WorldWideScience

Sample records for high pressure chemistry

  1. Non-equilibrium plasma chemistry at high pressure and its applications

    International Nuclear Information System (INIS)

    Bai Xiyao; Zhang Zhitao; Bai Mindong; Zhu Qiaoying

    2000-01-01

    A review is presented of research and development of gas discharge and non-equilibrium plasma including, new ideas of non-equilibrium plasma at high gas pressure. With special technology, strong electric fields (>400 Td) can be achieved by which electrons are accelerated suddenly, becoming high energy electrons (> 10 eV) at high pressure. On impact with the electrons, the gas molecules dissociate into ions, atomic ions, atoms and free radicals, and new substances or molecules can be synthesized through custom design. Chemical reaction difficult to achieve by conventional method can be realized or accelerated. Non-equilibrium plasma chemistry at high pressure has wide application prospects

  2. High pressure chemistry of red phosphorus by photoactivated simple molecules

    Science.gov (United States)

    Ceppatelli, Matteo; Bini, Roberto; Fanetti, Samuele; Caporali, Maria; Peruzzini, Maurizio

    2013-06-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In particular the photoactivation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photoactivators in HP conditions. Here we report a study on the HP photoinduced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using DAC and SAC. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occured in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).

  3. High pressure chemistry of red phosphorus by photo-activated simple molecules

    Science.gov (United States)

    Ceppatelli, M.; Fanetti, S.; Bini, R.; Caporali, M.; Peruzzini, M.

    2014-05-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In addition the photo-activation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photo-activators in HP conditions. Here we report a study on the HP photo-induced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using membrane Diamond (DAC) and Sapphire (SAC) anvil cells. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occurred in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2-1.5 GPa).

  4. High pressure chemistry of red phosphorus by photo-activated simple molecules

    International Nuclear Information System (INIS)

    Ceppatelli, M; Bini, R; Caporali, M; Peruzzini, M; Fanetti, S

    2014-01-01

    High pressure (HP) is very effective in reducing intermolecular distances and inducing unexpected chemical reactions. In addition the photo-activation of the reactants in HP conditions can lead to very efficient and selective processes. The chemistry of phosphorus is currently based on the white molecular form. The red polymeric allotrope, despite more stable and much less toxic, has not attracted much attention so far. However, switching from the white to the red form would benefit any industrial procedure, especially from an environmental point of view. On the other side, water and ethanol are renewable, environmental friendly and largely available molecules, usable as reactants and photo-activators in HP conditions. Here we report a study on the HP photo-induced reactivity of red phosphorus with water and ethanol, showing the possibility of very efficient and selective processes, leading to molecular hydrogen and valuable phosphorus compounds. The reactions have been studied by means of FTIR and Raman spectroscopy and pressure has been generated using membrane Diamond (DAC) and Sapphire (SAC) anvil cells. HP reactivity has been activated by the two-photon absorption of near-UV wavelengths and occurred in total absence of solvents, catalysts and radical initiators, at room T and mild pressure conditions (0.2–1.5 GPa).

  5. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  6. The development of a neutralizing amines based reagent for maintaining the water chemistry for medium and high pressures steam boilers

    Science.gov (United States)

    Butakova, M. V.; Orlov, K. A.; Guseva, O. V.

    2017-11-01

    An overview of the development for neutralizing amine based reagent for water chemistry of steam boilers for medium and high pressures was given. Total values of the neutralization constants and the distribution coefficients of the compositions selected as a main criteria for reagent composition. Experimental results of using this new reagent for water chemistry in HRSG of power plant in oil-production company are discussed.

  7. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  8. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  9. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  10. Fascination at high pressures

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Research at high pressures has developed into an interdisciplinary area which has important implications for and applications in the areas of physics, chemistry, materials sciences, planetary sciences, biology, engineering sciences and technology. The state of-the-art in this field is reviewed and future directions are indicated. (M.G.B.)

  11. New problems in solid-state chemistry solved by high pressure conditions: an exciting perspective for preparing new materials

    OpenAIRE

    Demazeau , Gérard

    1988-01-01

    International audience; The high-pressure technique is an efficient tool in solid-state chemistry for preparing new materials of low stability or metastable character. During the last 20 years, this technique has been used and developed especially in three principal areas : synthesis of new materials, either for a better basic approach of scientific problems or for industrial applications studies of structural transformations in situ evolution of some physical properties of materials under pr...

  12. High pressure in solid state chemistry: Combined experimental and modeling approaches for assessing and predicting properties

    Science.gov (United States)

    Etourneau, Jean; Matar, Samir F.

    2018-06-01

    The thermodynamic pressure parameter has been thoroughly used with mastership by Gérard Demazeau throughout his rich career in solid state chemistry and materials sciences and more recently in biosciences. After a review of such works, focus is made in this topical article on his contribution together with his team in the field of hard materials based on light elements B, C, N with a proposition of a new ultra-hard carbon nitride C2N on one hand and on the structural transformations under high pressures of perovskite into postperovskite with a change of dimensionality from 3D to 2D and related oxides, regarding the arrangement of octahedra, on the other hand. Investigation and concepts first arising from experimental observables are shown to be aided and accelerated via first principles calculations of energy and energy-related quantities.

  13. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  14. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  15. Chemistry and Vent Pressure of Very High-Temperature Gases Emitted from Pele Volcano on Io

    Science.gov (United States)

    Zolotov, M. Y.; Fegley, B., Jr.

    2001-01-01

    Galileo data for magma temperature at Pele and HST chemical data (SO2, S2, and SO) for Pele plumes were used to evaluate vent pressure (10 -4 -2 bar), the oxidation state (2-3 log fO2 units below Ni-NiO), and chemistry of volcanic gases. Additional information is contained in the original extended abstract.

  16. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  17. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  18. Radiation chemistry in high pressure paying attention to molecular motion and alignment

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo

    1978-01-01

    Effects of high pressure or radiation-induced cross-linking of synthetic rubbers and polymerization of methacrylates and acrylonitrile (AN) have been studied paying attention to molecular motion and alignment. The following were revealed from radiation-induced crosslinking reaction, pressure-volume-temperature (P-V-T) measurement and chemical relaxation of polymer crosslinked at high pressure: (1) The rate of crosslinking is increased in compression especially in polymers containing double bonds, due to chain reaction through double bonds. (2) Crosslinking points of the polymer with double bonds crosslinked at high pressure are dispersed as cluster. (3) Crosslinking reaction is intimately related with change of the molecular motion in a polymer under pressure. Van't Hoff plots of methacrylates and AN breaked at a pressure depending on the monomer. The pressure giving the breaks depends on length of methacrylate. P-V curves of the polymer-monomer coexistence system as-polymerized exhibit peculiar behavior at the pressure giving the breaks. AN exhibits complicated polymerization behavior at a pressure changing compressibility of the monomer. From above results etc. it is concluded that monomer molecules are aligned in short range at a pressure corresponding to geometrical structure of the monomer molecules. (auth.)

  19. Development of High Temperature Chemistry Measurement System for Establishment of On-Line Water Chemistry Surveillance Network in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, Won Ho; Song, Kyu Seok; Joo, Ki Soo; Choi, Ke Chon; Ha, Yeong Keong; Ahn, Hong Joo; Im, Hee Jung; Maeng, Wan Young

    2010-07-01

    An integrated high-temperature water chemistry sensor (pH, E redox ) was developed for the establishment of the on-line water chemistry surveillance system in nuclear power plants. The basic performance of the integrated sensor was confirmed in high-temperature (280 .deg. C, 150kg/m 2 ) lithium borate solutions by using the relationship between the concentration of lithium ion and pH-E redox values. Especially, the effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. And the relationships between each water chemistry factor (pH, redox potential, electrical conductivity) were induced for enhancing the credibility of water chemistry measurement. In addition, on the basis of the evaluation of a nuclear plant design company, we suggested potential installation positions of the measurement system in a nuclear power plant

  20. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  1. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  2. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  3. High-pressure crystal chemistry of nickel sulphides

    CERN Document Server

    Prewitt, C T; Fei, Y

    2002-01-01

    Monochromatic synchrotron x-ray diffraction data collected at CHESS and ESRF at varying temperatures and pressures were used to investigate the crystal structures of phases with the composition Ni sub 3 S sub 2. At low pressures Ni sub 3 S sub 2 has the rhombohedral heazlewoodite structure (Ni sub 3 S sub 2 I), but transforms to two new structures at higher pressures and temperatures. Ni sub 3 S sub 2 III is orthorhombic (space group Cmcm, a = 3.118 A, b = 10.862 A, c 6.730 A) and contains Ni coordinated by five S atoms in a square pyramid. The structure of Ni sub 3 S sub 2 III is described in this report along with an analysis of electronic structures of nickel sulphides.

  4. Dynamic High Pressure Study of Chemistry and Physics of Molecular Materials

    Science.gov (United States)

    Jezowski, Sebastian Ryszard

    Both temperature and pressure control and influence the packing of molecules in crystalline phases. Our molecular simulations indicate that at ambient pressure, the cubic polymorph of tetracyanoethylene, TCNE, is the energetically stable form up to ˜ 160 K. The observed transition from the cubic to the monoclinic polymorph occurs however only at temperatures above ˜ 318 K due to the large transition barrier. The temperature-induced phase transition in TCNE studied with high-resolution IR spectroscopy is explained in terms of the increased vibrational entropy in the crystals of the monoclinic polymorph. Based upon the inverted design of the Merril-Bassett Diamond Anvil Cell, an improved, second generation dynamic Diamond Anvil Cell was developed. Based on the fluorescence of ruby crystals, we were able to demonstrate that the pressure variation range can be further increased at least up to 7 kbar and that the dynamic pressure compression of up to 1400 GPa/s can be achieved. A new class of mechanophoric system, bis-anthracene, BA, and its photoisomer, PI, is shown to respond reversibly to a mild, static pressure induced by a Diamond Anvil Cell as well as to shear deformation based on absorption spectroscopic measurements. The forward reaction occurs upon illumination with light while the back-reaction may be accelerated upon heating or mechanical stress, coupled to a rehybridization on four equivalent carbon atoms. It is an intriguing result as high pressure stabilizes the photodimerized species in related systems. Our molecular volume simulations ruled out significant differences in the volumes between bis-anthracene and its photoisomer. Kinetic absorption measurements at several different pressures reveal a negative volume of activation in the exothermic back-reaction at room temperature. Through a series of temperature-dependent kinetic measurements it is shown that the barrier of activation for the back-reaction is reduced by more than an order of magnitude at

  5. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  6. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  7. Thermoset recycling via high-pressure high-temperature sintering: Revisiting the effect of interchange chemistry

    Science.gov (United States)

    Morin, Jeremy Edward

    In 1844 Charles Goodyear obtained U.S. Patent #3,633 for his "Gum Elastic Composition". In a published circular, which describes his patent for the sulfur vulcanization of gum elastic composition, he stated: "No degree of heat, without blaze, can melt it (rubber)... It resists the most powerful chemical reagents. Aquafortis (nitric acid), sulphuric acid, essential and common oils, turpentine and other solvents... ..." Goodyear's sulfur vulcanization of rubber fueled much of the industrial revolution and made transportation possible, as it exists today. In doing so, Goodyear created one of the most difficult materials to recycle. Rubber will not melt, dissolve, or lend itself to the usual methods of chemical decomposition. Ironically, Goodyear recognized this problem and in 1853 he patented the process of adding ground rubber to virgin material, now currently known as regrind blending. Today, scrap tires represent one of the most serious sources of pollution in the world. Studies estimate that there are roughly 2 billion scrap tires in U.S. landfills and more are being added at a rate of over 273 million tires per year. Current methods of recycling waste tires are crude, ineffective, and use rubber powder as a low cost filler instead of a new rubber. The groundwork for a very simple and effective method of producing high-quality rubber goods using 100% scrap rubber was discovered in 1944 by A. V. Tobolsky et al. This application, however, was not recognized until recently in our laboratory. The process as studied to date represents a method of creating quality, high-value added rubber goods with nothing other than heat and pressure. High pressure is required to obtain a void-free compaction of the rubber particles by forcing all of the free surfaces into intimate contact. High temperature then activates the chemical rearrangement, scission, and reformation of the chemical bonds thus providing new bridges between the once fractured interfaces. This occurs both within

  8. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  9. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  10. Modeling of the chemistry in oxidation flow reactors with high initial NO

    Science.gov (United States)

    Peng, Zhe; Jimenez, Jose L.

    2017-10-01

    Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO2) react preferentially with HO2) because NO is very rapidly oxidized by the high concentrations of O3, HO2, and OH in OFRs. However, many groups are performing experiments by aging combustion exhaust with high NO levels or adding NO in the hopes of simulating high-NO chemistry (in which RO2 + NO dominates). This work systematically explores the chemistry in OFRs with high initial NO. Using box modeling, we investigate the interconversion of N-containing species and the uncertainties due to kinetic parameters. Simple initial injection of NO in OFR185 can result in more RO2 reacted with NO than with HO2 and minor non-tropospheric photolysis, but only under a very narrow set of conditions (high water mixing ratio, low UV intensity, low external OH reactivity (OHRext), and initial NO concentration (NOin) of tens to hundreds of ppb) that account for a very small fraction of the input parameter space. These conditions are generally far away from experimental conditions of published OFR studies with high initial NO. In particular, studies of aerosol formation from vehicle emissions in OFRs often used OHRext and NOin several orders of magnitude higher. Due to extremely high OHRext and NOin, some studies may have resulted in substantial non-tropospheric photolysis, strong delay to RO2 chemistry due to peroxynitrate formation, VOC reactions with NO3 dominating over those with OH, and faster reactions of OH-aromatic adducts with NO2 than those with O2, all of which are irrelevant to ambient VOC photooxidation chemistry. Some of the negative effects are the worst for alkene and aromatic precursors. To avoid undesired chemistry, vehicle emissions

  11. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  12. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  13. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  14. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin [Univ. of Illinois, Urbana, IL (United States); Eden, James Gary [Univ. of Illinois, Urbana, IL (United States)

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  15. A High Five for ChemistryOpen.

    Science.gov (United States)

    Peralta, David; Ortúzar, Natalia

    2016-02-01

    Fabulous at five! When ChemistryOpen was launched in 2011, it was the first society-owned general chemistry journal to publish open-access articles exclusively. Five years down the line, it has featured excellent work in all fields of chemistry, leading to an impressive first full impact factor of 3.25. In this Editorial, read about how ChemistryOpen has grown over the past five years and made its mark as a high-quality open-access journal with impact.

  16. Is high-pressure water the cradle of life?

    International Nuclear Information System (INIS)

    Bassez, Marie-Paule

    2003-01-01

    Several theories have been proposed for the synthesis of prebiotic molecules. This letter shows that the structure of supercritical water, or high-pressure water, could trigger prebiotic synthesis and the origin of life deep in the oceans, in hydrothermal vent systems. Dimer geometries of high-pressure water may have a point of symmetry and a zero dipole moment. Consequently, simple apolar molecules found in submarine hydrothermal vent systems will dissolve in the apolar environment provided by the apolar form of the water dimer. Apolar water could be the medium which helps precursor molecules to concentrate and react more efficiently. The formation of prebiotic molecules could thus be linked to the structure of the water inside chimney nanochannels and cavities where hydrothermal piezochemistry and shock wave chemistry could occur. (letter to the editor)

  17. NATO Advanced Study Institute on High-Pressure Crystallography

    CERN Document Server

    Boldyreva, Elena; High-Pressure Crystallography

    2010-01-01

    This book is devoted to the theme of crystallographic studies at high pressure, with emphasis on the phenomena characteristic to the compressed state of matter, as well as experimental and theoretical techniques used to study these phenomena. As a thermodynamic parameter, pressure is remarkable in many ways. In the visible universe its value spans over sixty orders of magnitude, from the non-equilibrium pressure of hydrogen in intergalactic space, to the kind of pressure encountered within neutron stars. In the laboratory, it provides the unique possibility to control the structure and properties of materials, to dramatically alter electronic properties, and to break existing, or form new chemical bonds. This agenda naturally encompasses elements of physics (properties, structure and transformations), chemistry (reactions, transport), materials science (new materials) and engineering (mechanical properties); in addition it has direct applications and implications for geology (minerals in deep Earth environmen...

  18. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  19. High-pressure on f-element materials

    International Nuclear Information System (INIS)

    Haire, R.G.

    1991-01-01

    540Studies of the f-elements under pressure provide important insights into their solid state chemistry and physics. From such studies of the elements and their alloys, it has been established that the normally localized f-electrons of several of these elements can become involved in bonding under pressure. The electronic behavior of f-element compounds under pressure tend to be more difficult to interpret, due to the variety and the nature of electronic orbitals that are present. The 4f-elements and some 60% of the 5f-elements have been studied under pressure. The systematic comparisons that have been established for these materials are discussed. 76 refs., 3 figs

  20. High energy chemistry. Modern state and trends in development

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1990-01-01

    In the review modern state of studies in the field of high energy chemistry is considered. The most important achievements and problems of further development of radiation chemistry, plasmochemistry, photochemistry, laser chemistry and some other branches of high energy chemistry are discussed

  1. Technetium Chemistry in High-Level Waste

    International Nuclear Information System (INIS)

    Hess, Nancy J.

    2006-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  2. Chemistry Division annual progress report for period ending January 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics. (PLG)

  3. Chemistry Division annual progress report for period ending January 31, 1986

    International Nuclear Information System (INIS)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics

  4. Collaborative Research: Atmospheric Pressure Microplasma Chemistry-Photon Synergies Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David [Univ. of California, Berkeley, CA (United States)

    2017-02-07

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources shows greatly expanded range of applications of each of them. The plasma sources create active chemical species and these can be activated further by addition of photons and associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. The project combines construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling.

  5. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  6. Principles and application of high pressure-based technologies in the food industry.

    Science.gov (United States)

    Balasubramaniam, V M Bala; Martínez-Monteagudo, Sergio I; Gupta, Rockendra

    2015-01-01

    High pressure processing (HPP) has emerged as a commercially viable food manufacturing tool that satisfies consumers' demand for mildly processed, convenient, fresh-tasting foods with minimal to no preservatives. Pressure treatment, with or without heat, inactivates pathogenic and spoilage bacteria, yeast, mold, viruses, and also spores and extends shelf life. Pressure treatment at ambient or chilled temperatures has minimal impact on product chemistry. The product quality and shelf life are often influenced more by storage conditions and packaging material barrier properties than the treatment itself. Application of pressure reduces the thermal exposure of the food during processing, thereby protecting a variety of bioactive compounds. This review discusses recent scientific advances of high pressure technology for food processing and preservation applications such as pasteurization, sterilization, blanching, freezing, and thawing. We highlight the importance of in situ engineering and thermodynamic properties of food and packaging materials in process design. Current and potential future promising applications of pressure technology are summarized.

  7. Cytocompatibility evaluation and surface characterization of TiNi deformed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Awang Shri, Dayangku Noorfazidah, E-mail: AWANGSHRI.Dayangku@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-01

    Effect of high-pressure torsion (HPT) deformation on biocompatibility and surface chemistry of TiNi was systematically investigated. Ti–50 mol% Ni was subjected to HPT straining for different numbers of turns, N = 0.25, 0.5, 1, 5 and 10 at a rotation speed of 1 rpm. X-ray photoelectron spectroscopy observations after 7 days of cell culture revealed the changes in the surface oxide composition, enrichment of Ti and detection of nitrogen derived from organic molecules in the culture medium. Plating efficiency of L929 cells was slightly increased by HPT deformation though no significant difference was observed. Albumin adsorption was higher in HPT-deformed samples, while vitronectin adsorption was peaked at N = 1. HPT deformation was also found to effectively suppress the Ni ion release from the TiNi samples into the cell culture medium even after the low degree of deformation at N = 0.25. - Highlights: • Nanostructured Ti–50 mol%Ni alloy was produced using high-pressure torsion. • HPT deformation improved L929 growth on TiNi samples. • Changes in surface chemistry were observed in HPT deformed samples. • Protein adsorption behavior was influenced by the surface chemistry. • Ni ion release was suppressed in HPT deformed samples.

  8. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES

    Science.gov (United States)

    Cicoria, David; Chan, C. K.

    2017-07-01

    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  9. Automated high-pressure titration system with in situ infrared spectroscopic detection

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher J., E-mail: chris.thompson@pnnl.gov; Martin, Paul F.; Chen, Jeffrey; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Benezeth, Pascale [Géosciences Environnement Toulouse (GET), CNRS-Université de Toulouse, 31400 Toulouse (France)

    2014-04-15

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO{sub 2} (scCO{sub 2}) to generate an infrared calibration curve and determine the solubility of water in CO{sub 2} at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO{sub 2} at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO{sub 2} hydration, and ATR measurements provided insights into competitive residency of water and CO{sub 2} on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg{sub 2}SiO{sub 4}) in water-bearing scCO{sub 2} at 50 °C and 90 bar. Immediately after water dissolved in the scCO{sub 2}, a thin film of adsorbed water formed on the mineral surface

  10. Automated high-pressure titration system with in situ infrared spectroscopic detection

    International Nuclear Information System (INIS)

    Thompson, Christopher J.; Martin, Paul F.; Chen, Jeffrey; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S.; Benezeth, Pascale

    2014-01-01

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO 2 (scCO 2 ) to generate an infrared calibration curve and determine the solubility of water in CO 2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO 2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO 2 hydration, and ATR measurements provided insights into competitive residency of water and CO 2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg 2 SiO 4 ) in water-bearing scCO 2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO 2 , a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the

  11. A high-pressure plug flow reactor for combustion chemistry investigations

    Science.gov (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.

    2017-10-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  12. A high-pressure plug flow reactor for combustion chemistry investigations

    International Nuclear Information System (INIS)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J

    2017-01-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations. (paper)

  13. Thermodynamically Controlled High-Pressure High-Temperature Synthesis of Crystalline Fluorinated sp 3 -Carbon Networks

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Landskron, Kai

    2015-11-19

    We report the feasibility of the thermodynamically controlled synthesis of crystalline sp3-carbon networks. We show that there is a critical pressure below which decomposition of the carbon network is favored and above which the carbon network is stable. Based on advanced, highly accurate quantum mechanical calculations using the all-electron full-potential linearized augmented plane-wave method (FP-LAPW) and the Birch–Murnaghan equation of state, this critical pressure is 26.5 GPa (viz. table of contents graphic). Such pressures are experimentally readily accessible and afford thermodynamic control for suppression of decomposition reactions. The present results further suggest that a general pattern of pressure-directed control exists for many isolobal conversions of sp2 to sp3 allotropes, relating not only to fluorocarbon chemistry but also extending to inorganic and solid-state materials science.

  14. The Kinetic-Molecular and Thermodynamic Approaches to Osmotic Pressure: A Study of Dispute in Physical Chemistry and the Implications for Chemistry Education

    Science.gov (United States)

    De Berg, Kevin C.

    2006-01-01

    Osmotic pressure proves to be a useful topic for illustrating the disputes brought to bear on the chemistry profession when mathematics was introduced into its discipline. Some chemists of the late 19th century thought that the introduction of mathematics would destroy that "chemical feeling" or "experience" so necessary to the practice of…

  15. Sign me up! Determining motivation for high school chemistry students enrolling in a second year chemistry course

    Science.gov (United States)

    Camarena, Nilda N.

    A sample of 108 Pre-AP Chemistry students in Texas participated in a study to determine motivational factors for enrolling in AP Chemistry and University Chemistry. The factors measured were academic attitude, perceptions of chemistry, confidence level in chemistry, and expectations/experiences in the chemistry class. Students completed two questionnaires, one at the beginning of the year and one at the end. Four high school campuses from two school districts in Texas participated. Two campuses were traditional high schools and two were smaller magnet schools. The results from this study are able to confirm that there are definite correlations between academic attitudes, perceptions, confidence level, and experiences and a student's plans to enroll in AP and University Chemistry. The type of school as well as the student's gender seemed to have an influence on a student's plan to enroll in a second year of chemistry.

  16. High pressure: a challenge for lab-on-a-chip technology

    NARCIS (Netherlands)

    Benito-Lopez, F.

    2007-01-01

    The realization of microreactors, in which chemical reactions can be carried out in continuous or stop flow mode under pressure conditions, is the main topic of this thesis. The advantages of microreactor technology for pressure chemistry are clearly demonstrated in this thesis. Organic reactions

  17. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  18. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  19. Application of ultra high pressure (UHP) in starch chemistry.

    Science.gov (United States)

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  20. High pressure ices are not the end of the story for large icy moons habitability: experimental studies of salts effects on high pressure ices and the implications for icy worlds large hydrosphere structure and chemical evolution

    Science.gov (United States)

    Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier

    2017-10-01

    The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new

  1. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  2. Chemistry of high-energy materials. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Munich Univ. (Germany). Chair of Inorganic Chemistry; Maryland Univ., College Park, MD (United States). Center of Energetic Concepts Development (CECD)

    2012-07-01

    This graduate-level textbook treats the basic chemistry of high energy materials - primary and secondary explosives, propellants, rocket fuel and pyrotechnics - and provides a review of new research developments. Applications in both military and civil fields are discussed. The book also offers new insights into ''green'' chemistry requirements and strategies for military applications.

  3. Conflicts in Chemistry: The Case of Plastics, a Role-Playing Game for High School Chemistry Students

    Science.gov (United States)

    Cook, Deborah H.

    2014-01-01

    Conflicts in Chemistry: The Case of Plastics, an innovative role-playing activity for high school students, was developed by the Chemical Heritage Foundation to promote increased public understanding of chemistry. The pilot program included three high school teachers and their students at three different schools and documented implementation and…

  4. Survey of PWR water chemistry

    International Nuclear Information System (INIS)

    Gorman, J.

    1989-02-01

    This report surveys available information regarding primary and secondary water chemistries of pressurized water reactors (PWRs) and the impact of these water chemistries on reactor operation. The emphasis of the document is on aspects of water chemistry that affect the integrity of the primary pressure boundary and the radiation dose associated with maintenance and operation. The report provides an historical overview of the development of primary and secondary water chemistries, and describes practices currently being followed. Current problems and areas of research associated with water chemistry are described. Recommendations for further research are included. 183 refs., 9 figs., 19 tabs

  5. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  6. Writing Chemistry Jingles as an Introductory Activity in a High School Chemistry Class

    Science.gov (United States)

    Heid, Peter F.

    2011-01-01

    Starting the school year in an introductory high school chemistry class can be a challenge. The topic and approach is new to the students; many of the early chapters in the texts can be a bit tedious; and for many students the activities are uninspiring. My goal in the first few weeks of school is to hook the students on chemistry by getting them…

  7. The use of on-line ion chromatography for high temperature and high pressure reaction studies

    International Nuclear Information System (INIS)

    Lynch, G.J.

    1993-10-01

    This paper describes the use of on-line ion chromatography as a tool for chemistry reaction studies in small volume systems. The technique was used to study chemistry behavior in a high temperature and high pressure autoclave system. A dual analyzer, multi-channel on-line ion chromatograph (IC) was configured to automate the sampling and analysis. Analytical channels were set up for analysis of inorganic anions, monovalent cations, conductivity, and pH. Conductivity and pH were measured using the IC as a flow injection analyzer. Use of the IC system provides significant advantages over conventional sampling and analysis techniques: Reduction in sample volume, a closed sampling system that protects air or light sensitive analytes from breakdown, around-the-clock test performance combined with automatic calibration and quality control checking, and detection and tracking of reaction products or unexpected contaminants. Methods used to correct measured concentrations for the effects of sampling and for calculation of control chemical loss half-lives are presented. A limited evaluation of the flow injection analysis methods for conductivity and pH is provided

  8. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  9. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shen, Guoyin; Chow, Paul; Xiao, Yuming; Sinogeikin, Stanislav; Meng, Yue; Yang, Wenge; Liermann, Hans-Peter; Shebanova, Olga; Rod, Eric; Bommannavar, Arunkumar; Mao, Ho-Kwang

    2008-01-01

    The high pressure collaborative access team (HPCAT) was established to advance cutting edge, multidisciplinary, high-pressure (HP) science and technology using synchrotron radiation at sector 16 of the Advanced Photon Source of Argonne National Laboratory. The integrated HPCAT facility has established four operating beamlines in nine hutches. Two beamlines are split in energy space from the insertion device (16ID) line, whereas the other two are spatially divided into two fans from the bending magnet (16BM) line. An array of novel X-ray diffraction and spectroscopic techniques has been integrated with HP and extreme temperature instrumentation at HPCAT. With a multidisciplinary approach and multi-institution collaborations, the HP program at the HPCAT has been enabling myriad scientific breakthroughs in HP physics, chemistry, materials, and Earth and planetary sciences.

  10. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  11. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemical and Biomolecular Engineering

    2016-12-20

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of the catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating rates

  12. High-temperature oxidation chemistry of n-butanol--experiments in low-pressure premixed flames and detailed kinetic modeling.

    Science.gov (United States)

    Hansen, N; Harper, M R; Green, W H

    2011-12-07

    An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.

  13. Discharge physics and chemistry of a novel atmospheric pressure plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Henins, I.; Hermann, J.W.; Selwyn, G.S.; Jeong, J.Y.; Hickis, R.

    1999-07-01

    The atmospheric pressure plasma jet (APPJ) is a unique plasma source operating at atmospheric pressure. The APPJ operates with RF power and produces a stable non-thermal discharge in capacitively-coupled configuration. The discharge is spatially and temporally homogeneous and provides a unique gas phase chemistry that is well suited for various applications including etching, film deposition, surface treatment and decontamination of chemical and biological warfare (CBW) agents. A theoretical model shows electron densities of 0.2--2 x 10{sup 11} cm{sup {minus}3} for a helium discharge at a power level of 3--30 W cm{sup {minus}3}. The APPJ also produces a large flux, equivalent of up to 10,000 monolayer s{sup {minus}1}, of chemically-active, atomic and metastable molecular species which can impinge surfaces several cm downstream of the confined source. In addition, the efforts are in progress to measure the electron density using microwave diagnostics and to benchmark the gas phase chemical model by using LIF and titration.

  14. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  15. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  16. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    Science.gov (United States)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  17. The status of safety in the public high school chemistry laboratories in Mississippi

    Science.gov (United States)

    Lacy, Sarah Louise Trotman

    Since laboratory-based science courses have become an essential element of any science curriculum and are required by the Mississippi Department of Education for graduation, the chemistry laboratories in the public high schools in Mississippi must be safe. The purpose of this study was to determine: the safety characteristics of a high school chemistry laboratory; the perceived safety characteristics of the chemistry laboratories in public high schools in Mississippi; the basic safety knowledge of chemistry teachers in public high schools in Mississippi, where chemistry teachers in Mississippi gain knowledge about laboratory safety and instruction; if public high school chemistry laboratories in Mississippi adhere to recommended class size, laboratory floor space per student, safety education, safety equipment, and chemical storage; and the relationship between teacher knowledge of chemistry laboratory safety and the safety status of the laboratory in which they teach. The survey instrument was composed of three parts. Part I Teacher Knowledge consisted of 23 questions concerning high school chemistry laboratory safety. Part II Chemistry Laboratory Safety Information consisted of 40 items divided into four areas of interest concerning safety in high school chemistry laboratories. Part III Demographics consisted of 11 questions relating to teacher certification, experience, education, and safety training. The survey was mailed to a designated chemistry teacher in every public high school in Mississippi. The responses to Part I of the survey indicated that the majority of the teachers have a good understanding of knowledge about chemistry laboratory safety but need more instruction on the requirements for a safe high school chemistry laboratory. Less than 50% of the responding teachers thought they had received adequate preparation from their college classes to conduct a safe chemistry laboratory. According to the responses of the teachers, most of their high school

  18. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  19. Surface characterization of TiNi deformed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Awang Shri, Dayangku Noorfazidah [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi, E-mail: tsuchiya.koichi@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-01-15

    Effect of grain refinements and amorphization by high-pressure torsion (HPT) on surface chemistry was investigated on TiNi. X-ray diffraction and micro-Vickers tests were used to check the phase changes and hardness before and after HPT. X-ray photoelectron spectroscopy was used to observe the changes in the natural passive film formation on the surface. Phase analysis reveals the change of crystalline TiNi to nanostructured one with increased hardness with straining by HPT. Grain refinement and amorphization caused by HPT reduce the amount of metallic Ni in the passive films and also increase the thickness of the film.

  20. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  1. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  2. ACS-Hach Programs: Supporting Excellence in High School Chemistry Teaching

    Science.gov (United States)

    Taylor, Terri

    2009-05-01

    In January 2009, the ACS received a gift of approximately $33 million from the Hach Scientific Foundation, the largest gift in the society's 133-year history. The foundation's programs will be continued by the ACS and will complement pre-existing ACS resources that support high school chemistry teaching. Three activities serve as the pillars of the ACS-Hach programs—the High School Chemistry Grant Program, the Second Career Teacher Scholarship Program, and the Land Grant University Scholars Program. Collectively, the ACS-Hach programs support high school chemistry teaching and learning by responding to the needs of both in-service and pre-service secondary teachers. The goals of each of the ACS-Hach programs align well with the ACS Mission—to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people.

  3. The influence of chemistry concentration on the fracture risk of a reactor pressure vessel subjected to pressurized thermal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pin-Chiun [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China); Chou, Hsoung-Wei, E-mail: hwchou@iner.gov.tw [Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan, ROC (China); Ferng, Yuh-Ming [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2016-02-15

    Highlights: • Probabilistic fracture mechanics method was used to analyze a reactor pressure vessel. • Effects of copper and nickel contents on RPV fracture probability under PTS were investigated and discussed. • Representative PTS transients of Beaver Valley nuclear power plant were utilized. • The range of copper and nickel contents of the RPV materials were suggested. • With different embrittlement levels the dominated PTS category is different. - Abstract: The radiation embrittlement behavior of reactor pressure vessel shell is influenced by the chemistry concentration of metal materials. This paper aims to study the effects of copper and nickel content variations on the fracture risk of pressurized water reactor (PWR) pressure vessel subjected to pressurized thermal shock (PTS) transients. The probabilistic fracture mechanics (PFM) code, FAVOR, which was developed by the Oak Ridge National Laboratory in the United States, is employed to perform the analyses. A Taiwan domestic PWR pressure vessel assumed with varied copper and nickel contents of beltline region welds and plates is investigated in the study. Some PTS transients analyzed from Beaver Valley Unit 1 for establishing the U.S. NRC's new PTS rule are applied as the loading condition. It is found that the content variation of copper and nickel will significantly affect the radiation embrittlement and the fracture probability of PWR pressure vessels. The results can be regarded as the risk incremental factors for comparison with the safety regulation requirements on vessel degradation as well as a reference for the operation of PWR plants in Taiwan.

  4. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  5. Chemistry Division annual progress report for period ending April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  6. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  7. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  8. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  9. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  11. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  12. Water chemistry: protecting the industry's investment. Making or breaking plant operations

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Good water chemistry is a good way to preserve the life of steam generators and other plant components. Pipe cracks in boiling-water reactors, tube pitting, denting and cracking in pressurized-water reactors are all problems that are surfacing due to poor water chemistry, i.e., the lack of water purity. Water is essential to power generation and is corrosive under the best of conditions. But to a metal system filled with water and subject to high pressure, high temperature, and impurities such as chlorides, the potential for rapid and permanent damage rises to serious proportions. In addition, radiation levels increase from corrosive products circulated through the reactor vessel

  13. Revealing the local properties of beta-HP4N7, a promising candidate for high pressure synthesis of new materials

    Czech Academy of Sciences Publication Activity Database

    Morales-García, A.; del Corro, Elena

    2015-01-01

    Roč. 2, č. 4 (2015), č. článku 045904. ISSN 2053-1591 Institutional support: RVO:61388955 Keywords : initio molecular-dynamics * high pressure * qtaim * phase transition * local properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.968, year: 2015

  14. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  15. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  16. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  17. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  18. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  19. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  20. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  1. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  2. VGB primary and secondary side water chemistry guidelines for PWR plants

    International Nuclear Information System (INIS)

    Neder, H.; Wolter, D.; Staudt, U.

    2007-01-01

    The recent revision of the VGB Water Chemistry Guidelines was issued in 2005 and published in the second half of 2006. These guidelines are based on the primary and secondary side operating chemistry experience with all Siemens designed pressurized water reactors gained since the beginning of the 1980s. These guidelines cover For the primary side chemistry Modified lithium boron chemistry, Zinc chemistry for dose rate reduction, Enriched boric acid (EBA) chemistry for high duty core design For the secondary side chemistry High all-volatile treatment (AVT) chemistry (high pH operation) Oxygen injection in the secondary side Especially for the secondary side chemistry, compared with the water chemistry guidelines of other organizations worldwide, these Guidelines are less stringent, providing more operational flexibility to the plant operation, and can be applied for all new designs of steam generators with egg-crates or broached hole tube supports and with I 690TT or I 800 tubing materials. This paper gives an overview of the 2006 revision of the VGB Water Chemistry Guidelines for PWR plants and describes the fundamental goals of water chemistry operation strategies. In addition, the reasons for the selected control parameters and action levels, to achieve an adequate plant performance, are presented based on the operating experience. (orig.)

  3. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  4. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  5. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  6. Deep ice and salty oceans of icy worlds, how high pressures influence their thermodynamics and provide constrains on extraterrestrial habitability

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Bollengier, O.; Abramson, E.

    2017-12-01

    As in Earth arctic and Antarctic regions, suspected extraterrestrial deep oceans in icy worlds (i.e. icy moons and water-rich exoplanets) chemistry and thermodynamic state will strongly depend on their equilibrium with H2O ice and present solutes. Na-Mg-Cl-SO4 salt species are currently the main suspected ionic solutes to be present in deep oceans based on remote sensing, magnetic field measurements, cryovolcanism ice grains chemical analysis and chondritic material aqueous alteration chemical models. Unlike on our planet, deep extraterrestrial ocean might also be interacting at depth with high pressure ices (e.g. III, V, VI, VI, X) which have different behavior compared to ice Ih. Unfortunately, the pressures and temperatures inside these hydrospheres differ significantly from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions. High pressure in-situ measurements using diamond anvil cell apparatus were operated both at the University of washington and at the European Synchrotron Radiation Facility on aqueous systems phase diagrams with Na-Mg-Cl-SO4 species, salt incorporation in high pressure ices and density inversions between the solid and the fluids. These results suggest a more complex picture of the interior structure, dynamic and chemical evolution of large icy worlds hydrospheres when solutes are taken into account, compared to current models mainly using pure water. Based on our in-situ experimental measurements, we propose the existence of new liquid environments at greater depths and the possibility of solid state transport of solute through the high pressure ices

  7. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  8. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  9. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  10. Life in the fast lane: high-throughput chemistry for lead generation and optimisation.

    Science.gov (United States)

    Hunter, D

    2001-01-01

    The pharmaceutical industry has come under increasing pressure due to regulatory restrictions on the marketing and pricing of drugs, competition, and the escalating costs of developing new drugs. These forces can be addressed by the identification of novel targets, reductions in the development time of new drugs, and increased productivity. Emphasis has been placed on identifying and validating new targets and on lead generation: the response from industry has been very evident in genomics and high throughput screening, where new technologies have been applied, usually coupled with a high degree of automation. The combination of numerous new potential biological targets and the ability to screen large numbers of compounds against many of these targets has generated the need for large diverse compound collections. To address this requirement, high-throughput chemistry has become an integral part of the drug discovery process. Copyright 2002 Wiley-Liss, Inc.

  11. Computational Study of Nonequilibrium Chemistry in High Temperature Flows

    Science.gov (United States)

    Doraiswamy, Sriram

    Recent experimental measurements in the reflected shock tunnel CUBRC LENS-I facility raise questions about our ability to correctly model the recombination processes in high enthalpy flows. In the carbon dioxide flow, the computed shock standoff distance over the Mars Science Laboratory (MSL) shape was less than half of the experimental result. For the oxygen flows, both pressure and heat transfer data on the double cone geometry were not correctly predicted. The objective of this work is to investigate possible reasons for these discrepancies. This process involves systematically addressing different factors that could possibly explain the differences. These factors include vibrational modeling, role of electronic states and chemistry-vibrational coupling in high enthalpy flows. A state-specific vibrational model for CO2, CO, O2 and O system is devised by taking into account the first few vibrational states of each species. All vibrational states with energies at or below 1 eV are included in the present work. Of the three modes of vibration in CO2 , the antisymmetric mode is considered separately from the symmetric stretching mode and the doubly degenerate bending modes. The symmetric and the bending modes are grouped together since the energy transfer rates between the two modes are very large due to Fermi resonance. The symmetric and bending modes are assumed to be in equilibrium with the translational and rotational modes. The kinetic rates for the vibrational-translation energy exchange reactions, and the intermolecular and intramolecular vibrational-vibrational energy exchange reactions are based on experimental data to the maximum extent possible. Extrapolation methods are employed when necessary. This vibrational model is then coupled with an axisymmetric computational fluid dynamics code to study the expansion of CO2 in a nozzle. The potential role of low lying electronic states is also investigated. Carbon dioxide has a single excited state just below

  12. Development of Chemistry Triangle Oriented Module on Topic of Reaction Rate for Senior High School Level Grade XI Chemistry Learning.

    Science.gov (United States)

    Sari, D. R.; Hardeli; Bayharti

    2018-04-01

    This study aims to produce chemistry triangle oriented module on topic of reaction rate, and to reveal the validity and practicality level of the generated module. The type of research used is EducationalDesign Research (EDR) with development model is Plompmodel. This model consists of three phases, which are preliminary research, prototyping phase, and assessment phase. The instrument used in this research is questionnaire validity and practicality. The data of the research were analyzed by using Kappa Cohen formula. The chemistry triangle oriented module validation sheet was given to 5 validators consisting of 3 chemistry lecturers and 2 high school chemistry teachers, while the practicality sheet was given to 2 chemistry teachers, 6 students of SMAN 10 Padang grade XII MIA 5 on the small groupevaluation and 25 students of SMAN 10 Padang grade XII MIA 6 on the field test. Based on the questionnaire validity analysis, the validity level of the module is very high with the value of kappa moment 0.87. The level of practicality based on teacher questionnaire response is very high category with a kappa moment value 0.96. Based on the questionnaire of student responses on small group evaluation, the level of practicality is very high category with a kappa moment 0.81, and the practicality is very high category with kappa moment value 0.83 based on questionnaire of student response on field test.

  13. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres

    KAUST Repository

    Tai, Yanlong

    2015-01-01

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4). © 2015 The Royal Society of Chemistry.

  14. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  15. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  16. High-temperature chemistry of HCl and Cl2

    DEFF Research Database (Denmark)

    Pelucchi, Matteo; Frassoldati, Alessio; Faravelli, Tiziano

    2015-01-01

    The high temperature chlorine chemistry was updated and the inhibition mechanisms involving HCl and Cl2 were re-examined. The thermochemistry was obtained using the Active Thermochemical Tables (ATcT) approach, resulting in improved data for chlorine-containing species of interest. The HCl/Cl2....... The validation was carried out on selected experimental data from laminar flames, shock tubes and plug flow reactors. Systems containing Cl2 showed high sensitivity to Cl2 +M⇌Cl+Cl+M; the rate constant for this reaction has a significant uncertainty and there is a need for an accurate high...... chemistry discussed in the paper was based on reference and experimental measurements of rate constants available in the literature. By coupling the new HCl/Cl2 subset with the Politecnico di Milano (POLIMI) syngas mechanism a kinetic mechanism consisting of 25 species and 102 reactions was obtained...

  17. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  18. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence-Chemistry Interaction in High- Reynolds -Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number 5a. CONTRACT NUMBER turbulent...for public release Final Report: Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number turbulent partially premixed

  19. Progress report 1981-1982. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1983-08-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1981-1982. This Department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. During this period, the following tasks were performed: study of the metallic oxide-water interphases; determination of the goethite and magnetite surficial charges; synthesis of the monodispersed nickel ferrites; study of the iron oxides dissolution mechanism in presence of different complexing agents; chemical decontamination of structural metals; thermodynamics of the water-nitrogen system; physico-chemical studies of aqueous solutions at high temperatures; hydrothermal decomposition of ionic exchange resines and study of the equilibria of the anionic exchange for the chemistry of pressurized reactor's primary loops. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1981-1982. (R.J.S.) [es

  20. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  1. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  2. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  3. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  4. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  5. Chemistry in space

    CERN Document Server

    Rehder, Dieter

    2010-01-01

    The dynamic field of extraterrestrial chemistry brings together ideas of chemistr, astrophysics, and biology to the study of molecules between stars, around stars, and on plantes. This book serves as an introduction to chemial processes under ?unearthly? and hence usually extreme conditions (temperature, pressure, high or low density, bombardment by cosmic rays), and their impact on the early development of our solar system, as well as providing a deeper understanding of processes in earthly regions where conditions approach those of extraterrestrial areas.A unique and extraordinary perspe

  6. Atomic scale study of vacancies in Earth's inner core: effect of pressure and chemistry

    Science.gov (United States)

    Ritterbex, S.; Tsuchiya, T.

    2017-12-01

    Seismic observations of the Earth's inner core [1] remain ambiguously related to mineral physics studies of the inner core stable crystalline iron phase [2,3,4,5]. This makes it difficult to clarify the role of plastic deformation as one of the primary candidates responsible for the observed seismic anisotropy of Earth's inner core. Nonetheless, atomic self-diffusion mechanisms provide a direct link between plastic deformation and the mechanical properties of Earth's inner core stable iron phase(s). Using first-principles density functional based calculation techniques, we have studied the conjugate effect of pressure and chemistry on vacancy diffusion in HCP-, BCC- and FCC-iron by taking into account potential light alloying elements as hydrogen, silicon and sulfur. Our results show that inner core pressure highly inhibits the rate of intrinsic self-diffusion by suppressing defect concentration rather than by effecting the mobility of the defects. Moreover, we found light elements to be able to affect metallic bonding which allows for extrinsic diffusion mechanisms in iron under inner core conditions. The latter clearly enables to enhance defect concentration and hence to enhance the rate of plastic deformation. This suggests that inner core chemistry affects the rheological properties (e.g.viscosity) of iron alloys which finally should match with seismic observations. references: [1] Deuss, A., 2014. Heterogeneity and Anisotropy of Earth's inner core. An. Rev. Earth Planet. Sci. 42, 103-126. [2] Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., Morard, G., 2013. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science 340, 464-466. [3] Godwal, B.K., Gonzales-Cataldo, F., Verma, A.K., Stixrude, L., Jeanloz, R., 2015. Stability of iron crystal structures at 0.3-1.5 TPa. [4] Vocadlo, L., 2007. Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: evidence for a partially molten inner core

  7. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  8. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  9. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  10. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  11. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  12. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  13. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  14. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  15. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  16. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    Science.gov (United States)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  17. Water Chemistry Control Technology to Improve the Performance of Nuclear Power Plants for Extended Fuel Cycles

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Na, J. W.; Lee, E. H.

    2010-07-01

    Ο To Develop the technology to manage the problems of AOA and radiation, corrosion as long term PWR operation. Ο To Establish the advanced water chemical operating systems. - Development of the proper water chemistry guidelines for long term PWR operation. AOA(Axial Offest Anomaly) has been reported in many PWR plants in the world, including Korea, especially in the plants of higher burn-up and longer cycle operation or power up-rate. A test loop has been designed and made by KAERI, in order to investigate and mitigate AOA problems in Korea. This project included the study of hydrodynamic simulation and the modeling about AOA. The analysis of radioactive crud was performed to investigate of NPPs primary water chemical effect on AOA and to reduce the radioactive dose rate. The high temperature measurement system was developed to on-line monitor of water chemistry in nuclear power plants. The effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. The inhibition technology for fouling and SCC of SG tube was evaluated to establish the water chemistry technology of corrosion control of nuclear system. The high temperature and high pressure crevice chemistry analysis test loop was manufactured to develop the water chemistry technology of crevice chemistry control

  18. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  19. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  20. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  1. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  2. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  3. High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids.

    Science.gov (United States)

    Im, Junhyuck; Yim, Narae; Kim, Jaheon; Vogt, Thomas; Lee, Yongjae

    2016-09-14

    Pressure-dependent structural and chemical changes of the zeolitic imidazolate framework compound ZIF-8 have been investigated using different pressure transmitting media (PTM) up to 4 GPa. The unit cell of ZIF-8 expands and contracts under hydrostatic pressure depending on the solvent molecules used as PTM. When pressurized in water up to 2.2(1) GPa, the unit cell of ZIF-8 reveals a gradual contraction. In contrast, when alcohols are used as PTM, the ZIF-8 unit cell volume initially expands by 1.2% up to 0.3(1) GPa in methanol, and by 1.7% up to 0.6(1) GPa in ethanol. Further pressure increase then leads to a discontinuous second volume expansion by 1.9% at 1.4(1) GPa in methanol and by 0.3% at 2.3(1) GPa in ethanol. The continuous uptake of molecules under pressure, modeled by the residual electron density derived from Rietveld refinements of X-ray powder diffraction, reveals a saturation pressure near 2 GPa. In non-penetrating PTM (silicone oil), ZIF-8 becomes amorphous at 0.9(1) GPa. The structural changes observed in the ZIF-8-PTM system under pressure point to distinct molecular interactions within the pores.

  4. International symposium on high pressure low temperature plasma chemistry. Contributed papers

    International Nuclear Information System (INIS)

    1998-01-01

    The proceedings contain the texts of 77 contributions, of which 31 contributions fall within the scope of the INIS database. The latter deal with various aspects of plasma behavior in pulsed electric discharges of various types, with the spectroscopic and probe diagnostics of a discharge plasma, and with the computer simulation of ionization and breakdown processes in the glow, corona, and arc discharges at atmospheric pressure. (J.U.)

  5. International symposium on high pressure low temperature plasma chemistry. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The proceedings contain the texts of 77 contributions, of which 31 contributions fall within the scope of the INIS database. The latter deal with various aspects of plasma behavior in pulsed electric discharges of various types, with the spectroscopic and probe diagnostics of a discharge plasma, and with the computer simulation of ionization and breakdown processes in the glow, corona, and arc discharges at atmospheric pressure. (J.U.).

  6. Progress report 1985-1986 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1987-12-01

    The report of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission, during the period 1985-1986, covers works of investigation, development and service related to the Argentine Nuclear Power Plants. The main subjects are the experimental and theoretical studies about physical chemistry and chemistry control at the moderators and heat transport system of the nuclear power plants. The more relevant topics are related to: 1: Behaviour of gases, electrolites and other additives for nuclear power plants, at high temperature and pressure; 2: Ionic exchangers of nuclear degree; 3: Electrochemistry studies connected with the constitutive materials' corrosion and with the nuclear power plants decontamination processes; 4: Behaviour of suspensions and colloids in nuclear power plants; 5: Use of new additives for chemistry control of the oxides which are in the circuits of nuclear power plants; 6: Research methods that allow to check reactor's control quality; 7: Study of the radiolytic behaviour of nuclear reactor's solutions. (M.E.L.) [es

  7. High-Pressure Reactivity of Kr and F2—Stabilization of Krypton in the +4 Oxidation State

    Directory of Open Access Journals (Sweden)

    Dominik Kurzydłowski

    2017-10-01

    Full Text Available Since the synthesis of the first krypton compound, several other Kr-bearing connections have been obtained. However, in all of them krypton adopts the +2 oxidation state, in contrast to xenon which forms numerous compounds with an oxidation state as high as +8. Motivated by the possibility of thermodynamic stabilization of exotic compounds with the use of high pressure (exceeding 1 GPa = 10 kbar, we present here theoretical investigations into the chemistry of krypton and fluorine at such large compression. In particular we focus on krypton tetrafluoride, KrF4, a molecular crystal in which krypton forms short covalent bonds with neighboring fluorine atoms thus adopting the +4 oxidation state. We find that this hitherto unknown compound can be stabilized at pressures below 50 GPa. Our results indicate also that, at larger compressions, a multitude of other KrmFn fluorides should be stable, among them KrF which exhibits covalent Kr–Kr bonds. Our results set the stage for future high-pressure synthesis of novel krypton compounds.

  8. Interactions of Chemistry Teachers with Gifted Students in a Regular High-School Chemistry Classroom

    Science.gov (United States)

    Benny, Naama; Blonder, Ron

    2018-01-01

    Regular high-school chemistry teachers view gifted students as one of several types of students in a regular (mixed-ability) classroom. Gifted students have a range of unique abilities that characterize their learning process: mostly they differ in three key learning aspects: their faster learning pace, increased depth of understanding, and…

  9. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  10. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  11. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), Southern European Variscan belt

    Science.gov (United States)

    Rubatto, Daniela; Ferrando, Simona; Compagnoni, Roberto; Lombardo, Bruno

    2010-04-01

    The age of high-pressure metamorphism is crucial to identify a suitable tectonic model for the vast Variscan orogeny. Banded H P granulites from the Gesso-Stura Terrain in the Argentera Massif, Italy, have been recently described (Ferrando et al., 2008) relicts of high-pressure metamorphism in the western part of the Variscan orogen. Bulk rock chemistry of representative lithologies reveals intermediate silica contents and calc-alkaline affinity of the various cumulate layers. Enrichment in incompatible elements denotes a significant crustal component in line with intrusion during Ordovician rifting. Magmatic zircon cores from a Pl-rich layer yield scattered ages indicating a minimum protolith age of 486 ± 7 Ma. Carboniferous zircons (340.7 ± 4.2 and 336.3 ± 4.1 Ma) are found in a Pl-rich and a Pl-poor layer, respectively. Their zoning, chemical composition (low Th/U, flat HREE pattern and Ti-in-zircon temperature) and deformation indicate that they formed during the high-pressure event before decompression and mylonitisation. The proposed age for high-pressure metamorphism in the Argentera Massif proves that subduction preceded anatexis by less than 20 Ma. The new data allow a first-order comparison with the Bohemian Massif, which is located at the eastern termination of the Variscan orogen. Similarities in evolution at either end of the orogen support a Himalayan-type tectonic model for the entire European Variscides.

  12. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  14. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  15. On-line water chemistry monitoring for corrosion prevention in ageing nuclear power plants

    International Nuclear Information System (INIS)

    Aaltonen, P.; Jaernstroem, R.; Kvarnstroem, R.; Chanfreau, E.

    1991-01-01

    General corrosion and consequently radiation buildup in nuclear power plants are controlled by the selection of material and the chemical environment. In power plants useful information concerning the kinetics of chemical reactions can be obtained by using high temperature, high pressure measurements for pH, conductivity and electrochemical potentials (ECP) of construction materials or redox-potential. The rates of general or uniform corrosion of materials in contact with the primary coolant are quite low and do not compromise the integrity of the primary circuit. Chemistry control should be applied in the first hand to minimize the dissolution and the transport and subsequent deposition of activated corrosion products to out-of-core regions. A computerized monitoring system for high temperature high pressure pH and electrochemical potential (ECP) has been in continuous use at the Loviisa power plant since 1988. Special emphasis has been put on learning the effect of pH and ECP control during cooldown process in order to further reduce background radiation buildup. During the shutdown for refueling outage in summer 1989 the high temperature water chemistry parameters were monitored. In addition to the high temperature water chemistry parameters concentrations of dissolved corrosion products as well as the activities of the corrosion products were measured. In this paper the results obtained through simultaneous monitoring of water chemistry parameters and concentrations of dissolved corrosion products as well as the activity measurements are presented and discussed. (author)

  16. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  17. Titan: a laboratory for prebiological organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  18. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  19. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  20. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  1. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  2. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  3. Pretreatment data is highly predictive of liver chemistry signals in clinical trials.

    Science.gov (United States)

    Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T

    2012-01-01

    The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy's law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones.

  4. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  5. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  6. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  7. How wide is the gap between high school and first-year chemistry at ...

    African Journals Online (AJOL)

    The aim of the study was to identify the nature and extent of the gap between high school and first-year chemistry at the University of the Witwatersrand. The investigation was done at the macro and micro levels. At the macro level high school physical science and first-year chemistry syllabuses were compared. The testing ...

  8. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  9. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  10. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  11. Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame

    Energy Technology Data Exchange (ETDEWEB)

    Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.

  12. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  13. Mass spectrometry applied to high temperature chemistry, (2)

    International Nuclear Information System (INIS)

    Asano, Mitsuru; Kato, Eiichi; Sata, Toshiyuki.

    1980-01-01

    The application of mass spectrometry to high temperature chemistry is reviewed. As a blanket material for fusion reactors, the behavior of lithium has been investigated by using mass analysers. The enthalpies of the chemical reactions of metallic lithium were obtained. The enthalpies of isomolecular exchange reactions and the derived atomization energies of LiD, Li 2 D and Li 2 D 2 were also obtained by mass spectrometry. The thermomechanical character of lithium oxide was studied. The vaporization behaviors of LiCrO 2 and Li 5 FeO 4 were studied with a quadrupole mass analyser. The vaporization of cobalt from nickel alloy was studied. The evaporated ions were analysed with a mass analyser. The measurement of the vaporized molecules of metals and fused silicate was made by mass spectrometry. The activities of Fe-V system were determined by measuring the ion current ratio. The activities of Fe-V-Cr system were also obtained. The vapor pressure of phosphor from Fe-P alloys can be measured. The activity coefficients and interaction parameters for the dilute solutions of elements, such as Mn, Al, Cu, Cr, Co, Ni, Si, Ti, V, B, Zr, Mo, C, S, and P, dissolved in liquid iron are shown in a table. The activities of NaCl-KCl system were derived by measuring the ion current ratio and by monomer-dimer method. (Kato, T.)

  14. Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures

    Science.gov (United States)

    Kavner, A.

    2015-12-01

    CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)

  15. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  16. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  17. Critical Science Education in a Suburban High School Chemistry Class

    Science.gov (United States)

    Ashby, Patrick

    To improve students' scientific literacy and their general perceptions of chemistry, I enacted critical chemistry education (CCE) in two "regular level" chemistry classes with a group of 25 students in a suburban, private high school as part of this study. CCE combined the efforts of critical science educators (Fusco & Calabrese Barton, 2001; Gilbert 2013) with the performance expectations of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013a) to critically transform the traditional chemistry curriculum at this setting. Essentially, CCE engages students in the critical exploration of socially situated chemistry content knowledge and requires them to demonstrate this knowledge through the practices of science. The purpose of this study was to gauge these students development of chemistry content knowledge, chemistry interest, and critical scientific literacy (CSL) as they engaged in CCE. CSL was a construct developed for this study that necessarily combined the National Research Center's (2012) definition of scientific literacy with a critical component. As such, CSL entailed demonstrating content knowledge through the practices of science as well as the ability to critically analyze the intersections between science content and socially relevant issues. A mixed methods, critical ethnographic approach framed the collection of data from open-ended questionnaires, focus group interviews, Likert surveys, pre- and post unit tests, and student artifacts. These data revealed three main findings: (1) students began to develop CSL in specific, significant ways working through the activities of CCE, (2) student participants of CCE developed a comparable level of chemistry content understanding to students who participated in a traditional chemistry curriculum, and (3) CCE developed a group of students' perceptions of interest in chemistry. In addition to being able to teach students discipline specific content knowledge, the implications of this study are

  18. Structural Search for High Pressure CS2 and Xe-Cl Compounds

    Science.gov (United States)

    Zarifi, Niloofar; Tse, John S.

    2018-04-01

    The recent successful implementation of several methodologies for the prediction of crystal structures based on the first-principles electronic structure have ushered in a new area of computational chemistry. In this study, the two most popular methods, namely genetic evolution and particle swarm optimization, were applied to the investigation of stable crystalline polymorphs of solid carbon disulfide and xenon halides at high pressure. It was found that both methods have their own merits. However, there are subtleties that need to be considered for the proper execution of the methods. We found a two-dimensional (2D) layered structure that may be responsible for the superconductivity in CS2. Except for XeCl2, no thermodynamically stable crystalline Xe halides were found under 60 GPa in the halide-rich region of the phase diagram.

  19. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  20. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  1. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyuan, E-mail: dingshiyuan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Yang, Yu, E-mail: yangyu@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Huang, Haiou, E-mail: huanghaiou@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Liu, Hengchen, E-mail: 799599501@qq.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Hou, Li-an, E-mail: houlian678@hotmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Xi’an High-Tech Institute, No. 2, Tongxin Street, Baqiao District, Xi’an 710025 (China)

    2015-08-30

    Highlights: • A low pressure spiral wound RO membrane can reject Cs and Sr efficiently. • The rejection of Cs and Sr is dependent on feed pH and co-existing ions. • Donnan exclusion and electrostatic interaction govern the rejection of Cs and Sr. • The differences of filtration mechanism were influenced by the size of ions. • Sr could strengthen the irreversible membrane fouling resistance with HA. - Abstract: The objective of this study was to identify the removal mechanisms of radionuclides by reverse osmosis (RO) membranes under conditions relevant to full-scale water treatment. For this purpose, the effects of feed solution chemistry on the removal of Cs and Sr by a low pressure RO system was investigated by systematically varying membrane surface charge, ionic composition, and organic matter concentrations. The results showed that the effects of solution chemistry on the filtration of Cs and Sr were related to their hydrated ionic radius, resulting in the predominance of the Donnan’s effect and electrostatic interactions, respectively. Consequently, the rejection of Cs increased more pronouncedly than Sr with the increases of feed concentration. Due to the Donnan’s effect, different anions decreased the rejection of Cs to different extents in accordance to the order of anions’ radii as SO{sub 4}{sup 2−} > Cl{sup −} > NO{sub 3}{sup −} > F{sup −}. The variations in Sr rejection were influenced by the electrostatic interactions between Sr{sup 2+} and the membrane. In addition, humic acid (HA) lowered the rejection of Cs and caused significant membrane flux decline, but did not change the rejection of Sr. Sr also aggravated HA fouling of the membrane.

  2. In place chemical cleaning of Will County Unit 4 high pressure turbine for efficiency recovery

    International Nuclear Information System (INIS)

    Cloffi, S.J.

    1989-01-01

    Due to the proliferation of nuclear units and the economic penalties associated with nuclear unit's following load, the fossil industry has had to switch gears in their mode of operation. A fossil unit must be able to cycle on and off if it is to remain useful to system power supply. Furthermore, a fossil unit is indispensable if it can go to a low load at night and ramp up during the day to meet load demand. Despite the cautions, warnings, and lack of information from turbine and boiler manufactures, Will County Unit 4 achieved such minimum load operation in November 1987. Within the year, Unit 4 experienced numerous cycle chemistry upsets and a steady decline in turbine capability. In depth turbine testing coupled with the chemistry characteristics reveal the cause to be copper deposits on the second and third stages of the high pressure turbine. This paper details the investigation, remedial action, and possible solutions to this turbine capability problem

  3. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  4. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    Science.gov (United States)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well

  5. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  6. High-pressure applications in medicine and pharmacology

    International Nuclear Information System (INIS)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C

    2004-01-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic

  7. What Is High Blood Pressure Medicine?

    Science.gov (United States)

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  8. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  9. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  10. The effect of high school chemistry instruction on students' academic self-concept

    Science.gov (United States)

    Morgan, Peter Wallace

    The purpose of this study was to investigate the effect of extended instruction in high school chemistry on the academic self-concept of students and determine what parts of the learning experience need to be addressed to make the interaction a more positive one. Fifty-seven students from three metropolitan public schools, who were enrolled in college preparatory chemistry classes, were asked to complete a written instrument, before and after extended chemistry instruction, that measures academic self-concept. Twenty-one of the students who took part in the written task volunteered to answer some in-depth interview questions concerning their academic self-concept and its relationship to chemistry instruction. Student responses, instrument scores, and student chemistry grades were analyzed for a variety of chemistry learning--academic self-concept connections and interactions. Results showed that there was a positive interaction for less than half of the students involved in the interview sessions. The results from the written instrument showed similar findings. Comparing chemistry grades and academic self-concept revealed an uncertain connection between the two, especially for students with strong academic self-concepts. Students felt that the laboratory experience was often disconnected from the remainder of chemistry instruction and recommended that the laboratory experience be integrated with classroom work. Students also expressed concerns regarding the volume of algorithmic mathematical calculations associated with college preparatory chemistry instruction. Results of this study suggest that secondary chemistry instruction must become more aware of the affective domain of learning and develop a mindful awareness of its connection to the cognitive domain if chemistry teaching and learning is going to better facilitate the intellectual growth of secondary students.

  11. Water chemistry and materials degradation in LWR'S

    International Nuclear Information System (INIS)

    Haenninen, H.; Toerroenen, K.; Aaltonen, P.

    1994-01-01

    Water chemistry plays a major role in corrosion, in erosion corrosion and in activity transport in NPPs; it impacts upon the operational safety of LWRs in two main ways: integrity of pressure boundary materials and activity transport and out-of-core radiation fields. A good control of water chemistry can significantly reduce these problems and improve plant safety, but economic pressures are leading to more rigorous operating conditions: fuel burnups are to be increased, higher efficiencies are to be achieved by running at higher temperatures and plant lifetimes are to be extended. Typical water chemistry specifications used in PWR and BWR plants are presented and the chemistry optimization is discussed. The complex interplay of metallurgical, mechanical and environmental factors in environmental sensitive cracking is shown, with details on studies for carbon steels, stainless steels and nickel base alloys. 20 refs., 8 figs., 4 tabs

  12. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  13. Canonical Pedagogical Content Knowledge by Cores for Teaching Acid-Base Chemistry at High School

    Science.gov (United States)

    Alvarado, Clara; Cañada, Florentina; Garritz, Andoni; Mellado, Vicente

    2015-01-01

    The topic of acid-base chemistry is one of the oldest in general chemistry courses and it has been almost continuously in academic discussion. The central purpose of documenting the knowledge and beliefs of a group of ten Mexican teachers with experience in teaching acid-base chemistry in high school was to know how they design, prepare and…

  14. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  15. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  16. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  17. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  18. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  19. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  20. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  1. Finding the Connections between a High-School Chemistry Curriculum and Nano-Scale Science and Technology

    Science.gov (United States)

    Blonder, Ron; Sakhnini, Sohair

    2017-01-01

    The high-school chemistry curriculum is loaded with many important chemical concepts that are taught at the high-school level and it is therefore very difficult to add modern contents to the existing curriculum. However, many studies have underscored the importance of integrating modern chemistry contents such as nanotechnology into a high-school…

  2. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  3. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  4. Secondary-water chemistry at Millstone 2

    International Nuclear Information System (INIS)

    Putkey, T.A.; Pearl, W.L.; Sawochka, S.G.

    1983-04-01

    Secondary system chemistry and steam generator corrosion observations at the Millstone 2 pressurized water reactor are summarized. Condenser retubing and retrofit of full-flow condensate polishers led to significant improvements in steam generator blowdown chemistry following observations of denting after one year of operation at elevated blowdown chloride levels. Notwithstanding the chemistry improvements, denting has continued but at a much reduced rate. In addition, extensive pitting of the Alloy 600 tubing between the tubesheet and first support plate has been reported recently

  5. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  6. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  7. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  8. The development and chemistry of high efficiency combined cycle plants

    International Nuclear Information System (INIS)

    Svoboda, Robert

    1999-01-01

    This paper presents a boiler concept based on the combination of a low-pressure drum-type boiler with high-pressure once-through boiler and the appropriate water/steam cycle. An all volatile treatment is used in the low-pressure boiler and oxygenated treatment for the once-through high pressure system. Impurity control is achieved by adapted system design and materials, high quality make-up, an appropriate cleanliness concept and clean-up procedures for a cold start. Cycle refreshing is realized by blowdown from the high-pressure water-separator. This concept utilizes simper and less equipment than traditional solutions, resulting in increased power plant reliability and less requirement on maintenance and on capital cost [it

  9. Single-phase highly densified SrBi{sub 2}Ta{sub 2}O{sub 9} compacts produced by high-pressure sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Altair Soria; Souza, Ricson Rocha de; Sousa, Vania Caldas de, E-mail: altair@if.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: The development of high-performance lead-free piezoelectric ceramics is an important scientific and technological challenge, as environmental and health issues have imposed restrictions to the use of lead zirconate titanates, the most employed material in ferroelectric devices [1]. Strontium bismuth tantalate (SBT),SrBi{sub 2}Ta{sub 2}O{sub 9}, is an interesting alternative ferroelectric material as its polarization can be modified at low voltages and it shows limited polarization switching fatigue. However, the production of highly densified single-phase bulk SBT by conventional sintering procedures is strongly compromised by stoichiometric changes due to bismuth loss. In this work, high-pressure sintering has been exploited as an alternative procedure to obtain SBT highly-densified single-phase compacts. Using toroidal-type high-pressure chambers, samples were produced by reaction sintering of BiTaO{sub 4} and SrCO{sub 3} powders, mixed in the stoichiometric ratio corresponding to SrBi{sub 2}Ta{sub 2}O{sub 9}, at pressures of 2.5 GPa and 7.7 GPa, and temperatures up to 1250°C, during 10 min. X-ray diffraction and scanning electron microscopy associated to energy-dispersive X-ray spectroscopy were used to follow the phase composition and the microstructure evolution as a function of the processing conditions. A single-phase SBT compact, with a relative density of 93% and a homogeneous microstructure, was produced by sintering at 2.5 GPa/900°C [2]. References: [1] K. Panda, J. Mater. Sci. 44, 5049-5062 (2009). [2] Ricson R.Souza, Rejane K. Kirchner, Jose R. Jurado, Altair S. Pereira, Vania C. Sousa. Journal of Solid State Chemistry 233, 259-268 (2016). (author)

  10. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  11. Quantification of air plasma chemistry for surface disinfection

    International Nuclear Information System (INIS)

    Pavlovich, Matthew J; Clark, Douglas S; Graves, David B

    2014-01-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O 3 ) and nitrogen oxides (NO and NO 2 , or NO x ) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NO x mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications. (paper)

  12. Quantification of air plasma chemistry for surface disinfection

    Science.gov (United States)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  13. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  14. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  15. Design of and initial results from a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC

    Directory of Open Access Journals (Sweden)

    D. R. Glowacki

    2007-10-01

    Full Text Available The design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a suite of analytical instrumentation, including: a multipass FTIR system; a conventional gas chromatography (GC instrument and a GC instrument for formaldehyde detection; NO/NO2, CO, O3, and H2O vapour analysers. Ray tracing simulations and NO2 actinometry have been utilized to develop a detailed model of the radiation field within HIRAC. Comparisons between the analysers and the FTIR coupled to HIRAC have been performed, and HIRAC has also been used to investigate pressure dependent kinetics of the chlorine atom reaction with ethene and the reaction of O3 and t-2-butene. The results obtained are in good agreement with literature recommendations and Master Chemical Mechanism predictions. HIRAC thereby offers a highly instrumented platform with the potential for: (1 high precision kinetics investigations over a range of atmospheric conditions; (2 detailed mechanism development, significantly enhanced according to its capability for measuring radicals; and (3 field instrument intercomparison, calibration, development, and investigations of instrument response at a range of atmospheric conditions.

  16. Impact of chemistry on Standard High Solids Vessel Design mixing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-02

    The plan for resolving technical issues regarding mixing performance within vessels of the Hanford Waste Treatment Plant Pretreatment Facility directs a chemical impact study to be performed. The vessels involved are those that will process higher (e.g., 5 wt % or more) concentrations of solids. The mixing equipment design for these vessels includes both pulse jet mixers (PJM) and air spargers. This study assesses the impact of feed chemistry on the effectiveness of PJM mixing in the Standard High Solids Vessel Design (SHSVD). The overall purpose of this study is to complement the Properties that Matter document in helping to establish an acceptable physical simulant for full-scale testing. The specific objectives for this study are (1) to identify the relevant properties and behavior of the in-process tank waste that control the performance of the system being tested, (2) to assess the solubility limits of key components that are likely to precipitate or crystallize due to PJM and sparger interaction with the waste feeds, (3) to evaluate the impact of waste chemistry on rheology and agglomeration, (4) to assess the impact of temperature on rheology and agglomeration, (5) to assess the impact of organic compounds on PJM mixing, and (6) to provide the technical basis for using a physical-rheological simulant rather than a physical-rheological-chemical simulant for full-scale vessel testing. Among the conclusions reached are the following: The primary impact of precipitation or crystallization of salts due to interactions between PJMs or spargers and waste feeds is to increase the insoluble solids concentration in the slurries, which will increase the slurry yield stress. Slurry yield stress is a function of pH, ionic strength, insoluble solids concentration, and particle size. Ionic strength and chemical composition can affect particle size. Changes in temperature can affect SHSVD mixing through its effect on properties such as viscosity, yield stress, solubility

  17. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-07-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  18. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    International Nuclear Information System (INIS)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro

    1999-01-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  19. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  20. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  1. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    Science.gov (United States)

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  2. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  3. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  4. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  5. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  6. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  7. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  8. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.

    Science.gov (United States)

    Joshi, Kaushik L; Chaudhuri, Santanu

    2015-07-28

    Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions.

  9. Ammonia chemistry at SMART

    International Nuclear Information System (INIS)

    Na, J. W.; Seong, G. W.; Lee, E. H.; Kim, W. C.; Choi, B. S.; Kim, J. P.; Lee, D. J.

    1999-01-01

    Ammonia is used as the pH control agent of primary water at SMART (System-integrated Modular Advanced ReacTor). Some of this ammonia is decomposed to hydrogen and nitrogen by radiation in the reactor core. The produced hydrogen gas is used for the removal of dissolved oxygen in the coolant. Some of nitrogen gas in pressurizer is dissolved into the primary water. Because ammonia, hydrogen and nitrogen which is produced by ammonia radiolysis are exist in the coolant at SMART, ammonia chemistry at SMART is different with lithium-boron chemistry at commercial PWR. In this study, the pH characteristics of ammonia and the solubility characteristics of hydrogen and nytrogen were analyzed for the management of primary water chemistry at SMART

  10. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  11. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  12. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  13. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  14. Distributed scaffolding: Wiki collaboration among Latino high school chemistry students

    Science.gov (United States)

    O'Sullivan, Edwin Duncan, Jr.

    The primary purpose of this study was to evaluate if wiki collaboration among Latino high school chemistry students can help reduce the science achievement gap between Latino and White students. The study was a quasi-experimental pre/post control group mixed-methods design. It used three intact sections of a high school chemistry course. The first research question asked if there is a difference in academic achievement between a treatment and control group on selected concepts from the topics of bonding, physical changes, and chemical changes, when Latino high school chemistry students collaborate on a quasi-natural wiki project. Overall results for all three activities (Bonding, Physical Changes, and Chemical Changes) indicated no significant difference between the wiki and control group. However, students performing the chemical changes activity did significantly better than their respective control group. Furthermore, there was a significant association, with large effect size, between group membership and ability to overcome the misconception that aqueous ionic reactants in precipitation reactions exist as molecular pairs of ions. Qualitative analysis of classroom and computer lab dialogue, discussion board communication, student focus groups, teacher interviews, and wiki content attributes the better performance of the chemical changes wiki group to favorable differences in intersubjectivity and calibrated assistance, as well as learning about submicroscopic representations of precipitation reactions in multiple contexts. Furthermore, the nonsignificant result overall points to an aversion to peer editing as a possible cause. Drawing considerably on Vygotsky and Piaget, the results are discussed within the context of how distributed scaffolding facilitated medium levels of cognitive conflict. The second research question asked what the characteristics of distributed metacognitive scaffolding are when Latino high school chemistry students collaborate on a quasi

  15. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  16. Medium pressure boiler water chemistry optimization using neutralizing amines mixture reagent AMINAT™ PK-2 at CEPP “Borovichi Refractories Plant” of JSC “BKO”

    Science.gov (United States)

    Guseva, O. V.; Butakova, M. V.; Orlov, K. A.; Vinogradov, S. V.; Pavlenko, L. S.

    2017-11-01

    An overview of the neutralizing amine based reagent AMINAT PK-2 usage for water chemistry of steam boilers for medium pressure boiler was given. Long term experiment showed that new reagent allows to decrease corrosion rate comparing with old water chemistry based on ammonia only. Two dosage schemes in different cycle places discussed. Scheme with two points on injection showed better results. Results of corrosion rates experiments and photos of tubes inner surfaces are presented. Based on fuel savings due to reducing scale formation the total annual economy for last year was 5.1 million Russian roubles.

  17. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  18. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  19. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  20. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  1. Trends in high pressure developments for new perspectives

    Science.gov (United States)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  2. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  3. Pretreatment data is highly predictive of liver chemistry signals in clinical trials

    Directory of Open Access Journals (Sweden)

    Cai Z

    2012-11-01

    Full Text Available Zhaohui Cai,1,* Anders Bresell,2,* Mark H Steinberg,1 Debra G Silberg,1 Stephen T Furlong11AstraZeneca Pharmaceuticals, Wilmington, DE, USA; 2AstraZeneca Pharmaceuticals, Södertälje, Sweden*These authors contributed equally to this workPurpose: The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline information.Patients and methods: Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results.Results: Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy’s law cases. Baseline γ-glutamyltransferase (GGT level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests.Conclusion: It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones.Keywords: bilirubin, Hy’s Law, ALT, GGT, baseline, prediction

  4. Studies in useful hard x-ray induced chemistry

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-06-01

    The observed rapid decomposition of potassium chlorate (via 2KClO3 + h ν --> 2KCl +3O2) via synchrotron hard x-ray irradiation (>10 keV) has enabled experiments that are developing novel and useful hard x-ray chemistry. We have observed a number of radiation-induced in situ decomposition reactions in various substances which release O2, H2, N2, NH3, and H2O in a diamond anvil cell (DAC) at ambient and high pressures. These novel acatalytic and isothermal reactions represent a highly controllable, penetrating, and focused method to initiate chemistry (including x-ray induced combustion) in sealed and/or isolated chambers which maintain matter under extreme conditions. During our studies, we have typically observed a slowing of decomposition with pressure including phase dependent decomposition of KClO3. Energy dependent studies have observed an apparent resonance near 15 keV at which the decomposition rate is maximized. This may enable use of much lower flux and portable x-ray sources (e.g. x-ray tubes) in larger scale experiments. These developments support novel means to load DACs and control chemical reactions providing novel routes of synthesis of novel materials under extreme conditions.

  5. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  6. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  7. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  8. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  9. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  10. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    Science.gov (United States)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  11. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  12. GenHyPEM: an EC-supported STREP program on high pressure PEM water electrolysis

    International Nuclear Information System (INIS)

    Millet, P.

    2006-01-01

    GenHyPEM (generateur d'hydrogene PEM) is an international research project related to the electrolytic production of hydrogen from water, using proton exchange membrane (PEM) - based electrochemical generators. The specificity of this project is that all basic research efforts are devoted to the optimization of already existing electrolysers of industrial size, in order to facilitate the introduction of this technology in the industry and to propose technological solutions for the industrial and domestic production of electrolytic hydrogen. GenHyPEM is a three years long research program financially supported by the European Commission, gathering partners from academic institutions and from the industry, in order to reach three main technological objectives aimed at improving the performances of current 1000 Nliter/hour H 2 industrial PEM water electrolysers: (i) Development of alternative low-cost membrane electrode assemblies and stack components with electrochemical performances similar to those of state-of-the-art systems. The objectives are the development of nano-scaled electrocatalytic structures for reducing the amount of noble metals; the synthesis and characterization of non-noble metal catalytic compounds provided by molecular chemistry and bio-mimetic approaches; the preparation of new composite membrane materials for high current density, high pressure and high temperature operation; the development and optimization of low-cost porous titanium sheets acting as current collectors in the electrolysis stack; (ii) Development of an optimized stack structure for high current density (1 A.cm-2) and high pressure (50 bars) operation for direct pressurized storage; (iii) Development of an automated and integrated electrolysis unit allowing gas production from intermittent renewable sources of energy such as photovoltaic-solar and wind. Current status of the project as well as perspectives are described in this paper. This project, coordinated by University of

  13. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  14. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  15. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  16. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  17. IMPROVING STUDENTS’ GENERIC SKILL IN SCIENCE THROUGH CHEMISTRY LEARNING USING ICT-BASED MEDIA ON REACTION RATE AND OSMOTIC PRESSURE MATERIAL

    Directory of Open Access Journals (Sweden)

    S. Mulyani

    2016-04-01

    Full Text Available The research aims to obtain information of improvement students’ generic skills in science through chemistry learning using ICT-based media on reaction rate and osmotic pressure material. This research was designed with quasi-experimental research method, with the design of non-equivalent control group pretest-posttest design. The research subjects were students of class XI and XII one of Madrasah Aliyah Negeri (State Islamic Senior High School in Bandung. Learning process in experiment group were conducted using ICT-based media, whereas in control group conducted by applying laboratory activities. Data were collected through multiple-choice test. The result shows that there was no significant difference of n- gain of students’ generic skill in science between experiment and control group. Therefore it can be concluded that the learning process using ICT-based media can improve students' generic skills in science as well as laboratory-based activities.

  18. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El

    2017-06-23

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  19. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El; Mehl, Marco; Pitz, William J.; Mohamed, Samah; Sarathy, Mani

    2017-01-01

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  20. Diamonds: powerful tools for high-pressure physics

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Diamond-anvil high-pressure studies have progressed to the point where they complement shock-wave studies. Because they operate at static high pressure, they permit time-consuming procedures, such as x-ray diffraction measurements for determining crystal structure. The sample material is completely recoverable and the method is adaptable to minute advantage when dealing with rare or hazardous materials. One of our goals in investigating the high-pressure behavior of iridium was to test the theoretical prediction that iridium would exhibit a phase transformation from the face-centered cubic crystal structure at about 9 GPa. Our finding that no such transformation takes place even at pressures up to 30 GPa will need to be taken into account by physicsts working to improve solid-state theory

  1. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  2. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  3. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  4. Impact of load follow operation on the chemistry of the primary and secondary circuit of a pressurized water reactor

    International Nuclear Information System (INIS)

    Boettcher, F.; Riehm, S.; Bolz, M.; Speck, A.

    2012-09-01

    Germany decided to abandon nuclear energy and to switch to renewable energy forms. According the renewable energy act renewable energy forms have priority to be fed to the grid. The support of wind and solar energy demands more and more load follow operation of the remaining nuclear power plants to stabilize the grid. This report summarizes first experience with load follow operation in two pressurized water reactors (Philippsburg KKP2 and Neckarwestheim GKNI) with regard to chemistry and radiology. The most important mechanisms of dose rate built up on the primary side are described with Co-60 and Co-58 being the main contributors to dose rate. Goal of the primary side chemistry is to avoid or at least to delay the dose rate built-up as far as achievable. Both reactors are operated according to the modified coordinated B-Li-Chemistry with a pH300 of 7.4 as target value for optimised dose build up delay. By using B-10-enriched boric acid with a boron-10 abundance of 30 at-% (compared to ca. 19.9 at-% in natural boron) the pH 300 target value can be reached earlier in the cycle due to the lower concentration of boric acid required for neutron balancing. In GKNI Zn-injection was started 2005 as a mean of dose reduction. Since 2007 GKNI was operated with load follow operation. In KKP2 load reductions due to wind energy excess are more and more common since 2008. The results of dose rate measurements on the primary side are correlated to primary coolant chemistry and load follow operation. The use of enriched boric acid had a positive (i.e. reducing dose rate) impact on the activity build-up of Co-60 on the loop lines, thus proving the effectiveness of the VGB specifications. After 5 years (one half life time of Co-60) of Zn-injection a positive effect on surface occupancy with nuclides can be determined. The impact of short term deviations from optimal chemical conditions during load follow operation on the activity build up is assessed on the basis of the corrosion

  5. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  6. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  7. Recoil 18F chemistry. XI. High pressure investigation of 1,1-difluoroethane

    International Nuclear Information System (INIS)

    Manning, R.G.; Root, J.W.

    1980-01-01

    Nuclear recoil 18 F reactions in CH 3 CHF 2 have been investigated throughout the effective pressure range 0.3--190 atm. The principal reaction channel is F-to-HF abstraction for which the combined yield from quasithermal and energetic processes in the presence of 5 mole% H 2 S additive is 83.4% +- 0.2%. A reaction mechanism is proposed that involves the organic product forming channels F-for-F, F-for-αH, F-for-βH, F-for-CH 3 and F-for-CHF 2 . The results are compared with those reported for the 18 F+CH 3 CF 3 system

  8. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  9. Chemistry, the Central Science? The History of the High School Science Sequence

    Science.gov (United States)

    Sheppard, Keith; Robbins, Dennis M.

    2005-01-01

    Chemistry became the ''central science'' not by design but by accident in the US high schools. The three important factors, which had their influence on the high school science, are sequenced and their impact on the development of US science education, are mentioned.

  10. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  11. Ultra-high pressure water jet: Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems

  12. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  13. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  14. Radioresistance increase in polymers at high pressures

    International Nuclear Information System (INIS)

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  15. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    Science.gov (United States)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  16. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  17. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  18. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  19. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  20. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  1. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  2. High Structure Active Learning Pedagogy for the Teaching of Organic Chemistry: Assessing the Impact on Academic Outcomes

    Science.gov (United States)

    Crimmins, Michael T.; Midkiff, Brooke

    2017-01-01

    Organic Chemistry is a required course for programs in chemistry, biology, and many health science careers. It has historically been considered a highly challenging course with significant failure rates. As with many science disciplines, the teaching of Organic Chemistry has traditionally focused on unstructured exposition-centered delivery of…

  3. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  4. High Energy Radical Chemistry Formation of HCN- rich Atmospheres on early Earth

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Knížek, Antonín; Pastorek, Adam; Sutherland, J.D.; Civiš, Svatopluk

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 6275. ISSN 2045-2322 R&D Projects: GA ČR GA17-05076S; GA MŠk(CZ) LM2015083; GA MŠk LG15013 Grant - others:Akademie věd - GA AV ČR(CZ) R200401521 Institutional support: RVO:61388955 Keywords : high-power laser * transform emission-spectroscopy * induced dielectric-breakdown * prebiotic organic-synthesis * nucleobase formation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.259, year: 2016

  5. High Pressure Treatment in Foods

    OpenAIRE

    Edwin Fabian Torres Bello; Gerardo González Martínez; Bernadette F. Klotz Ceberio; Dolores Rodrigo; Antonio Martínez López

    2014-01-01

    Abstract: High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non...

  6. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or

  7. Optimum coolant chemistry in BWRs

    International Nuclear Information System (INIS)

    Lin, C.C.; Cowan, R.L.; Kiss, E.

    2004-01-01

    LWR water chemistry parameters are directly or indirectly related to the plant's operational performance and for a significant amount of Operation and Maintenance (O and M) costs. Obvious impacts are the operational costs associated with water treatment, monitoring and associated radwaste generation. Less obvious is the important role water chemistry plays in the magnitude of drywell shutdown dose rates, fuel corrosion performance and, (probably most importantly) materials degradation such as from stress corrosion cracking of piping and Reactor Pressure Vessel (RPV) internal components. To improve the operational excellence of the BWR and to minimize the impact of water chemistry on O and M costs. General Electric has developed the concept of Optimum Water Chemistry (OWC). The 'best practices' and latest technology findings from the U.S., Asia and Europe are integrated into the suggested OWC Specification. This concept, together with cost effective ways to meet the requirement, are discussed. (author)

  8. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  9. Designing high pressure containers for research- principles and applications

    International Nuclear Information System (INIS)

    Anandkumar, V.

    1997-01-01

    The high pressure scientist looks for a well engineered pressure apparatus for high pressure experiments for 1 kbar (0.1 GPa) and above. Often, a variety of difficulties including the choice of materials, design configuration, optimum utilisation of the strength of materials used in the design, are encountered. This article is intended to help the high pressure scientist to select the design approach for pressure retaining container. The limitations imposed by the strength of available materials and engineering standards in building high pressure containers are discussed. Engineering solutions to overcome these limitations with optimal utilisation of the strength of the materials are also discussed. Novel methods to boost up the pressure retaining capacity like multilayered design and autofrettaging are compared along with their relative advantages and disadvantages. Special methods by which it is possible to attain pressures which are several times the yield strength of the materials of construction are presented. In this aspects such as the basis of the codes and their relevance in the design of high pressure equipment will also be described. Discussions are centered around the methods to tackle situations where experimental constraints dictate requirements of pressures higher than those permitted by design codes. Safety features are also discussed. (author)

  10. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  11. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.; Chen, Bingjie; Han, Jie; Selim, Hatem; Belhi, Memdouh; Karakaya, Yasin; Kasper, Tina; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2016-01-01

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  12. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.

    2016-06-15

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  13. Photo-preionization stabilized high-pressure glow-discharge lasers

    International Nuclear Information System (INIS)

    Von Bergmann, H.M.

    1980-07-01

    Simple nanosecond stabilization and pulsing techniques were developed to excite high-pressure gas-discharge lasers at high overvoltages and high specific power loadings. The techniques were applied to a variety of ultraviolet and visible laser systems employing fast transmission line pulsers and conventional LC generators. The stabilization procedures are evaluated and the parameters which control the geometry and uniformity of the high-pressure glow discharges are investigated. A detailed study of the formation, distribution and spectral characteristics of the fast surface corona discharges is provided. The stabilization and pulsing techniques were used for the corona and glow discharge excitation of high-pressure ultraviolet N 2 lasers. A detailed spectrally- and temporally-resolved study of the gain, fluorescence and energy extraction characteristics of the atmospheric pressure N 2 plasmas is provided

  14. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  15. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  16. High-pressure behavior of CaMo O4

    Science.gov (United States)

    Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.

    2017-09-01

    We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.

  17. Stress corrosion cracking studies on ferritic low alloy pressure vessel steel - water chemistry and modelling aspects

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.

    1994-01-01

    The susceptibility of low alloy ferritic pressure vessel steels (A533-B type) to stress corrosion cracking (SCC) degradation has been examined using various BWR type coolant chemistries. Fatigue pre-cracked wedge-loaded double cantilever beams and also constantly loaded 25 mm thick compact tension specimens have shown classical SCC attack. The influence of parameters such as dissolved oxygen content, water impurity level and conductivity, material chemical composition (sulphur content) and stress intensity level are discussed. The relevance of SCC as a life-limiting degradation mechanism for low alloy ferritic nuclear power plant PV steel is examined. Some parameters, thought to be relevant for modelling SCC processes in low alloy steels in simulated BWR-type coolant, are discussed. 8 refs., 1 fig., 4 tabs

  18. Analysis of Nitro-aromatic and Nitramine Explosives by Atmospheric Pressure Chemical Ionization / High Performance Liquid Chromatography / Mass Spectrometry / Mass Spectrometry

    International Nuclear Information System (INIS)

    Hicks, B.J.; Han, W.; Robben, J.R.

    2009-01-01

    This procedure is capable of separating and quantifying twenty-nine high explosives and internal surrogates with a single injection. After the initial preparation step, the sample is introduced to the high performance liquid chromatograph for target separation, ionized by atmospheric pressure chemical ionization and the explosives of interest are isolated / quantified by mass spectrometry / mass spectrometry. Concentrations of the target explosives are measured relative to the response of both internal and external standard concentrations. A C-18 reverse phase high performance liquid chromatograph column is used for separation. Ionization is performed using both positive and negative atmospheric pressure chemical ionization resulting in a molecular ion with little fragmentation. These ions are isolated at the first quadrupole of the mass spectrometer, dissociated by collision with argon in the collision cell and the resulting daughter ions are isolated at the second quadrupole. These daughter ions then reach the detector where they are quantified. To date this procedure represents the most thorough high performance liquid chromatography / mass spectrometry / mass spectrometry explosives analysis available in the environmental chemistry market. (authors)

  19. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  20. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  1. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  2. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  3. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  4. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...

  5. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  6. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  7. Direct arylation of benzene with aryl bromides using high-temperature/high-pressure process windows: expanding the scope of C-H activation chemistry.

    Science.gov (United States)

    Pieber, Bartholomäus; Cantillo, David; Kappe, C Oliver

    2012-04-16

    A detailed investigation on the direct arylation of benzene with aryl bromides by using first-row transition metals under high-temperature/high-pressure (high-T/p) conditions is described. By employing a parallel reactor platform for rapid reaction screening and discovery at elevated temperatures, various metal/ligand/base combinations were evaluated for their ability to enable biaryl formation through C-H activation. The combination of cobalt(III) acetylacetonate and lithium bis(trimethylsilyl)amide was subjected to further process intensification at 200 °C (15 bar), allowing a significant reduction of the catalyst/base loading and a dramatic increase in catalytic efficiency (turnover frequency) by a factor of 1000 compared to traditional protocols. The high-throughput screening additionally identified novel nickel- and copper-based metal/ligand combinations that favored an amination pathway competing with C-H activation, with the addition of ligands, such as 1,10-phenanthroline, having a profound influence on the selectivity. In addition to metal-based catalysts, high-T/p process windows were also successfully applied to transition-metal-free systems, utilizing 1,10-phenanthroline as organocatalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate.

    Science.gov (United States)

    Fridlyand, Aleksandr; Goldsborough, S Scott; Brezinsky, Kenneth

    2015-07-16

    The high pressure and temperature oxidation of methyl trans-2-nonenoate, methyl trans-3-nonenoate, 1-octene, and trans-2-octene are investigated experimentally to probe the influence of the double bond position on the chemical kinetics of long esters and alkenes. Single pulse shock tube experiments are performed in the ranges p = 3.8-6.2 MPa and T = 850-1500 K, with an average reaction time of 2 ms. Gas chromatographic measurements indicate increased reactivity for trans-2-octene compared to 1-octene, whereas both methyl nonenoate isomers have reactivities similar to that of 1-octene. A difference in the yield of stable intermediates is observed for the octenes when compared to the methyl nonenoates. Chemical kinetic models are developed with the aid of the Reaction Mechanism Generator to interpret the experimental results. The models are created using two different base chemistry submodels to investigate the influence of the foundational chemistry (i.e., C0-C4), whereas Monte Carlo simulations are performed to examine the quality of agreement with the experimental results. Significant uncertainties are found in the chemistry of unsaturated esters with the double bonds located close to the ester groups. This work highlights the importance of the foundational chemistry in predictive chemical kinetics of biodiesel combustion at engine relevant conditions.

  9. Material chemistry challenges in vitrification of high level radioactive waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2008-01-01

    Full text: Nuclear technology with an affective environmental management plan and focused attention on safety measures is a much cleaner source of electricity generation as compared to other sources. With this perspective, India has undertaken nuclear energy program to share substantial part of future need of power. Safe containment and isolation of nuclear waste from human environment is an indispensable part of this programme. Majority of radioactivity in the entire nuclear fuel cycle is high level radioactive liquid waste (HLW), which is getting generated during reprocessing of spent nuclear fuels. A three stage strategy for management of HLW has been adopted in India. This involves (i) immobilization of waste oxides in stable and inert solid matrices, (ii) interim retrievable storage of the conditioned waste product under continuous cooling and (iii) disposal in deep geological formation. Borosilicate glass matrix has been adopted in India for immobilization of HLW. Material issue are very important during the entire process of waste immobilization. Performance of the materials used in nuclear waste management determines its safety/hazards. Material chemistry therefore has a significant bearing on immobilization science and its technological development for management of HLW. The choice of suitable waste form to deploy for nuclear waste immobilization is difficult decision and the durability of the conditioned product is not the sole criterion. In any immobilization process, where radioactive materials are involved, the process and operational conditions play an important role in final selection of a suitable glass formulation. In remotely operated vitrification process, study of chemistry of materials like glass, melter, materials of construction of other equipment under high temperature and hostile corrosive condition assume significance for safe and un-interrupted vitrification of radioactive to ensure its isolation waste from human environment. The present

  10. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  11. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  12. High pressure processing reaches the U.S. market

    International Nuclear Information System (INIS)

    Mermelstein, N.H.

    1997-01-01

    The first food product commercially produced by a U.S. company using high-pressure processing has had successful test market results. High-pressure processing permits food to be preserved by subjecting it to pressures in the range of 60,000-100,000 psi for a short time instead of exposing the food to heat, freezing, chemicals, or irradiation. To produce Classic Guacamole, Avomex of Keller, Texas, uses a batch isostatic press to deactivate the enzymes in the avocado and to kill bacteria, obtaining a refrigerated shelf life of over 30 days. The guacamole is then vacuum packed and processed again. The product undergoes no heat treatment and does not contain preservatives, and the high pressure does not affect its texture, color, or taste. Meanwhile, a continuous system for high-pressure processing of pumpable foods is currently being developed by Flow International of Kent, Washington, and will be used for testing and applications work at Oregon State University

  13. Sodium and cover gas chemistry in the high temperature sodium facility

    International Nuclear Information System (INIS)

    McCown, J.J.; Duncan, H.C.

    1976-01-01

    The equipment and procedures used in following sodium and cover gas chemistry changes in the High Temperature Sodium Facility are presented. The methods of analysis and results obtained are given. Impurity trends which have been measured during the facility operations are discussed

  14. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  15. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  16. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  17. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  18. Stress and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    Stress and high blood pressure: What's the connection? Stress and long-term high blood pressure may not be linked, but taking steps to reduce your stress can improve your general health, including your blood ...

  19. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  20. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  1. Didactical design based on sharing and jumping tasks for senior high school chemistry learning

    Science.gov (United States)

    Fatimah, I.; Hendayana, S.; Supriatna, A.

    2018-05-01

    The purpose of this research is to develop the didactical design of senior high school chemistry learning based on sharing and jumping tasks in shift equilibrium chemistry. Sharing tasks used to facilitate students slow learners with help by other students of fast learners so they engage in learning. While jumping tasks used to challenge fast learners students so they didn’t feel bored in learning. In developing the didactic design, teacher activity is not only to focus on students and learning materials but also on the relationship between students and learning materials. The results of the analysis teaching plan of shift equilibrium chemistry in attached Senior High School to Indonesia University of Education showed that the learning activities more focus on how the teacher teaches instead of how the process of students’ learning. The use of research method is didactical design research (DDR). Didactical design consisted of three steps i.e. (a) analysing didactical condition before learning, (b) analyzing metapedadidactical, and (c) analyzing retrospective. Data were collected by test, observations, interviews, documentation and recordings (audio and video).The result showed that the didactical design on shift equilibrium chemistry was valid.

  2. High-pressure needle interface for thermoplastic microfluidics.

    Science.gov (United States)

    Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L

    2009-01-07

    A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.

  3. Chemistry--The Big Picture

    Science.gov (United States)

    Cassell, Anne

    2011-01-01

    Chemistry produces materials and releases energy by ionic or electronic rearrangements. Three structure types affect the ease with which a reaction occurs. In the Earth's crust, "solid crystals" change chemically only with extreme heat and pressure, unless their fixed ions touch moving fluids. On the other hand, in living things, "liquid crystals"…

  4. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    Science.gov (United States)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  5. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  6. High-School Chemistry Teaching through Environmentally Oriented Curricula

    Science.gov (United States)

    Mandler, Daphna; Mamlok-Naaman, Rachel; Blonder, Ron; Yayon, Malka; Hofstein, Avi

    2012-01-01

    Discussions held in the chemical education community have generated a variety of reports and recommendations for reforming the chemistry curriculum. The recommendations refer to teaching chemistry in the context of real-world issues. This has been suggested as a way to enhance students' motivation. It is suggested that real-world problems…

  7. High speed analysis of high pressure combustion in a constant volume cell

    NARCIS (Netherlands)

    Frijters, P.J.M.; Klein-Douwel, R.J.H.; Manski, S.S.; Somers, L.M.T.; Baert, R.S.G.; Dias, V.

    2005-01-01

    A combustion process with N2, O2 and C2H4 as fuel used in an opticallyaccessible, high pressure, high temperature, constant volume cell forresearch on diesel fuel spray formation, is studied. The flame frontspeed Vf,HS is determined using high speed imaging. The pressure traceof the combustion

  8. One Hundred Years of Peptide Chemistry

    Indian Academy of Sciences (India)

    Department of Studies in. Chemistry ... tance. Pharmacological studies required synthesis of not only the often .... Ile-His-Pro-Phe) causes increase in blood pressure. a-melano- .... from fish proteins has gained practical importance in the food.

  9. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  10. The steam pressure effect on high temperature corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  11. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  12. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  13. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  14. How to Prevent High Blood Pressure: MedlinePlus Health Topic

    Science.gov (United States)

    ... Spanish Understanding Blood Pressure Readings (American Heart Association) Weightlifting: Bad for Your Blood Pressure? (Mayo Foundation for ... High Blood Pressure High Blood Pressure in Pregnancy Nutrition Quitting Smoking Stress National Institutes of Health The ...

  15. High-pressure water facility

    Science.gov (United States)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  16. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  17. IN-PACKAGE CHEMISTRY ABSTRACTION

    International Nuclear Information System (INIS)

    E. Thomas

    2005-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H 2 O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package

  18. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  19. High-pressure phase behavior of propyl lactate and butyl lactate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Cho, Dong Woo; Shin, Jungin; Shin, Moon Sam; Bae, Won; Kim, Hwayong

    2012-01-01

    Highlights: ► The phase behavior of propyl lactate and butyl lactate in scCO 2 was measured. ► Experimental data were correlated by the PR-EOS. ► The critical constants were estimated by the three group contribution methods. ► Acentric factor was estimated by the Lee–Kesler method. ► The Nannoolal–Rarey and Lee–Kesler method shows the best correlation results. - Abstract: Lactate esters synthesized with lactic acid and ester are used as solvents and reactants in various industries, including agricultural chemistry, pharmaceuticals, electronics, and fine chemicals. Among lactate esters, high purity propyl lactate and butyl lactate are used to produce fine chemicals and in the synthesis of chiral intermediates for use in pesticides and drugs. However, distillation for the removal of propyl lactate and butyl lactate alters or degenerates products due the high boiling points of these two lactate esters. This problem can be solved by supercritical fluid extraction (SCFE) at lower temperatures. SCFE process requires high-pressure phase behavior data on CO 2 and lactates for its design and operation. In this study, high-pressure phase behavior of propyl lactate and butyl lactate in CO 2 was measured from (323.2 to 363.2) K using a variable-volume view cell apparatus. Experimental data were well correlated by the Peng–Robinson equation of state using the van der Waals one-fluid mixing rules. The critical constants were estimated by the Joback method, the Constantinou–Gani method, and the Nannoolal–Rarey method. Acentric factor was estimated by the Lee–Kesler method.

  20. Applications of high and ultra high pressure homogenization for food safety

    Directory of Open Access Journals (Sweden)

    Francesca Patrignani

    2016-08-01

    Full Text Available Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time (LTLT and high temperature short time (HTST treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure (HHP, pulsed electric field (PEF, ultrasound (US and high pressure homogenization (HPH. This last technique has been demonstrated to have a great potential to provide fresh-like products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of high pressure homogenization against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered

  1. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  2. How Potassium Can Help Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More How Potassium Can Help Control High Blood Pressure Updated:Jan 29,2018 Understanding the heart-healthy ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  3. How High Blood Pressure Can Lead to Stroke

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:Jan 29,2018 ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  4. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  5. High Accuracy, Miniature Pressure Sensor for Very High Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  6. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Guodong Zhang

    2018-03-01

    Full Text Available With the development of energetic materials (EMs and microelectromechanical systems (MEMS initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size.

  7. The Use of Online Modules and the Effect on Student Outcomes in a High School Chemistry Class

    Science.gov (United States)

    Lamb, Richard L.; Annetta, Len

    2013-10-01

    The purpose of the study was to review the efficacy of online chemistry simulations in a high school chemistry class and provide discussion of the factors that may affect student learning. The sample consisted of 351 high school students exposed to online simulations. Researchers administered a pretest, intermediate test and posttest to measure chemistry content knowledge acquired during the use of online chemistry laboratory simulations. The authors also analyzed student journal entries as an attitudinal measure of chemistry during the simulation experience. The four analyses conducted were Repeated Time Measures Analysis of Variance, a three-way Analysis of Variance, Logistic Regression and Multiple Analysis of Variance. Each of these analyses provides for a slightly different aspect of factors regarding student attitudes and outcomes. Results indicate that there is a statistically significant main effect across grouping type (experimental versus control, p = 0.042, α = 0.05). Analysis of student journal entries suggests that attitudinal factors may affect student outcomes concerning the use of online supplemental instruction. Implications for this study show that the use of online simulations promotes increased understanding of chemistry content through open-ended and interactive questioning.

  8. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    Science.gov (United States)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    We have carried out scanning electron microscopic examination of CM carbonaceous chondrites meteorites Migey, Murchison, Staroe Boriskino aged more than 4.56 billion years (about 50 million years from the beginning of the formation of the Solar system). Our study confirmed the conclusion of Rozanov, Hoover and other researchers about the presence of microfossils of bacterial origin in the matrix of all these meteorites. Since the time of the Solar system formation is 60 - 100 million years, the primary biocenosis emerged in the protoplanetary disc of the Solar system before meteorites or simultaneously with them. It means that prebiological processes and RNA world appeared even earlier in the circumsolar protoplanetary disc. Most likely, this appearance of prebiotic chemistry takes place nowday in massive and medium-massive discs of the observed young stellar objects (YSO) class 0 and I. The timescale of the transition from chemical to biological evolution took less than 50 million years for the Solar system. Further evolution of individual biocenosis in a protoplanetary disc associated with varying physico-chemical conditions during the formation of the Solar system bodies. Biocenosis on these bodies could remove or develop under the influence of many cosmic factors and geological processes in the case of Earth. To complete the primary biosphere formation in short evolution time - millions of years - requires highly efficient chemical syntheses. In industrial chemistry for the efficient synthesis of ammonia, hydrogen cyanide, methanol and other organic species, that are the precursors to obtain prebiotic compounds, catalytic reactors of high pressure are used. Thus (1) necessary amount of the proper catalyst in (2) high pressure areas of the disc can trigger these intense syntheses. The disc contains the solids with the size from nanoparticle to pebble. Iron and magnesium is catalytically active ingredient for such solids. The puzzle is a way to provide hydrogen

  9. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  10. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  11. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  12. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  13. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  14. High-pressure stainless steel active membrane microvalves

    International Nuclear Information System (INIS)

    Sharma, G; Svensson, S; Ogden, S; Klintberg, L; Hjort, K

    2011-01-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid–liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics

  15. High-pressure phase transition in Ho2O3

    International Nuclear Information System (INIS)

    Lonappan, Dayana; Shekar, N.V. Chandra; Ravindran, T.R.; Sahu, P. Ch.

    2010-01-01

    High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho 2 O 3 ) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm -1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.

  16. Germination of vegetable seeds exposed to very high pressure

    International Nuclear Information System (INIS)

    Mori, Y; Yokota, S; Ono, F

    2012-01-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  17. Germination of vegetable seeds exposed to very high pressure

    Science.gov (United States)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  18. High pressure X-ray preionized TEMA-CO2 laser

    NARCIS (Netherlands)

    Bonnie, R.J.M.; Witteman, W.J.

    1987-01-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20

  19. The Professional Development of High School Chemistry Coordinators

    Science.gov (United States)

    Hofstein, Avi; Carmeli, Miriam; Shore, Relly

    2004-02-01

    The implementation of new content and pedagogical standards in science education necessitates intensive, long-term professional development of science teachers. In this paper, we describe the rationale and structure of a comprehensive and intensive professional development program of school-based leaders, namely school chemistry coordinators. The year-long program was designed so that the chemistry teachers who enrolled in the program were able to develop in three interrelated aspects: content knowledge, pedagogical content knowledge, and leadership ability. Several strategies for the development of these aspects were adopted from Loucks-Horsley, Hewson, Love, & Stiles (1998). The evaluation of the program focused on the changes that participating teachers underwent regarding their personal beliefs and their functioning as school chemistry coordinators in their schools.

  20. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    Science.gov (United States)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  1. B1 to B2 structural phase transition in LiF under pressure

    Science.gov (United States)

    Jain, Aayushi; Dixit, R. C.

    2018-05-01

    In the last few decades the alkali halides emerged as crystals with useful applications and their high-pressure behaviour is the most intensively studied subject in high-pressure physics/chemistry, material science, and geosciences. Most alkali halides follow the B1 (NaCl-type)→B2 (CsCl-type) phase-transition route under pressure. In the present paper, we have investigated the characteristics of structural phase transition that occurred in Lithium Florid compound under high pressure. The transition pressure of B1-B2 was calculated using an effective interionic interaction potential (EIOP). The changes of the characteristics of crystals like, Gibbs free energy, cohesive energy, volume collapse, and lattice constant are calculated for the B1 and B2 structures. These data were compared with the available experimental and theoretical data.

  2. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  3. High Blood Pressure and Women

    Science.gov (United States)

    ... is known as gestational hypertension, a form of secondary hypertension caused by the pregnancy that usually disappears after delivery. If the mother is not treated, high blood pressure can be dangerous to both the mother ...

  4. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  5. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  6. High pressure studies of fluorenone emission in plastic media

    International Nuclear Information System (INIS)

    Mitchell, D.J.; Schuster, G.B.; Drickamer, H.G.

    1977-01-01

    The energy and the quantum efficiency for fluorenone fluorescence in the crystalline state and in polymeric matrices was measured as a function of external pressure over the range 0--140 kbar. The application of high pressure induces changes in the quantum yield, which ranges from 0.001 at low pressure to a maximum of approx.0.1 at high pressure in hydrocarbon plastics. These results are interpreted as arising from the decrease in the energy of the lowest ππ excited singlet state relative to other relevant states as the external pressure is increased

  7. Announcement: National High Blood Pressure Education Month - May 2016.

    Science.gov (United States)

    2016-05-27

    May is National High Blood Pressure Education Month. High blood pressure (hypertension) is a major contributor to heart disease and stroke, two leading causes of death in the United States.* High blood pressure affects one third of U.S. adults, or approximately 75 million persons, yet approximately 11 million of these persons are not aware they have hypertension, and approximately 18 million are not being treated (unpublished data) (1,2).

  8. 49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...

  9. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  10. Prevalence of pre-high blood pressure and high blood pressure among non-overweight children and adolescents using international blood pressure references in developed regions in China.

    Science.gov (United States)

    Tian, Changwei; Xu, Shuang; Wang, Hua; Wang, Wenming; Shen, Hui

    2017-09-01

    There is a lack of data on the prevalence of pre-high blood pressure (PreHBP) and high blood pressure (HBP), based on recent international blood pressure references, in non-overweight children and adolescents. To describe the prevalence of PreHBP and HBP in non-overweight children and adolescents in developed regions of China. In total, 588 097 non-overweight children and adolescents aged 6-17 years from the National Surveys on Chinese Students' Constitution and Health in 2015 were included. The prevalence of PreHBP was 13.41% and subjects in urban areas had a higher prevalence of PreHBP (14.14%) than those in rural areas (12.92%). Subjects in regions with a high (13.56%) or moderate (13.61%) socioeconomic status showed a higher prevalence of PreHBP than those in regions with a relatively low socioeconomic status (12.76%). A similar pattern was found for the prevalence of HBP, and the prevalence of HBP was 18.25% for all participants, 20.55% for subjects in urban areas, 16.71% in rural areas, 18.76% in high socioeconomic areas, 18.62% in moderate socioeconomic areas and 16.70% in relatively low socioeconomic areas. A large proportion of non-overweight children and adolescents had elevated blood pressure and there were urban-rural and socioeconomic disparities in the prevalence of elevated blood pressure.

  11. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E. [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom); Eriksson, Susanna K. [Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala (Sweden); Rensmo, Håkan; Hahlin, Maria [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Åhlund, John; Edwards, Mårten O.M. [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden); Payne, David J., E-mail: d.payne@imperial.ac.uk [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-11-15

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  12. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    International Nuclear Information System (INIS)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J.; Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E.; Eriksson, Susanna K.; Rensmo, Håkan; Hahlin, Maria; Åhlund, John; Edwards, Mårten O.M.; Payne, David J.

    2015-01-01

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  13. Protection against high intravascular pressure in giraffe legs

    DEFF Research Database (Denmark)

    Petersen, Karin K; Hørlyck, Arne; Østergaard, Kristine Hovkjær

    2013-01-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination....... All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure....... revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along...

  14. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  15. The study on density change of carbon dioxide seawater solution at high pressure and low temperature

    International Nuclear Information System (INIS)

    Song, Y.; Chen, B.; Nishio, M.; Akai, M.

    2005-01-01

    It has been widely considered that the global warming, induced by the increasing concentration of carbon dioxide and other greenhouse gases in the atmosphere, is an environmental task affecting the world economic development. In order to mitigate the concentration of CO 2 in the atmosphere, the sequestration of carbon dioxide into the ocean had been investigated theoretically and experimentally over the last 10 years. In addition to ocean dynamics, ocean geological, and biological information on large space and long time scales, the physical-chemistry properties of seawater-carbon dioxide system at high pressure (P>5.0 MPa) and lower temperature (274.15 K 3 , which is approximately same with that of carbon dioxide freshwater solution, the slope of which is 0.275 g/cm 3

  16. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  17. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  18. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  19. High-pressure microscopy for tracking dynamic properties of molecular machines.

    Science.gov (United States)

    Nishiyama, Masayoshi

    2017-12-01

    High-pressure microscopy is one of the powerful techniques to visualize the effects of hydrostatic pressures on research targets. It could be used for monitoring the pressure-induced changes in the structure and function of molecular machines in vitro and in vivo. This review focuses on the dynamic properties of the assemblies and machines, analyzed by means of high-pressure microscopy measurement. We developed a high-pressure microscope that is optimized both for the best image formation and for the stability to hydrostatic pressure up to 150 MPa. Application of pressure could change polymerization and depolymerization processes of the microtubule cytoskeleton, suggesting a modulation of the intermolecular interaction between tubulin molecules. A novel motility assay demonstrated that high hydrostatic pressure induces counterclockwise (CCW) to clockwise (CW) reversals of the Escherichia coli flagellar motor. The present techniques could be extended to study how molecular machines in complicated systems respond to mechanical stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bonding pathways of high-pressure chemical transformations

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2013-01-01

    A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)

  1. High blood pressure in acute ischemic stroke and clinical outcome.

    Science.gov (United States)

    Manabe, Yasuhiro; Kono, Syoichiro; Tanaka, Tomotaka; Narai, Hisashi; Omori, Nobuhiko

    2009-11-16

    This study aimed to evaluate the prognostic value of acute phase blood pressure in patients with acute ischemic stroke by determining whether or not it contributes to clinical outcome. We studied 515 consecutive patients admitted within the first 48 hours after the onset of ischemic strokes, employing systolic and diastolic blood pressure measurements recorded within 36 hours after admission. High blood pressure was defined when the mean of at least 2 blood pressure measurements was ≥200 mmHg systolic and/or ≥110 mmHg diastolic at 6 to 24 hours after admission or ≥180 mmHg systolic and/or ≥105 mmHg diastolic at 24 to 36 hours after admission. The high blood pressure group was found to include 16% of the patients. Age, sex, diabetes mellitus, hypercholesterolemia, atrial fibrillation, ischemic heart disease, stroke history, carotid artery stenosis, leukoaraiosis, NIH Stroke Scale (NIHSS) on admission and mortality were not significantly correlated with either the high blood pressure or non-high blood pressure group. High blood pressure on admission was significantly associated with a past history of hypertension, kidney disease, the modified Rankin Scale (mRS) on discharge and the length of stay. On logistic regression analysis, with no previous history of hypertension, diabetes mellitus, atrial fibrillation, and kidney disease were independent risk factors associated with the presence of high blood pressure [odds ratio (OR), 1.85 (95% confidence interval (CI): 1.06-3.22), 1.89 (95% CI: 1.11-3.22), and 3.31 (95% CI: 1.36-8.04), respectively]. Multi-organ injury may be presented in acute stroke patients with high blood pressure. Patients with high blood pressure had a poor functional outcome after acute ischemic stroke.

  2. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    example, represents the stress on the x plane in the y direction. There are three .... optical studies and studying compressibility of fluids. 3.2 Opposed ..... [4] G N Peggs, High Pressure Measurement Techniques, Applied Science. Publishers ...

  3. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  4. Stepwise Inquiry into Hard Water in a High School Chemistry Laboratory

    Science.gov (United States)

    Kakisako, Mami; Nishikawa, Kazuyuki; Nakano, Masayoshi; Harada, Kana S.; Tatsuoka, Tomoyuki; Koga, Nobuyoshi

    2016-01-01

    This study focuses on the design of a learning program to introduce complexometric titration as a method for determining water hardness in a high school chemistry laboratory. Students are introduced to the different properties and reactions of hard water in a stepwise manner so that they gain the necessary chemical knowledge and conceptual…

  5. High pressure photoinduced ring opening of benzene

    International Nuclear Information System (INIS)

    Ciabini, Lucia; Santoro, Mario; Bini, Roberto; Schettino, Vincenzo

    2002-01-01

    The chemical transformation of crystalline benzene into an amorphous solid (a-C:H) was induced at high pressure by employing laser light of suitable wavelengths. The reaction was forced to occur at 16 GPa, well below the pressure value (23 GPa) where the reaction normally occurs. Different laser sources were used to tune the pumping wavelength into the red wing of the first excited singlet state S 1 ( 1 B 2u ) absorption edge. Here the benzene ring is distorted, presenting a greater flexibility which makes the molecule unstable at high pressure. The selective pumping of the S 1 level, in addition to structural considerations, was of paramount importance to clarify the mechanism of the reaction

  6. Cavitation-induced reactions in high-pressure carbon dioxide

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; van Eck, D.; Kemmere, M.F.; Keurentjes, J.T.F.

    2002-01-01

    The feasibility of ultrasound-induced in situ radical formation in liquid carbon dioxide was demonstrated. The required threshold pressure for cavitation could be exceeded at a relatively low acoustic intensity, as the high vapor pressure of CO2 counteracts the hydrostatic pressure. With the use of

  7. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    Science.gov (United States)

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  8. [High-grade pressure sores in frail older high-risk persons. A retrospective postmortem case-control-study].

    Science.gov (United States)

    Von Renteln-Kruse, W; Krause, T; Anders, J; Kühl, M; Heinemann, A; Püschel, K

    2004-04-01

    Some old persons at risk do develop, but others, at comparable risk, do not develop high-grade pressure sores. To evaluate potentially different risk factors, we performed a post mortem case-control study in old persons who developed high-grade pressure sores within six months until 14 days before death. Consecutive cases with pressure sores grade >/=3 and potential controls at comparably high risk for pressure sores were examined before cremation. After written informed consent had been obtained by the next relatives, all available nursing and medical records of the deceased were thoroughly evaluated. Cases and controls were matched according to age, gender, immobility, and cachexia.A total of 100 cases with 71 pressure sores grade 3 and 29 pressure sores grade 4 were compared to 100 controls with 27 pressure sores grade pressure sores in frail older high-risk persons. Sedative drug effects and impaired patient compliance with preventive and therapeutic measures may also be associated with the development of high-grade pressure sores in old persons at high risk.

  9. Some observations on hydrazine and ammonia based chemistries in PWRs

    International Nuclear Information System (INIS)

    Brunning, J.; Cake, P.; Harper, A.; Sims, H.E.

    1997-01-01

    This paper presents a comparison of factors related to activated corrosion product transport in pressurized water reactors (PWRs) operating hydrazine and ammonia-based chemistries. Measurements of the concentrations of corrosion products in the coolant of reactors operating both chemistry regimes are compared under steady operation and during shutdown. These data allow some comparisons to be drawn of corrosion product transport under ammonia and hydrazine based chemistries. Experimental measurements of electrochemical potential under PWR conditions in the presence and absence of radiation fields and under hydrazine and ammonia chemistries are also presented. (author). 4 refs, 5 figs, 2 tabs

  10. Some observations on hydrazine and ammonia based chemistries in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Brunning, J; Cake, P; Harper, A; Sims, H E [AEA Technology, Oxon (United Kingdom)

    1997-02-01

    This paper presents a comparison of factors related to activated corrosion product transport in pressurized water reactors (PWRs) operating hydrazine and ammonia-based chemistries. Measurements of the concentrations of corrosion products in the coolant of reactors operating both chemistry regimes are compared under steady operation and during shutdown. These data allow some comparisons to be drawn of corrosion product transport under ammonia and hydrazine based chemistries. Experimental measurements of electrochemical potential under PWR conditions in the presence and absence of radiation fields and under hydrazine and ammonia chemistries are also presented. (author). 4 refs, 5 figs, 2 tabs.

  11. Development and Implementation of Inquiry-Based and Computerized-Based Laboratories: Reforming High School Chemistry in Israel

    Science.gov (United States)

    Barnea, Nitza; Dori, Yehudit Judy; Hofstein, Avi

    2010-01-01

    Reforms in science education in general and in chemistry education in particular have been introduced in many countries since the beginning of the 21st Century. Similarly, at this time in Israel both the content and pedagogy of the chemistry curriculum in high schools were reformed. New content and pedagogical standards emerged, fostering…

  12. Designing an educative curriculum unit for teaching molecular geometry in high school chemistry

    Science.gov (United States)

    Makarious, Nader N.

    Chemistry is a highly abstract discipline that is taught and learned with the aid of various models. Among the most challenging, yet a fundamental topic in general chemistry at the high school level, is molecular geometry. This study focused on developing exemplary educative curriculum materials pertaining to the topic of molecular geometry. The methodology used in this study consisted of several steps. First, a diverse set of models were analyzed to determine to what extent each model serves its purpose in teaching molecular geometry. Second, a number of high school teachers and college chemistry professors were asked to share their experiences on using models in teaching molecular geometry through an online questionnaire. Third, findings from the comparative analysis of models, teachers’ experiences, literature review on models and students’ misconceptions, the curriculum expectations of the Next Generation Science Standards and their emphasis on three-dimensional learning and nature of science (NOS) contributed to the development of the molecular geometry unit. Fourth, the developed unit was reviewed by fellow teachers and doctoral-level science education experts and was revised to further improve its coherence and clarity in support of teaching and learning of the molecular geometry concepts. The produced educative curriculum materials focus on the scientific practice of developing and using models as promoted in the Next Generations Science Standards (NGSS) while also addressing nature of science (NOS) goals. The educative features of the newly developed unit support teachers’ pedagogical knowledge (PK) and pedagogical content knowledge (PCK). The unit includes an overview, teacher’s guide, and eight detailed lesson plans with inquiry oriented modeling activities replete with models and suggestions for teachers, as well as formative and summative assessment tasks. The unit design process serves as a model for redesigning other instructional units in

  13. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Michalčíková, Regina; Shestivska, Violetta; Šponer, Jiří; Šponer, Judit E.; Civiš, Svatopluk

    2014-01-01

    Roč. 118, č. 4 (2014), s. 719-736 ISSN 1089-5639 R&D Projects: GA ČR GAP208/10/2302; GA MŠk LM2010014 Institutional support: RVO:61388955 ; RVO:68081707 Keywords : HIGH-POWER LASER * TRANSFORM EMISSION-SPECTROSCOPY * INDUCED DIELECTRIC-BREAKDOWN Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.693, year: 2014

  14. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  15. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  16. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  17. High Pressure Treatment in Foods

    Science.gov (United States)

    Torres Bello, Edwin Fabian; González Martínez, Gerardo; Klotz Ceberio, Bernadette F.; Rodrigo, Dolores; Martínez López, Antonio

    2014-01-01

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance. PMID:28234332

  18. High Pressure Treatment in Foods

    Directory of Open Access Journals (Sweden)

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  19. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  20. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st...

  1. Nucleation at high pressure I: Theoretical considerations.

    NARCIS (Netherlands)

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  2. High pressure orthorhombic structure of CuInSe2

    International Nuclear Information System (INIS)

    Bovornratanaraks, T; Saengsuwan, V; Yoodee, K; McMahon, M I; Hejny, C; Ruffolo, D

    2010-01-01

    The structural behaviour of CuInSe 2 under high pressure has been studied up to 53 GPa using angle-dispersive x-ray powder diffraction techniques. The previously reported structural phase transition from its ambient pressure tetragonal structure to a high pressure phase with a NaCl-like cubic structure at 7.6 GPa has been confirmed. On further compression, another structural phase transition is observed at 39 GPa. A full structural study of this high pressure phase has been carried out and the high pressure structure has been identified as orthorhombic with space group Cmcm and lattice parameters a = 4.867(8) A, b = 5.023(8) A and c = 4.980(3) A at 53.2(2) GPa. This phase transition behaviour is similar to those of analogous binary and trinary semiconductors, where the orthorhombic Cmcm structure can also be viewed as a distortion of the cubic NaCl-type structure.

  3. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  4. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  5. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  6. Foam glass obtained through high-pressure sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2018-01-01

    Foam glasses are usually prepared through a chemical approach, that is, by mixing glass powder with foaming agents, and heating the mixture to a temperature above the softening point (106.6 Pa s) of the glass. The foaming agents release gas, enabling expansion of the sintered glass. Here, we use...... a physical foaming approach to prepare foam glass. First, closed pores filled with inert gases (He, Ar, or N2) are physically introduced into a glass body by sintering cathode ray tube (CRT) panel glass powder at high gas pressure (5‐25 MPa) at 640°C and, then cooled to room temperature. The sintered bodies...... are subjected to a second heat treatment above the glass transition temperature at atmospheric pressure. This heat treatment causes expansion of the pores due to high internal gas pressure. We found that the foaming ability strongly depends on the gas pressure applied during sintering, and on the kinetic...

  7. A viscosity measurement during the high pressure phase transition in triolein

    International Nuclear Information System (INIS)

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M

    2008-01-01

    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  8. HIGH HYDROSTATIC PRESSURE SYSTEMS USE IN FOOD INDUSTRY

    OpenAIRE

    Yahya TÜLEK; Gökçe FİLİZAY

    2006-01-01

    Food preservation is a continuous fight against microorganisms spoiling the food or making it unsafe. The last decade, non-thermal inactivation techniques have been a major research issue, driven by an increased consumer demand for nutritious, fresh like food products with a high organoleptical quality and an acceptable shelf life. Investigated inactivation technologies are ionisation radiation, high hydrostatic pressure (HHP), pulsed electrical fields, high pressure homogenisation, UV decont...

  9. High pressure X-ray preionized TEMA-CO2 laser

    Science.gov (United States)

    Bonnie, R. J. M.; Witteman, W. J.

    1987-09-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5-20 atm, yielding a specific laser output in the order of 35 J/l.

  10. Various high precision measurements of pressure in atomic energy industry

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Inoue, Akira; Hosoma, Takashi; Tanaka, Izumi; Gabane, Tsunemichi.

    1987-01-01

    As for the pressure measurement in atomic energy industry, it is mostly the measurement using differential pressure transmitters and pressure transmitters for process measurement with the general accuracy of measurement of 0.2 - 0.5 % FS/year. However, recently for the development of nuclear fusion reactors and the establishment of nuclear fuel cycle accompanying new atomic energy technology, there are the needs of the pressure measurement having higher accuracy of 0.01 % FS/year and high resolution, and quartz vibration type pressure sensors appeared. New high accuracy pressure measurement techniques were developed by the advance of data processing and the rationalization of data transmission. As the results, the measurement of the differential pressure of helium-lithium two-phase flow in the cooling system of nuclear fusion reactors, the high accuracy measuring system for the level of plutonium nitrate and other fuel substance in tanks in fuel reprocessing and conversion, the high accuracy measurement of atmospheric pressure and wind velocity in ducts, chimneys and tunnels in nuclear facilities and so on became feasible. The principle and the measured data of quartz vibration type pressure sensors are shown. (Kako, I.)

  11. Very high temperature chemistry: Science justification for containerless experimentation in space

    Science.gov (United States)

    Hofmeister, William H.; Nordine, Paul

    1990-01-01

    A summary is presented of the justification for application of containerless processing in space to high temperature science. Low earth orbit offers a gravitational environment that allows samples to be positioned in an experimental apparatus by very small forces. Well controlled experiments become possible on reactive materials at high temperatures in a reasonably quiescent state and without container contamination. This provides an opportunity to advance the science of high temperature chemistry that can only be realized with a commitment by NASA to provide advanced facilities for in-space containerless study of materials at very high temperature.

  12. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  13. High-pressure Raman investigation of the semiconductor antimony oxide

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Aihui; Cao, Lihua [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130012 Changchun (China); Wan, Chunming [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Ma, Yanmei [Department of Agronomy, Jilin University, 130062 Changchun (China)

    2011-05-15

    The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb{sub 2}O{sub 3}) has been investigated by Raman spectroscopy techniques in a diamond anvil cell up to 20 GPa at room temperature. New peaks in the external lattice mode range emerged at a pressure above 8.6-15 GPa, suggesting that the structural phase transition occurred. The pressure dependence of Raman frequencies was obtained. The band at 139 cm{sup -1} (assigned to group mode) has a pressure dependence of -0.475 cm{sup -1}/GPa and reveals significant softening at high pressure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. NATO Advanced Research Workshop on Frontiers of High-Pressure Research

    CERN Document Server

    Etters, Richard

    1991-01-01

    The role of high pressure experiments in the discovery of supercon­ ducting materials with a T. above liquid nitrogen temperature has demon­ strated the importance of such experiments. The same role holds true in the tailoring of materials for optoelectronic devices. In addition, much progress has been made recently in the search for metallic hydro­ gen, and the application of high pressure in polymer research has brought forth interesting results. These facts together with the suc­ cess of previous small size meetings (such as the "First International Conference on the Physics of Solids at High Pressure", held in 1965 in Tucson, Arizona, U. S. A. ; "High Pressure and Low Temperature Physics", held in 1977 in Cleveland, Ohio, U. S. A. ; and "Physics of Solids Under High Pressure", held in 1981 in bad Honnef, Germany), motivated us to organize a workshop with emphasis on the newest results and trends in these fields of high pressure research. Furthermore, it was intended to mix experienced and young scien�...

  15. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  16. Synergistic effect of high pressure processing and Lactobacillus casei antimicrobial activity against pressure resistant Listeria monocytogenes.

    Science.gov (United States)

    Chung, Hyun-Jung; Yousef, Ahmed E

    2010-09-30

    The purpose of this study was to evaluate combinations of high pressure processing (HPP) and Lactobacillus casei antimicrobial activity against Listeria monocytogenes strains with variation in pressure resistance in culture and in a food model. In culture, combination of HPP (350 MPa, for 1-20 min) and Lb. casei cell extract (CE, 32 CEAU/ml) showed a significant synergistic bactericidal effect (P5 log(10)CFU/ml. Synergy between CE and HPP was most evident in the pressure-resistant strain, OSY-8578. Similar result was observed in meat products where high pressure (500 MPa for 1 min), and high-activity CE (100 CEAU/g) caused >5 log reduction in the viability of L. monocytogenes Scott A. The combination treatment resulted in the absence of peaks associated with cellular components in DSC thermogram suggesting that the presence of CE may have caused a considerable damage to cellular components during the high pressure treatment. Copyright 2010 Elsevier B.V. All rights reserved.

  17. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    Science.gov (United States)

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  19. Frictional pressure drop of high pressure steam-water two-phase flow in internally helical ribbed tubes

    International Nuclear Information System (INIS)

    Tingkuan, C.; Xuanzheng, C.

    1987-01-01

    It is well known that the internally helical ribbed tubes are effective in suppressing the dry-out in boiling tubes at high pressures, so they are widely used as furnace water wall tubes in modern large steam power boilers. Design of the boilers requires the data on frictional pressure drop characteristics of the ribbed tubes, but they are not sufficient now. This paper describes the experimental results on the adiabatic frictional pressure drop in both horizontal ribbed tubes with measured mean inside diameter of 11.69 mm and 35.42 mm at high pressure from 10 to 21 MPa, mass flow rate from 350 to 3800 kg/m/sup 2/s and steam quality from 0 to 1 in our high pressure electrically heated water loop. Simultaneously, both smooth tubes under the same conditions for comparison. Based on the tests the correlation for determining the frictional pressure drop of internally ribbed tubes are proposed

  20. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  1. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  2. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  3. Evaluation of high-pressure containment buildings for LMFBR's

    International Nuclear Information System (INIS)

    Armstrong, G.R.

    1981-01-01

    A study was conducted on the use of High Pressure LMFBR Containment Buildings for 1000 MW(e) LMFBRs. Two principal aspects were investigated: accident consequence mitigation and cost. Two types of hypothetical accidents were analyzed to establish consequence mitigation: melt-through and energetic expulsion. Three Containment Building (CB) design pressures were investigated: 69 kPa (10 psig), 207 kPa (30 psig), and 414 kPa (60 psig). Four types of design structures were analyzed to establish cost: steel, steel with confinement building, reinforced concrete, and prestressed/post-tensioned concrete. Results show that: it is within reason that a high pressure containment for a 1000 MW(e) reactor can be fabricated that will retain its integrity during postulated severe hypothetical accidents, if available measures are taken to reduce or prevent hydrogen production and the cost differential between basic high (414 kPa) and low (69 kPa) pressure containments is $10 x 10 6 or less

  4. Future in actinoids coordination chemistry

    International Nuclear Information System (INIS)

    Kitazawa, Takafumi

    2006-01-01

    Actinoids coordination chemistry is concerned with spent nuclear fuel reprocessing, specifically with solid-state chemistry of nuclear fuels, separation process with radioactive substances, and geological disposal of high-level radioactive substances. In the 21st century, accumulation of minor actinides, Np, Am, Cm, and others will be realized according with the present program of nuclear energy development. The present article briefly introduces general properties of actinide elements, followed by their coordination chemistry compared with rare earths coordination chemistry. Special facility needed to treat actinoids as well as their chemistry is briefly explained, together with the specific experimental apparatus such as X-ray Absorption Fine Structure (XAFS) and time-resolved laser-induced fluorescence spectrometry (TRLFS) with synchrotron radiation facilities. The effect of coordination with actinoids in the environment chemistry is important in underground disposal of high-level radioactive wastes. For theoretical analysis of the results with actinoids chemistry, relativistic calculation is needed. (S. Ohno)

  5. Quality and storage-stability of high-pressure preseved green beans

    NARCIS (Netherlands)

    Krebbers, B.; Matser, A.M.; Koets, M.; Berg, van den R.W.

    2002-01-01

    The effects of high-pressure technology on naturally present microbial flora, texture, color, ascorbic acid content and peroxidase activity of whole green beans were evaluated and compared to conventional preservation techniques. High-pressure processing (HPP) and two-pulse pressure treatment (pHPP)

  6. High pressure injection injuries: an overview.

    Science.gov (United States)

    Fialkov, J A; Freiberg, A

    1991-01-01

    Injuries resulting from the use of high pressure injectors and spray guns are relatively rare; however, the potential tissue damage caused by the injury as well as the extent of the injury itself may go unrecognized by the primary physician. The purpose of this paper is to inform the emergency physician of the nature and standard management of this type of injury. A basic understanding of the pathophysiology of the high pressure injection injury (HPII) is essential in avoiding the mistakes in management that have been reported in the literature. The emergency management of the HPII includes: evaluation and immobilization, tetanus and antimicrobial prophylaxis, supportive and resuscitative measures, analgesia, and minimizing the time to definitive surgical treatment.

  7. Applications of High and Ultra High Pressure Homogenization for Food Safety.

    Science.gov (United States)

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide "fresh-like" products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered.

  8. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  9. Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.

    Science.gov (United States)

    Liu, Y; Zhao, X Y; Zou, L; Hu, X S

    2013-06-01

    High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P  0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P  0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.

  10. Fabrication of High Temperature and High Pressure Vessel for the Fuel Test

    International Nuclear Information System (INIS)

    Park, Kook Nam; Lee, Jong Min; Sim, Bong Shick; Shon, Jae Min; Ahn, Seung Ho; Yoo, Seong Yeon

    2007-01-01

    The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR and CANDU nuclear power plants has been developed and installed in HANARO, KAERI. It is consisted of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS which is located inside the pool is divided into 3-parts; they are in-pool pipes, IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The localization of the IVA is achieved by manufacturing through local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique of the instrument lines has been checked for its functionality and yield. A IVA has been manufactured by local technique and will be finally tested under out of the high temperature and high pressure test

  11. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  12. High Blood Pressure and Cold Remedies: Which Are Safe?

    Science.gov (United States)

    ... counter cold remedies safe for people who have high blood pressure? Answers from Sheldon G. Sheps, M.D. Over- ... remedies aren't off-limits if you have high blood pressure, but it's important to make careful choices. Among ...

  13. Novel process windows for enabling, accelerating, and uplifting flow chemistry.

    Science.gov (United States)

    Hessel, Volker; Kralisch, Dana; Kockmann, Norbert; Noël, Timothy; Wang, Qi

    2013-05-01

    Novel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties. This Review discusses the different routes towards Novel Process Windows and provides several examples for each route grouped into different classes of chemical and process-design intensification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High pressure freon decontamination of remote equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried

  15. Laboratory Activity Worksheet to Train High Order Thinking Skill of Student on Surface Chemistry Lecture

    Science.gov (United States)

    Yonata, B.; Nasrudin, H.

    2018-01-01

    A worksheet has to be a set with activity which is help students to arrange their own experiments. For this reason, this research is focused on how to train students’ higher order thinking skills in laboratory activity by developing laboratory activity worksheet on surface chemistry lecture. To ensure that the laboratory activity worksheet already contains aspects of the higher order thinking skill, it requires theoretical and empirical validation. From the data analysis results, it shows that the developed worksheet worth to use. The worksheet is worthy of theoretical and empirical feasibility. This conclusion is based on the findings: 1) Assessment from the validators about the theoretical feasibility aspects in the category is very feasible with an assessment range of 95.24% to 97.92%. 2) students’ higher thinking skill from N Gain values ranges from 0.50 (enough) to 1.00 (high) so it can be concluded that the laboratory activity worksheet on surface chemistry lecture is empirical in terms of worth. The empirical feasibility is supported by the responses of the students in very reasonable categories. It is expected that the laboratory activity worksheet on surface chemistry lecture can train students’ high order thinking skills for students who program surface chemistry lecture.

  16. High Pressure EVA Glove (HPEG), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Final Frontier Design's (FFD) High Pressure EVA Glove (HPEG) is a game changing technology enabling future exploration class space missions. The high operating...

  17. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, AFib and Your Risk of Stroke Updated:Aug ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  18. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-06

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particular interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.

  19. Water chemistry and behavior of materials in PWRs and BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, P; Hanninen, H [VTT Manufacturing Technology, Espoo (Finland)

    1997-09-01

    Water chemistry plays a major role in corrosion and in activity transport in NPP`s. Although a full understanding of all mechanisms involved in corrosion does not exist, controlling of the water chemistry has achieved good results in recent years. Water chemistry impacts upon the operational safety of LWR`s in two main ways: integrity of pressure boundary materials and, activity transport and out-of-core radiation fields. This paper will describe application of water chemistry control in operating reactors to prevent corrosion. Some problems experienced in LWR`s will be reviewed for the design of the nuclear heating reactors (NHR). (author). 18 refs, 10 figs, 5 tabs.

  20. Water chemistry and behavior of materials in PWRs and BWRs

    International Nuclear Information System (INIS)

    Aaltonen, P.; Hanninen, H.

    1997-01-01

    Water chemistry plays a major role in corrosion and in activity transport in NPP's. Although a full understanding of all mechanisms involved in corrosion does not exist, controlling of the water chemistry has achieved good results in recent years. Water chemistry impacts upon the operational safety of LWR's in two main ways: integrity of pressure boundary materials and, activity transport and out-of-core radiation fields. This paper will describe application of water chemistry control in operating reactors to prevent corrosion. Some problems experienced in LWR's will be reviewed for the design of the nuclear heating reactors (NHR). (author). 18 refs, 10 figs, 5 tabs

  1. Antiparallel Dynamic Covalent Chemistries.

    Science.gov (United States)

    Matysiak, Bartosz M; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G; Liu, Bin; Komáromy, Dávid; Otto, Sijbren

    2017-05-17

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.

  2. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  3. Determination of validity and reliability of performance assessments tasks developed for selected topics in high school chemistry

    Science.gov (United States)

    Zichittella, Gail Eberhardt

    The primary purpose of this study was to validate performance assessments, which can be used as teaching and assessment instruments in high school science classrooms. This study evaluated the classroom usability of these performance instruments and establishes the interrater reliability of the scoring rubrics when used by classroom teachers. The assessment instruments were designed to represent two levels of scientific inquiry. The high level of inquiry tasks are relatively unstructured in terms of student directions; the low inquiry tasks provided more structure for the student. The tasks cover two content topics studied in chemistry (scientific observation and density). Students from a variety of Western New York school districts who were enrolled in chemistry classes and other science courses were involved in completion of the tasks at the two levels of inquiry. The chemistry students completed the NYS Regents Examination in Chemistry. Their classroom teachers were interviewed and completed a questionnaire to aid in the establishment their epistemological view on the inclusion of inquiry based learning in the science classroom. Data showed that the performance assessment tasks were reliable, valid and helpful for obtaining a more complete picture of the students' scientific understanding. The teacher participants reported no difficulty with the usability of the task in the high school chemistry setting. Collected data gave no evidence of gender bias with reference to the performance tasks or the NYS Regents Chemistry Examination. Additionally, it was shown that the instructors' classroom practices do have an effect upon the students' achievement on the performance tasks and the NYS Regents examination. Data also showed that achievement on the performance tasks was influenced by the number of years of science instruction students had received.

  4. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  5. Development and Implementation of High School Chemistry Modules Using Touch-Screen Technologies

    Science.gov (United States)

    Lewis, Maurica S.; Zhao, Jinhui; Montclare, Jin Kim

    2012-01-01

    Technology was employed to motivate and captivate students while enriching their in-class education. An outreach program is described that involved college mentors introducing touch-screen technology into a high school chemistry classroom. Three modules were developed, with two of them specifically tailored to encourage comprehension of molecular…

  6. Does Teaching Sequence Matter When Teaching High School Chemistry with Scientific Visualisations?

    Science.gov (United States)

    Fogarty, Ian; Geelan, David; Mukherjee, Michelle

    2012-01-01

    Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier's Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the…

  7. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  8. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  9. Association between parity and breastfeeding with maternal high blood pressure.

    Science.gov (United States)

    Lupton, Samantha J; Chiu, Christine L; Lujic, Sanja; Hennessy, Annemarie; Lind, Joanne M

    2013-06-01

    The objective of this study was to determine how parity and breastfeeding were associated with maternal high blood pressure, and how age modifies this association. Baseline data for 74,785 women were sourced from the 45 and Up Study, Australia. These women were 45 years of age or older, had an intact uterus, and had not been diagnosed with high blood pressure before pregnancy. Odds ratios (ORs) and 99% confidence intervals (CIs) for the association between giving birth, breastfeeding, lifetime breastfeeding duration, and average breastfeeding per child with high blood pressure were estimated using logistic regression. The combination of parity and breastfeeding was associated with lower odds of having high blood pressure (adjusted OR, 0.89; 99% CI, 0.82-0.97; P high blood pressure when compared with parous women who never breastfed. The odds were lower with longer breastfeeding durations and were no longer significant in the majority of women over the age of 64 years. Women should be encouraged to breastfeed for as long as possible and a woman's breastfeeding history should be taken into account when assessing her likelihood of high blood pressure in later life. Copyright © 2013 Mosby, Inc. All rights reserved.

  10. High pressure synthesis of amorphous TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Bingbing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Liu, Jing [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-09-15

    Amorphous TiO{sub 2} nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO{sub 2} nanotubes. The structural phase transitions of anatase TiO{sub 2} nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO{sub 2} nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO{sub 2} phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B{sub 0} = 158 GPa) of the anatase TiO{sub 2} nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO{sub 2} nanotubes.

  11. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  12. The effect of high pressures on actinide metals

    International Nuclear Information System (INIS)

    Benedict, U.

    1987-01-01

    The solid state properties of the actinides are controlled by the dualism of the localized and itinerant (delocalized) configuration of the 5f electrons. This dualism allows to define two main subgroups. At ambient pressures the first subgroup, of elements with atomic number 91 to 94, is characterized by 5f electrons in an itinerant state and the second subgroup, atomic number 95 to 98, by 5f electrons in a localized state. The latter means that these electrons have well defined energy levels and do not contribute to the metallic bond. The other two subgroups consist of thorium, as a subgroup of its own because its 5f levels are practically unoccupied in the ground state configuration, and of the five heaviest elements with atomic number 99 to 103. The most remarkable effect of pressure on the actinide metals is that due to closer contact between the lattice atoms, localized 5f electrons can become itinerant, hybridise with the conduction electrons and participate in the metallic bond. In this chapter the high-pressure structural behaviour of actinide metals is reviewed. Section 3 gives an introduction into the techniques of generating and measuring pressure and of determining various physical properties of the actinides under pressure and describes a few high-pressure devices and methods. Sections 4 to 7 treat the high-pressure results for each subgroup separately. In section 8 the results of the preceding sections are brought together in a graphical representation which consists of interconnecting binary phase diagrams of neighbouring actinide metals. 155 refs.; 14 figs.; 7 tabs. (H.W.)

  13. FastChem: An ultra-fast equilibrium chemistry

    Science.gov (United States)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  14. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  15. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  16. Fifty years of high energy chemistry. Current situation and perspectives of development in the Slovak Republic and the Czech Republic

    International Nuclear Information System (INIS)

    Kuruc, J.

    2017-01-01

    The paper describes the concepts of a new chemical science - High-Energy Chemistry (HECH). Under this concept, the field of science has been associated with chemical processes initiated by non-thermal energy carriers - ionizing radiation, light, electric, sound field etc. Since 1967, the journal of High Energy Chemistry (Russian Academy of Sciences) has been published, which is translated into the English language High Energy Chemistry (Pleiades Publishing, Ltd.). The common feature of HECH is the formation of ions and excited states at temperatures from the ambient temperature at which these particles cannot be generated due to equilibrium processes. The non-thermal energy carriers and chemical sciences are systematized that have been created by examining the impact of these energy carriers on substances. There are two groups of energy carriers: those that transmit an interaction energy substantially higher than kT (ionizing radiation, light, etc.) in one act, and those that transmit the energy of interaction is higher than kT in a single act but the flux of these energy carriers is so high that in this field, the formation of ions and electron-excited states and free radicals are observed. HECH processes consist of three stages: 1) Interaction of energy carriers with the substance in times of femtosecond with the formation of primary intermediates; 2) Conversion of primary intermediates proceed in times of picoseconds to nanoseconds to secondary and tertiary intermediates ( h ot spots ) because the energy distribution in the medium is inhomogeneous; intermediates unusual for thermal chemistry play an important role at this stage; 3) Chemical stage that takes place over a time exceeding the microsecond, excited states, ions, and radicals, also common for thermal chemistry are involved. In contrast with thermal reactions, the concentration of intermediates of many orders exceeds equilibrium in terms of Maxwell-Boltzmann distribution. High-energy chemistry includes

  17. Fifty years of high energy chemistry. Current situation and perspectives of development in the Slovak Republic and the Czech Republic

    International Nuclear Information System (INIS)

    Kuruc, J.

    2017-01-01

    This presentation describes the concepts of a new chemical science - High-Energy Chemistry (HECH). Under this concept, the field of science has been associated with chemical processes initiated by non-thermal energy carriers - ionizing radiation, light, electric, sound field etc. Since 1967, the journal of High Energy Chemistry (Russian Academy of Sciences) has been published, which is translated into the English language High Energy Chemistry (Pleiades Publishing, Ltd.). The common feature of HECH is the formation of ions and excited states at temperatures from the ambient temperature at which these particles cannot be generated due to equilibrium processes. The non-thermal energy carriers and chemical sciences are systematized that have been created by examining the impact of these energy carriers on substances. There are two groups of energy carriers: those that transmit an interaction energy substantially higher than kT (ionizing radiation, light, etc.) in one act, and those that transmit the energy of interaction is higher than kT in a single act but the flux of these energy carriers is so high that in this field, the formation of ions and electron-excited states and free radicals are observed. HECH processes consist of three stages: 1) Interaction of energy carriers with the substance in times of femtosecond with the formation of primary intermediates; 2) Conversion of primary intermediates proceed in times of picoseconds to nanoseconds to secondary and tertiary intermediates ("hot spots") because the energy distribution in the medium is inhomogeneous; intermediates unusual for thermal chemistry play an important role at this stage; 3) Chemical stage that takes place over a time exceeding the microsecond, excited states, ions, and radicals, also common for thermal chemistry are involved. In contrast with thermal reactions, the concentration of intermediates of many orders exceeds equilibrium in terms of Maxwell-Boltzmann distribution. High-energy chemistry

  18. High pressure synthesis of zeolite/polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Julien; Thibaud, Jean-Marc; Rouquette, Jerome; Cambon, Olivier; Di Renzo, Francesco, E-mail: julien.haines@univ-montp2.fr [Institut Charles Gerhardt Montpellier (France); Lee, Arie van der [Institut Europeen des Membranes, Montpellier (France); Scelta, Demetrio; Ceppatelli, Matteo; Dziubek, Kamil; Gorelli, Federico; Bini, Roberto; Santoro, Mario [European Laboratory for Non Linear Spectroscopy, Firenze (Italy)

    2016-07-01

    Full text: Polymerization of simple organic molecules under high pressure in the subnanometric pores of pure SiO{sub 2} zeolites can be used to produce novel nanocomposite materials, which can be recovered at ambient P and have remarkable mechanical, electrical or optical properties. Polymerization of ethylene in silicalite was studied in situ at high pressure by IR and results in a nanocomposite with isolated chains of non-conducting polyethylene strongly confined in the pores based on single crystal x-ray diffraction data. The nanocomposite is much less compressible than silicalite and has a positive rather than a negative thermal expansion coefficient. In order to target novel electrical and optical properties, isolated chains of conducting polymers can also be prepared in the pores of zeolite hosts at high pressure, such as polyacetylene, which was polymerized under pressure in the pores of the 1-D zeolite TON. The structure of this nanocomposite was determined by synchrotron x-ray powder diffraction data with complete pore filling corresponding to one planar polymer chain confined in each pore with a zig-zag configuration in the yz plane. This very strong confinement can be expected to strongly modify the electrical properties of polyacetylene. In this nanocomposite, our theoretical calculations indicate that the electronic density of states of polyacetylene exhibit van Hove singularities related to quantum 1D confinement, which could lead to future technological applications. This new material is susceptible to have applications in nanoelectronics, nanophotonics and energy and light harvesting. Completely novel nanocomposites were prepared by the polymerization of carbon monoxide CO in silicalite and TON. In these materials, isolated, ideal polycarbonyl chains are obtained in contrast to the non-stoichiometric, branched bulk polymers obtained by high pressure polymerization of this simple system. These poly CO/zeolite composites could be interesting energetic

  19. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding

    Science.gov (United States)

    Labrosse, Peggy

    The purpose of this study was to analyze the effects of specific vocabulary instruction on high school chemistry students' knowledge and understanding. Students might be able to formally recite a definition for a term without actually having understood the meaning of the term and its connection to other terms or to related concepts. Researchers (Cassels & Johnstone, 1983; Gabel, 1999; Johnstone, 1991) have been studying the difficulty students have in learning science, particularly chemistry. Gabel (1999) suggests that, "while research into misconceptions (also known as alternative conceptions) and problem-solving has dominated the field for the past 25 years, we are no closer to a solution that would improve the teaching and learning of chemistry" (P. 549). Gabel (1999) relates the difficulty in learning chemistry to use of language. She refers to student difficulty both with words that have more than one meaning in English and with words that are used to mean one idea in chemistry and another idea in every day language. The Frayer Model, a research-based teaching strategy, is a graphic organizer which students use to create meaningful definitions for terms in context (Frayer, Frederick, & Klausmeier, 1969). It was used as the treatment---the specific vocabulary instruction---in this research study. The researcher collected and analyzed data to answer three research questions that focused on the effect of using the Frayer model (a graphic organizer) on high school students' knowledge and understanding of academic language used in chemistry. The research took place in a New England high school. Four intact chemistry classes provided the student participants; two classes were assigned to the treatment group (TG) and two classes were assigned to the control group (CG). The TG received vocabulary instruction on 14 chosen terms using the Frayer Model. The CG received traditional vocabulary instruction with no special attention to the 14 terms selected for this study

  20. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  1. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure.

    Science.gov (United States)

    König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin

    2017-12-01

    In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  3. High Blood Pressure in Adolescents of Curitiba: Prevalence and Associated Factors.

    Science.gov (United States)

    Bozza, Rodrigo; Campos, Wagner de; Barbosa Filho, Valter Cordeiro; Stabelini Neto, Antonio; Silva, Michael Pereira da; Maziero, Renato Silva Barbosa

    2016-05-01

    Arterial hypertension is a major public health problem and has increased considerably in young individuals in past years. Thus, identifying factors associated with this condition is important to guide intervention strategies in this population. To determine high blood pressure prevalence and its associated factors in adolescents. A random sample of 1,242 students enrolled in public schools of the city of Curitiba (PR) was selected. Self-administered questionnaires provided family history of hypertension, daily energy expenditure, smoking habit, daily fat intake, and socioeconomic status. Waist circumference was measured following standardized procedures, and blood pressure was measured with appropriate cuffs in 2 consecutive days to confirm high blood pressure. Relative frequency and confidence interval (95%CI) indicated high blood pressure prevalence. Bivariate and multivariate analyses assessed the association of risk factors with high blood pressure. The high blood pressure prevalence was 18.2% (95%CI 15.2-21.6). Individuals whose both parents had hypertension [odds ratio (OR), 2.22; 95%CI 1.28-3.85] and those with high waist circumference (OR, 2.1; 95%CI 1.34-3.28) had higher chances to develop high blood pressure. Positive family history of hypertension and high waist circumference were associated with high blood pressure in adolescents. These factors are important to guide future interventions in this population.

  4. High Blood Pressure in Adolescents of Curitiba: Prevalence and Associated Factors

    Directory of Open Access Journals (Sweden)

    Rodrigo Bozza

    2016-01-01

    Full Text Available Abstract Background: Arterial hypertension is a major public health problem and has increased considerably in young individuals in past years. Thus, identifying factors associated with this condition is important to guide intervention strategies in this population. Objective: To determine high blood pressure prevalence and its associated factors in adolescents. Methods: A random sample of 1,242 students enrolled in public schools of the city of Curitiba (PR was selected. Self-administered questionnaires provided family history of hypertension, daily energy expenditure, smoking habit, daily fat intake, and socioeconomic status. Waist circumference was measured following standardized procedures, and blood pressure was measured with appropriate cuffs in 2 consecutive days to confirm high blood pressure. Relative frequency and confidence interval (95%CI indicated high blood pressure prevalence. Bivariate and multivariate analyses assessed the association of risk factors with high blood pressure. Results: The high blood pressure prevalence was 18.2% (95%CI 15.2-21.6. Individuals whose both parents had hypertension [odds ratio (OR, 2.22; 95%CI 1.28-3.85] and those with high waist circumference (OR, 2.1; 95%CI 1.34-3.28 had higher chances to develop high blood pressure. Conclusion: Positive family history of hypertension and high waist circumference were associated with high blood pressure in adolescents. These factors are important to guide future interventions in this population.

  5. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  6. HARNESSING THE CHEMISTRY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  7. High-pressure U3O8 with the fluorite-type structure

    International Nuclear Information System (INIS)

    Zhang, F.X.; Lang, M.; Wang, J.W.; Li, W.X.; Sun, K.; Prakapenka, V.; Ewing, R.C.

    2014-01-01

    A new high-pressure phase of U 3 O 8 , which has a fluorite-type structure, forms at pressures greater than ∼8.1 GPa that was confirmed by in situ x-ray diffraction (XRD) measurements. The fluorite-type U 3 O 8 is stable at pressures at least up to ∼40 GPa and temperatures to 1700 K, and quenchable to ambient conditions. Based on the XRD analysis, there is a huge volume collapse (>20%) for U 3 O 8 during the phase transition and the quenched high-pressure phase is 28% denser than the initial orthorhombic phase at ambient conditions. The high-pressure phase has a very low compressibility comparing with the starting orthorhombic phase. - Graphical abstract: α-U 3 O 8 is in a layered structure with orthorhombic symmetry, at high pressures, it transformed to a fluorite-type cubic structure. There are a lot of defects in the cubic structure, and it is a new kind of hyperstoichiometric uranium oxide, which is stable at ambient conditions. - Highlights: • A new fluorite-type high-pressure phase was found in hyperstoichometric UO 2 +x (x∼0.8). • The new high-pressure structure is quenchable to ambient conditions. • Pressure driven phase transition in orthorhombic U 3 O 8 was first found

  8. Anomalous perovskite PbRuO3 stabilized under high pressure

    Science.gov (United States)

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  9. High blood pressure in older subjects with cognitive impairment.

    Science.gov (United States)

    Mossello, Enrico; Simoni, David

    2016-06-22

    High blood pressure and cognitive impairment often coexist in old age, but their pathophysiological association is complex. Several longitudinal studies have shown that high blood pressure at midlife is a risk factor for cognitive impairment and dementia, although this association is much less clear in old age. The effect of blood pressure lowering in reducing the risk of dementia is only borderline significant in clinical trials of older subjects, partly due to the insufficient follow-up time. Conversely, dementia onset is associated with a decrease of blood pressure values, probably secondary to neurodegeneration. Prognostic effect of blood pressure values in cognitively impaired older subjects is still unclear, with aggressive blood pressure lowering being potentially harmful in this patients category. Brief cognitive screening, coupled with simple motor assessment, are warranted to identify frail older subjects who need a more cautious approach to antihypertensive treatment. Values obtained with ambulatory blood pressure monitoring seem more useful than clinical ones to predict the outcome of cognitively impaired older subjects. Future studies should identify the most appropriate blood pressure targets in older subjects with cognitive impairment.

  10. Nursing Education in High Blood Pressure Control. Report of the Task Force on the Role of Nursing in High Blood Pressure Control.

    Science.gov (United States)

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    This curriculum guide on high blood pressure (hypertension) for nursing educators has five sections: (1) Introduction and Objectives provides information regarding the establishment and objectives of the National Task Force on the Role of Nursing in High Blood Pressure Control and briefly discusses nursing's role in hypertension control; (2) Goals…

  11. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    International Nuclear Information System (INIS)

    Prasad, D N; Ayyappan, R; Kamble, L P; Singh, J P; Muralikrishna, L V; Alex, M; Balagi, V; Mukhopadhyay, P K

    2008-01-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm 2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ∼1 x 10 -5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mmx160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face and diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6x10 -9 m bar ltr/sec in vacuum mode and 2x10 -7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5x10 -5 mbar, the new valve achieved vacuum 7.4x10 -6 mbar in the same time under the same conditions

  12. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  13. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  14. Maintenance of breast milk Immunoglobulin A after high-pressure processing.

    Science.gov (United States)

    Permanyer, M; Castellote, C; Ramírez-Santana, C; Audí, C; Pérez-Cano, F J; Castell, M; López-Sabater, M C; Franch, A

    2010-03-01

    Human milk is considered the optimal nutritional source for infants. Banked human milk is processed using low-temperature, long-time pasteurization, which assures microbial safety but involves heat denaturation of some desirable milk components such as IgA. High-pressure processing technology, the subject of the current research, has shown minimal destruction of food macromolecules. The objective of this study was to investigate the influence of pressure treatments on IgA content. Moreover, bacterial load was evaluated after pressure treatments. The effects of high-pressure processing on milk IgA content were compared with those of low-temperature, long-time pasteurization. Mature human milk samples were heat treated at 62.5 degrees C for 30min or pressure processed at 400, 500, or 600MPa for 5min at 12 degrees C. An indirect ELISA was used to measure IgA in human milk whey obtained after centrifugation at 800xg for 10min at 4 degrees C. All 3 high-pressure treatments were as effective as low-temperature, long-time pasteurization in reducing the bacterial population of the human milk samples studied. After human milk pressure processing at 400MPa, 100% of IgA content was preserved in milk whey, whereas only 72% was retained in pasteurized milk whey. The higher pressure conditions of 500 and 600MPa produced IgA retention of 87.9 and 69.3%, respectively. These results indicate that high-pressure processing at 400MPa for 5min at 12 degrees C maintains the immunological protective capacity associated with IgA antibodies. This preliminary study suggests that high-pressure processing may be a promising alternative to pasteurization in human milk banking.

  15. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  16. High pressure and microwave based synthesis of transition metal pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Pobel, Roman Rupert

    2016-04-11

    The goal of this thesis was to explore the possibilities of synthetic methods that are not very common in current transition metal pnictide research. The substitution of the Ca-site in CaFe{sub 2}As{sub 2} with rare earth elements such as Pr the has been reported to induce superconductivity. However, some inconsistencies in the data suggested a non-intrinsic origin of the observed diamagnetic signal. Furthermore a solubility limit of 13% was found when prepared in an electrical furnace thus leaving a huge part of the physical phase diagram inaccessible. A high pressure/high temperature synthesis was developed to allow access to the whole doping range and an in-depth characterization of this compound was carried out. During the experiments concerning the high pressure synthesis of Ca{sub 1-x}Pr{sub x}Fe{sub 2}As{sub 2} the new ternary iron arsenide CaFe{sub 5}As{sub 3} was identified and classified as a member of the Ca{sub n(n+1)/2}(Fe{sub 1-x}M{sub x}){sub (2+3n)}M'{sub n(n-1)/2}As{sub (n+1)(n+2)/2} (n = 1-3; M =Nb, Pd, Pt; M' = □, Pd, Pt) family. The complete solid solution Ca{sub 1-x}Pr{sub x}Fe{sub 5}As{sub 3} (O ≤ x ≤ 1) was prepared and physically characterized. Furthermore, several useful techniques were developed to aid in future high pressure based investigations of transition metal pnictides. The second part of this thesis concerns a completely different, but equally promising synthetic approach. Microwave based synthesis is a well-established technique in many solution based fields, such as organic, medicinal or nano chemistry. For solid state and materials research several parameters and particularities have to be considered. But when successful, it allows for the reduction of reaction time by several orders of magnitude. It has very rarely been applied in the preparation of pnictides and on1y once in the context of pnictide superconductor research. The possibilities of this method were explored and employed in the preparation of several

  17. Pressure effects on .alpha.-synuclein amyloid fibrils: an experimental investigation on their dissociation and reversible nature

    Czech Academy of Sciences Publication Activity Database

    Piccirilli, F.; Plotegher, N.; Spinozzi, F.; Bubacco, L.; Mariani, P.; Beltramini, M.; Tessari, I.; Militello, V.; Perucchi, A.; Amenitsch, H.; Baldassarri Jr., E.; Steinhart, Miloš; Lupi, S.; Ortore, M. G.

    2017-01-01

    Roč. 627, 1 August (2017), s. 46-55 ISSN 0003-9861 Institutional support: RVO:61389013 Keywords : amyloid * high-pressure * SAXS Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.165, year: 2016

  18. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  19. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.

    Science.gov (United States)

    Yang, Chongyin; Suo, Liumin; Borodin, Oleg; Wang, Fei; Sun, Wei; Gao, Tao; Fan, Xiulin; Hou, Singyuk; Ma, Zhaohui; Amine, Khalil; Xu, Kang; Wang, Chunsheng

    2017-06-13

    Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.

  20. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  1. Multi-scale modelling of the physicochemical-mechanical coupling of fuel behaviour at high temperature in pressurized water reactors

    International Nuclear Information System (INIS)

    Julien, Jerome

    2008-01-01

    Within the frame of the problematic of pellet-sheath interaction in a nuclear fuel rod, a good description of the fuel thermo-mechanical behaviour is required. This research thesis reports the coupling of physics-chemistry (simulation of gas transfers between different cavities) and mechanics (assessment of fuel viscoplastic strains). A new micromechanical model is developed which uses a multi-scale approach to describe the evolution of the double population of cavities (cavities with two different scales) while taking internal pressures as well as the fuel macroscopic viscoplastic behaviour into account. The author finally describes how to couple this micromechanical mode to physics-chemistry models [fr

  2. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  3. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  4. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi

    2017-12-05

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  5. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  6. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  7. HIGH HYDROSTATIC PRESSURE SYSTEMS USE IN FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Yahya TÜLEK

    2006-02-01

    Full Text Available Food preservation is a continuous fight against microorganisms spoiling the food or making it unsafe. The last decade, non-thermal inactivation techniques have been a major research issue, driven by an increased consumer demand for nutritious, fresh like food products with a high organoleptical quality and an acceptable shelf life. Investigated inactivation technologies are ionisation radiation, high hydrostatic pressure (HHP, pulsed electrical fields, high pressure homogenisation, UV decontamination, etc. Most research has focussed on HHP and is therefore discussed in detail here.

  8. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... it true that sleep deprivation can cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Possibly. It's thought that ... hours a night could be linked to increased blood pressure. People who sleep five hours or less a ...

  9. Releasable, high-pressure seal and method of forming same

    International Nuclear Information System (INIS)

    Holman, R.R.; Turkail, D.N.

    1980-01-01

    An inexpensive releaseable, high-pressure seal was developed, which can withstand pressures over 70 atm, and is particularly useful for nuclear reactors where remote-handling equipment must be used to access the flanged connections. It is smaller than existing high-pressure seals and does not require as many bolts. The fail-safe quality of the seal does not depend on close tolerances or high-quality surface finishes. The seal comprises two conduits through which the high-pressure fluid flows, each fitted with flanges. The second flange has a periphery attached to the second conduit. Each flange has a central opening for the fluid to flow through. The second flange is frustoconical in shape and is resilient so that a portion of it near its central opening can be resiliently biased towards the first flange. A seal ring between the end flanges seals the interior of the conduits from the exterior. A force is applied to the seal ring which acts nearly parallel to the axis of the conduits and varies as a function of the fluid pressure inside of the conduits. The flanges are attached to each other with peripheral collars via a circumferential clamp. (DN)

  10. The Effect of High Hydrostatic Pressure on Microorganisms in Food Preservation

    OpenAIRE

    M. Arici

    2006-01-01

    High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. High-pressure treatments are receiving a great deal of attention for the inactivation of microorganisms in food processing, pressure instead of temperature is used as stabilizing factor. High hydrostatic pressure treatment is the most studied alternative process, many works reported successful results in inactivating a wide range of microorganisms under ...

  11. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  12. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  13. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  14. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  15. Growth and high pressure studies of zirconium sulphoselenide ...

    Indian Academy of Sciences (India)

    Growth and high pressure studies of zirconium sulphoselenide single ... tance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify .... The optical band gaps of the as-grown crystals were obtained by optical ab-.

  16. Effect of high pressure on mesophilic lactic fermentation streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Reps, A; Kuzmicka, M; Wisniewska, K [Chair of Food Biotechnology, University of Warmia and Mazury, ul. Heweliusza 1, 10-724 Olsztyn (Poland)], E-mail: arnold.reps@uwm.edu.pl

    2008-07-15

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  17. Ultrasonic level sensors for liquids under high pressure

    Science.gov (United States)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  18. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    International Nuclear Information System (INIS)

    WASHENFELDER DJ

    2008-01-01

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  19. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  20. Microscopic Analysis of Bacterial Motility at High Pressure

    Science.gov (United States)

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943