, D.

    1989-01-01

    The invention relates to a method for removing cesium from an aqueous liquid, and to a resin bed containing a mixture of an anion exchange resin and cation exchange resin useful in said purification. In a preferred embodiment, the present invention is a method for purifying the reactor coolant of a presurized water or boiling water reactor. Said method, which is particularly advantageously employed in purifying the reactor coolant in the primary circuit of a pressurized reactor, comprises contacting at least a portion of the reactor coolant with a strong base anion exchange resin and the strong acid cation exchange resin derived from a highly cross-linked, macroporous copolymer of a monovinylidene aromatic and a cross-linking monomer copolymerizable therewith. Although the reactor coolant can sequentially be contacted with one resin type and thereafter with the second resin type, the contact is preferably conducted using a resin bed comprising a mixture of the cation and anion exchange resins. 1 fig., refs

  7. Data report for ROSA-IV LSTF gravity-driven safety injection experiment run SB-CL-27

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke; Saitou, Seishi; Kuroda, Takeshi

    1994-03-01

    Experimental data are presented for the passive injection test, Run SB-CL-27, conducted at the ROSA-IV Large Scale Test Facility (LSTF) on September 17, 1992. This experiment simulated thermal-hydraulic behavior of a gravity-driven, passive safety injection system during a small-break loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). The injection system consisted of a gravity-driven injection tank, located above the reactor vessel, with connecting lines. The tank was initially filled with water of room temperature at the same pressure as the pressurizer. The connecting lines to the cold leg and to the vessel downcomer were opened at the test initiation. Then, a natural circulation flow developed in the loop which was formed by these lines and the injection tank. The hot water in the cold leg circulated into the upper part of tank and accumulated there causing a significant thermal stratification. This thermal stratification prevented direct-contact condensation of steam from occurring during the subsequent tank drain-down phase. Therefore, no condensation-induced depressurization of the tank, affecting adversely the injection performance, occurred. (author)

  8. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  9. CONTEMPT: computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1978-04-01

    The CONTEMPT code is used by Babcock and Wilcox for containment analysis following a postulated loss of coolant accident. An additional model is described which is used for the calculation of long term post reflood mass and energy releases to the containment that is used for the containment design basis LOCA calculations. These calculations maximize the rate of energy flow to the containment. The mass and energy data are given to the containment designer for use in calculating the containment building design pressure and temperature and in sizing containment heat removal equipment

  10. Recent development in PWR zinc injection

    International Nuclear Information System (INIS)

    Ocken, H.; Fruzzetti, K.; Frattini, P.; Wood, C.J.

    2002-01-01

    Zinc injection to the reactor coolant system (RCS) of PWRs holds the promise to alleviate two key challenges facing PWR plant operators: (1) reducing degradation of coolant system materials, including nickel-base alloy tubing and lower alloy penetrations due to stress corrosion cracking, and (2) lowering shutdown dose rates. Primary water stress corrosion cracking (PWSCC) is a dominant tube failure mode at many plants. This paper summarizes recent observations from U. S. and international PWRs that have implemented zinc injection, focusing primarily on coolant chemistry and dose rate issues. It also provides a look at the future direction of EPRI-sponsored projects on this topic. (authors)

  11. Low pressure powder injection moulding of stainless steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, J.V.; Soares, J.P.; Mathias, F.; Rossi, J.L. [Powder Processing Center CCP, Inst. de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Filho, F.A. [IPEN, Inst. de Pesquisas Energeticas e Nucleares, Cidade Univ., Sao Paulo, SP (Brazil)

    2001-07-01

    Low-pressure powder injection moulding was used to obtain AISI 316L stainless steel parts. A rheological study was undertaken using gas-atomised powders and binders. The binders used were based on carnauba wax, paraffin, low density polyethylene and microcrystalline wax. The metal powders were characterised in terms of morphology, particle size distribution and specific surface area. These results were correlated to the rheological behaviour. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection process in the green state, and after sintering. The parameters such as injection pressure, viscosity and temperature were analysed for process optimisation. The binders were thermally removed in low vacuum with the assistance of alumina powders. Debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time. (orig.)

  12. Experiment on performance of upper head injection system with ROSA-II

    International Nuclear Information System (INIS)

    1976-09-01

    Thermo-hydraulic behavior in the primary cooling system of a pressurized water reactor with an upper head injection system (UHI) in a postulated loss-of-coolant accident (LOCA) has been studied with ROSA-II test facility. Simulated UHI and internal structures of the pressure vessel were installed to the facility for the experiment. Nine maximum-sized double-ended break tests and one medium-sized split break test were performed for the cold-leg break condition. The results are as follows: (1) Fluid mixing in the upper head is not perfect. (2) Cold water injection into the steam or two-phase fluid causes violent depressurization due to the condensation. Flow pattern in the primary cooling system is largely influenced by the above two. (auth.)

  13. Transient heating effects in high pressure Diesel injector nozzles

    International Nuclear Information System (INIS)

    Strotos, George; Koukouvinis, Phoevos; Theodorakakos, Andreas; Gavaises, Manolis; Bergeles, George

    2015-01-01

    Highlights: • Simulation of friction-induced heating in high pressure Diesel fuel injectors. • Injection pressures up to 3000 bar. • Simulations with variable fuel properties significantly affect predictions. • Needle motion affects flow and temperature fields. • Possible heterogeneous boiling as injection pressures increase above 2000 bar. - Abstract: The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (C d ), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1 − C d 2 ) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified

  14. Fundamental study of a water jet injected into a vacuum vessel of fusion reactor under the ingress of coolant event

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Seki, Yasushi; Kurihara, Ryouichi; Ueda, Shuzou

    1996-01-01

    As one of some transient sequences for the thermofluid safety in ITER, pressure rise and boiling heat transfer characteristics in a Tokamak vacuum vessel during an ingress of coolant event (ICE) are being investigated experimentally by using the preliminary ICE apparatus. The pressure rise rates in the vacuum vessel and the wall temperature distributions on the target plate were measured quantitatively and clarified at first. In addition, a two-phase flow under the ICE conditions was analyzed numerically for predicting the experimental results using one-dimensional transport equations and the drift-flux model. The experimental results were compared with the numerical results. It was found that the pressurization behavior during the ICE conditions could be estimated qualitatively by the present numerical analyses. 5 refs., 5 figs

  15. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Yoo, Seung Hun

    2016-01-01

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level

  16. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level.

  17. A summary of the assessment of fuel behaviour, fission product release and pressure tube integrity following a postulated large loss-of-coolant accident

    International Nuclear Information System (INIS)

    Langman, V.J.; Weaver, K.R.

    1984-05-01

    The Ontario Hydro analyses of fuel and pressure tube temperatures, fuel behaviour, fission product release and pressure tube integrity for large break loss-of-coolant accidents in Bruce A or Pickering A have been critically reviewed. The determinations of maximum fuel temperatures and fission product release are very uncertain, and pressure tube integrity cannot be assured where low steam flows are predicted to persist for times on the order of minutes

  18. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  19. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    Energy Technology Data Exchange (ETDEWEB)

    Antariksawan, A.R. [Reactor Safety Technology Research Center of BATAN (Indonesia); Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs.

  20. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    International Nuclear Information System (INIS)

    Antariksawan, A.R.; Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs

  1. Full sized tests on a french coolant pump under two-phase flow

    International Nuclear Information System (INIS)

    Huchard, J.C.; Bore, C.; Dueymes, E.

    1997-01-01

    The French Safety Authorities required EDF to demonstrate the ability of the new N4 main coolant pump to withstand two-phase flow conditions without damage. Therefore three full sized tests, simulating a bleeding flow on the primary system, were performed on a laboratory test loop under real operating conditions (temperature = 290 deg. C, pressure = 155 b, flowrate = 7 m 3 /s; electrical power = 7 MW). The maximum value of the mean void fraction reached 75 %. The outcome of the tests is very positive: the mechanical behaviour of the main coolant pump is good, even at high void fraction. The maximum vibration levels were below the limits fixed by the manufacturer. Correlations between the mechanical behaviour of the pump and the pressure pulsation in the test loop have been found. (authors)

  2. Intraocular Pressure Increases After Intraarticular Knee Injection With Triamcinolone but Not Hyaluronic Acid.

    Science.gov (United States)

    Taliaferro, Kevin; Crawford, Alexander; Jabara, Justin; Lynch, Jonathan; Jung, Edward; Zvirbulis, Raimonds; Banka, Trevor

    2018-03-09

    Intraarticular steroid injections are a common first-line therapy for severe osteoarthritis, which affects an estimated 27 million people in the United States. Although topical, oral, intranasal, and inhalational steroids are known to increase intraocular pressure in some patients, the effect of intraarticular steroid injections on intraocular pressure has not been investigated, to the best of our knowledge. If elevated intraocular pressure is sustained for long periods of time or is of sufficient magnitude acutely, permanent loss of the visual field can occur. How does intraocular pressure change 1 week after an intraarticular knee injection either with triamcinolone acetonide or hyaluronic acid? A nonrandomized, nonblinded prospective cohort study was conducted at an outpatient, ambulatory orthopaedic clinic. This study compared intraocular pressure elevation before and 1 week after intraarticular knee injection of triamcinolone acetonide versus hyaluronic acid for management of primary osteoarthritis of the knee. Patients self-selected to be injected in their knee with either triamcinolone acetonide or hyaluronic acid before being informed of the study. The primary endpoint was intraocular pressure elevation of ≥ 7 mm Hg 1 week after injection. This cutoff is determined as the minimum significant pressure change in the ophthalmology literature recognized as an intermediate responder to steroids. Intraocular pressure was measured using a handheld Tono-Pen® applanation device. This device is frequently used in intraocular pressure measurement in clinical and research settings; 10 sequential measurements are obtained and averaged with a confidence interval. Only measurements with a 95% confidence interval were used. Over a 6-month period, a total of 96 patients were approached to enroll in the study. Sixty-two patients out of 96 approached (65%) agreed. Thirty-one (50%) were injected with triamcinolone and 31 (50%) were injected with hyaluronic acid. Patients

  3. Basic experimental study with visual observation on elimination of the re-criticality issue using the MELT-II facility. Simulated fuel-escape behavior through a coolant channel

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Imahori, Shinji; Isozaki, Mikio

    2004-11-01

    In a core disruptive accident of fast reactors, fuel escape from the reactor core is a key phenomenon for prevention of re-criticality with significant mechanical-energy release subsequent to formation of a large-scale fuel pool with high mobility. Therefore, it is effective to study possibility of early fuel escape through probable escape paths such as a control-rod-guide-tube space well before high-mobility-pool formation. The purpose of the present basic experimental study is to clarify the mechanism of fuel-escape under a condition expected in the reactor situation, in which some amount of coolant may be entrapped into the molten-fuel pool. The following results have been obtained through basic experiments in which molten Wood's metal (components: 60wt%Bi-20wt%Sn-20wt%In, density at the room temperature: 8700 kg/m 3 , melting point: 78.8degC) is ejected into an coolant channel filled with water. (1) In the course of melt ejection, a small quantity of coolant is forced to be entrapped into the melt pool as a result of thermal interactions leading to high-pressure rise within the coolant channel. (2) Melt ejection is accelerated by pressure build-up which results from vapor pressure of entrapped coolant within the melt pool. (3) Average melt-ejection rate tends to increase in lower coolant-subcooling conditions, in which pressure build-up within the melt pool is enhanced. These results indicate a probability of a phenomenon in which melt ejection is accelerated by entrapment of coolant within a melt pool. Through application of the mechanism of confirmed phenomenon into the reactor condition, it is suggested that fuel escape is enhanced by entrapment of coolant within a fuel pool. (author)

  4. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  5. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  6. A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed with Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure

    Directory of Open Access Journals (Sweden)

    Muammer Özkan

    2015-01-01

    Full Text Available In this study, a four stroke four cylinder direct injection CI engine was run using three different injection pressures. In all measurements, the fuel quantity per cycle, the pre injection and main injection timing, the boost pressure and the engine speed were kept constant. The motor tests were performed under 130, 140 and 150 MPa rail pressure. During the theoretical part of the study, combustion, emission, energy and exergy analysis were made using the test results. An increase in the injection pressure increases combustion efficiency. The results show that combustion efficiency is not enough by itself, because the increase in the power need of the injection pump, decreases the thermal efficiency. The increase in the combustion temperature, increases the cooling loss and decreases the exergetic efficiency. In addition, the NOx emissions increased by 12% and soot emissions decreased 44% via increasing injection pressure by 17%. The thermal and exergetic efficiencies are found inversely proportional with injection pressure. Exergy destruction is found independent of the injection pressure and its value is obtained as ~6%.

  7. Device for preventing coolant outflow in a reactor

    International Nuclear Information System (INIS)

    Nemoto, Kiyomitsu; Mochizuki, Keiichi.

    1975-01-01

    Object: To prevent outflow of coolant from a reactor vessel even in an occurrence of leaking trouble at a low position in a primary cooling system or the like in the reactor vessel. Structure: An inlet at the foremost end of a coolant inlet pipe inserted into a reactor vessel is arranged at a level lower than a core, and a check valve is positioned at a level higher than the core in a rising portion of the inlet. In normal condition, the check valve is pushed up by discharge pressure of a main circulating pump and remains closed, and hence, producing no flow loss of coolant, sodium. However, when a trouble such as rupture occurs at the lower position in the primary cooling system, the attractive force for allowing the coolant to back-flow outside the reactor vessel and the load force of the coolant within the reactor vessel cause the check valve to actuate, as a consequence of which a liquid level of the coolant downwardly moves to the position of the check valve to intake the cover gases into a gas intake, thereby cutting off a flow passage of the coolant to stop outflow thereof. (Kamimura, M.)

  8. In reactor performance of defected zircaloy-clad U{sub 3}Si fuel elements in pressurized and boiling water coolants

    Energy Technology Data Exchange (ETDEWEB)

    Feraday, M A; Allison, G M; Ambler, J F.R.; Chalder, G H; Lipsett, J J

    1968-05-15

    The results of two in-reactor defect tests of Zircaloy-clad U{sub 3}Si are reported. In the first test, a previously irradiated element ({approx}5300 MWd/ tonne U) was defected then exposed to first pressurized water then boiling water at {approx}270{sup o}C. In the second test, an unirradiated element containing a central void was defected, waterlogged, then exposed to pressurized water for 50 minutes. Both tests were terminated because of high activity in the loop coolant detected by both gamma and delayed neutron monitors. Post-irradiation examination showed that both elements had suffered major sheath failures which were attributed to the volume increase accompanying the formation of large quantities of corrosion product formed by the reaction of water with the hot central part of the fuel. It was concluded that the corrosion resistance of U{sub 3}Si at 300{sup o}C is not seriously affected by irradiation, but the corrosion rate increases rapidly with temperature. (author)

  9. Upgradation of design features of primary coolant pumps of Indian 220 MWe PHWR

    International Nuclear Information System (INIS)

    Sharma, S.S.; Mhetre, S.G.; Manna, M.M.

    1994-01-01

    Evolution in the design features of Primary Coolant Pump (PCP) had started in fifties for catering to stringent specification requirements of reactor coolant systems of larger capacity reactors of various kinds. Primary coolant pumps of PWR and PHWR are employed for circulating radioactive, pressurized hot water in a circuit consisting of reactor (heat source) and steam generator (heat sink). As primary coolant pump capacity decides the station capacity, larger capacity primary coolant pumps have been evolved. Since primary coolant pump pressure containing parts are part of Primary Heat Transport system envelope, the parts are designed, manufactured, inspected and tested in accordance with the applicable system guidelines. Flywheel is mounted on the motor shaft for increasing mass moment of inertia of pump motor rotor to meet the coast down requirements of reactor cooling system under Class-IV electrical power supply failure. Due to limited accessibility of the PCP (PCP installed in shut down accessible area), quick maintenance, condition monitoring, reliable shaft seal system/bearing system aspects have been of great concern to reactor owners and pump manufacturers. In this paper upgradation of design features of RAPS, MAPS and NAPS primary coolant pumps have been covered. (author). 4 figs., 1 tab

  10. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  11. Method of suppressing the deposition of Co-60 to primary coolant pipeways in a nuclear reactor

    International Nuclear Information System (INIS)

    Hoshi, Michio; Tachikawa, Enzo; Goto, Satoshi; Sagawa, Chiaki; Yonezawa, Chushiro.

    1987-01-01

    Purpose: To suppress the deposition of Co-60 to primary coolant pipeways in a nuclear reactor. Method: To reduce the accumulation of Co-60 by causing chemical species of extremely similar chemical property with soluble Co-60 to be present together in coolants and replacing the deposition of Co-60 to the primary coolant pipeways in a nuclear reactor with that of the coexistent chemical spacies. Ni or Zn is used as the coexistet chemical spacies of similar chemical property with Co-60. The coexistent amount is from 5 to 10 times of the soluble Co-60 in the primary coolants. Ni or Zn solution adjusted with concentration is poured into and mixed with the coolants from a water feed source by using a high pressure constant volume pump. The amount of Co-60 taken into the pipeways caused by corrosion due to high temperature coolant is reduced to about 1/5 as compared with the case of Co-60 alone if 1 ppb of soluble Co-60 is present in water and 5 ppb of soluble Ni or Zn is added and, reduced to 1/12 if the amount of Ni or Zn is 10 ppb. (Kamimura, M.)

  12. Development of natural convection heat transfer correlation for liquid metal with overlying boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1999-01-01

    Experimental study was performed to investigate the natural convection heat transfer characteristics and the crust formation of the molten metal pool concurrent with forced convective boiling of the overlying coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heater input power conditions were adopted for the bottom heating. Test results showed that the temperature distribution and crust layer thickness in the metal layer are appreciably affected by the heated bottom surface temperature of the test section, but not much by the coolant injection rate. The relationship between the Nu number and Ra number in the molten metal pool region is determined and compared with the correlations in the literature, and the experiment without coolant boiling. A new correlation on the relationship between the Nu number and Ra number in the molten metal pool with crust formation is developed from the experimental data

  13. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Dhar, Atul; Gupta, Jai Gopal; Kim, Woong Il; Choi, Kibong; Lee, Chang Sik; Park, Sungwook

    2015-01-01

    Highlights: • Effect of FIP on microscopic spray characteristics. • Effect of FIP and SOI timing on CRDI engine performance, emissions and combustion. • Fuel injection duration shortened, peak injection rate increased with increasing FIP. • SMD (D 32 ) and AMD (D 10 ) of fuel droplets decreased for lower biodiesel blends. • Increase in biodiesel blend ratio and FIP, fuel injection duration decreased. - Abstract: In this investigation, effect of 10%, 20% and 50% Karanja biodiesel blends on injection rate, atomization, engine performance, emissions and combustion characteristics of common rail direct injection (CRDI) type fuel injection system were evaluated in a single cylinder research engine at 300, 500, 750 and 1000 bar fuel injection pressures at different start of injection timings and constant engine speed of 1500 rpm. The duration of fuel injection slightly decreased with increasing blend ratio of biodiesel (Karanja Oil Methyl Ester: KOME) and significantly decreased with increasing fuel injection pressure. The injection rate profile and Sauter mean diameter (D 32 ) of the fuel droplets are influenced by the injection pressure. Increasing fuel injection pressure generally improves the thermal efficiency of the test fuels. Sauter mean diameter (D 32 ) and arithmetic mean diameter (D 10 ) decreased with decreasing Karanja biodiesel content in the blend and significantly increased for higher blends due to relatively higher fuel density and viscosity. Maximum thermal efficiency was observed at the same injection timing for biodiesel blends and mineral diesel. Lower Karanja biodiesel blends (up to 20%) showed lower brake specific hydrocarbon (BSHC) and carbon monoxide (BSCO) emissions in comparison to mineral diesel. For lower Karanja biodiesel blends, combustion duration was shorter than mineral diesel however at higher fuel injection pressures, combustion duration of 50% blend was longer than mineral diesel. Up to 10% Karanja biodiesel blends in a CRDI

  14. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  15. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)

  16. Fuel-Coolant Interactions - some Basic Studies at the UKAEA Culham Laboratory

    International Nuclear Information System (INIS)

    Reynolds, J.A.; Dullforce, T.A.; Peckover, R.S.; Vaughan, G.J.

    1976-01-01

    In a hypothetical fault sequence important effects of fuel-coolant interactions include voiding and dispersion of core debris as well as the pressure damage usually discussed. The development of the fuel-coolant interaction probably depends on any pre-mixing Weber break-up that may occur, and is therefore a function of the way the fuel and coolant come together. Four contact modes are identified: jetting, shock tube, drops and static, and Culham's experiments have been mainly concerned with simulating the falling drop mode by using molten tin in water. It was observed that the fuel-coolant interaction is a short series of violent coolant oscillations centred at a localized position on the drop, generating a spray of submillimeter sized debris. The interaction started spontaneously at a specific time after the drop first contacted the water. There was a definite limited fuel-coolant interaction zone on a plot of initial coolant temperature versus initial fuel temperature outside which interactions never occurred. The. interaction time was a function of the initial temperatures. Theoretical scaling formulae are given which describe the fuel-coolant interaction zone and dwell time. Bounds of fuel and coolant temperature below which fuel-coolant interactions do not occur are explained by freezing. Upper bounds of fuel and coolant temperatures above which there were no fuel-coolant interactions are interpreted in terms of heat transfer through vapour films of various thicknesses. In conclusion: We have considered the effects of fuel-coolant interactions in a hypothetical fault sequence, emphasising that debris and vapour production as well as the pressure pulse can be important factors. The fuel-coolant interaction has been classified into types, according to possible modes of mixing in the fault sequence. Culham has been studying one type, the self-triggering of falling drops, by simulant experiments. It is found that there is a definite zone of interaction on a plot

  17. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  18. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  19. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  20. Chemical aspects of hydrogen ingress in zirconium and zircaloy pressure tubes: ageing management of Indian PHWR coolant channels - determination of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Shankaran, P.S.; Yadav, C.S.; Ramanjaneyulu, P.S.; Venugopal, V.; Ramakumar, K.L.; Chhapru, G.C.; Prasad, R.; Jain, H.C.; Sood, D.D.

    2009-02-01

    Pressurized heavy water reactors (PHWRs) use zirconium and zirconium based alloys as clad and coolant tubes since its beginning. The first ever zircaloy-2 pressure tube failure occurred in 1983 at Ontario Hydro's Pickering Unit 2 in Canada which necessitated a thorough examination of causes of such failure. The failure was attributed to massive hydriding at the failed spot of pressure tube. Continuous usage of zirconium alloys could result in their hydrogen and deuterium pick-up leading to hydrogen/ deuterium embrittlement. The life of the zircaloy coolant channels is dictated by hydrogen/deuterium content and hence ageing management of the pressure tubes is essential for ensuring their trouble-free usage. It is desirable to have a sound knowledge on the chemical aspects of zirconium and zirconium based alloys metallurgy, the mechanistic principles of hydrogen ingress into the pressure tubes during in reactor service, and identifying suitable analytical methodologies for precise and accurate determination of hydrogen in wafer thin sliver samples carved out from insides of pressure tubes without causing any structural damage so that it can continue to remain in service. This is desirable so that the ageing management does not result in cost-escalation. This report is divided in to three main parts. The first part deals with the chemical aspects of zirconium and zirconium based alloy metallurgy, the mechanism of hydrogen pick-up and hydride formation in zirconium matrix. The second part describes various methodologies and their limitations, available for hydrogen/deuterium determination. The third part deals in detail, about the extensive investigations carried out at Radioanalytical Chemistry Division (RACD) in Radiochemistry and Isotope Group for establishing an indigenously developed hot vacuum extraction system in combination with quadrupole mass spectrometry for precise determination of hydrogen and deuterium in wafer thin sliver sample of zircaloy. The

  1. Analysis of the behaviour of pressure and temperature of the containment of a PWR reactor, submitted to a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Silva, D.E. da; Arrieta, L.A.J.; Costa, J.R.; Camargo, C.; Santos, C.M. dos; Rochedo, E.R.R.

    1979-12-01

    The main purpose of this work is to analyse the pressure and temperature behaviour of the metalic containment of a PWR building, submitted to a postulated loss-of-coolant accident (LOCA) caused by a double-ended rupture in the main line of the primary circuit. The scope of the study was directed to verify the Final Safety Analysis Report (FSAR) results for the integrity of the metalic containment of the Angra I power plant. The highest containment pressure peak for this unit is expected for a break in the suction line of one of the main pumps of the primary coolant. Using the same input data, our results are very similar to those presented in the FSAR which shows a reasonable equivalence between the two analytical models. Using as input data the results of a previous LOCA study at CNEN, which yields to more conservative boundary conditions than those presented by the FSAR, the pressure and temperature peak values determined by our model are quite larger than those presented by the cited Safety Report. (author) [pt

  2. CFD analyses of coolant channel flowfields

    Science.gov (United States)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  3. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  4. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  5. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  6. Numerical modeling of the waves evolution generated by the depressurization of the vessels containing a supercritical parameters coolant

    Science.gov (United States)

    Alekseev, Maksim V.; Vozhakov, Ivan S.; Lezhnin, Sergey I.; Pribaturin, Nikolay A.

    2017-10-01

    The development of power plants focuses on increasing the parameters of water coolants up to a supercritical level. Depressurization of the unit circuits with such a coolant leads to emergency situations. Their scenarios can change significantly with the variation of initial pressure and temperature before the start of depressurization. When the pressure drops from the supercritical single-phase region of the initial thermodynamic parameters of the coolant, either the liquid boils up, or the vapor is condensed. Because of the rapid pressure decrease, the phase transition can be non-equilibrium that must be taken into account in the simulation. In the present study, an axisymmetric problem of the outflow of a water coolant from the pipe butt-end is considered. The equations of continuity, momentum and energy for a two-phase homogeneous mixture are solved numerically. The vapor and liquid properties are calculated using the TTSE software package (The Tabular Taylor Series Expansion Method). On the basis of the computer complex LCPFCT (The Flux-Corrected Transport Algorithm) the program code was developed for solving numerous problems on the depressurization of vessels or pipelines, containing superheated water or gas under high pressure. Different variants of outflow in the external model atmosphere and generation of waves are analyzed. The calculated data on the interaction of pressure waves with a barrier are calculated. To describe phase transitions, an asymptotic relaxation model of nonequilibrium evaporation and condensation has been created and tested.

  7. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  8. Safety analysis of increase in heat removal from reactor coolant system with inadvertent operation of passive residual heat removal at no load conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ge; Cao, Xuewu [School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

  9. Pressure and pressure derivative analysis for injection tests with variable temperature without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Martinez, Javier Andres; Montealegre Matilde

    2008-01-01

    The analysis of injection tests under nonisothermic conditions is important for the accurate estimation of the reservoir permeability and the well's skin factor; since previously an isothermical system was assumed without taking into account a moving temperature front which expands with time plus the consequent changes in both viscosity and mobility between the cold and the hot zone of the reservoir which leads to unreliable estimation of the reservoir and well parameters. To construct the solution an analytical approach presented by Boughrara and Peres (2007) was used. That solution was initially introduced for the calculation of the injection pressure in an isothermic system. It was later modified by Boughrara and Reynolds (2007) to consider a system with variable temperature in vertical wells. In this work, the pressure response was obtained by numerical solution of the anisothermical model using the Gauss Quadrature method to solve the integrals, and assuming that both injection and reservoir temperatures were kept constant during the injection process and the water saturation is uniform throughout the reservoir. For interpretation purposes, a technique based upon the unique features of the pressure and pressure derivative curves were used without employing type-curve matching (TDS technique). The formulation was verified by its application to field and synthetic examples. As expected, increasing reservoir temperature causes a decrement in the mobility ratio, then estimation of reservoir permeability is some less accurate from the second radial flow, especially, as the mobility ratio increases

  10. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  11. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  12. Vibration analysis of the Golfech 2 safety injection system

    International Nuclear Information System (INIS)

    Morilhat, P.

    1993-01-01

    The main function of the safety injection system in a PWR plant is to ensure cooling of fuel elements in the event of a loss of coolant accident. The multistage centrifugal pump mounted-on this system induces pressure fluctuations, resulting in dynamic loads on piping. In certain plant units, these loads have caused cracking in the nozzles connected to the safety injection system, whereas in others, no damage has been observed. In order to understand the differences in dynamic behavior observed from one site to another, tests were performed on a real safety injection system, that of Golfech-2. They enabled determination of the modal characteristics of the system and identification of the hydro-acoustic source of the low head safety injection pump. They also enabled assessment of the pressure fluctuation levels in the pump suction and discharge areas as well as the vibratory response of the system when operating under partial and nominal flow conditions. Finally, these test results were used to estimate fatigue damage in the safety injection system. The experimental results will later be used to validate the model of the system undertaken with the piping design code CIRCUS and define the boundary conditions to be taken into account. (author). 6 figs., 2 refs

  13. Trace organics in AGR coolants

    International Nuclear Information System (INIS)

    Smith, R.; Green, L.O.; Johnson, P.A.V.

    1980-01-01

    Several analytical techniques have been employed in previous studies of the stable organic compounds arising from the radiolysis of methane/carbon monoxide/carbon dioxide coolants. The majority of this early information was collected from the Windscale AGR prototype. Analyses were also carried out on the liquors obtained from the WAGR humidryers. Three classes of compound were found in the liquors; aliphatic acids in the aqueous phase and methyl ketones and aromatic hydrocarbons in the oily phase. Acetic acid was found to be the predominant carboxylic acid. This paper outlines the major findings from a recent analytical survey of coolants taken over a wide range of dose rate, pressure, temperature and composition, from materials testing reactor facilities, WAGR and CAGR. (author)

  14. Analysis of the loss of coolant accident due to the faiture in the open position of two pressurizer relief valves, for Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Freire, C.F.

    1981-06-01

    A study of the modeling techniques adequate for simulating the loss of coolant accident caused by stuck open pressurizer relief valves, using the RELAP4-MOD5 code, is performed and the model developed is applied to the analysis of this kind of accident for the Central Nuclear Almirante Alvaro Alberto Unit (Angra 1). The thermal hydraulic behavior of the reactor cooling system, when subjected to a loss of main feedwater followed by the failure in the open position of two pressurizer relief valves, is determined. The relief valves are assumed to fail in the totally open position, delivering the maximum massflow through the discharge line. The RELAP4-MOD5 code is shown to be adequate for this kind of analysis, and the detailed prediction of the thermal hydraulic behavior of the Reactor Coolant System is thus possible. The eficiency of the emergency core cooling system of Angra 1 is demonstrated, the fuel elements remaining covered by the coolant during all the accident, and the peak clad temperatures are kept within design limites, ensuring the integrity of the core. (Author) [pt

  15. Evaluation of a postulated loss of coolant accident (LOCA) due to a 160 cm2 break in a cold leg of Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Azevedo, Carlos Vicente Goulart de; Palmieri, Elcio Tadeu; Aronne, Ivan Dionysio

    2002-01-01

    The development of a qualified full nodalization of Angra2 NPP for RELAP5/Mod 3.2.2 gamma, aiming at the evaluation of a comprehensive number of accidents and transients, thus providing suitable safety analysis support for licensing purposes, is being carried out within the framework of CNEN internal technical cooperation, involving some of its institutes (CDTN, IPEN and IEN) and the Reactors Coordination (CODRE). This work presents a simulation of a postulated Angra2 small cold leg break loss of coolant accident (SBLOCA). A 160 cm 2 break is supposed to occur at one cold leg between the main coolant pump and the reactor vessel and is described in the Angra2 Final Safety Analysis Report, section 15.6.4.1.3.4. The simulation of several types of transients and accidents is necessary to verify the adequate performance of the modeled logic and systems. In general, the analysis of such and accident allows to demonstrate the safety Injection System performance and the reliable transition between the high pressure safety injection, the accumulator injection and the residual heat removal phases. Furthermore, it is assumed that some components are out of service due to fail or repair in order to make a conservative analysis. The results showed a compatible behavior of the molded systems and that the simulated Emergency Core Cooling System was able to provide sufficient cooling to avoid any damage to the core. (author)

  16. An emergency water injection system (EWIS) for future CANDU reactors

    International Nuclear Information System (INIS)

    Marques, Andre L.F.; Todreas, Neil E.; Driscoll, Michael J.

    2000-01-01

    This paper deals with the investigation of the feasibility and effectiveness of water injection into the annulus between the calandria tubes and the pressure tubes of CANDU reactors. The purpose is to provide an efficient decay heat removal process that avoids permanent deformation of pressure tubes severe accident conditions, such as loss of coolant accident (LOCA). The water injection may present the benefit of cost reduction and better actuation of other related safety systems. The experimental work was conducted at the Massachusetts Institute of Technology (MIT), in a setup that simulated, as close as possible, a CANDU bundle annular configuration, with heat fluxes on the order of 90 kW/m 2 : the inner cylinder simulates the pressure tube and the outer tube represents the calandria tube. The experimental matrix had three dimensions: power level, annulus water level and boundary conditions. The results achieved overall heat transfer coefficients (U), which are comparable to those required (for nominal accident progression) to avoid pressure tube permanent deformation, considering current CANDU reactor data. Nonetheless, future work should be carried out to investigate the fluid dynamics such as blowdown behavior, in the peak bundle, and the system lay-out inside the containment to provide fast water injection. (author)

  17. Decoupling Analysis on Pressure Fluctuation and Needle Valve Response for High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-01-01

    Full Text Available In the process of multiple injections, the influence of different injections makes the controlling of cycle fuel injection quantity more difficult. The high pressure common rail (HPCR simulation model is established in AMESim environment. Through the method of combining numerical simulation and experiment test, it is found that the strong coupling of pressure fluctuation and needle valve response is the fundamental reason, which leads to the fluctuation of main injection fuel quantity (MIFQ with dwell time (DT. The result shows that the largest fluctuation quantity is 3.6mm3 when the reference value of main injection is 60.0mm3. Non-damping LC hydraulic system model is also established. Through the analysis of the model, reducing the length-diameter ratio of internal oil duct and the delivery chamber volume are decoupling methods to the strong coupling.

  18. Pressure changes in the plasma sheet during substorm injections

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebuis, E.; Baumjohann, W.; Paschmann, G.; Hamilton, D.C.

    1992-01-01

    The authors have determined the particle pressure and total pressure as a function of radial distance in the plasma sheet for periods before and after the onset of substorm-associated ion enhancements over the radial range 7-19 R E . They have chosen events occurring during times of increasing magnetospheric activity, as determined by an increasing AE index, in which a sudden increase, or injection, of energetic particle flux is observed. During these events the particle energy of maximum contribution to the pressure increases from about 12 to about 27 keV. In addition, the particle pressure increases, and the magnetic pressure decreases, with the total pressure only changing slightly. For radial distances of less than 10 R E the total pressure tends to increase with the injection, while outside 10 R E it tends to decrease or remain the same. Because the fraction of the pressure due to particles has increased and higher energies are contributing to the pressure, a radial gradient is evident in the postinjection, but not preinjection, flux measurements. These observations show that the simulations appearance of energetic particles and changes in the magnetic field results naturally from pressure balance and does not necessarily indicate that the local changing field is accelerating the particles. The changes in the total pressure outside 10 R E are consistent with previous measurements of pressure changes at substorm onset and can be understood in terms of the unloading of energy in the magnetotail and the resulting change in the magnetic field configuration

  19. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  20. Investigation of Characteristics of Impinging Jet for 1/5-Scale ECC injection

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Byung Soo; Ko, Yung Joo; Bae, Hwang; Kwon, Tae Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    In ECCS of SMART reactor, safety injection pump discharges cooling water into the core to maintain the water level by filling the amount of loss of coolant under emergency situation such as SBLOCA. Once the ECCS starts to operate, the injected water will be impinged to the upper wall of core support barrel (CBS). And the water will fall along the wall forming liquid film or droplets as shown in Fig. 1(b) due to high Reynolds number. The breakup and film flow will be bypassed by high temperature and pressure steam-water mixture cross flow from RCP discharge into the atmosphere through broken injection nozzle. Then, the flow phenomena in the downcomer is very complex situation with including jet impingement, jet breakup, liquid entrainment, steam condensation, counter-current flow and etc. In this study, the hydraulic features of impinging jet were investigated through visualization for full scale test for simulation of SMART ECC jet and SWAT test of 1/5 simulated test for ECCS of SMART reactor and measurement of the film width. And the scaling method for SWAT test was discussed considering jet break up and other phenomena

  1. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    International Nuclear Information System (INIS)

    Conklin, James C.; Szybist, James P.

    2010-01-01

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP steam ). The valve closing timing for maximum MEP steam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP steam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP combustion ) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.

  2. Pressure vessel SBLOCA simulation with trace: application to ISTF (Rosa V) - 151

    International Nuclear Information System (INIS)

    Abella, V.; Gallardo, S.; Verdu, G.

    2010-01-01

    In this work, an overview of the results obtained in the simulation of an Upper Head Small Break Loss-Of-Coolant-Accident (SBLOCA) under the assumption of total failure of High Pressure Injection System (HPIS) in the Large Scale Test Facility (LSTF) is provided. In previous works, an SBLOCA located in the Pressure Vessel (PV) Lower Plenum was simulated with TRACE. In that case, an asymmetrical steam generator secondary-side depressurization was produced as an accident management action at the Steam Generator in loop without pressurizer after the generation of safety injection signal to achieve a determined depressurization rate in the primary system. The new SBLOCA scenario has been simulated and results compared with experimental values, with the purpose of completing the analysis of PV SBLOCA. This study is developed in the frame of the OECD/NEA ROSA Project Test 6-1 (SB-PV-9 in JAEA). Finally, the present paper represents a contribution for the study of safety analysis of vessel SBLOCAs and the assessment of the predictability of thermal-hydraulic codes like TRACE. (authors)

  3. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  4. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  5. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  6. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  7. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  8. Assessment of integrity for the pressure vessel internals of PWRs under blowdown loadings

    International Nuclear Information System (INIS)

    Geiss, M.; Benner, J.; Ludwig, A.

    1984-01-01

    In safety analysis of pressurized water reactors the loss-of-coolant accident plays a central role. Thereby a sudden break of a cold primary coolant pipe close to the reactor pressure vessel is postulated. The sudden pressure release of the primary system (blowdown) causes high dynamic loading on the pressure vessel internals. The resulting deformations must not impair shut down of the reactor and decay heat removal in an inadmissible way. For this assessment a blowdown analysis for a 1300 MW pressurized water reactor is carried out. These investigations are completed with a detailed stress analysis for the highly loaded core barrel clamping. The results show that the reactor pressure vessel internals are able to withstand blowdown loading. Even in case of a sudden and complete break of the primary coolant pipe the loading has to be twice as high to endanger the structural integrity. (orig.) [de

  9. Experimental in situ investigations of turbulence under high pressure.

    Science.gov (United States)

    Song, Kwonyul; Al-Salaymeh, Ahmed; Jovanovic, Jovan; Rauh, Cornelia; Delgado, Antonio

    2010-02-01

    In tube injection systems applied in high-pressure processing of packed biomaterials and foods, the pressure-transmitting medium is injected into the vessel to increase the pressure up to 1000 MPa, generating a submerged liquid-free jet. The presence of a turbulent-free jet during the pressurization phase and its positive influence on the homogeneity of the product treatment has already been examined by computational fluid dynamics investigations. However, no experimental data have supported the existence and properties of turbulent flow under high-pressure (HP) conditions up to 400 MPa. This contribution presents the development of two experimental setups: HP-laser Doppler anemometry and HP-hot wire anemometry. For the first time the time-averaged velocity profiles of a free jet during pressurization up to 300 MPa at different Reynolds numbers (Re) have been obtained. In this article, the dependence of the velocity profiles on the Re is discussed in detail. Moreover, the relaminarization phenomenon of the turbulent pipe flow most likely caused by the compressibility effects and viscosity changes of the pressure-transmitting medium is examined.

  10. Transient effects caused by pulsed gas and liquid injections into low pressure plasmas

    International Nuclear Information System (INIS)

    Ogawa, D; Goeckner, M; Overzet, L; Chung, C W

    2010-01-01

    The fast injection of liquid droplets into a glow discharge causes significant time variations in the pressure, the chemical composition of the gas and the phases present (liquid and/or solid along with gas). While the variations can be large and important, very few studies, especially kinetic studies, have been published. In this paper we examine the changes brought about in argon plasma by injecting Ar (gas), N 2 (gas) hexane (gas) and hexane (liquid droplets). The changes in the RF capacitively coupled power (forward and reflected), electron and ion density (n e , n i ), electron temperature (T e ) and optical emissions were monitored during the injections. It was found that the Ar injection (pressure change only) caused expected variations. The electron temperature reduced, the plasma density increased and the optical emission intensity remained nearly constant. The N 2 and hexane gas injections (chemical composition and pressure changes) also followed expected trends. The plasma densities increased and electron temperature decreased while the optical emissions changed from argon to the injected gas. These all serve to highlight the fact that the injection of evaporating hexane droplets in the plasma caused very little change. This is because the number of injected droplets is too small to noticeably affect the plasma, even though the shift in the chemical composition of the gas caused by evaporation from those same droplets can be very significant. The net conclusion is that using liquid droplets to inject precursors for low pressure plasmas is both feasible and controllable.

  11. Analysis of the effects of the pressure wave generated in loss of coolant accidents in reactor vessels

    International Nuclear Information System (INIS)

    Valero Martinez, M.

    1980-01-01

    The increasing demands in the field of ''Nuclear Safety'', obliges to a perfect knowledge of the causes and effects of every possible accident in a nuclear power plant. In this paper will be analysed the effects of the pressure wave appearing in a LOCA (Loss of collant accident). The pressure wave could deform the following structures: core barrel wall, cover and bottom, control rods and safety coolant system. Any change of the geometry of these structures could provoke and incorrect system reaction after the accident has happened. The basis and hypothesis for the theoretical analysis will be exposed. The structures are considered to be rigid. A typical boiling water be analysed and the developed theory will be verified in comparations with experimental results and the results obtained with some others models. Due to the easy application and short calculation time of the created programmes, they are recommended for parametrical calculations in the analysis of the pressurized water reactors and boiling water reactors. (author)

  12. Premixed direct injection nozzle for highly reactive fuels

    Science.gov (United States)

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  13. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  14. System and method for determining coolant level and flow velocity in a nuclear reactor

    Science.gov (United States)

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  15. The dynamic pressure measurements of the nuclear reactor coolant for condition-based maintenance of the reactor

    International Nuclear Information System (INIS)

    Es-Saheb, M.H.H.

    1990-01-01

    The condition-based maintenance of the nuclear reactor, by monitoring and measuring the instantaneous dynamic pressure distribution of the coolant (water) impact on the solid surfaces of the reactor during operation is presented. The behaviour of water domes (jets) produced by underwater explosions of small changes of P.E.T.N. at various depths in two different size cylindrical containers, which simulate the nuclear reactor, is investigated. Water surface domes (jets) from the underwater explosions are photographed. Depending on the depth of the charge, curved and flat top jets of up to 455 mm diameter and impact speeds of up to 70 m/sec. are observed. The instabilities in the dome surfaces are observed and the instantaneous profiles are analysed. It is found that, in all cases tested, the maximum pressure takes place at the center of the jet and could reach up to 3.0 times the on-dimensional impact pressure value. The use of their measurements, as online monitoring for condition-based maintenance and design-out maintenance is discussed. 18 refs

  16. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  17. Frictional characteristics of silicon graphite lubricated with water at high pressure and high temperature

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Eun Hyun; Park, Jin Seok; Kim, Jong In

    2001-01-01

    Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss and wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics

  18. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  19. Corrective actions to gas accumulation in safety injection system pipings of PWRs and gas void detection method

    International Nuclear Information System (INIS)

    Maki, Nobuo

    2000-01-01

    In the US, gas accumulation events of safety injection systems of PWRs during plant operation are continuously reported. As the events may result in loss of safety function, the USNRC is alerting licensees by Information Notices. The cause of the events is coolant leakage to interfacing systems with lower pressure, or gas dissolution of primary coolant by partial pressure drop. In this study, it was clarified by the evaluation of the cause of the events of US plants, gas accumulation in piping between an accumulator and Residual Heat Removal System should be quantitatively investigated regarding Japanese plants. Also, effectiveness of ultrasonic testing which is used for monthly gas accumulation surveillance in US plants was demonstrated using a model loop. In addition, the method was confirmed applicable by an experiment carried out at INSS to detect cavitation voids in piping systems. (author)

  20. Investigation of break location effects on thermal-hydraulics during intermediate break loss-of-coolant accident experiments at ROSA-III

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Tasaka, Kanji

    1986-01-01

    The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR/6) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. Break location effects on thermal-hydraulics during intermediate LOCAs were investigated by using four experiments at the ROSA-III, the 15 and 25 % main recirculation pump suction line break (MRPS-B) experiments, the 21 % single-ended jet pump drive line break (JPD-B) experiment and the 15 % main steam line break (MSL-B) experiment. Water injection from the high pressure core spray (HPCS) was not used in any of the experiments. Failure of ECCS actuation by the high containment pressure was also assumed in the tests. In the MRPS-B experiments, the discharge flow turned from low quality fluid to high quality fluid when the downcomer water level dropped to the main recirculation line outlet elevation, which suppressed coolant loss from the vessel and the core. In the JPD-B experiment, the jet pump drive nozzle was covered with low quality fluid and low quality fluid discharge continued even after the downcomer water level reached the jet pump suction elevation. Low quality fluid discharge ceased after the ADS actuation. It suggestes that the JPD-B LOCA has the possibility of causing larger and more severe core dryout and cladding temperature excursion than the MRPS-B LOCA. The MSL-B LOCA was characterized by mixture level swell in the downcomer and the core. The core mixture level swell resulted in the much later core dryout initiation than that in the MRPS-B LOCA, however, ECCS actuation was also delayed because of slow downcomer water level drop. (author)

  1. Thermal-hydraulics of the Loviisa reactor pressure vessel overcooling transients

    International Nuclear Information System (INIS)

    Tuomisto, Harri.

    1987-06-01

    In the Loviisa reactor pressure vessel safety analyses, the thermal-hydraulics of various overcooling transients has been evaluated to give pertinent initial data for fracture-mechanics calculations. The thermal-hydraulic simulations of the developed overcooling scenarios have been performed using best-estimate thermal-hydraulic computer codes. Experimental programs have been carried out to study phenomena related to natural circulation interruptions in the reactor coolant system. These experiments include buoyancy-induced phenomena such as thermal mixing and stratification of cold high-pressure safety injection water in the cold legs and the downcomer, and oscillations of the single-phase natural circulation. In the probabilistic pressurized thermal shock study, the Loviisa training simulator and the advanced system code RELAP5/MOD2 were utilized to simulate selected sequences. Flow stagnation cases were separately calculated with the REMIX computer program. The methods employed were assessed for these calculations against the plant data and own experiments

  2. Application of the extended Kalman filtering for the estimation of core coolant flow rate in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, B.R.

    1986-01-01

    In-core neutron detector and core-exit temperature signals in a pressurized water reactor (PWR) satisfy the condition of observability of the core dynamic system, and can be used to estimate nonmeasurable state variables and model parameters. The extension of the Kalman filtering technique is very useful for direct parameter estimation. This approach is applied to the determination of core coolant mass flow rate in PWRs and is evaluated using in-core measurements at the Loss-of-Fluid Test (LOFT) reactor. The influence of model uncertainties on the estimation accuracy was studied using the ambiguity function analysis. A sequential discretization method was developed to achieve faster convergence to the true value, avoiding model discretization at each sample point. The performance of the extended Kalman filter and the computational innovations were evaluated using a reduced order core dynamic model of the LOFT reactor and random data simulation. The technique was then applied to the determination of LOFT core coolant flow rate from operational data at 100% and 65% flow conditions

  3. Temporal pore pressure induced stress changes during injection and depletion

    Science.gov (United States)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  4. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  5. Infusion pressure and pain during microneedle injection into skin of human subjects

    Science.gov (United States)

    Gupta, Jyoti; Park, Sohyun; Bondy, Brian; Felner, Eric I.; Prausnitz, Mark R.

    2011-01-01

    Infusion into skin using hollow microneedles offers an attractive alternative to hypodermic needle injections. However, the fluid mechanics and pain associated with injection into skin using a microneedle have not been studied in detail before. Here, we report on the effect of microneedle insertion depth into skin, partial needle retraction, fluid infusion flow rate and the co-administration of hyaluronidase on infusion pressure during microneedle-based saline infusion, as well as on associated pain in human subjects. Infusion of up to a few hundred microliters of fluid required pressures of a few hundred mmHg, caused little to no pain, and showed weak dependence on infusion parameters. Infusion of larger volumes up to 1 mL required pressures up to a few thousand mmHg, but still usually caused little pain. In general, injection of larger volumes of fluid required larger pressures and application of larger pressures cause more pain, although other experimental parameters also played a significant role. Among the intradermal microneedle groups, microneedle length had little effect; microneedle retraction lowered infusion pressure but increased pain; lower flow rate reduced infusion pressure and kept pain low; and use of hyaluronidase also lowered infusion pressure and kept pain low. We conclude that microneedles offer a simple method to infuse fluid into the skin that can be carried out with little to no pain. PMID:21684001

  6. Linear titration plot for the determination of boron in the primary coolant of a pressurized water reactor

    International Nuclear Information System (INIS)

    Midgley, D.; Gatford, C.

    1992-01-01

    A linear titration plot method has been devised for the determination of boron as boric acid in partly neutralized solution, such as occurs in the primary coolant of pressurized water reactors. The total boron and the alkali in the sample are determined simultaneously. Although it is not essential to add mannitol in this method, it is more accurate when the solution is saturated with mannitol. Comparisons are made with other modes of titration: Gran plots, first and second differential potentiometric titrations and indicator titrations. None of these gives the total boron directly in partly neutralized solutions. (author)

  7. Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks

    International Nuclear Information System (INIS)

    Sasmito, Agus P.; Kurnia, Jundika C.; Mujumdar, Arun S.

    2012-01-01

    A careful design of gas and coolant channel is essential to ensure high performance and durability of proton exchange membrane (PEM) fuel cell stack. The channel design should allow for good thermal, water and gas management whilst keeping low pressure drop. This study evaluates numerically the performance of various gas and coolant channel designs simultaneously, e.g. parallel, serpentine, oblique-fins, coiled, parallel-serpentine and a novel hybrid parallel-serpentine-oblique-fins designs. The stack performance and local distributions of key parameters are investigated with regards to the thermal, water and gas management. The results indicate that the novel hybrid channel design yields the best performance as it constitutes to a lower pumping power and good thermal, water and gas management as compared to conventional channels. Advantages and limitation of the designs are discussed in the light of present numerical results. Finally, potential application and further improvement of the design are highlighted. -- Highlights: ► We evaluate various gas and coolant channel designs in liquid-cooled PEM fuel cell stack. ► The model considers coupled electrochemistry, channel design and cooling effect simultaneously. ► We propose a novel hybrid channel design. ► The novel hybrid channel design yields the best thermal, water and gas management which is beneficial for long term durability. ► The novel hybrid channel design exhibits the best performance.

  8. An Optical Characterization of the Effect of High-Pressure Hydrodynamic Cavitation on Diesel

    OpenAIRE

    Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.

    2016-01-01

    Most modern high-pressure common rail diesel fuel injection systems employ an internal pressure equalization system in order to provide the force necessary to support needle lift, enabling precise control of the injected fuel mass. This results in the return of a substantial proportion of the high-pressure diesel back to the fuel tank. The diesel fuel flow occurring in the injector spill passages is expected to be a cavitating flow, which is known to promote fuel ageing. The cavitation of die...

  9. Model Study of the Pressure Build-Up during Subcutaneous Injection

    DEFF Research Database (Denmark)

    Thomsen, Maria; Hernandez Garcia, Anier; Mathiesen, Joachim

    2014-01-01

    In this study we estimate the subcutaneous tissue counter pressure during drug infusion from a series of injections of insulin in type 2 diabetic patients using a non-invasive method. We construct a model for the pressure evolution in subcutaneous tissue based on mass continuity and the flow laws...

  10. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    Science.gov (United States)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  11. The effect of saline coolant on temperature levels during decortication with a Midas Rex: An in vitro model using sheep cervical vertebrae.

    Directory of Open Access Journals (Sweden)

    Asher eLivingston

    2015-07-01

    Full Text Available Decortication of bone with a high speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability which may negatively impact clinical outcome. Little data is available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high speed burr.Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2mm below the end plate surface and a thermal-camera set up to measure surface temperature. A high speed burr (Midas Rex, Medtronic, Fort Worth, TX was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30 with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data was compared between groups using a student t-test.Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high speed burr provides a quick and effective method of vertebral end plate preparation. Thermal damage to the bone can be minimised through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high speed burr.

  12. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-01-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850 0 C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions

  13. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-12-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850/sup 0/C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions.

  14. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  15. The Schoonebeek Oilfield: the Rw-2e High Pressure Steam Injection Project Gisement de Schoonebeek : le projet RW-2E d'injection de vapeur à haute pression

    Directory of Open Access Journals (Sweden)

    Holtam V. R.

    2006-11-01

    Full Text Available The daily oil production from the Schoonebeek Oilfield amounts to some 1400 m3 /d, of which ca. 65% is produced from a high pressure (85 bar steam injection project. This project was started in 1981 and originally consisted of 7 structurally downdip/middip steam injectors. However, following the initially somewhat disappointing project performance, steam injection was moved to 4 middip/ updip injectors in 1984. This change in the location of the steam injectors, together with an increase in the level of surveillance and a more pragmatic reservoir management policy, has resulted in improved project performance. The ultimate extra oil/steam ratio for the total project is now expected to be 0. 7 m3 oil/ton of steam injected. La production de pétrole du gisement de Schoonebeek est d'environ 1400 m3/jour, dont près de 65% sont obtenus par injection de vapeur à haute pression (85 bar. Ce projet lancé en 1981 comportait initialement 7 injecteurs de vapeur orientés vers l'aval-pendage. En raison de performances décevantes, l'injection de vapeur a été transférée en 1984 sur 4 injecteurs travaillant vers l'amont-pendage. Ce changement de position des injecteurs, accompagné d'une surveillance renforcée et d'une politique de gestion du gisement plus pragmatique, a donné des résultats favorables. On pense que le rapport pétrole/vapeur pour l'ensemble du projet devrait être en dernière analyse de 0,7 m3 de pétrole par tonne de vapeur injectée.

  16. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    International Nuclear Information System (INIS)

    Jones, A.V.

    1977-01-01

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. It is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. Conclusions may be briefly summarised: 1) Bulk cavitation must be included in realistic containment loading calculations. 2) Phenomenological models of cavitated liquid without memory are inappropriate. The best approach is to model bubble dynamics directly, including at least momentum conservation and surface tension. 3) The containment loading resulting from a given explosion is sensitive to the state of preparation of the coolant. The number density of nucleation sites should therfore accompany the results of model tests. (Auth.)

  17. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  18. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    Grandia, M.R.

    1976-03-01

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  19. Fission reactor container

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1991-01-01

    Cooling water is sent without using dynamic equipments upon loss of coolants accident in a pressure vessel by improving an arrangement of a nuclear reactor pressure vessel. That is, a containing space is formed at the center of a suppression chamber for storing cooling water while being partitioned with each other, in which the pressure vessel is placed. Further, a water reservoir is formed above the pressure vessel. Then a water discharge pipe is connected to the reservoir for submerging the stored water over the pressure vessel upon occurrence of loss of coolants accident. Further, a water injection pipe is disposed between the pressure suppression chamber and the pressure vessel for injecting the cooling water in the pressure suppression chamber to the reactor core of the pressure vessel by the difference of a water head upon loss of coolants accident. With such a constitution, the pressure vessel has high earthquake proofness. Further, upon loss of coolants accident of the pressure vessel, the cooling water in the reservoir is discharged to submerge and cool the pressure vessel efficiently. Further, the reactor core of the pressure vessel can certainly be cooled by the cooling water of the pressure suppression chamber without relying on dynamic equipments. (I.S.)

  20. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  1. Experimental study on utilization of air-borne jet sound in coolant leak detector

    International Nuclear Information System (INIS)

    Hayamizu, Y.; Kitahara, T.; Hayashi, T.; Nishimura, M.

    1975-10-01

    Studies have been undertaken to develop a new coolant leak detection method by the use of a microphone to pick up jet sound generated when pressurized high temperature water is discharged from a pressure boundary into the atmosphere. Leakage was simulated in three shapes, such as two machine-made circular holes and longitudinal and transverse slits in an inlet tube of a blowdown test facility. The measured power level of the jet sound was in agreement with theoretical values calculated from Lighthill's equation. In the study of utilization, this new method has been confirmed as applicable, and to be calculated theoretically for design on 'signal to noise ratio' evaluation. Detection of a small coolant leakage of 1 kg/sec is possible in a recirculation pump room which has large background noise from the pump if a suitable isolation wall, such as hot boxes, is installed between the monitored pipes and the pump. (auth.)

  2. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  3. Sound velocity in the coolant of boiling nuclear reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Parshin, D.A.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    To prevent resonant interaction between acoustic resonance and natural frequencies of FE, FA and RI oscillations, it is necessary to determine the value of EACPO. Based on results of calculations of EACPO and natural frequencies of FR, FA and RI oscillations values, it would be possible to reveal the dynamical loadings on metal that are dangerous for the initiation of cracking process in the early stage of negative condition appearance. To calculate EACPO it is necessary to know the Speed Velocity in Coolant. Now we do not have any data about real values of such important parameter as pressure pulsations propagation velocity in two phase environments, especially in conditions with variations of steam content along the length of FR, with taking into account the type of local resistances, flow geometry etc. While areas of resonant interaction of the single-phase liquid coolant with equipment and internals vibrations are estimated well enough, similar estimations in the conditions of presence of a gas and steam phase in the liquid coolant are inconvenient till now. Paper presents results of calculation of velocity of pressure pulsations distribution in two-phase flow formed in core of RBMK-1000 reactors. Feature of the developed techniques is that not only thermodynamic factors and effect of a speed difference between water and steam in a two phase flow but also geometrical features of core, local resistance, non heterogeneity in the two phase environment and power level of a reactor are considered. Obtained results evidence noticeable decreasing of velocity propagation of pressure pulsations in the presence of steam actions in the liquids. Such estimations for real RC of boiling nuclear reactors with steam-liquid coolant are obtained for the first time. (author)

  4. Thermal-Hydraulic Integral Effect Test with ATLAS for an Intermediate Break Loss of Coolant Accident at a Pressurizer Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Seok Cho; Park, Hyun Sik; Choi, Nam Hyun; Park, Yu Sun; Kim, Jong Rok; Bae, Byoung Uhn; Kim, Yeon Sik; Kim, Kyung Doo; Choi, Ki Yong; Song, Chul Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The main objectives of this test were not only to provide physical insight into the system response of the APR1400 during the pressurizer surge line break accident but also to produce an integral effect test data to validate the SPACE code. In order to simulate a double-ended guillotine break of a pressurizer surge line in the APR1400, the IB-SUR-01R test was performed with ATLAS. The major thermal-hydraulic phenomena such as the system pressures, the collapsed water levels, and the break flow rate were presented and discussed. Despite the core was uncovered, no excursion in the cladding temperature was observed. The pressurizer surge line break can be classified as a hot leg break from a break location point of view. Compared with a cold leg break, coolability in the core may be better in case of a hot leg break due to the enhanced flow in the core region. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS and the RELAP5 as well as the SPACE code. Furthermore, this data can be utilized to identify any code deficiency for an IBLOCA simulation, especially for DVI-adapted plants. Redefinition of break size for design basis accident (DBA) based on risk information is being extensively investigated due to the potential for safety benefits and unnecessary burden reduction from current LBLOCA (large break loss of coolant accident)-based ECC (Emergency Core Cooling) Acceptance Criteria. As a transition break size (TBS), the rupture of medium-size pipe is considered to be more important than ever in risk-informed regulation (RIR)-relevant safety analysis. As plants age, are up-rated, and continue to seek improved operating efficiencies, the small break and intermediate break LOCA (IBLOCA) can become a concern. In particular, IBLOCA with DVI (Direct Vessel Injection) features will be addressed to support redefinition of a design-basis LOCA. With an aim of expanding code validation to address small

  5. Water vapor as a perspective coolant for fast reactors

    International Nuclear Information System (INIS)

    Kalafati, D.D.; Petrov, S.I.

    1978-01-01

    Based on analysis of foreign projects of nuclear power plants with steam-cooled fast reactors, it is shown that low breeding ratio and large doubling time were caused by using nickel alloys, high vapor pressure and small volume heat release. The possibility is shown of obtaining doubling time in the necessary limits of T 2 =10-12 years when the above reasons for steam-cooled reactors are eliminated. Favourable combination of thermophysical and thermodynamic properties of water vapor makes it perspective coolant for power fast reactors

  6. Flooding-limited thermal mixing: The case of high-froude number injection

    International Nuclear Information System (INIS)

    Iyer, K.; Theofanous, T.G.

    1985-01-01

    The stratification in the cold leg due to high pressure injection in a stagnated loop of a PWR is considered. The working hypothesis is that at high injection Froude numbers the extent of mixing approaches a limit controlled only by the flooding condition at the cold leg exit. The available experimental data support this hypothesis. Predictions for reactor conditions indicate a stratification of about --40 0 C. As a consequence, the downcomer plume would be rather weak (low Froude Number) and is expected to decay quickly

  7. Measuring device for the coolant flowrate in a reactor core

    International Nuclear Information System (INIS)

    Sawa, Toshihiko.

    1983-01-01

    Purpose: To improve the operation performance by enabling direct and accurate measurement for the reactor core recycling flowrate. Constitution: A control rod guide is disposed to the upper end of a control rod drive mechanism housing passing through the bottom of a reactor pressure vessel and it is inserted into the through hole of a reactor core support plate. A water flow passage is formed through the reactor core support plate for the flowrate measurement of coolants recycled within the reactor core. The static pressure difference between the upper and the lower sides of the reactor core support plate is measured by a pressure difference detector of a pressure difference measuring mechanism, and an output signal from the pressure different detector is inputted to a calculation means, in which the amount of the coolants passing through the water flow passage is calculated based on the output signal corresponding to the pressure difference. Then, the total recycling flowrate in the reactor core is determined in the calculation means based on the relation between the measured flowrate and a predetermined total reactor core recycling flowrate. (Horiuchi, T.)

  8. MDEP Technical Report TR-CSWG-03. Technical Report: fundamental attributes for the design and construction of reactor coolant pressure-boundary components

    International Nuclear Information System (INIS)

    2014-01-01

    The primary, long-term goal of MDEP's CSWG is to achieve international harmonisation of codes and standards for pressure boundary components in nuclear power plants that are important to reactor safety. The key to achieving harmonisation is to understand the extent of similarities and differences amongst the pressure boundary codes and standards used in various countries. To assist the CSWG in its long-term goals, several standards development organisations (SDOs) from various countries performed a comparison of their pressure boundary codes and standards to identify the extent of similarities and differences in code requirements and the reasons for their differences. This CSWG document provides the fundamental attributes which have been developed for the codes and standards used in the design and construction of reactor coolant pressure boundary components in nuclear power plants. The fundamental attributes are the basic concepts to be considered in the design, materials, fabrication, installation, examination, testing and over-pressure protection requirements for pressure boundary components

  9. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  10. Numerical simulation of thermal stratification in cold legs by using openFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2010-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  11. Graphite beds for coolant filtration at high temperature

    International Nuclear Information System (INIS)

    Heathcock, R.E.; Lacy, C.S.

    1978-01-01

    High temperature filtration will be provided for new Ontario Hydro CANDU heat transport systems. Filtration has been shown to effectively reduce the concentration of circulating corrosion products in our heat transport systems, hence, minimizing the processes of activity transport. This paper will present one option we have for this application; Deep Bed Granular Graphite Filters. The filter system is described by discussing pertinent aspects of its development programme. The compatibility of the filter and the heat transport coolant are demonstrated by results from loop tests, both out- and in-reactor, and by subsequent results from a large filter installation in the NPD NGS heat transport system. (author)

  12. Optimization of injection pressure for a compression ignition engine ...

    African Journals Online (AJOL)

    user

    injection and atomization and contributes to incomplete combustion, nozzle clogging, ... this non edible oil may be an appropriate substitute for diesel fuel. ... The effect of injector opening pressure on the performance of a jatropha oil fuelled ...

  13. Recent results from the MIT in-core experiments on coolant chemistry

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.E.; Cabello, E.C.; Bernard, J.A.

    1993-01-01

    This paper reports results from an ongoing series of in-core experiments that have been conducted at the 5-MW(thermal) MIT Research Reactor (MITR-II) for optimizing coolant chemistries in light water reactors. Four experiments are in progress, including a pressurized coolant chemistry loop (PCCL), a boiling coolant chemistry loop (BCCL), a facility for the study of irradiation-assisted stress-corrosion cracking, and one for the evaluation of in situ sensors for the monitoring of crack propagation in metal (SENSOR). The first two have now been fully operational for several years. The latter two are scheduled to begin regular operation later this year

  14. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary.

  15. The evaluation of pressure effects on the ex-vessel cooling for KNGR with MELCOR

    International Nuclear Information System (INIS)

    Park, Jong Hwa; Park, Soo Yong; Kim, Dong Ha

    2001-03-01

    In this report, the effect of external vessel cooling on debris coolability and vessel integrity for the KNGR were examined from the two typical pressure range of high(170 bar) and low(5 bar)case using the lower plenum model in MELCOR1.8.4. As the conditions of these calculations, 80 ton of debris was relocated simultaneously into the lower vessel head and the debris relocation temperature from the core region was 2700 K. The decay heat has been assumed to be that of one hour after reactor shutdown. The creep failure of the vessel wall was simulated with 1-D model, which can consider the rapid temperature gradient over the wall thickness during the ex-vessel cooling. From the calculation results, both the coolant temperature and the total amount of coolant mass injected into the cavity are known to be the important factors in determining the time period to keep the external vessel cool. Therefore, a long-term strategy to keep the coolant temperature subcooled throughout the transient is suggested to sustain or prolong the effect of external vessel cooling. Also, it is expected that to keep the primary side at low pressure and to perform the ex-vessel flooding be the essential conditions to sustain the vessel integrity. From MELCOR, the penetration failure always occurs after relocation regardless of the RCS pressure or availability of the external vessel cooling. Therefore, It is expected that the improvement of the model for the penetration tube failure will be necessary

  16. A feasibility study on feed and bleed for pressurized water reactors

    International Nuclear Information System (INIS)

    Yi-Shung Chen; Shimeck, D.J.; Sullivan, L.H.

    1983-01-01

    By injecting coolant with a high pressure emergency core cooling system, and removing the heated/ vaporized fluid by way of the pressurizer power operated relief valve, primary feed and bleed cooling denotes an operation whereby reactor core cooling is maintained. This paper presents the results from an experimental and analytical study that includes a simplified analysis of mass and energy balances associated with the feed and bleed, examination of test data from the Semiscale system, RELAP5 code analyses of both Semiscale and a four-loop Westinghouse plant, and the primary coolant system behavior for a transient that leads to the need for feed and bleed. Examination of the parameters that govern a stable feed and bleed operation identifies four key parameters such as: core decay heat, cooling water injection capacity, power operated relief valve (PORV) energy removal rate, and PORV mass removal rate. A simplified analytical approach to determining if stable feed and bleed is feasible, has been developed and corroborated by experimental data and computer code calculations. The Semiscale tests have not only provided test data for code assessment, but also have identified the factors influencing the PORV discharge, which is the most variable of the boundary conditions influencing feed and bleed. The RELAP5 computer code has demonstrated the capability of predicting the Semiscale experiments, and when applied to a four-loop Westinghouse plant has indicated that primary feed and bleed is a viable cooling mechanism. This has also been shown by using the simplified analytical method

  17. Effect of injection pressure on heat release rate and emissions in CI engine using orange skin powder diesel solution

    International Nuclear Information System (INIS)

    Purushothaman, K.; Nagarajan, G.

    2009-01-01

    Experiments have been conducted to study the effect of injection pressure on the combustion process and exhaust emissions of a direct injection diesel engine fueled with Orange Skin Powder Diesel Solution (OSPDS). Earlier investigation by the authors revealed that 30% OSPDS was optimum for better performance and emissions. In the present investigation the injection pressure was varied with 30% OSPDS and the combustion, performance and emissions characteristics were compared with those of diesel fuel. The different injection pressures studied were 215 bar, 235 bar and 255 bar. The results showed that the cylinder pressure with 30% OSPDS at 235 bar fuel injection pressure, was higher than that of diesel fuel as well as at other injection pressures. Similarly, the ignition delay was longer and with shorter combustion duration with 30% OSPDS at 235 bar injection pressure. The brake thermal efficiency was better at 235 bar than that of other fuel injection pressures with OSPDS and lower than that of diesel fuel. The NO x emission with 30% OSPDS was higher at 235 bar. The hydrocarbon and CO emissions were lower with 30% OSPDS at 235 bar. The smoke emission with 30% OSPDS was marginally lower at 235 bar and marginally higher at 215 bar than for diesel fuel. The combustion, performance and emission characteristics of the engine operating on the test fuels at 235 bar injection pressure were better than other injection pressures

  18. An analysis of system pressure and temperature distribution in self-pressurizer of SMART and calculation of sizing of wet thermal insulator and pressurizer cooler

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    To evaluate the amount of heat transfer from coolant to gas in reactor vessel heat transfer through the structure of pressurizer and evaporation/condensation on surface of liquid pool should be considered. And, also the heat exchange by pressurizer cooler and heat transfer to upper plate of reactor vessel should be considered. Thus, overall examinations on design variables which affect the heat transfer from coolant to gas are needed to maintain the pressurizer conditions at designed value for normal operation through heatup process. The major design variables, which affect system pressure and gas temperature during heatup, and the sizes of wet thermal insulator and pressurizer cooler, and volume of gas cylinder connected to pressurizer. A computer program is developed for the prediction of system pressure and temperature of pressurizer gas region with considering volume expansion of coolant and heat transfer from coolant to gas during heatup. Using the program, this report suggests the optimized design values of wet thermal insulator, pressurizer cooler, and volume of gas cylinder to meet the target conditions for normal operation of SMART. (author). 6 refs., 17 figs., 5 tabs.

  19. Study on enhanced lymphatic tracing of isosulfan blue injection by influence of osmotic pressure on lymphatic exposure.

    Science.gov (United States)

    Ye, Tiantian; He, Rui; Wu, Yue; Shang, Lei; Wang, Shujun

    2018-04-01

    Isosulfan blue (IB) is being used as a lymphatic tracer has been approved by the FDA in 1981. This study aimed at improving lymphatic exposure of IB injection by osmotic pressure regulation to achieve step-by step lymphatic tracing. First, IB injection with appropriate osmotic pressure, stability, and suitable pH was prepared. Next, the lymphatic tracing ability of different osmotic pressure was studied to determine the blue-stained state of IB in three-level lymph nodes after subcutaneous administration. Furthermore, pharmacokinetics of lymphatic drainage, lymph node uptake, and plasma concentration was investigate to explore the improving law of the lymphatic tracing by osmotic pressure, and combined with tissue irritation to determine the optimal osmotic pressure. At last, the tissue distribution in mice of IB injection which had the property of optimal osmotic pressure was investigated. The results showed that increasing osmotic pressure could significantly reduce injection site retention and increase IB concentration of lymph node. The lymph nodes could be obviously blue-stained by IB injection which had 938 mmol/kg osmotic pressure and would not cause inflammatory reaction and blood exposure. The tissue distribution study suggested that IB injection which had 938 mmol/kg osmotic pressure was mainly distributed into gallbladder and duodenum that verified the reports that 90% IB was excreted through the feces through biliary excretion. In conclusion, this study provides the basic study to improve lymphatic exposure of IB injection by regulate the osmotic pressure and have the potential to be the helpful guidance for the elective lymph node dissection.

  20. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors

  1. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  2. The Effect of Saline Coolant on Temperature Levels during Decortication with a Midas Rex: An in Vitro Model Using Sheep Cervical Vertebrae.

    Science.gov (United States)

    Livingston, Asher; Wang, Tian; Christou, Chris; Pelletier, Matthew H; Walsh, William R

    2015-01-01

    Decortication of bone with a high-speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability, which may negatively impact clinical outcome. Little data are available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high-speed burr. Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2 mm below the end plate surface and a thermal camera set up to measure surface temperature. A 3 mm high-pneumatic speed burr (Midas Rex, Medtronic, Fort Worth, TX, USA) was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30) with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data were compared between groups using a Student's t-test. Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2 mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high-speed burr provides a quick and an effective method of vertebral end plate preparation. Thermal damage to the bone can be minimized through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high-speed burr.

  3. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  4. Transient heat transfer phenomena of the liquid metal layer cooled by overlying R113 coolant

    International Nuclear Information System (INIS)

    Cho, J. S.; Seo, K. R.; Jung, C. H.; Park, R. J.; Kim, S. B.

    1999-01-01

    To understand the fundamental relationship of the natural convection heat transfer in the molten metal pool and the boiling mechanism of the overlying coolant, experiments were performed for the transient heat transfer of the liquid metal pool with overlying R113 coolant with boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted by changing the bottom surface boundary condition. The bottom heating condition was varied from 8kW to 14kW. As a result the boiling mechanism of the R113 coolant is changed from the nuclear boiling to film boiling. The Nusselt number and the Rayleigh number in the molten metal pool region obtained as functions of time. Analysis was made for the relationship between the heat flux and the temperature difference of the metal layer surface temperature and the boiling coolant bulk temperature

  5. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  6. Efficiency of water coolant for DEMO divertor

    International Nuclear Information System (INIS)

    Fetzer, Renate; Igitkhanov, Yuri; Bazylev, Boris

    2015-01-01

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  7. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  8. Numerical Simulation of the Pressure Distribution in the Reactor Vessel Downcomer Region Fluctuated by the Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dong Hwa; Jung, Byung Ryul; Jang, Ho Cheol; Yune, Seok Jeong; Kim, Eun Kee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    In this study the numerical simulation of the pressure distribution in the downcomer region resulting from the pressure pulsation by the Reactor Coolant Pump (RCP) is performed using the Finite Difference Method (FDM). Simulation is carried out for the cylindrical shaped 2-dimensional model equivalent to the outer surface of the Core Support Barrel (CSB) of APR1400 and a 1/2 model is adopted based on the bilateral symmetry by the inlet nozzle. The fluid temperature is 555 .deg. F and the forcing frequencies are 120Hz, 240Hz, 360Hz and 480Hz. Simulation results of the axial pressure distributions are provided as the Root Mean Square (RMS) values at the five locations of 0°, 45°, 90°, 135° and 180° in the circumferential direction from the inlet nozzle location. In the study, the numerical simulation of pressure distributions in the downcomer region induced by the RCP was performed using FDM and the results were reviewed. The interference of the waves returned from both boundaries in the axial direction and the source of the sinusoidal wave is shown on the inlet nozzle interface pressure point. It seems that the maximum pressures result from the superposition of the waves reflected from the seating surface and the waves newly arrived from the inlet nozzle interface pressure location.

  9. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  10. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Science.gov (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  11. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  12. Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model

    Directory of Open Access Journals (Sweden)

    Istvan Farkas

    2016-08-01

    Full Text Available The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively with experimental results.

  13. Experiment data report for LOFT nonnuclear test L1-3

    International Nuclear Information System (INIS)

    Millar, G.M.

    1977-04-01

    Test L1-3 was the third in a series of five nonnuclear isothermal blowdown tests conducted by the Loss of Fluid Test (LOFT) Program. For this test the LOFT Facility was configured to simulate a loss-of-coolant accident in a large pressurized water reactor resulting from a 200 percent double-ended shear break in a cold leg of the primary coolant system. A hydraulic core simulator assembly was installed in place of the nuclear core. The initial conditions in the primary coolant system intact loop were: temperature at 540 0 F, pressure at 2256 psig, and loop flow at 2.34 x 10 6 lbm/hr. During system depressurization, emergency core cooling water was specified to be injected into the lower plenum of the reactor vessel using an accumulator, a low-pressure injection system pump, and a high-pressure injection system pump to provide data on the effects of emergency core cooling on the system thermal-hydraulic response. Injection into the lower plenum was initiated from the high- and low-pressure injection systems. Injection from the accumulator, however, was not initiated because a valve was inadvertently left closed. The experiment, therefore, was not completely successful in that one of the objectives outlined in the experiment operating specification for this test was not accomplished. Test L1-3 was repeated at Test L1-3A to meet the experimental requirements. Despite these difficulties, Test L1-3 did provide very valuable data to verify experiment repeatability

  14. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  15. Coolant mixing in pressurized water reactors. Pt. 1. Feasibility of closed analytical solutions and simulation of the mixing with CFX-4. Final report

    International Nuclear Information System (INIS)

    Grunwald, G.; Hoehne, T.; Prasser, H.M.; Rohde, U.

    2001-10-01

    The project was aimed at the analytical and numerical simulation of coolant mixing in the downcomer and the lower plenum of PWRs. Generally, the coolant mixing is of relevance for two classes of accident scenarios - boron dilution and cold water transients. For the investigation of the relevant mixing phenomena, the Rossendorf test facility ROCOM has been designed. ROCOM is a 1:5 scaled Plexiglas trademark model of the PWR Konvoi allowing velocity measurements by the LDA technique. Design and construction of the ROCOM facility including the measurement equipment were performed in a second part of the project. For the design of the facility, CFD calculations were performed to analyze the scaling of the model. It was found, that the scaling of 1:5 to the prototype meets both: physical and economical demands. A theoretical 2D-model of the downcomer flow was developed based on the potential theory. The coolant inlet is represented by mass sources. Potential vortices were superposed to describe large scale recirculations. However, the method requires an a-priory knowledge of the location and intensity of the vorticity sources. Therefore, the main goal of the project was the numerical simulation of the coolant mixing of different PWRs. The temperature and boron concentration fields established by the coolant mixing during nominal and transient flow conditions in the pressure vessel of the PWR Konvoi and the Russian type WWER-440 were investigated. The calculations were carried out with the CFD-code CFX 4. The results of the CFD calculation are found in the final report. The report is based on the Ph.D. work of T. Hoehne. (orig.) [de

  16. Safety of 5 MW district heating reactor (DHR) and hydraulic dynamic pressure drive control rods

    International Nuclear Information System (INIS)

    Wu Yuanqiang; Wang Dazhong

    1991-11-01

    The principles and movement characteristic of the hydraulic dynamic pressure drive for control rods in 5 MW district heating reactor are described with stress on analysis of its effects on reactor safety features. The drive is different from electric-magnetic drive for PWR or hydraulic drive for BWR. The drive cylinder is driven by dynamic pressure. In the new drive system, the reactor coolant (water) used as actuating medium is pressed by pump, then injected into a step cylinder which is set in the reactor core. The cylinder will move step by step by controlling flow, then the cylinder drives the neutron absorber and controls nuclear reaction. The drive is characterized by simplicity in structure, high reliability, inherent safety, reduction in reactor height, economy, etc

  17. Laser-based sensor for a coolant leak detection in a nuclear reactor

    Science.gov (United States)

    Kim, T.-S.; Park, H.; Ko, K.; Lim, G.; Cha, Y.-H.; Han, J.; Jeong, D.-Y.

    2010-08-01

    Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.

  18. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  19. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions.

    Science.gov (United States)

    Peng, Jie; Dong, Wu-Jun; Li, Ling; Xu, Jia-Ming; Jin, Du-Jia; Xia, Xue-Jun; Liu, Yu-Ling

    2015-12-01

    The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the dynamic light scattering (DLS) method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS) method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT 5 ) will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT 5 will drop to 0.038% after three cycles, so the "plateau" of MDS will come up later than that of PFAT 5 , and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT 5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4-25°C) also influenced particle size, especially the PFAT 5 . Copyright

  20. Thermo-hydraulic behavior of saturated steam-water mixture in pressure vessel during injection of cold water

    International Nuclear Information System (INIS)

    Aya, Izuo; Kobayashi, Michiyuki; Inasaka, Fujio; Nariai, Hideki.

    1983-01-01

    The thermo-hydraulic behavior of saturated steam water mixture in a pressure vessel during injection of cold water was experimentally investigated with the Facility for Mixing Effect of Emergency Core Cooling Water. The dimensions of the pressure vessel used in the experiments were 284mm ID and 1,971mm height. 11 experiments were conducted without blowdown in order to comprehend the basic process excluding the effect of blowdown at injection of cold water. The initial pressure and water level, the injection flow rate and the size of injection nozzle were chosen as experimental parameters. Temperatures and void fractions at 6 elevations as well as pressure in the pressure vessel were measured, and new data especially on the pressure undershoot just after the initation of water injection and the vertical distribution of temperature and void fraction were gotten. The transients of pressure, average temperature and void fraction were caluculated using single-volume analysis code BLODAC-1V which is based on thermal equilibrium and so-called bubble gradient model. Some input parameters included in the analysis code were evaluated through the comparison of analysis with experimental data. Moreover, the observed pressure undershoot which is evaluated to be induced by a time lag of vapourization in water due to thermal nonequilibrium, was also discussed with the aid of another simple analysis model. (author)

  1. Conservatism of loss-of-coolant accident licensing analysis compared to experimental results and best-estimate calculation

    International Nuclear Information System (INIS)

    Winkler, F.; Friedmann, P.

    1986-01-01

    The paper compares results of loss-of-coolant accident licensing analysis with experimental results and results of best-estimate calculations. The large safety margins resulting from the more realistic best-estimate results are used to show the high conservatism inherent in the licensing process of pressurized water reactors. (orig.) [de

  2. A control-oriented approach to estimate the injected fuel mass on the basis of the measured in-cylinder pressure in multiple injection diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2015-01-01

    Highlights: • Control-oriented method to estimate injected quantities from in-cylinder pressure. • Able to calculate the injected quantities for multiple injection strategies. • Based on the inversion of a heat-release predictive model. • Low computational time demanding. - Abstract: A new control-oriented methodology has been developed to estimate the injected fuel quantities, in real-time, in multiple injection DI diesel engines on the basis of the measured in-cylinder pressure. The method is based on the inversion of a predictive combustion model that was previously developed by the authors, and that is capable of estimating the heat release rate and the in-cylinder pressure on the basis of the injection rate. The model equations have been rewritten in order to derive the injected mass as an output quantity, starting from use of the measured in-cylinder pressure as input. It has been verified that the proposed method is capable of estimating the injected mass of pilot pulses with an uncertainty of the order of ±0.15 mg/cyc, and the total injected mass with an uncertainty of the order of ±0.9 mg/cyc. The main sources of uncertainty are related to the estimation of the in-cylinder heat transfer and of the isentropic coefficient γ = c_p/c_v. The estimation of the actual injected quantities in the combustion chamber can represent a powerful means to diagnose the behavior of the injectors during engine operation, and offers the possibility of monitoring effects, such as injector ageing and injector coking, as well as of allowing an accurate control of the pilot injected quantities to be obtained; the latter are in fact usually characterized by a large dispersion, with negative consequences on the combustion quality and emission formation. The approach is characterized by a very low computational time, and is therefore suitable for control-oriented applications.

  3. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    Science.gov (United States)

    Xie, Huaqing; Li, Yang; Yu, Wei

    2010-05-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  4. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    International Nuclear Information System (INIS)

    Xie Huaqing; Li Yang; Yu Wei

    2010-01-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2 O 3 , ZnO, TiO 2 , and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2 O 3 , and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  5. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    Energy Technology Data Exchange (ETDEWEB)

    Xie Huaqing, E-mail: hqxie@eed.sspu.c [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Li Yang; Yu Wei [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2010-05-31

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al{sub 2}O{sub 3}, ZnO, TiO{sub 2}, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al{sub 2}O{sub 3}, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  6. The influence of thermal regime on gasoline direct injection engine performance and emissions

    Science.gov (United States)

    Leahu, C. I.; Tarulescu, S.

    2016-08-01

    This paper presents the experimental research regarding to the effects of a low thermal regime on fuel consumption and pollutant emissions from a gasoline direct injection (GDI) engine. During the experimental researches, the temperature of the coolant and oil used by the engine were modified 4 times (55, 65, 75 and 85 oC), monitoring the effects over the fuel consumption and emissions (CO2, CO and NOx). The variations in temperature of the coolant and oil have been achieved through AVL coolant and oil conditioning unit, integrated in the test bed. The obtained experimental results reveals the poor quality of exhaust gases and increases of fuel consumption for the gasoline direct injection engines that runs outside the optimal ranges for coolant and oil temperatures.

  7. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    Science.gov (United States)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  8. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-08-15

    The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  9. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  10. Development of a feed-and-bleed operation strategy with hybrid-SIT under low pressure condition of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Seop, E-mail: jeoni@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Han, Sang Hoon, E-mail: shhan2@kaeri.re.kr [Advanced Research Group, Korea Atomic Energy Research Institute, 70 Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kang, Sang Hee, E-mail: sanghee.kang@khnp.co.kr [NSSS Design Group, Korea Hydro & Nuclear Power Co., Ltd., Central Research Institute, 70, 1312-beongil, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2017-04-01

    Highlights: • The novel F&B operation strategy with H-SIT and LPSI is developed. • The effectiveness of the H-SITs is verified using thermo-hydraulic simulations. • Success criteria considered for the new F&B operation strategy is identified. • A PSA model of APR+ reflecting the new F&B strategy with H-SIT is developed. • A risk analysis of the proposed F&B operation strategy is performed. - Abstract: While safety functions in current nuclear power plants are mainly provided by active safety systems, recently passive safety systems are being combined with the active systems to strengthen accident mitigation capability and therefore enhance overall plant safety. To this end, securing long-term cooling of the core is of particular importance. This study considers the hybrid safety injection tank (H-SIT), a passive injection system, as a target component to develop a long-term cooling strategy using active and passive systems concurrently. In the feed-and-bleed (F&B) operation, one of the important long-term cooling strategies to maintain core safety in pressurized water reactors, low pressure safety injection (LPSI) pumps are typically considered inoperable as depressurization is first required, which leads to core dry-out before reaching LPSI operable pressure. This study investigates whether H-SITs, with the important design feature of passive coolant injection under any pressure condition of the primary coolant system, can make up the core during depressurization thereby allowing LPSI pumps to be used in F&B operation as an additional means of long-term cooling. The effectiveness of the H-SITs is verified using thermal-hydraulic simulations, and based on the results a novel F&B operation strategy with H-SITs and LPSI pumps is developed. A probabilistic safety assessment (PSA) model is then developed in order to assess the risk effect of the suggested strategy. PSA results demonstrate that the proposed strategy lowers core damage frequency in the target

  11. Definition of the seventh dynamic AER benchmark-WWER-440 pressure vessel coolant mixing by re-connection of an isolated loop

    International Nuclear Information System (INIS)

    Kotsarev, A.; Lizorkin, M.; Petrin, R.

    2010-01-01

    The seventh dynamic benchmark is a continuation of the efforts to validate systematically codes for the estimation of the transient behavior of VVER type nuclear power plants. This benchmark is a continuation of the work in the sixth dynamic benchmark. It is proposed to be simulated the transient - re-connection of an isolated circulating loop with low temperature or low boron concentration in a VVER-440 plant. It is supposed to expand the benchmark to other cases when a different number of loops are in operation leading to different symmetric and asymmetric core boundary conditions. The purposes of the proposed benchmark are: 1) Best-estimate simulations of an transient with a coolant flow mixing in the Reactor Pressure Vessel of WWER-440 plant by re-connection of one coolant loop to the several ones on operation, 2) Performing of code-to-code comparisons. The core is at the end of its first cycle with a power of 1196.25 MWt. The basic additional difference of the 7-seventh benchmark is in the detailed description of the downcomer and bottom part of the reactor vessel that allow describing the effects of coolant mixing in the Reactor Pressure Vessel without any additional conservative assumptions. The burn-up and the power distributions at this reactor state have to be calculated by the participants. The thermohydraulic conditions of the core in the beginning of the transient are specified. Participants self-generated best estimate nuclear data is to be used. The main geometrical parameters of the plant and the characteristics of the control and safety systems are also specified. Use generated input data decks developed for a WWER-440 plant and for the applied codes should be used. The behaviour of the plant should be studied applying coupled system codes, which combine a three-dimensional neutron kinetics description of the core with a pseudo or real 3D thermohydraulics system code. (Authors)

  12. Design Improvement of Double Pressure Vessel in the In-pile Test Section

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Heo, Sung-Ho; Joung, Chang-Young; Kim, Ka-Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To carry out an irradiation test of nuclear fuels, a nuclear fuel test rig should be fabricated and installed in the in-pile test section (IPS), which is installed in the reactor hall. While carrying out an irradiation test, sealing out coolant which passes through the test rig is one of the most important issues. In particular, although the double pressure vessel is assembled with the IPS head by two o-rings and six bolts, 15.5 MPa of highly pressurized coolant leaks through the gap between the vessel and IPS head. Because the temperature of the coolant in the test loop is 300 .deg. C , and the pool of HANARO is 40 .deg. C, the double pressure vessel is necessary to insulate them. Therefore, a new design to prevent the leakage of coolant needs to be developed. In this study, EB welding technique is considered to assemble the double pressure vessel and the IPS head, and their mechanical design is modified to enable the welding process. In this study, an improved design for sealing out the coolant at the pressure boundary between the double pressure vessel and the IPS head has been developed. An EB weld is applied to seal out the pressure boundary, and its sealing performance is verified by NDE, a cross section test, and a hydraulic pressure test. From the verification test results, the improved design can be used in fabricating the IPS for a nuclear fuel irradiation test.

  13. Simulation of the SPE-4 small-break loss-of-coolant accident

    International Nuclear Information System (INIS)

    Cebull, P.; Hassan, Y.A.

    1993-01-01

    A small-break loss of coolant accident (SBLOCA) conducted at the PMK-2 integral test facility was analyzed using RELAP5/MOD3. 1. The experiment simulated a 7.4% break in the cold leg of a VVER-440/213-type nuclear power plant as part of the International Atomic Energy Agency's Fourth Standard Problem Exercise (SPE-4). The VVER design differs from pressurized water reactors (PWRS) of western origin, primarily in its use of horizontal steam generators, hot- and cold-leg loop seals, and safety injection tanks. Because of these differences, it will exhibit somewhat different transient behavior than most PWRS. The PMK-2 test facility, located at the KFKI Atomic Energy Research Institute (AEKI), is a scale model of the Paks nuclear power plant in Hungary with scaling factors of 1:2070 in power and volume and 1:1 in elevation. Primarily used to study SBLOCAs and natural circulation behavior of VVER reactors, it has been used in three previous SPEs

  14. Numerical simulation of the insulation material transport to a PWR core under loss of coolant accident conditions

    International Nuclear Information System (INIS)

    Höhne, Thomas; Grahn, Alexander; Kliem, Sören; Rohde, Ulrich; Weiss, Frank-Peter

    2013-01-01

    Highlights: ► Detailed results of a numerical simulation of the insulation material transport to a PWR core are shown. ► The spacer grid is modeled as a strainer which completely retains the insulation material carried by coolant. ► The CFD calculations showed that the fibers at the upper spacer grid plane are not uniformly distributed. ► Furthermore the pressure loss does not exceed a critical limit. ► The PWR core coolablity can be guaranteed all the time during the transient. -- Abstract: In 1992, strainers on the suction side of the ECCS pumps in Barsebäck NPP Unit 2 became partially clogged with mineral wool because after a safety valve opened the steam impinged on thermally insulated equipment and released mineral wool. This event pointed out that strainer clogging is an issue in the course of a loss-of-coolant accident. Modifications of the insulation material, the strainer area and mesh size were carried out in most of the German NPPs. Moreover, back flushing procedures to remove the mineral wool from the strainers and differential pressure measurements were implemented to assure the performance of emergency core cooling during the containment sump recirculation mode. Nevertheless, it cannot be completely ruled out, that a limited amount of small fractions of the insulation material is transported into the RPV. During a postulated cold leg LOCA with hot leg ECC injection, the fibers enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. It was the aim of the numerical simulations presented to study where and how many mineral wool fibers are deposited at the upper spacer grid. The 3D, time dependent, multi-phase flow problem was modeled applying the CFD code ANSYS CFX. The CFD calculation does not yet include steam production in the core and also does not include re-suspension of the

  15. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  16. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  17. ''Iodine delivery rate'' with catheterangiography under pressure conditions of hand injection

    International Nuclear Information System (INIS)

    Busch, H.P.; Stocker, K.P.

    1998-01-01

    Purpose: The aim of this study was to record the flow-rate and to calculate the 'iodine delivery rate' (IDR) of contrast media of various viscosities when the contrast media are injected by hand. Methods: Five different catheters for coronary angiography were tested with the injection system Medral Mark V Plus. Injections were performed with pressures of 100, 200 and 400 PSI. The contrast media examined were Imeron 350, Imeron 400, Omnipaque 350 and Ultravist 370. The IDR was calculated on the basis of the measured flow rate and the Iodine content of the contrast medium. Results: As was expected, the IDR was higher as the pressure increased. In addition to the iodine content the viscosity of the contrast medium is a very important factor for the IDR. At both 100 PSI and 200 PSI the increase of the IDR was higher with Imeron 350 than with Imeron 400. The comparison of contrast media with identical iodine contents but differing viscosities (Imeron 350, Omnipaque 350) clearly showed that the IDR depended on viscosity. Conclusion: The 'iodine delivery rate' is a decisive factor in the opacification of arterial vessels. Both iodine content and viscosity of a contrast medium are important for the IDR. Because of the low pressure at manual injection, contrast media with low viscosities should be used. A further possibility to increase the IDR is warming-up the contrast medium to body temperature. (orig.) [de

  18. Simulation of a large break loss of coolant (LBLOCA), without actuation of the emergency injection systems (ECCS) for a BWR-5; Simulacion de un escenario de perdida de refrigerante grande (LBLOCA), sin actuacion de los sistemas de inyeccion de emergencia (ECCS) para un reactor BWR-5

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Mugica R, C. A.; Lopez M, R., E-mail: jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    In this paper the analysis of scenario for the loss of coolant case was realized with break at the bottom of a recirculation loop of a BWR-5 with containment type Mark II and a thermal power of 2317 MWt considering that not have coolant injection. This in order to observe the speed of progression of the accident, the phenomenology of the scenario, the time to reach the limit pressure of containment venting and the amount of radionuclides released into the environment. This simulation was performed using the MELCOR code version 2.1. The scenario posits a break in one of the shear recirculation loops. The emergency core cooling system (ECCS) and the reactor core isolation cooling (Rcic) have not credit throughout the event, which allowed achieve greater severity on scenario. The venting of the primary containment was conducted via valve of 30 inches instead of the line of 24 inches of wet well, this in order to have a larger area of exhaust of fission products directly to the reactor building. The venting took place when the pressure in the primary containment reached the 4.5 kg/cm{sup 2} and remained open for the rest of the scenario to maximize the amount released of radionuclides to the atmosphere. The safety relief valves were considered functional they do not present mechanical failure or limit their ability to release pressure due to the large number of performances in safety mode. The results of the analysis covers about 48 hours, time at which the accident evolution was observed; behavior of level, pressure in the vessel and the fuel temperature profile was analyzed. For progression of the scenario outside the vessel, the pressure and temperature of the primary containment, level and temperature of the suppression pool, the hydrogen accumulation in the container and the radionuclides mass released into the atmosphere were analyzed. (Author)

  19. Break-up and quench behavior of molten material in coolant

    International Nuclear Information System (INIS)

    Abe, Y.; Kizu, T.; Arai, T.; Nariai, H.; Chitose, K.; Koyama, K.

    2003-01-01

    In a Core Disruptive Accident (CDA) of a Fast Breeder Reactor, the Post Accident Heat Removal(PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. The material, being fragmented while solidification and forming debris bed, will be cooled in the coolant. In the experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation and boiling phenomena during PAHR in CDA. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The experimental results are compared with the existing theories. Consequently, the marginal wavelength on the surface of a water jet is close to the value estimated based on the Rayleigh-Taylor instability. Moreover, the fragmented droplet diameter obtained from the interaction of molten material and water is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass of the molten particle with some appropriate heat transfer model

  20. Research and application of zinc injection in PWRs

    International Nuclear Information System (INIS)

    Jiang Lei

    2012-01-01

    In the middle 1990s, some PWRs in USA and Germany started to inject Zinc into the reactor coolant system for reducing both radiation fields and primary water stress corrosion cracking (PWSCC). Based on data from the labs and experience in the demonstration pants, Zinc injection obviously reduced radiation fields, and effectively mitigated PWSCC. Plants in USA injected high concentration zinc that is 15 ppb to 40 ppb to restrained PWSCC. Whereas, plants in Germany injected low concentration zinc that is 5 ppb to 10 ppb to reduce radiation fields. There are more than ten years at aspect of zinc rejection in overseas PWR, but domestic plants don't add zinc. The building PWR in Zhejiang Sanmen is the first AP1000 unit in the world, according to requirement of designers, it will start to inject zinc in the initial fuel cycle. (author)

  1. Construction of the two-phase critical flow test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-03-01

    The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility

  2. Cavitation and primary atomization in real injectors at low injection pressure condition

    Science.gov (United States)

    Dumouchel, Christophe; Leboucher, Nicolas; Lisiecki, Denis

    2013-06-01

    This experimental work investigates the influence of the geometry of GDI devices on primary atomization processes under low injection pressure and reduced back pressure. These pressure conditions ensure cavitating flows and observable atomization processes. Measurements include mass flux, structure velocity from high-speed visualizations and spray characterization with a laser diffraction technique. Super-cavitation regime and cavitation string, which have their own influence on the mass flux, develop independently in different injector regions. These regimes impact the flow pattern in the orifice and the subsequent atomization process. A possible interaction between cavitation string and super-cavitation is found to promote a hydraulic-flip-like regime and to deteriorate atomization quality. As far as the geometry of the injector is concerned, the profile of the orifice inlet and the roughness of the sac volume region are found to be important geometrical characteristics.

  3. Primary coolant recycling device for FBR type reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tokiwai, Moriyasu

    1998-01-01

    A primary coolants (liquid sodium) recycling device comprises a plurality of recycling pumps. The recycling pumps are operated while using, as a power source, electric power generated by a thermoelectric power generation system by utilizing heat stored in the coolants. The thermoelectric power generation system comprises a thermo-electric conversion module, heat collecting heat pipes as a high temperature side heat conduction means and heat dissipating pipes as a low temperature side heat conduction means. The heat of coolants is transferred to the surface of the high temperature side of each thermo-electric conversion elements of the thermal power generation system by the heat collecting heat pipes. The heat on the low temperature side of each of the thermo-electric conversion elements is removed by the heat dissipating pipes. Accordingly, temperature difference is caused between both surfaces of the thermo-electric conversion elements. Even upon loss of a main power source due to stoppage of electricity, electric power is generated by utilizing heat of coolants, so that the recycling pumps circulate coolants to cool a reactor core continuously. (I.N.)

  4. Numerical simulation of thermal stratification in cold legs by using OpenFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2011-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  5. The effect of zinc injection into PWR primary coolant on the reduction of radiation buildup and corrosion control. The solubilities of zinc, nickel and cobalt spinel oxides

    International Nuclear Information System (INIS)

    Miyajima, Kaori; Hirano, Hideo

    1999-01-01

    The use of zinc injection into PWR primary coolant to reduce radiation buildup has been widely studied, and te reduction effect has been experimentally confirmed. However, some items, such as the optimal concentration of zinc required to reduce radiation buildup, the corrosion control effect of zinc injection, and the influence of zinc injection on the integrity of fuel cladding, have not been clarified yet. In particular, the corrosion suppression effect of zinc remains unconfirmed. Therefore, it is necessary to measure and calculate the solubilities of zinc and nickel spinel oxides, which are formed on the surface of Ni-based alloys in PWR primary systems. In this study, in order to assess the effectiveness of zinc injection in the reduction of radiation buildup and the corrosion control of Ni-based alloy, the potential-pH diagrams for Zn-Cr-H 2 O, Ni-Cr-H 2 O, and Co-Cr-H 2 O systems at 300degC were constructed and the solubilities of Zn-Cr, Ni-Cr, and Co-Cr spinel oxides were calculated. It is concluded that under pH conditions for which NiCr 2 O 4 is stable, zinc injection is effective in corrosion control as well as in reducing radiation buildup. (author)

  6. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    Science.gov (United States)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  7. Assessment of the potential for high-pressure melt ejection resulting from a Surry station blackout transient

    International Nuclear Information System (INIS)

    Knudson, D.L.; Dobbe, C.A.

    1993-11-01

    Containment integrity could be challenged by direct heating associated with a high pressure melt ejection (HPME) of core materials following reactor vessel breach during certain severe accidents. Intentional reactor coolant system (RCS) depressurization, where operators latch pressurizer relief valves open, has been proposed as an accident management strategy to reduce risks by mitigating the severity of HPME. However, decay heat levels, valve capacities, and other plant-specific characteristics determine whether the required operator action will be effective. Without operator action, natural circulation flows could heat ex-vessel RCS pressure boundaries (surge line and hot leg piping, steam generator tubes, etc.) to the point of failure before vessel breach, providing an alternate mechanism for RCS depressurization and HPME mitigation. This report contains an assessment of the potential for HPME during a Surry station blackout transient without operator action and without recovery. The assessment included a detailed transient analysis using the SCDAP/RELAP5/MOD3 computer code to calculate the plant response with and without hot leg countercurrent natural circulation, with and without reactor coolant pump seal leakage, and with variations on selected core damage progression parameters. RCS depressurization-related probabilities were also evaluated, primarily based on the code results

  8. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  9. Unique rod lens/video system designed to observe flow conditions in emergency core coolant loops of pressurized water reactors

    International Nuclear Information System (INIS)

    Carter, G.W.

    1979-01-01

    Techniques and equipment are described which are used for video recordings of the single- and two-phase fluid flow tests conducted with the PKL Spool Piece Measurement System designed by Lawrence Livermore Laboratory and EG and G Inc. The instrumented spool piece provides valuable information on what would happen in pressurized water reactor emergency coolant loops should an accident or rupture result in loss of fluid. The complete closed-circuit television video system, including rod lens, light supply, and associated spool mounting fixtures, is discussed in detail. Photographic examples of test flows taken during actual spool piece system operation are shown

  10. Analysis of small break loss of coolant accident for Chinese CPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Cilier, Anthonie [North-West University, Mahikeng (South Africa); Poc, Li-chi Cliff [Micro-Simulation Technology, Montville (United States)

    2016-05-15

    This research analyses the small break loss of coolant accident (LOCA) on a Chinese CPR1000 type reactor. LOCA accident is used as benchmark for the PCTRAN/CPR1000 code by comparing the effects and results to the Manshaan FSAR accident analysis. LOCA is a design basis accident in which a guillotine break is postulated to occur in one of the cold legs of a pressurized water reactor (PWR). Consequently, the primary system pressure would drop and almost all the reactor coolant would be discharged into the reactor containment. The drop in pressure would activate the reactor protection system and the reactor would trip. The simulation of a 3-inch small break loss of coolant accident using the PCTRAN/CPR1000 has revealed this code's effectiveness as well as weaknesses in specific simulation applications. The code has the ability to run at 16 times real time and produce very accurate results. The results are consistently producing the same trends as licensed codes used in Safety Assessment Reports. It is however able to produce these results in a fraction of the time and also provides a whole plant simulation coupling the various thermal, hydraulic, chemical and neutronic systems together with a plant specific control system.

  11. The 1994 loss of coolant incident at Pickering NGS

    Energy Technology Data Exchange (ETDEWEB)

    Charlebois, P R; Clarke, T R; Goodman, R M; McEwan, W F [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station; Cuttler, J M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Fracture of the rubber diaphragm in a liquid relief valve initiated events leading to a loss of coolant in Unit 2, on December 10. The valve failed open, filling the bleed condenser. The reactor shut itself down. When pressure recovered, two spring-loaded safety relief valves opened and one of them chattered. The shock and pulsations cracked the inlet pipe to the chattering valve, and the subsequent loss of coolant triggered the emergency core cooling system. The incident was terminated by operator action. No abnormal radioactivity was released. The four reactor units of Pickering A remained shut down until the corrective actions were completed in April/May 1995. (author). 4 figs.

  12. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study.

    Science.gov (United States)

    Seok, Joon; Oh, Chang Taek; Kwon, Hyun Jung; Kwon, Tae Rin; Choi, Eun Ja; Choi, Sun Young; Mun, Seog Kyun; Han, Seung-Ho; Kim, Beom Joon; Kim, Myeung Nam

    2016-08-01

    The effectiveness of needle-free injection devices in neocollagenesis for treating extended skin planes is an area of active research. It is anticipated that needle-free injection systems will not only be used to inject vaccines or insulin, but will also greatly aid skin rejuvenation when used to inject aesthetic materials such as hyaluronic acid, botulinum toxin, and placental extracts. There has not been any specific research to date examining how materials penetrate the skin when a needle-free injection device is used. In this study, we investigated how material infiltrates the skin when it is injected into a cadaver using a needle-free device. Using a needle-free injector (INNOJECTOR™; Amore Pacific, Seoul, Korea), 0.2 ml of 5% methylene blue (MB) or latex was injected into cheeks of human cadavers. The device has a nozzle diameter of 100 µm and produces a jet with velocity of 180 m/s. This jet penetrates the skin and delivers medicine intradermally via liquid propelled by compressed gasses. Materials were injected at pressures of 6 or 8.5 bars, and the injection areas were excised after the procedure. The excised areas were observed visually and with a phototrichogram to investigate the size, infiltration depth, and shape of the hole created on the skin. A small part of the area that was excised was magnified and stained with H&E (×40) for histological examination. We characterized the shape, size, and depth of skin infiltration following injection of 5% MB or latex into cadaver cheeks using a needle-free injection device at various pressure settings. Under visual inspection, the injection at 6 bars created semi-circle-shaped hole that penetrated half the depth of the excised tissue, while injection at 8.5 bars created a cylinder-shaped hole that spanned the entire depth of the excised tissue. More specific measurements were collected using phototrichogram imaging. The shape of the injection entry point was consistently spherical regardless of the

  13. Effects of Coolant Temperature Changes on Reactivity for Various Coolants in a Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    The purpose of this study is to perform an investigation into the relative merit of various salts and salt compounds being considered for use as coolants in the liquid salt cooled very high temperature reactor platform (LS-VHTR). Most of the non-nuclear properties necessary to evaluate these salts are known, but the neutronic characteristics important to reactor core design are still in need of a more extensive examination. This report provides a two-fold approach to further this investigation. First, a list of qualifying salts is assembled based upon acceptable non-nuclear properties. Second, the effect on system reactivity for a secondary system transient or an off-normal or accident condition is examined for each of these salt choices. The specific incident to be investigated is an increase in primary coolant temperature beyond normal operating parameters. In order to perform the relative merit comparison of each candidate salt, the System Temperature Coefficient of Reactivity is calculated for each candidate salt at various state points throughout the core burn history. (author)

  14. Analysis code for pressure in reactor containment vessel of ATR. CONPOL

    International Nuclear Information System (INIS)

    1997-08-01

    For the evaluation of the pressure and temperature in containment vessels in the events which are classified in the abnormal change of pressure, atmosphere and others in reactor containment vessels in accident among the safety evaluation events of the ATR, the analysis code for the pressure in reactor containment vessels CONPOL is used. In this report, the functions of the analysis code and the analysis model are shown. By using this analysis code, the rise of the pressure and temperature in a containment vessel is evaluated when loss of coolant accident occurs, and high temperature, high pressure coolant flows into it. This code possesses the functions of computing blow-down quantity and heat dissipation from reactor cooling facility, steam condensing heat transfer to containment vessel walls, and the cooling effect by containment vessel spray system. As for the analysis techniques, the models of reactor cooling system, containment vessel and steam discharge pool, and the computation models for the pressure and temperature in containment vessels, wall surface temperature, condensing heat transfer, spray condensation and blow-down are explained. The experimental analysis of the evaluation of the pressure and temperature in containment vessels at the time of loss of coolant accident is reported. (K.I.)

  15. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  16. Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bradford, Jacob [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Energy & Geoscience Institute at the Univ. of Utah, Salt Lake City, UT (United States); Podgorney, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressure response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near

  17. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    International Nuclear Information System (INIS)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations

  18. Review of 20 years research in fatigue of high pressure loaded components

    Energy Technology Data Exchange (ETDEWEB)

    Thumser, Rayk [Bauhaus Univ. Weimar (Germany). Materialforschungs- und -pruefanstalt; Scheibe, Wolfgang

    2011-07-01

    This paper gives an overview of the research in fatigue of high pressure loaded components. In the last 20 years the main research was carried out in Germany. This research was mainly driven by the fatigue requirements for high pressure loaded Diesel engine injection parts as common rails, injectors and pipes. (orig.)

  19. Design criteria of primary coolant chemistry in SMART-P

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, Ah Young; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P differs significantly from commercially designed PWRs. Materials inventories used in SMART-P differ from that at PWRs. All surfaces of the primary circuit with the primary coolant are either made from or plated with stainless steel. The material of steam generator (SG) is also different from that of the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. Also, SMART-P primary coolant technology differs from that in PWRs: ammonia is used as a pH raising agent and hydrogen formed due to radiolytic processes is kept in specific range by ammonia dosing. Nevertheless, main objectives of the SMART-P primary coolant are the same as at PWRs: to assure primary system pressure boundary integrity, fuel cladding integrity and to minimize out-of-core radiation buildup. The objective of this work is to introduce the design criteria for the primary water chemistry for SMART-P from the viewpoint of the system characteristics and the chemical design concept

  20. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  1. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    Science.gov (United States)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  2. CONTEMPT-LT/028: a computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hargroves, D.W.; Metcalfe, L.J.; Wheat, L.L.; Niederauer, G.F.; Obenchain, C.F.

    1979-03-01

    CONTEMPT-LT is a digital computer program, written in FORTRAN IV, developed to describe the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided to describe fan cooler and cooling spray engineered safety systems. An annular fan model is also provided to model pressure control in the annular region of dual containment systems. Up to four compartments can be modeled with CONTEMPT-LT, and any compartment except the reactor system may have both a liquid pool region and an air--vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different

  3. Evaluation of containment peak pressure and structural response for a large-break loss-of-coolant accident in a VVER-440/213 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W.; Sienicki, J.J.; Kulak, R.F.; Pfeiffer, P.A. [Argonne National Lab., IL (United States); Voeroess, L.; Techy, Z. [VEIKI Inst. for Electric Power Research, Budapest (Hungary); Katona, T. [Paks Nuclear Power Plant (Hungary)

    1998-07-01

    A collaborative effort between US and Hungarian specialists was undertaken to investigate the response of a VVER-440/213-type NPP to a maximum design-basis accident, defined as a guillotine rupture with double-ended flow from the largest pipe (500 mm) in the reactor coolant system. Analyses were performed to evaluate the magnitude of the peak containment pressure and temperature for this event; additional analyses were performed to evaluate the ultimate strength capability of the containment. Separate cases were evaluated assuming 100% effectiveness of the bubbler-condenser pressure suppression system as well as zero effectiveness. The pipe break energy release conditions were evaluated from three sources: (1) FSAR release rate based on Soviet safety calculations, (2) RETRAN-03 analysis and (3) ATHLET analysis. The findings indicated that for 100% bubbler-condenser effectiveness the peak containment pressures were less than the containment design pressure of 0.25 MPa. For the BDBA case of zero effectiveness of the bubbler-condenser system, the peak pressures were less than the calculated containment failure pressure of 0.40 MPa absolute.

  4. Elements of Design Consideration of Once-Through Cycle, Supercritical-Pressure Light Water Cooled Reactor

    International Nuclear Information System (INIS)

    Yoshiaki Oka; Sei-ichi Koshizuka; Yuki Ishiwatari; Akifumi Yamaji

    2002-01-01

    The paper describes elements of design consideration of supercritical-pressure, light water cooled reactors as well as the status and prospects of the research and development. It summarizes the results of the conceptual design study at the University of Tokyo from 1989. The research and development started in Japan, Europe and USA. The major advantages of the reactors are 1. Compact reactor and turbines due to high specific enthalpy of supercritical water 2.Simple plant system because of the once-through coolant cycle 3.Use of the experience of LWR and fossil-fired power plants. The temperatures of the major components such as reactor pressure vessel, coolant pipes, pumps and turbines are within the experience, in spite of the high outlet coolant temperature. 4.Similarity to LWR safety design and criteria, but no burnout phenomenon 5.Potential cost reduction due to smaller material expenditure and short construction period 6.The smallest reactor not in power rating, but in plant sizes. 7.High-thermal efficiency and low coolant flow rate because of high enthalpy rise. 8.Water cooled reactors potentially free from SCC (stress corrosion cracking) problems. 9.Compatibility of tight-fuel-lattice fast reactor core due to small coolant flow rate, potentially easy shift to fast breeder reactor without changing coolant technology. 10.Potential of producing energy products such as hydrogen and high quality hydro carbons. (authors)

  5. Application of adaptive fuzzy control technology to pressure control of a pressurizer

    Institute of Scientific and Technical Information of China (English)

    YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai

    2005-01-01

    A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.

  6. Fuel-coolant interaction in a shock tube with initially-established film boiling

    International Nuclear Information System (INIS)

    Sharon, A.; Bankoff, S.G.

    1979-01-01

    A new mode of thermal interaction has been employed, in which liquid metal is melted in a crucible within a shock tube; the coolant level is raised to overflow the crucible and establish subcooled film boiling with known bulk metal temperature; and a pressure shock is then initiated. With water and lead-tin alloy an initial splash of metal may be obtained after the vapor film has collapsed, due primarily to thermal interaction, followed by a successive cycle of bubble growth and collapse. To obtain large interactions, the interfacial contact temperature must exceed the spontaneous nucleation temperature of the coolant. Other cutoff behavior is observed with respect to the initial system pressure and temperatures and with the shock pressure and rise time. Experiments with butanol and lead-tin alloy show only relatively mild interactions. Qualitative explanations are proposed for the different behaviors of the two liquids

  7. Experimental and numerical investigation of coolant mixing in a model of reactor pressure vessel down-comer and in cold leg inlets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2017-01-01

    Full Text Available Thermal fatigue and pressurized thermal shock phenomena are the main problems for the reactor pressure vessel and the T-junctions both of them depend on the mixing of the coolant. The mixing process, flow and temperature distribution has been investigated experimentally using particle image velocimetry, laser induced fluorescence, and simulated by CFD tools. The obtained results showed that the ratio of flow rate between the main pipe and the branch pipe has a big influence on the mixing process. The particle image velocimetry/planar laser-induced fluorescence measurements technologies proved to be suitable for the investigation of turbulent mixing in the complicated flow system: both velocity and temperature distribution are important parameters in the determination of thermal fatigue and pressurized thermal shock. Results of the applied these techniques showed that both of them can be used as a good provider for data base and to validate CFD results.

  8. Heating efficiency of high-power perpendicular neutral-beam injection in PDX

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Arunasalam, V.; Bell, M.

    1982-03-01

    The heating efficiency of high power (up to 7.2 MW) near-perpendicular neutral beam injection in the PDX tokamak is comparable to that of tangential injection in PLT. Collisionless plasmas with central ion temperatures up to 6.5 keV and central electron temperatures greater than 2.5 keV have been obtained. The plasma pressure, including the contribution from the beam particles, increases with increasing beam power and does not appear to saturate, although the parametric dependence of the energy confinement time is different from that observed in ohmic discharges

  9. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  10. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  11. Device for preventing leakage of coolant in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kobayashi, Yukio; Sekiguchi, Mamoru; Yoshida, Hideo.

    1975-01-01

    Object: To prevent leakage of coolant from between lower tie plate and channel box without causing deformation of the channel box and also without the possibility of disturbing the installation and removal of the box by the provision of a thin plate provided with leakage holes for the lower tie plate. Structure: Static water pressure within the lower tie plate is adapted to act upon the bear side of a flat plate for leakage prevention through leakage holes formed in the tie plate, thus urging the flat plate against the channel box inner surface. Meanwhile, static water pressure having been led through the leakage holes in the flat plate is adapted to press the flat plate in the vertical direction, thus urging the flat plate against the channel box inner surface and thereby preventing leakage of the coolant through a gap between the channel box and lower tie plate. (Yoshino, Y.)

  12. Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kanzleiter, T.

    1975-10-01

    The phenomena occuring within a containment during a LOCA are currently investigated through experiments with a modelcontainment at Battelle-Institut Frankfurt on behalf of the Bundesministerium fuer Forschung und Technologie, Bonn. The experimental results are to be compared with the results of model calculations in order to improve the calculational methods. An experimental facility was built, consisting of a primary coolant circuit and a special model-containment. The model-containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m 3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross section. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiment a PWR-configuration with nine compartments has been istalled. The model scale of the compartment volumes and the overflow areas are about 1:64 compared to the 1,200-MW-PWR-plant Biblis A. Later investigations will also include BWR-experiments and experiments leading to an extremely high load on special containment structures. (orig.) [de

  13. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  14. Optical diagnostics of diesel spray injections and combustion in a high-pressure high-temperature cell

    NARCIS (Netherlands)

    Bougie, H.J.T.; Tulej, M.; Dreier, T.; Dam, N.J.; Meulen, J.J. ter; Gerber, T.

    2005-01-01

    We report on spatially and temporally resolved optical diagnostic measurements of propagation and combustion of diesel sprays introduced through a single-hole fuel injector into a constant volume, high-temperature, high-pressure cell. From shadowgraphy images in non-reacting environments of pure

  15. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    Sengpiel, W.

    1980-12-01

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW) [de

  16. Estimation of instantaneous heat transfer coefficients for a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.

    1987-01-01

    The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.

  17. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  18. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  19. Development of loose part signal location estimating technique in high pressured structure

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Ill Keun; Choi, Jae Won; Kim, Yong Up; Kim, Taek Hwan; Song, Young Joong [Hannam University, Taejon (Korea, Republic of)

    1997-07-01

    The main purpose of this project is to develop the metallic loose parts monitoring and diagnosis technology. This will contribute to the development of the domestic technology, and, at the some time, to the development of related domestic industries. This study has been performed as 3-year-project,= to provide to basic requirements in developing the integrated and intelligent loose part monitoring and diagnosis system for Reactor Pressure Vessel (RPV). The results from this project is expected to be applied to the development of the integrated and intelligent loose part monitoring and diagnosis system which can be used to analyze the main cause of the malfunctioning of the system under the worst circumstance - high temperature, high pressure and high speed of the flow of reactor coolant, with the efficient software package that could classify the characteristics of the metallic loose parts occurred inside the RPV of the nuclear steam supply system. (Author) 39 refs., 7 tabs., 74 figs.

  20. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)