WorldWideScience

Sample records for high pressure brine

  1. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  2. Pressure-driven brine migration in a salt repository

    International Nuclear Information System (INIS)

    Hwang, Y.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1989-01-01

    The traditional view is that salt is the ideal rock for isolation of nuclear waste because it is ''dry'' and probably ''impermeable.'' The existence of salt through geologic time is prima facie evidence of such properties. Experiments and experience at potential salt sites for geologic repositories have indicated that while porosity and permeability of salt are low, the salt may be saturated with brine. If this hypothesis is correct, then it is possible to have brine flow due to pressure differences within the salt. If there is pressure-driven brine migration in salt repositories then it is paramount to know the magnitude of such flow because inward brine flow would affect the corrosion rate of nuclear waste containers and outward brine flow might affect radionuclide transport rates. Brine exists in natural salt as inclusions in salt crystals and in grain boundaries. Brine inclusions in crystals move to nearby grain boundaries when subjected to a temperature gradient, because of temperature-dependent solubility of salt. Brine in grain boundaries moves under the influence of a pressure gradient. When salt is mined to create a waste repository, brine from grain boundaries will migrate into the rooms, tunnels and boreholes because these cavities are at atmospheric pressure. After a heat-emitting waste package is emplaced and backfilled, the heat will impose a temperature gradient in the surrounding salt that will cause inclusions in the nearby salt to migrate to grain boundaries within a few years, adding to the brine that was already present in the grain boundaries. The formulation of brine movement with salt as a thermoelastic porous medium, in the context of the continuum theory of mixtures, has been described. In this report we show the mathematical details and discuss the results predicted by this analysis

  3. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    intermediate aquifer above the injection formation, where brine settles down and flows from the fault zone into the aquifer. This effect changes buoyancy so that lower density brine from the upper aquifers can rise higher and at larger fluxes compared to the case when no intermediary aquifers are present. In general, uplift of brine originating from the intermediary aquifers is mainly restricted to the next overlying two to three permeable aquifers (200m-1000m) or even only to the next aquifer if injection pressures are lower than about 10 bar. If injection induced over-pressures are high, brine from the injection reservoir can dominate inflow into the freshwater reservoir at late times (tens of years). An extensive parameter variation shows the effects of individual parameters. It is found, e.g., that no brine enters the freshwater aquifer if fault permeability is lower than about 10-14 m2. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  4. Pressurized brines in continental Antarctica as a possible analogue of Mars

    OpenAIRE

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-01-01

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake sou...

  5. Pressurized brines in continental Antarctica as a possible analogue of Mars.

    Science.gov (United States)

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-09-12

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake south of 70°S in an ice-free area of Victoria Land, Antarctica. For the first time, we also imaged, by means of ground penetrating radar data, the existence of a pingo-like-feature (PLF) formed by the extrusion of brines, which has also been confirmed by borehole evidence. Those brines are fed by an underground talik external to the lake basin, enhancing the possibility of unexploited ecosystems that could find an analogue in Martian environments.

  6. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  7. Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions

    Science.gov (United States)

    Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming

    2013-08-01

    In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (Pc) dependence on water saturation (Sw) with scCO2 as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O Pc(Sw) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure Pc(Sw) controller/meter, allowing accurate Pc and Sw measurements. Drainage and imbibition processes were measured on quartz sand with scCO2-brine at pressures of 8.5 and 12.0 MPa (45°C), and air-brine at 21°C and 0.1 MPa. Drainage and rewetting at intermediate Sw levels shifted to Pc values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled Pc(Sw) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for Pc = 0 during rewetting. The capillary-trapped volumes for scCO2 were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO2-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO2-induced decreased wettability. Wettability alteration by scCO2 makes predicting hydraulic behavior more challenging than for less reactive fluids.

  8. Results for the Brine Evaporation Bag (BEB) Brine Processing Test

    Science.gov (United States)

    Delzeit, Lance; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Howard, Kevin

    2015-01-01

    The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.

  9. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first...

  10. Brine Extraction and Treatment Strategies to Enhance Pressure Management and Control of CO2 Plumes in Deep Geologic Formations

    Energy Technology Data Exchange (ETDEWEB)

    Okwen, Roland [Univ. of Illinois, Champaign, IL (United States). Prairie Research Inst.; Frailey, Scott [Univ. of Illinois, Champaign, IL (United States). Prairie Research Inst.; Dastgheib, Seyed [Univ. of Illinois, Champaign, IL (United States). Prairie Research Inst.

    2017-06-14

    The overall goal of the this project is to develop and validate pressure management and carbon dioxide (CO2) plume control strategies that can address technical and economic barriers to commercial deployment of CO2 storage technologies, based on computational and field demonstration work at the Archer Daniels Midland Company (ADM) facility where the Illinois Basin–Decatur Project (IBDP) and the Illinois-Industrial Carbon Capture and Storage (IL-ICCS) projects are located. To accomplish the overall goal, the ISGS designed a brine extraction storage test (BEST) that could be completed in two phases. The goal of BEST Phase I was to evaluate the feasibilities of extraction well(s) placement, the brine extraction to CO2 injection rate ratio, extraction well completion, and brine treatment and handling. The goal of BEST Phase II would be to validate the brine extraction and treatment options deemed feasible in Phase I by (1) demonstrating the efficacy of brine extraction (BE) in managing pressure (i.e., formation) and the CO2 plume, and (2) demonstrating treatment of extracted brine with high total dissolved solids (TDS; >200,000 mg/L) using multiple advanced treatment technologies. This report details work done in Phase I. Several brine extraction and treatment scenarios were tested, simulated, and analyzed for their effectiveness in extracting brine. Initially a vertical well was studied; however, geologic modeling, reservoir modeling, and the existing facility and wellbore infrastructure dictated that the location of a vertical brine extraction well was limited to an area with no existing monitoring wells and where the well would be in relative proximity to an existing CO2 plume. Consequently, a vertical well was excluded, and a horizontal brine extraction well placed above the existing CO2 plume near two existing wells was studied. The horizontal well option allows the project to leverage the

  11. OUT Success Stories: Chemical Treatments for Geothermal Brines

    International Nuclear Information System (INIS)

    Burr, R.

    2000-01-01

    DOE research helped develop the large, untapped geothermal resource beneath the Salton Sea in California's Imperial Valley. The very hot brines under high pressure make them excellent for electric power production. The brines are very corrosive and contain high concentrations of dissolved silica. DOE worked with San Diego Gas and Electric Company to find a solution to the silica-scaling problem. This innovative brine treatment eliminated scaling and made possible the development of the Salton Sea geothermal resource

  12. Evaporative crystallization of salts from Electrodialysis concentrated brine at atmospheric and subatmospheric pressures

    Science.gov (United States)

    Wang, Dong; Du, Wei; Cheng, Penggao; Tang, Na; Wang, Xuekui

    2018-02-01

    A large amount of concentrated brine was produced as by-product during the process of the electrodialysis seawater desalination. In this study, the crystallization sequences of different salts from the brine through evaporative crystallization at both atmospheric and subatmospheric pressures were investigated in detail. The profile of the boiling temperature with density and the relationship between the boiling temperature and the pressure were recorded. The combination of Powder X-Ray Diffraction and the polarizing microscope was employed to identify the salts in the solid form. It can be inferred that NaCl crystallized out firstly and then MgSO4·6H2O and CaSO4 precipitate in order at both atmospheric and subatmospheric pressures, and it should be noticed that CaSO4 crystallized as anhydrate at 70°C and 90°C while as dihydrate at 50°C. At the end of all the experiments the precipitation rates of CaSO4 and NaCl have reached to more than 95% while MgSO4 only reached to about 60%.

  13. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  14. Effects of brine migration on waste storage systems. Final report

    International Nuclear Information System (INIS)

    Gaffney, E.S.; Nickell, R.E.

    1979-01-01

    Processes which can lead to mobilization of brine adjacent to spent fuel or nuclear waste canisters and some of the thermomechanical consequences have been investigated. Velocities as high as 4 x 10 -7 m s -1 (13 m y -1 ) are calculated at the salt/canister boundary. As much as 40 liters of pure NaCl brine could accumulate around each canister during a 10-year storage period. Accumulations of bittern brines would probably be less, in the range of 2 to 5 liters. With 0.5% water, NaCl brine accumulation over a 10-year storage cycle around a spent fuel canister producing 0.6 kW of heat is expected to be less than 1 liter for centimeter-size inclusions and less than 0.5 liter for millimeter-size inclusions. For bittern brines, about 25 years would be required to accumulate 0.4 liter. The most serious mechanical consequence of brine migration would be the increased mobility of the waste canister due to pressure solution. In pressure solution enhanced deformation, the existence of a thin film of fluid either between grains or between media (such as between a canister and the salt) provides a pathway by which the salt can be redistributed leading to a marked increase in strain rates in wet rock relative to dry rock. In salt, intergranular water will probably form discontinuous layers rather than films so that they would dominate pressure solution. A mathematical model of pressure solution indicates that pressure solution will not lead to appreciable canister motions except possibly in fine grained rocks (less than 10 -4 m). In fine grained salts, details of the contact surface between the canister and the salt bed may lead to large pressure solution motions. A numerical model indicates that heat transfer in the brine layer surrounding a spent fuel canister is not conduction dominated but has a significant convective component

  15. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Grambow, B.; Mueller, R.

    1990-01-01

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl 2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl 2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  16. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis

    International Nuclear Information System (INIS)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-01-01

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54 psu) compared with seawater controls (37 psu) over 6 weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2–4 weeks at 54 psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. - Highlights: • We separated salt effects of desalination brine from other deleterious components. • Sublethal salinity stress depended on both salinity increase and exposure time. • Very effective osmoregulation led to tolerance of short intervals of high salinity.

  17. Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan; Guo, Tian-Min

    1996-01-01

    The major objectives of this work are: (1) extend the modified Patel-Teja (MPT) equation of state proposed for aqueous electrolyte systems (Zuo and Guo, 1991) to describe the liquid-liquid and vapor-liquid-liquid equilibria of hydrocarbon-water/brine systems through introducing an unconventional...

  18. Brine Sampling and Evaluation Program

    International Nuclear Information System (INIS)

    Deal, D.E.; Case, J.B.; Deshler, R.M.; Drez, P.E.; Myers, J.; Tyburski, J.R.

    1987-12-01

    The Brine Sampling and Evaluation Program (BSEP) Phase II Report is an interim report which updates the data released in the BSEP Phase I Report. Direct measurements and observations of the brine that seeps into the WIPP repository excavations were continued through the period between August 1986 and July 1987. That data is included in Appendix A, which extends the observation period for some locations to approximately 900 days. Brine observations at 87 locations are presented in this report. Although WIPP underground workings are considered ''dry,'' small amounts of brine are present. Part of that brine migrates into the repository in response to pressure gradients at essentially isothermal conditions. The data presented in this report is a continuation of moisture content studies of the WIPP facility horizon that were initiated in 1982, as soon as underground drifts began to be excavated. Brine seepages are manifested by salt efflorescences, moist areas, and fluid accumulations in drillholes. 35 refs., 6 figs., 11 tabs

  19. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    Science.gov (United States)

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  20. An experimental study of relative permeability hysteresis, capillary trapping characteristics, and capillary pressure of CO2/brine systems at reservoir conditions

    Science.gov (United States)

    Akbarabadi, Morteza

    We present the results of an extensive experimental study on the effects of hysteresis on permanent capillary trapping and relative permeability of CO2/brine and supercritical (sc)CO2+SO2/brine systems. We performed numerous unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, i.e., low and high-permeability Berea, Nugget sandstones, and Madison limestone carbonate rock sample. A state-of-the-art reservoir conditions core-flooding system was used to perform the tests. The core-flooding apparatus included a medical CT scanner to measure in-situ saturations. The scanner was rotated to the horizontal orientation allowing flow tests through vertically-placed core samples with about 3.8 cm diameter and 15 cm length. Both scCO2 /brine and gaseous CO2 (gCO2)/brine fluid systems were studied. The gaseous and supercritical CO2/brine experiments were carried out at 3.46 and 11 MPa back pressures and 20 and 55°C temperatures, respectively. Under the above-mentioned conditions, the gCO2 and scCO2 have 0.081 and 0.393 gr/cm3 densities, respectively. During unsteady-state tests, the samples were first saturated with brine and then flooded with CO2 (drainage) at different maximum flow rates. The drainage process was then followed by a low flow rate (0.375 cm 3/min) imbibition until residual CO2 saturation was achieved. Wide flow rate ranges of 0.25 to 20 cm3/min for scCO2 and 0.125 to 120 cm3min for gCO2 were used to investigate the variation of initial brine saturation (Swi) with maximum CO2 flow rate and variation of trapped CO2 saturation (SCO2r) with Swi. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO 2. During the steady-state experiments, after providing of fully-brine saturated core, scCO2 was injected along with brine to find the drainage curve and as

  1. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    Science.gov (United States)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The technology of uranium extraction from the brine with high chlorine-ion content

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.; Negmatov, Sh.I.; Barotov, B.B.

    2010-01-01

    Present article is devoted to technology of uranium extraction from the brine with high chlorine-ion content. The research results on uranium extraction from the brine of Sasik-Kul Lake by means of sorption method were considered. The chemical composition of salt was determined. The process of uranium sorption was described and analyzed. The technology of uranium extraction from the brine with high chlorine-ion content was proposed.

  3. Changes in microbial diversity of brined green asparagus upon treatment with high hydrostatic pressure.

    Science.gov (United States)

    Toledo Del Árbol, Julia; Pérez Pulido, Rubén; La Storia, Antonietta; Grande Burgos, Maria José; Lucas, Rosario; Ercolini, Danilo; Gálvez, Antonio

    2016-01-04

    The application of high hydrostatic pressure (HHP, 600MPa, 8 min) on brined green asparagus and the changes in bacterial diversity after treatments and during storage at 4 °C (30 days) or 22 °C (10 days) were studied. HHP treatments reduced viable cell counts by 3.6 log cycles. The residual surviving population did not increase during storage at 4 °C. However, bacterial counts significantly increased at 22 °C by day 3, leading to rapid spoilage. The microbiota of green asparagus was composed mainly by Proteobacteria (mainly Pantoea and Pseudomonas), followed by Firmicutes (mainly Lactococcus and Enterococcus) and to a less extent Bacteroidetes and Actinobacteria. During chill storage of untreated asparagus, the relative abundance of Proteobacteria as well as Enterococcus and Lactococcus decreased while Lactobacillus increased. During storage of untreated asparagus at 22 °C, the abundance of Bacteroidetes decreased while Proteobacteria increased during late storage. The HHP treatment determined a reduction of the Proteobacteria both early after treatment and during chill storage. In the HHP treated samples stored at 22 °C, the relative abundance of Pseudomonas rapidly decreased at day 1, with an increase of Bacteroidetes. This was followed by a marked increase in Enterobacteriaceae (Escherichia) simultaneously with increase in viable counts and spoilage. Results from the study indicate that the effect of HHP treatments on the viability ofmicrobial populations in foods also has an impact on the dynamics of microbial populations during the storage of the treated foods.

  4. Durability of concrete materials in high-magnesium brine

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation

  5. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    surface water bodies. Results of the assessment were generated, stored, and analyzed using Microsoft Excel spreadsheets and ESRI Geographical Information System (GIS) maps. Conclusions about the relative benefits and impacts of alternative brine-­management strategies were highly sensitive to local climate and weather, and aquifer water chemistry. The NPV of certain scenarios ranged from -­$50/mt-­CO2 (a cost) to +$10/mt-­CO2 (revenue). The land footprint of the scenarios in this study ranged from <1 km2 to 100 km2. Brine extraction as a pressure management tool for GCS has potential for improving the economics and for minimizing the environmental impacts of CCS. In order to maximize this potential, careful analysis of each saline aquifer and region must be conducted to determine a regionally appropriate brine use sequence (BUS) at the time of site selection. Models that use GIS will be essential tools in determining such sequences for individual CFPP. Future studies that perform risk and life cycle assessments (LCA) of BUS scenarios, incorporate additional impact metrics into the BUS model, and enhance the temporal sensitivity of the model would improve the robustness of this regional assessment method.

  6. Brine Sampling and Evaluation Program: Phase 1 report

    International Nuclear Information System (INIS)

    Deal, D.E.; Case, J.B.

    1987-01-01

    This interim report presents preliminary data obtained in the course of the WIPP Brine Sampling and Evaluation Program. The investigations focus on the brine present in the near-field environment around the WIPP underground workings. Although the WIPP underground workings are considered dry, small amounts of brine are present. This amount of brine is not unexpected in rocks of marine sedimentary origin. Part of that brine can and does migrate into the repository in response to pressure gradients, at essentially isothermal conditions. These small volumes of brine have little effect on the day-to-day operations, but are pervasive throughout the repository and may contribute enough moisture over a period of years to affect resaturation and repressurization after sealing and closure. Gas bubbles are observed in many of the brine occurrences. Gas is also known to exsolve from solution as the brine is poured from container to container. 68 refs., 9 figs., 2 tabs

  7. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  8. Receding and advancing (CO_2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity

    International Nuclear Information System (INIS)

    Al-Yaseri, Ahmed Z.; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2016-01-01

    Highlights: • (Water + CO_2) contact angle on quartz increases substantially with pressure and salinity. • (Water + CO_2) contact angle on quartz increases slightly with temperature. • Surface roughness has only a minor influence on (water + CO_2 + quartz) contact angles. - Abstract: The wetting characteristics of CO_2 in rock are of vital importance in carbon geo-storage as they determine fluid dynamics and storage capacities. However, the current literature data has a high uncertainty, which translates into uncertain predictions in terms of containment security and economic project feasibility. We thus measured contact angles for the CO_2/water/quartz system at relevant reservoir conditions, and analysed the effects of pressure (0.1 to 20) MPa, temperature (296 to 343) K, surface roughness (56 to 1300) nm, salt type (NaCl, CaCl_2, and MgCl_2) and brine salinities (0 to 35) wt%. Water contact angles decreased with surface roughness, but increased with pressure, temperature, and brine salinity. Overall the contact angles were significantly increased at storage conditions (∼50°) when compared to ambient conditions (always 0°). Consequently quartz is weakly water-wet (not completely water-wet) at storage conditions, and structural and residual trapping capacities are reduced accordingly.

  9. Soil washing for brine removal

    International Nuclear Information System (INIS)

    Ayyachamy, J.S.; Atalay, A.; Zaman, M.

    1992-01-01

    During the exploration for oil and thereafter, brine transfer lines get ruptured releasing the brine which contaminates the surrounding soil. The salinity level in brine is very high, sometimes approaching or exceeding that of sea water. Soils contaminated with brine are unproductive and unsuitable for plant growth. Several investigators have documented the pollution of surface water and groundwater due to brine disposal from oil and needed to clean up such sites. The objective of this study is to develop a soil washing technique that can be used to remove brine sites were collected and used in the study. This paper reports on results which indicate that soil washing using various surface active agents is effective in removing the brine

  10. Waste isolation pilot plant performance assessment: Radionuclide release sensitivity to diminished brine and gas flows to/from transuranic waste disposal areas

    Energy Technology Data Exchange (ETDEWEB)

    Day, Brad A.; Camphouse, R. C.; Zeitler, Todd R. [Sandia National Laboratories, Carlsbad (United States)

    2017-03-15

    Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

  11. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  12. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  13. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-01-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone ''Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures'' (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  14. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  15. The Brine Sampling and Evaluation Program (PSEP) at WIPP

    International Nuclear Information System (INIS)

    Deal, D.E.; Roggenthen, W.M.

    1989-01-01

    The Permian salt beds of the WIPP facility are virtually dry. The amount of water present in the rocks exposed in the excavations that is free to migrate under pressure gradients was estimated by heating salt samples to 95 degrees C and measuring weight loss. Clear balite contains about 0.22 weight percent water and the more argillaceous units average about 0.75 percent. Measurements made since 1984 as part of the Brine Sampling and Evaluation Program (BSEP) indicate that small amounts of this brine can migrate into the excavations and does accumulate in the underground environment. Brine seepage into drillholes monitored since thy were drilled show that brine seepage decreases with time and that many have dried up entirely. Weeping of brine from the walls of the repository excavations also decreases after two or more years. Chemical analyses of brines shows that they are sodium-chloride saturated and magnesium-rich

  16. Permeability of salt-crystal interfaces to brine

    International Nuclear Information System (INIS)

    Gilpatrick, L.O.; Baes, C.F. Jr.; Shor, A.J.; Canonico, C.M.

    1982-06-01

    To investigate the movement of brine along grain boundaries in polycrystalline salt, measurements have been made of the radial flow of brine through the interface between cylindrical salt crystals under axial stresses to 140 bar and temperatures to 80 0 C. For constant conditions, the total flow of brine showed a linear dependence on the logarithm of time, and the reciprocal permeability increased linearly with time. Loss of salt from the interface by pressure solution effects was more than enough to account for the decrease in the apparent thickness of the interface (i.e., that which may be estimated for an interface of the same permeability formed by plane parallel surfaces). This apparent thickness, initially as large as 10 μm, decreased to as little as 0.2 μm with exposure to stress and flowing brine. It decreased quickly with sudden increases in axial stress and usually increased, though not reversibly, with decreases in stress. The rate of increase in the reciprocal permeability with time was roughly proportional to the stress and to the square of the hydraulic pressure drop. Assuming similar apparent thicknesses for the grain boundaries in polycrystalline salt, permeabilities are predicted that are quite consistent with the low values reported for stressed core specimens

  17. Ultra-high chlorine in submarine Kı̄lauea glasses: Evidence for direct assimilation of brine by magma

    Science.gov (United States)

    Coombs, Michelle L.; Sisson, Thomas W.; Kimura, Jun-Ichi

    2004-01-01

    Basaltic glass grains from the submarine south flank of Kı̄lauea, Hawai′i, have Cl concentrations of 0.01–1.68 wt%, the latter being the highest Cl content yet recorded for a Hawaiian glass. The high-Cl glass grains are products of brine assimilation by tholeiite magma. The glasses are grains in a sandstone clast from bedded breccias draping the southwestern margin of Kı̄lauea’s submarine midslope bench. The clast contains two distinct suites of glass grains: abundant degassed tholeiites, perhaps derived from subaerial lavas of Mauna Loa that shattered upon ocean entry, and a smaller population of Kea-type tholeiite (n=17 analyzed) that erupted subaqueously, based on elevated S (780–1050 ppm), H2O (0.42–1.27 wt%), and CO2 (1000 ppm, six >5000 ppm, and two grains have >10 000 ppm dissolved Cl. Abundances of H2O, Na2O, K2O, and several trace elements increase regularly with Cl concentration, and we estimate that Cl enrichment was due to up to 13 wt% addition of a brine consisting of 78% H2O (wt), 13% Cl, 4.4% Na, 2.6% K, 2.6% Ca, 620 ppm Ba, 360 ppm Sr, 65 ppm Rb, and 7 ppm Pb. The large amounts of brine addition argue against bulk assimilation of low-porosity brine-bearing rock. The brine’s composition is appropriate for a seawater-derived hydrothermal fluid that reacted with basaltic wall rocks at T>100°C, losing Mg and S and gaining K, Ca, Rb, Ba, Sr, and Pb, followed by phase separation near 500°C and ∼50 MPa (5 km below sea level at hydrostatic pressure). Brine was assimilated at or near the depth it formed, as estimated on petrologic grounds, but under lithostatic conditions. The highest extents of assimilation either forced volatile saturation of the magma or enriched already coexisting magmatic vapor in H2O. Possible mechanisms for assimilation are: (1) forcible injection of brine into magma during bursting of overpressured pockets heated by new dikes, or (2) intrusion of magma into lenses or sills occupied by trapped brine.

  18. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    International Nuclear Information System (INIS)

    Xu, Tianfu

    2008-01-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO 2 geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation

  19. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    Science.gov (United States)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  20. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  1. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  2. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  3. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  4. FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND STORAGE TEST

    Energy Technology Data Exchange (ETDEWEB)

    Hamling, John; Klapperich, Ryan; Stepan, Daniel; Sorensen, James; Pekot, Lawrence; Peck, Wesley; Jacobson, Lonny; Bosshart, Nicholas; Hurley, John; Wilson, William; Kurz, Marc; Burnison, Shaughn; Salako, Olarinre; Musich, Mark; Botnen, Barry; Kalenze, Nicholas; Ayash, Scott; Ge, Jun; Jiang, Tao; Dalkhaa, Chantsalmaa; Oster, Benjamin; Peterson, Kyle; Feole, Ian; Gorecki, Charles; Steadman, Edward

    2016-03-31

    The Energy & Environmental Research Center (EERC) successfully completed all technical work of Phase I, including development of a field implementation plan (FIP) for a brine extraction and storage test (BEST) in the North Dakota portion of the Williston Basin. This implementation plan was commissioned by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) as a proxy for managing formation pressure plumes and measuring/monitoring the movement of differential pressure and CO2 plumes in the subsurface for future saline CO2 storage projects. BEST comprises the demonstration and validation of active reservoir management (ARM) strategies and extracted brine treatment technologies. Two prospective commercial brine injection sites were evaluated for BEST to satisfy DOE’s goals. Ultimately, an active saltwater disposal (SWD) site, Johnsons Corner, was selected because it possesses an ideal combination of key factors making it uniquely suited to host BEST. This site is located in western North Dakota and operated by Nuverra Environmental Solutions (Nuverra), a national leader in brine handling, treatment, and injection. An integrated management approach was used to incorporate local and regional geologic characterization activities with geologic and simulation models, inform a monitoring, verification, and accounting (MVA) plan, and to conduct a risk assessment. This approach was used to design a FIP for an ARM schema and an extracted brine treatment technology test bed facility. The FIP leverages an existing pressure plume generated by two commercial SWD wells. These wells, in conjunction with a new brine extraction well, will be used to conduct the ARM schema. Results of these tests will be quantified based on their impact on the performance of the existing SWD wells and the surrounding reservoir system. Extracted brine will be injected into an underlying deep saline formation through a new injection well. The locations of proposed

  5. Pressure-induced brine migration in consolidated salt in a repository

    International Nuclear Information System (INIS)

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This report describes a mathematical model for brine migration through intact salt near a radioactive waste package emplaced in salt. Solutions indicate limited movement following ten years emplacement

  6. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  7. Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions

    Science.gov (United States)

    Al-Menhali, Ali; Krevor, Samuel

    2014-05-01

    , core-scale effective contact angle can be determined. In addition to providing a quantitative measure of the core-averaged wetting properties, the technique allows for the observation of shifts in contact angle with changing conditions. We examine the wettability changes of the CO2-brine system in Berea sandstone with variations in reservoir conditions including supercritical, gaseous and liquid CO2injection. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This study will include results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20 MPa, 25-90 oC, 0-5 mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.

  8. Origin of the yellow brine and the black brine in Sichuan Basin

    International Nuclear Information System (INIS)

    Wang Dongsheng

    1988-01-01

    The spring water, geothermal water and Cretaceous brine in the outer zone of the Sichuan Basin has the Craig relationship, and they are cycling waters. The brine in the inner zone is mainly metasedimentary water. A basic feature of them is poor in 2 H, but rich in 18 O. The δD-values of the yellow brine in Jurassic and Upper Triassic aquifer of continental facies varies from -62.25 to -22.4, and the δ 18 O-values are -6.72 - +6.02. The δD-values of the black brine in marine aquifer (T 2 ,T 1 ,P,C,O and so on) varies from -49 to -25.1, and the 18 O values are +3.89 - +6.14. The δD of yellow brine is similar to that of meteoric water, and the δD of the black brine is around that of crystallization water expelled from gypsum by anhydritization. Increases of salinity in Jurassic yellow brine result primarily from the evapotranspiration process. The salinity in Upper Triassic yellow brine in Aa sub-area originated from underlying rock salt which was leached by paleometeoric water. Triassic black brine derived from the mixing of the crystallization water leached from rock salt with the residual sea water after salt crystallization. In Zhigong, the composition of yellow brine has mainly been changed by the mixing of the yellow brine with the black brine. (author). 2 refs, 2 figs, 2 tabs

  9. CO2/ brine substitution experiments at simulated reservoir conditions

    Science.gov (United States)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  10. In-Situ X-ray Tomography Study of Cement Exposed to CO2 Saturated Brine

    DEFF Research Database (Denmark)

    Chavez Panduro, E. A.; Torsæter, M.; Gawel, K.

    2017-01-01

    For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2...... saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement......, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2...

  11. Statistical testing of input factors in the carbonation of brine impacted fly ash.

    Science.gov (United States)

    Grace, Muriithi N; Wilson, Gitari M; Leslie, Petrik F

    2012-01-01

    A D-optimal design was applied in the study of input factors: temperature, pressure, solid/liquid (S/L) ratio and particle size and their influence on the carbonation of brine impacted fly ash (FA) determined. Both temperature and pressure were at two levels (30°C and 90°C; 1 Mpa and 4 Mpa), S/L ratio was at three levels (0.1, 0.5 and 1) while particle size was at 4 levels (bulk ash, 150 μm). Pressure was observed to have a slight influence on the % CaCO(3) yield while higher temperatures led to higher percentage CaCO(3) yield. The particle size range of 20 μm - 150 μm enhanced the degree of carbonation of the fly ash/brine slurries. This was closely followed by the bulk ash while the >150 μm particle fraction had the least influence on the % CaCO(3). The effect of S/L ratio was temperature dependent. At low temperature, the S/L ratio of 1 resulted in the highest % CaCO(3) formation while at high temperature, the ratio of 0.5 resulted in the highest percentage CaCO(3) formation. Overall the two most important factors in the carbonation of FA and brine were found to be particle size and temperature.

  12. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  13. Brine/Rock Interaction in Deep Oceanic Layered Gabbros: Petrological Evidence from Cl-Rich Amphibole, High-Temperature Hydrothermal Veins, and Experiments

    Science.gov (United States)

    Currin Sala, A. M.; Koepke, J.; Almeev, R. R.; Teagle, D. A. H.; Zihlmann, B.; Wolff, P. E.

    2017-12-01

    Evidence of high temperature brine/rock interaction is found in hydrothermal veins and dykelets that cross-cut layered olivine gabbros in the deep palaeocrust of the Sumail Ophiolite, Sultanate of Oman. Here we present petrological and geochemical data from these samples, and an experimental attempt to simulate brine/gabbro interaction using externally heated cold seal pressure vessels. The studied natural veins and dykelets contain pargasite, hornblende, actinolite, and Cl-rich pargasite with up to 5 wt% Cl, showing a range of formation conditions from magmatic to metamorphic (hydrothermal) and thus a complex history of brine/rock interaction. In addition, the isotopic study of the radiogenic 87/86Sr and stable 18O in different amphibole types provide an estimate for the extent of seawater influence as alteration agent in the veins of the studied samples. Experiments performed at 750 °C and 200 MPa with different starting materials (chlorine-free amphibole, olivine gabbro powder) and 20 wt% NaCl aqueous brine, illustrate the process by which gabbro-hosted amphibole-rich veins evolve at subsolidus temperatures in the presence of a seawater-derived fluid. Our results demonstrate a decrease in olivine, plagioclase and magnetite content in favour of hastingsite, pargasite and magnesiohornblende, a decrease of IVAl and Ti in the starting amphibole, and an increase in Cl in amphibole, up to 0.2 Cl wt%. Our experiments show the change of magmatic pargasite towards more magnesium and silica-rich end members with results comparable to mildly chlorine-rich pargasites and hornblendes found in the natural samples studied. However, the experimental setup also presents limitations in the attainment of very high-chlorine amphibole (up to 5 wt%). Our analytical and experimental results provide further evidence for the existence of a hydrothermal cooling system in the deep oceanic crust.

  14. Forward Osmosis Brine Drying

    Science.gov (United States)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  15. High pressure inactivation of relevant target microorganisms in poultry meat products and the evaluation of pressure-induced protein denaturation of marinated poultry under different high pressure treatments

    Science.gov (United States)

    Schmidgall, Johanna; Hertel, Christian; Bindrich, Ute; Heinz, Volker; Toepfl, Stefan

    2011-03-01

    In this study, the possibility of extending shelf life of marinated poultry meat products by high pressure processing was evaluated. Relevant spoilage and pathogenic strains were selected and used as target microorganisms (MOs) for challenge experiments. Meat and brine were inoculated with MOs and treated at 450 MPa, 4 °C for 3 min. The results of inactivation show a decreasing pressure tolerance in the series Lactobacillus > Arcobacter > Carnobacterium > Bacillus cereus > Brochothrix thermosphacta > Listeria monocytogenes. Leuconostoc gelidum exhibited the highest pressure tolerance in meat. A protective effect of poultry meat was found for L. sakei and L. gelidum. In parallel, the influence of different marinade formulations (pH, carbonates, citrates) on protein structure changes during a pressure treatment was investigated. Addition of sodium carbonate shows a protection against denaturation of myofibrillar proteins and provides a maximum water-holding capacity. Caustic marinades allowed a higher retention of product characteristics than low-pH marinades.

  16. Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy

    Science.gov (United States)

    Chiodini, Giovanni; Marini, Luigi; Russo, Massimo

    2001-07-01

    A high-temperature hydrothermal system is present underneath the crater area of Vesuvio volcano. It is suggested that NaCl brines reside in the high-temperature reservoir and influence the chemical composition of the gases discharged by the fumaroles of the crater bottom (vents FC1, FC2, and FC5). These have typical hydrothermal compositions, with H 2O and CO 2 as major components, followed by H 2, H 2S, N 2, CH 4, and CO (in order of decreasing contents) and undetectable SO 2, HCl, and HF. Fumarolic H 2O is either meteoric water enriched in 18O through high-temperature water-rock oxygen isotope exchange or a mixture of meteoric and arc-type magmatic water. Fumarolic CO 2 is mainly generated by decarbonation reactions of marine carbonates, but the addition of small amounts of magmatic CO 2 is also possible. All investigated gas species (H 2O, CO 2, CO, CH 4, H 2, H 2S, N 2, and NH 3) equilibrate, probably in a saturated vapor phase, at temperatures of 360 to 370°C for vent FC1 and 430 to 445°C for vents FC2 and FC5. These temperatures are confirmed by the H 2-Ar geoindicator. The minimum salt content of the liquid phase coexisting with the vapor phase is ˜14.9 wt.% NaCl, whereas its maximum salinity corresponds to halite saturation (49.2-52.5 wt.% NaCl). These poorly constrained salinities of NaCl brines reflect in large uncertainties in total fluid pressures, which are estimated to be 260 to 480 bar for vents FC2 and FC5 and 130 to 220 bar for vent FC1. Pressurization in some parts of the hydrothermal system, and its subsequent discharge through hydrofracturing, could explain the relatively frequent seismic crises recorded in the Vesuvio area after the last eruption. An important heat source responsible for hydrothermal circulation is represented by the hot rocks of the eruptive conduits, which have been active from 1631 to 1944. Geochemical evidence suggests that no input of fresh magma at shallow depths took place after the end of the last eruptive period.

  17. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    Science.gov (United States)

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase

  18. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

    Science.gov (United States)

    Chen, Xi; Yip, Ngai Yin

    2018-02-20

    Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.

  19. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  20. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    Science.gov (United States)

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide

    2015-01-01

    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  1. Nuclear waste repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany: Quarterly brine migration data report, October--December 1985

    International Nuclear Information System (INIS)

    Eckert, J.L.; Kalia, H.N.; Coyle, A.J.

    1988-03-01

    The tenth brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through December 1985. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report includes test data for 31 months of operations on brine migration rates, borehole pressure, salt temperatures and thermomechanical behavior of the salt. 3 refs., 118 figs., 93 tabs

  2. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  3. Impaired Performance of Pressure-Retarded Osmosis due to Irreversible Biofouling.

    Science.gov (United States)

    Bar-Zeev, Edo; Perreault, François; Straub, Anthony P; Elimelech, Menachem

    2015-11-03

    Next-generation pressure-retarded osmosis (PRO) approaches aim to harness the energy potential of streams with high salinity differences, such as wastewater effluent and seawater desalination plant brine. In this study, we evaluated biofouling propensity in PRO. Bench-scale experiments were carried out for 24 h using a model wastewater effluent feed solution and simulated seawater desalination brine pressurized to 24 bar. For biofouling tests, wastewater effluent was inoculated with Pseudomonas aeruginosa and artificial seawater desalination plant brine draw solution was seeded with Pseudoalteromonas atlantica. Our results indicate that biological growth in the feed wastewater stream channel severely fouled both the membrane support layer and feed spacer, resulting in ∼50% water flux decline. We also observed an increase in the pumping pressure required to force water through the spacer-filled feed channel, with pressure drop increasing from 6.4±0.8 bar m(-1) to 15.1±2.6 bar m(-1) due to spacer blockage from the developing biofilm. Neither the water flux decline nor the increased pressure drop in the feed channel could be reversed using a pressure-aided osmotic backwash. In contrast, biofouling in the seawater brine draw channel was negligible. Overall, the reduced performance due to water flux decline and increased pumping energy requirements from spacer blockage highlight the serious challenges of using high fouling potential feed sources in PRO, such as secondary wastewater effluent. We conclude that PRO power generation using wastewater effluent and seawater desalination plant brine may become possible only with rigorous pretreatment or new spacer and membrane designs.

  4. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  5. Effect of iron cation on geochemical trapping of CO2 in brine

    Science.gov (United States)

    Liu, Qi; Maroto-Valer, Mercedes

    2014-05-01

    Carbon dioxide sequestration using brines has emerged as a promising technology to mitigate the adverse impacts of climate change due to its large storage capacity and favorable chemistries. However, the permanent storage (mineral trapping) of CO2 in brines takes significantly long periods of time as the formation and precipitation of carbonates is very slow .[1]. The main parameters reported to effect on mineral trapping of CO2 sequestration in brines are brine composition, brine pH, system temperature and pressure.[2, 3]. It is suggested that the precipitation of mineral carbonates is mostly dependent on brine pH. Previous studies by the authors concluded that iron in natural brines causes pH instability, but it was not ascertained whether ferric iron or ferrous iron caused pH instability .[4]. Accordingly, the aim of this project is to study synthetic brines mimicking the major ions found in natural brines and including different concentrations of ferric and ferrous iron. Three brines were prepared, as follows: Brine 1 was prepared with ferric Fe3+ iron, Brine 2 prepared with ferrous Fe2+ iron and Brine 3 prepared with no iron. A series of pH stability studies and carbonation reactions were conducted using the above three brines. It is concluded that the ferrous iron causes pH instability, while ferric iron might promote carbonate precipitation. .1. Garcia, S., et al., Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories. International Journal of Greenhouse Gas Control, 2012. 7: p. 89-97. 2. Liu, Q. and M.M. Maroto-Valer, Investigation of the pH effect of a typical host rock and buffer solution on CO 2 sequestration in synthetic brines. Fuel Processing Technology, 2010. 91(10): p. 1321-1329. 3. Liu, Q. and M.M. MarotoValer, Parameters affecting mineral trapping of CO2 sequestration in brines. Greenhouse Gases: Science and Technology, 2011. 1(3): p. 211-222. 4. Druckenmiller, M.L. and M.M. Maroto-Valer, Carbon

  6. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng

    2015-04-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  7. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  8. Laboratory tests to determine the effect of Olkiluoto bounding brine water on buffer performance

    International Nuclear Information System (INIS)

    Martikainen, J.; Schatz, T.

    2011-10-01

    This report presents a set of results from laboratory studies on the effect of bounding brine water exposure on buffer performance. In order to evaluate the effect of bounding brine water exposure on compacted bentonite buffer performance a series of experiments were conducted using swelling pressure and hydraulic conductivity measurements as follows: Direct exposure measurements were performed on MX-80 bentonite samples encompassing a range of dry density values from 1334 to 1585 kg/m 3 . These samples were saturated directly with a 70 g/L solution composed of calcium and sodium chloride at a Ca 2+ /Na + mass ratio of 3:2. Direct exposure measurements were performed on IBECO RWC samples encompassing a range of dry density values from 1314 to 1564 kg/m 3 . These samples were saturated directly with a 68.45 g/L solution composed of calcium and sodium chloride at a Ca 2+ /Na + mass ratio of 3.2:2. A set of MX-80 and IBECO RWC samples encompassing a range of dry density values from 1018 to 1607 kg/m 3 were initially saturated with tap water followed by (indirect) exposure to a 68.45 g/L solution composed of calcium and sodium chloride at a Ca 2+ /Na + mass ratio of 3.2:2. Sample swelling pressures were continuously monitored and hydraulic conductivity measurements were performed at each constant swelling pressure condition. In some cases, exchangeable cation analyses were performed. The specific test results are summarized as follows: All of the measured swelling pressure values upon exposure to bounding brine water were lower than the corresponding values after saturation with tap water. The relative swelling pressure decrease for the IBECO RWC samples was approximately half of the corresponding decrease for the MX-80 samples. On exposure to bounding brine water, hydraulic conductivity values were increased at the lowest densities, for both the MX-80 and IBECO samples, while at higher densities hydraulic conductivity values were essentially equivalent, for both the

  9. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  10. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    Science.gov (United States)

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  11. Molecular Dynamics Simulation Study of Carbon Dioxide, Methane, and Their Mixture in the Presence of Brine

    KAUST Repository

    Yang, Yafan

    2017-10-03

    We perform molecular dynamics simulation study of CO2, methane, and their mixture in the presence of brine over a broad range of temperature (311–473 K), pressure (up to about 100 MPa), and NaCl concentration (up to about 14 wt %). The general decrease in the interfacial tension (IFT) values of the CH4–brine system with pressure and temperature is similar to that obtained for the corresponding CH4–water system. The IFT of methane and brine is a linearly increasing function of salt concentration, and the resulting slopes are dependent on the pressure. A similar behavior as methane is observed for such systems containing CO2 and CO2–CH4 mixture. The IFT of CO2 and brine increases linearly with increasing salt content; however, the resulting slopes are independent of pressure. The simulations show that the presence of CO2 decreases the IFT values of the CH4–water and CH4–brine systems, but the degree of reduction depends on the amount of CO2 in each sample, which is consistent with experimental evidence. These IFT values show a linear correlation with the amount of CO2, and the resulting slopes are dependent on the temperature and pressure. Furthermore, our results for the mole fractions of the different species in the CO2–CH4–water system at 323 K and 9 MPa are in agreement with those of experiments. The mole fractions of methane and CO2 in the water-rich phase decrease with increasing salt concentration, whereas that of H2O in the methane- or CO2-rich phases remains almost unaffected in all of the studied cases. Our results could be useful because of the importance of carbon dioxide sequestration and shale gas production.

  12. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic

    DEFF Research Database (Denmark)

    Møller, Annette; Barkay, Tamar; Abu Al-Soud, Waleed

    2011-01-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial...... densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but...

  13. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    Directory of Open Access Journals (Sweden)

    Rehab Z. Abdallah

    2014-09-01

    Full Text Available The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I and the Kebrit Deep Upper (KB-U and Lower (KB-L brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.

  14. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Collings Matthew D

    2002-11-01

    Full Text Available Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m NaCl–water mixtures under ambient (25°C, 1 bar, hydrothermal (325°C, 1 kbar and deep crustal (625°C, 15 kbar conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757. With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClmn-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClmn-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  15. Quarterly brine migration data report, May-September 1983: Nuclear Waste Repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Coyle, A.J.; Kalia, H.N.; Eckert, J.L.

    1987-04-01

    The first quarterly brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through September 1983. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report also includes test data for the first 4 months of operations on brine migration rates, borehole pressure, salt temperatures, and thermomechanical behavior of the salt. The duration of the experiments will be approximately 2 years, ending in December 1985. 83 figs., 55 tabs

  16. Evolution of hydrologic systems and brine geochemistry in a deforming salt medium: Data from WIPP brine seeps

    International Nuclear Information System (INIS)

    Deal, D.E.; Roggenthen, W.M.

    1991-01-01

    The Brine Sampling and Evaluation Program (BSEP) is a formalized continuation of studies that began in 1982 as part of the Site Validation Program. The program was established in 1985. The mission was to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and the seepage of that brine into the WIPP excavations. This document focuses on the cumulative data obtained from the BSEP. The overall activities of the BSEP described and quantified the brine. It includes documentation and study of brine inflow into boreholes in the facility. The BSEP investigated the occurrence and development of brine weeps, crusts, and brine geochemistry. The presence of salt-tolerant bacteria in the workings was recorded and their possible interactions with experiments and operations, was assessed. The formation properties associated with the occurrence of brine was characterized. The determination of formation properties included the water content of various geologic units, direct examination of these units in boreholes using a video camera system, and measurement of electrical properties relatable to the brine contents. Modeling examined the interaction of salt deformation near the workings and the flow of brine through the deforming rocks. 34 refs

  17. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    Science.gov (United States)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0

  18. Thermal-gradient migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-02-01

    It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process

  19. Brine migration in hot-pressed polycrystalline sodium chloride

    International Nuclear Information System (INIS)

    Biggers, J.V.; Dayton, G.O.

    1982-12-01

    This report describes experiments designed to provide data on brine migration in polycrystalline salt. Polycrystalling samples of various grain sizes, density, and purity were prepared from several commercial-grade salts by hot-pressing. Three distinct experimental set-ups were used to place salt billets in an induced thermal gradient in contact with brine source. The test designs varied primarily in the way in which the thermal gradient was applied and monitored and the way in which brine migration was determined. All migration was in enclosed vessels which precluded visual observation of brine movement through the microstructure. Migration velocities were estimated either by the timed appearance of brine at the hot face of the sample, or by determination of the penetration distance of migration artifacts in the microstructure after tests of fixed duration. For various reasons both of these methods were subject to a large degree of error. Our results suggest, however, that the migration velocity in dense polycrystalline salt may be at least an order of magnitude greater than that suggested by single-crystal experiments. Microstructural analysis shows that brine prefers to migrate along paths of high crystalline activity such as grain and subgrain boundaries and is dispersed rather quickly in the microstructure. A series of tests were performed using various types of tracers in brine in order to flag migration paths and locate brine in the microstructure more decisively. These attempts failed and it appears that only the aqueous portion of the brine moves through the microstructure with the dissolved ions being lost and replaced rather quickly. This suggests the use of deuterium as a tracer in future work

  20. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH 2 ) -1/2 dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs

  1. Effects of faults as barriers or conduits to displaced brine flow on a putative CO2 storage site in the Southern North Sea

    Science.gov (United States)

    Hannis, Sarah; Bricker, Stephanie; Williams, John

    2013-04-01

    The Bunter Sandstone Formation in the Southern North Sea is a potential reservoir being considered for carbon dioxide storage as a climate change mitigation option. A geological model of a putative storage site within this saline aquifer was built from 3D seismic and well data to investigate potential reservoir pressure changes and their effects on fault movement, brine and CO2 migration as a result of CO2 injection. The model is located directly beneath the Dogger Bank Special Area of Conservation, close to the UK-Netherlands median line. Analysis of the seismic data reveals two large fault zones, one in each of the UK and Netherlands sectors, many tens of kilometres in length, extending from reservoir level to the sea bed. Although it has been shown that similar faults compartmentalise gas fields elsewhere in the Netherlands sector, significant uncertainty remains surrounding the properties of the faults in our model area; in particular their cross- and along-fault permeability and geomechanical behaviour. Despite lying outside the anticipated CO2 plume, these faults could provide potential barriers to pore fluid migration and pressure dissipation, until, under elevated pressures, they provide vertical migration pathways for brine. In this case, the faults will act to enhance injectivity, but potential environmental impacts, should the displaced brine be expelled at the sea bed, will require consideration. Pressure gradients deduced from regional leak-off test data have been input into a simple geomechanical model to estimate the threshold pressure gradient at which faults cutting the Mesozoic succession will fail, assuming reactivation of fault segments will cause an increase in vertical permeability. Various 4D scenarios were run using a single-phase groundwater modelling code, calibrated to results from a multi-phase commercial simulator. Possible end-member ranges of fault parameters were input to investigate the pressure change with time and quantify brine

  2. Brine Sampling and Evaluation Program, 1990 report

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M. [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry.

  3. Brine Sampling and Evaluation Program, 1990 report

    International Nuclear Information System (INIS)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M.; Belski, D.S.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry

  4. Migration rates of brine inclusions in single crystals of NaCl

    International Nuclear Information System (INIS)

    Chou, I.M.

    1982-01-01

    Rock-salt deposits have been considered as a possible medium for the permanent storage of high-level radioactive wastes and spent fuel. Brine inclusions present in natural salt can migrate toward the waste if the temperature and the temperature gradients in the vicinity of the radioactive waste are large enough. This migration is due to the dissolution of salt at the hot side of the salt-brine interface, ion diffusion through the brine droplet, and the precipitation of salt at the cold side of the salt brine interface. In order to quantify the problem, the migration rate of these brine inclusions must be estimated under various repository conditions. This paper estimates migration rates for all-liquid brine inclusions in single crystals of NaCl by utilizing recent data for brines and the model of Anthony and Cline [T.R. Anthony and H.E. Cline, J. Appl. Phys., 42, pp. 3380-387 (1971)]. The predictions are compared with experimentally measured migration rates. 4 figures, 6 tables

  5. Brine Sampling and Evaluation Program: 1988 report

    International Nuclear Information System (INIS)

    Deal, D.E.; Abitz, R.J.; Case, J.B.; Crawley, M.E.; Deshler, R.M.; Drez, P.E.; Givens, C.A.; King, R.B.; Myers, J.; Pietz, J.M.; Roggenthen, W.M.; Tyburski, J.R.; Belski, D.S.; Niou, S.; Wallace, M.G.

    1989-12-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1988. These activities, which are a continuation and update of studies that began in 1982 as part of the Site Validation Program, were formalized as the BSEP in 1985 to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation, and seepage of that brine into the excavations at the WIPP. Previous BSEP reports (Deal and Case, 1987; Deal and others, 1987) described the results of ongoing activities that monitor brine inflow into boreholes in the facility, moisture content of the Salado Formation, brine geochemistry, and brine weeps and crusts. The information provided in this report updates past work and describes progress made during the calendar year 1988. During 1988, BSEP activities focused on four major areas to describe and quantify brine activity: (1) monitoring of brine inflow parameters, e.g., measuring brines recovered from holes drilled upward from the underground drifts (upholes), downward from the underground drifts (downholes), and near-horizontal holes; (2) characterizing the brine, e.g., the geochemistry of the brine and the presence of bacteria and their possible interactions with experiments and operations; (3) characterizing formation properties associated with the occurrence of brine; e.g., determining the water content of various geologic units, examining these units in boreholes using a video camera system, and measuring their resistivity (conductivity); and (4) modeling to examine the interaction of salt deformation near the workings and brine seepage through the deforming salt. 77 refs., 48 figs., 32 tabs

  6. Brine Sampling and Evaluation Program, 1991 report

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J. [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  7. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre

    2015-10-31

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  8. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; Simoes, Marta; Daniels, Camille Arian; Ferreira, Ari J.S.; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B.

    2015-01-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  9. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  10. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    International Nuclear Information System (INIS)

    Economy, Kathleen M.; Helton, Jon Craig; Vaughn, Palmer

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  11. Determination of extremely high pressure tolerance of brine shrimp larvae by using a new pressure chamber system.

    Science.gov (United States)

    Seo, Mihye; Koyama, Sumihiro; Toyofuku, Takashi; Kojima, Shigeaki; Watanabe, Hiromi

    2013-11-01

    Hydrostatic pressure is the only one of a range of environmental parameters (water temperature, salinity, light availability, and so on) that increases in proportion with depth. Pressure tolerance is therefore essential to understand the foundation of populations and current diversity of faunal compositions at various depths. In the present study, we used a newly developed pressure chamber system to examine changes in larval activity of the salt-lake crustacean, Artemia franciscana, in response to a range of hydrostatic pressures. We showed that A. franciscana larvae were able to survive for a short period at pressures of ≤ 60 MPa (approximately equal to the pressure of 6000 m deep). At a pressure of > 20 MPa, larval motor ability was suppressed, but not lost. Meanwhile, at a pressure of > 40 MPa, some of the larval motor ability was lost without recovery after decompression. For all experiments, discordance of movement and timing between right and left appendages, was observed at pressures of > 20 MPa. Our results indicate that the limit of pressure for sustaining active behavior of A. franciscana larvae is ∼20 MPa, whereas the limit of pressure for survival is within the range 30-60 MPa. Thus, members of the genus Artemia possess the ability to resist a higher range of pressures than their natural habitat depth. Our findings demonstrated an example of an organism capable of invading deeper environment in terms of physical pressure tolerance, and indicate the need and importance of pressure study as an experimental method.

  12. Geochemistry of two pressurized brines from the Castile Formation in the vicinity of the Waste Isolation Pilot Plant (WIPP) site

    International Nuclear Information System (INIS)

    Faith, S.; Spiegler, P.; Rehfeldt, K.R.

    1983-04-01

    The major and minor element data and isotopic data from the ERDA-6 and WIPP-12 testing indicate that the brine reservoirs encountered in the Upper Castile Formation are largely in equilibrium with their surrounding host rock environment. This contention is supported by thermodynamic and stable isotope data. It is not possible to assign an absolute age to the brine based on uranium disequilibrium considerations, but the data do indicate that the brine reequilibrated with a new rock environment at least two million years ago. Information and data evaluated herein indicate the likelihood that the brines encountered are predominantly, if not entirely, derived from a trapped seawater source subsequently modified by diagenesis. Major ion/bromide ratios indicate that halite dissolution has occurred to some extent subsequent to deposition of the Castile anhydrites and entrapment of the seawater brine. Mechanisms for additional halite dissolution are discussed. Based on the degree of present halite saturation, it is concluded that the potential for future dissolution of halite is minimal

  13. Nuclear waste repository simulation experiments (brine migration), Asse Mine of the Federal of Germany: Quarterly brine migration data report, July-September 1984

    International Nuclear Information System (INIS)

    Coyle, A.J.; Kalia, H.N.; Eckert, J.L.

    1986-10-01

    The fifth brine migration data status report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through September 1984. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report also includes test data for the first 16 months of operations on brine migration rates, borehole pressure, salt temperatures, and thermomechanical behavior of the salt. Annual reports have been prepared for the years 1983 and 1984, describing the test activities on a yearly basis (Rothfuchs et al., 1984, 1986). The duration of the experiments will be approximately 2 years, ending in December 1985. 2 refs., 118 figs., 91 tabs

  14. Thermal-gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  15. Thermal gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-01-01

    Natural salt deposits, which are being considered for high-level nuclear wastes repositories, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In the present work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boudaries was observed

  16. Design calculations for a combined ventilation and brine injection experiment at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Finsterle, S.; Pruess, K.

    1993-07-01

    A combined ventilation and brine injection test is planned at the Grimsel Test Site. The objective of the experiment is to study the transport of liquid and gas in the vicinity of a ventilated drift in order to evaluate the impact of the drying process on the characterization of the rock matrix. The proposed test sequence includes a desaturation-resaturation cycle. In addition, brine and fresh water will be injected from a borehole as trace electrolytes in order to better track the propagation of the individual phases. Results of design calculations using the TOUGH2 code show that injection of brine may significantly influence the unsaturated flow behavior by changing the pressure and saturation distribution around the borehole. Transport velocity is predicted to be very slow, requiring several months for the brine to reach the draft wall. However, the presence of preferential flow paths may reduce travel time and alter brine content and saturation distribution so that certain sensors may respond earlier or not at all

  17. Kinetics of radioisotope exchange between brine and rock in a geothermal system

    International Nuclear Information System (INIS)

    Hammond, D.E.; Zukin, J.G.; Teh-Lung Ku

    1988-01-01

    A wide range of isotopes in the /sup 238/U, /sup 235/U, and /sup 232/Th decay chains was measured in geothermal brines collected from two production zones at 1898 and 3220 m in the Salton Sea Scientific Drilling Project well. High concentrations of radium, radon, and lead isotopes are generated and maintained by the input of these isotopes from solid phases into brine by both recoil and leaching processes, by the high chloride content of the brine which complexes radium and lead, and by the apparent absence of suitable unoccupied adsorption sites. In contrast, uranium, thorium, actinium, bismuth, and polonium isotopes all have low concentrations due to their efficient sorption from brine to rock. Measurements of short-lived isotopes in these decay series yield insights regarding the mechanisms controlling radioisotope exchange, and they permit estimation of rates of brine-rock interaction. For example, the /sup 228/Ac//sup 228/Ra activity ratio of 0.2 in brines indicates that the mean residence time of actinium in solution before sorption onto solid surfaces is less than 2.5 hours

  18. Methodology Measuring Rare Earth Elements in High TDS Reservoir Brines Application as Natural Tracers in CCUS Studies

    Science.gov (United States)

    Smith, W.; Mcling, T. L.; Smith, R. W.; Neupane, H.

    2013-12-01

    In recent years rare earth elements (REE) have been demonstrated to be useful natural tracers for geochemical processes in aqueous environments. The application of REE's to carbon dioxide utilization and storage (CCUS) could provide researchers with a sensitive, inexpensive tool for tracking the movement of CO2 and displaced formation brines. By definition, geologic reservoirs that have been deemed suitable for carbon capture and storage contain formation brine with total dissolved solids (TDS) greater than 10,000 ppm and often these formation brines exceed 75,000 ppm TDS. This high TDS water makes it very difficult to measure REE, which typically occur at part per trillion concentrations. Critical to the use of REE for CCUS studies is the development of a procedure, which allows for the pre-concentration of REE's across a wide range of water quality. Additionally, due to the large number of samples that will need analysis, any developed procedure must be inexpensive, reproducible, and quick to implement. As part of the Big Sky Carbon Sequestration Project the INL's Center for Advance Energy Studies is developing REE pre-concentration procedures based on methods reported in the literature. While there are many REE pre-concentration procedures in the literature, our tests have shown these methods have difficulty at TDS greater than seawater (roughly 35,000 ppm TDS). Therefore, the ability to quantitatively measure REE's in formation brines with very high TDS has required the modification of an already developed procedure. After careful consideration and testing we selected methods modified after those described by Kingston et al., 1978 and Strachan et al., 1989 utilizing chelating media for very high TDS waters and ion-exchange media as detailed by Crock et al., 1984; Robinson et al., 1985; and Stetzenbach et al., 1994 for low TDS (tested in our laboratory and have proven effective in greatly reducing interfering monovalent and divalent cation concentrations (e

  19. Origin, distribution, and movement of brine in the Permian Basin (U.S.A.). A model for displacement of connate brine

    International Nuclear Information System (INIS)

    Bein, A.; Dutton, A.R.

    1993-01-01

    Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs

  20. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Science.gov (United States)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  1. Possible Mars brines - Equilibrium and kinetic considerations

    Science.gov (United States)

    Zent, A. P.; Fanale, F. P.

    1986-01-01

    To determine the fate of postulated near surface brines on Mars, the rate of H2O mass loss from subsurface brines was calculated as a function of latitude, depth, regolith porosity, eutectic temperature, and pore size. A model for a chemically reasonable brine that could reproduce Martian radar results was developed, and the escape rate of H2O molecules from such a brine was estimated. It is suggested that the presence of a low-permeability duricrust may be required to preserve such a brine for reasonable periods, and to prevent detection of an extensive subsurface system by the Viking MAWD instrument.

  2. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea.

    Science.gov (United States)

    Antunes, André; Alam, Intikhab; Simões, Marta Filipa; Daniels, Camille; Ferreira, Ari J S; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B

    2015-10-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  3. On the physico-chemical characteristics of brines

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Rao, P.V.S.S.D.P.; Singbal, S.Y.S.

    Analyses of the natural brines form the salt lakes, salt pans and the artificial brines obtained after the solar desalination of seawater respectively, showed wide differences in their physico-chemical characteristics. The natural brines are markEd...

  4. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    Science.gov (United States)

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  5. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    Science.gov (United States)

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  6. Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine.

    Science.gov (United States)

    Yang, Ting; Doudrick, Kyle; Westerhoff, Paul

    2013-03-01

    Nitrate is often removed from groundwater by ion exchange (IX) before its use as drinking water. Accumulation of nitrate in IX brine reduces the efficiency of IX regeneration and the useful life of the regeneration brine. For the first time, we present a strategy to photocatalytically reduce nitrate in IX brine, thereby extending the use of the brine. Titanium dioxide (Evonik P90), acting as photocatalyst, reduced nitrate effectively in both synthetic brines and sulfate-removed IX brine when formic acid (FA) was used as the hole scavenger (i.e., electron donor) and the initial FA to nitrate molar ratio (IFNR) was 5.6. Increasing the NaCl level in the synthetic brine slowed the nitrate reduction rate without affecting by-product selectivity of ammonium and gaseous N species (e.g., N(2), N(2)O). In a non-modified IX brine, nitrate removal was greatly inhibited owing to the presence of sulfate, which competed with nitrate for active surface sites on P90 and induced aggregation of P90 nanoparticles. After removing sulfate through barium sulfate precipitation, nitrate was effectively reduced; approximately 3.6 × 10(24) photons were required to reduce each mole of nitrate to 83% N Gases and 17% NH(4)(+). To make optimum use of FA and control the residual FA level in treated brine, the IFNR was varied. High IFNRs (e.g., 4, 5.6) were found to be more efficient for nitrate reduction but left higher residual FA in brine. IX column tests were performed to investigate the impact of residual FA for brine reuse. The residual FA in the brine did not significantly affect the nitrate removal capacity of IX resins, and formate contamination of treated water could be eliminated by rinsing with one bed volume of fresh brine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    International Nuclear Information System (INIS)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed

  8. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  9. Brine chemistry and control of adverse chemical reactions with natural gas production. Annual report, July 1990-June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, J.E.; Kan, A.T.; Cao, X.; Hunter, M.; Tomson, M.B.

    1991-08-01

    A significant quantity of brine is produced along with nearly all gas production. In addition to disposal, three specific chemistry problems occur: (1) scale formation; (2) carbon dioxide corrosion; (3) solids or turbidity production. Additionally, there are numerous specific analytical chemistry issues which require attention. Several research oriented small test squeezes were performed in the Delee Well. Results of these test squeezes were used to better design a full-sized squeeze at the O'Daniels No. 2 Well in the Alta Loma East field, near Galveston, Texas. Sulfate scale formation is common in offshore gas production, because of the high sulfate content in sea water. Preliminary work has been completed on sulfate scale prediction for the common scales of calcium, strontium and barium. These predictive algorithms have been developed for field use and are based upon readily measured brine parameters. Corresponding laboratory work on sulfate inhibition has been started using a newly developed high temperature and pressure flow through apparatus. Flow through core tests have been conducted to determine the important mechanisms of inhibition retention and release in the field. These results are summarized along with their major implications to squeeze design. Also, a new method has been developed and a patent application filed for low level phosphonate inhibition analysis in produced brines.

  10. Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel

    International Nuclear Information System (INIS)

    Starinsky, A.; Bielski, M.; Lazar, B.; Steinitz, G.; Raab, M.

    1983-01-01

    The isotopic composition of Sr in oil field brines from the Mediterranean Coastal Plain was determined in 18 drillholes. The brines are characterized by salinities ranging from 35 to 93 g/l (TDS), Sr from 28 to 350 mg/l, Sr/Ca molar ratios from 0.011 to 0.053 and 87 Sr/ 86 Sr ratios from 0.7075 to 0.7090. E and A = 0.7081 +- 0.0004 (2σ). The brines are classified into two groups: (a) Mavqi'im group - brines with relatively high 87 Sr/ 86 Sr ratios, sampled from clastics, dolomites and anhydrites of Upper Miocene age. (b) Heletz group - brines with relatively low 87 Sr/ 86 Sr ratios, sampled from sandstones and dolomites of Lower Cretaceous age. Equations were derived to show the relations between 87 Sr/ 86 Sr ratio of the brines and the processes through which they evolved. It is suggested that both groups of brines originated from Mediterranean evaporated seawater during the Messinian desiccation. The strontium isotope composition of the seawater is reflected in that of both groups of brines, the Mavqi'im group containing the original 87 Sr/ 86 Sr ratio. The Heletz group evolved later on, through exchange reactions of those primary brines with a carbonate sequence of Cretaceous age and consequently new 87 Sr/ 86 Sr ratios could have been developed. (author)

  11. Self-oscillations in large storages of highly mineralized brines

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Tsiberkin, Kirill; Parshakova, Yanina

    2014-05-01

    One of the stages of the production process at large enrichment plants is settling of aqueous solutions in large technological storages. The present work is devoted to the modeling of hydrodynamic regimes of large storage of highly mineralized brines. The density of brines in these objects depends not only on the content of dissolved macrocomponents, but also on the concentration of fine particulate matter. This leads to the need to consider the dynamics of the suspended sediment under significant density stratification, which greatly complicates the problem. Because of that it is important to develop hydrodynamical models of these objects. A peculiarity of these systems is the possibility of self-oscillatory regimes the mechanism of which is as follows. In warm sunny days, with high solar insolation, the heating of the sediments and bottom water takes place. The bottom water warming and the decrease of its density give rise to flow. The slurry particles composing the sediments are involved in the flow. The heated particles entrained by the flow transfer the heat to the surrounding liquid and increase the absorption of the solar radiation in the volume, which leads to equalization of temperature and convective flow damping. After the particle settling on the bottom the process is repeated. We study the stability of equilibrium of the horizontal liquid layer containing heavy insoluble particles in the presence of evaporation from the free surface and solar radiation absorption by insoluble particles. The time-dependent solution of heat transfer problem is obtained and used for estimate of time of instability onset. It is found that for the layer of saturated brines of potassium chloride of the thickness about 10 m the time for instability onset is about one hour. By using analytical estimates based on the empirical model of turbulence by Prandtl we confirmed the time for the onset of instability and obtained the estimates for the period of self

  12. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-03-01

    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data

  13. Migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1982-01-01

    Theories of the migration of brine inclusions in salt are interpreted as simple physical processes, and theories by Russian and U.S. workers are shown to yield the same results. The migration theory is used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients are compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of a threshold gradient helps explain the existence of brine inclusions in natural salt deposits

  14. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  15. Distribution of Cathepsin D Activity between Lysosomes and a Soluble Fraction of Marinating Brine.

    Science.gov (United States)

    Szymczak, Mariusz

    2016-08-01

    This paper is the first ever to describe the phenomenon of bimodal distribution of cathepsin D in the lysosomal and soluble fractions of brine left after herring marinating. Up to 2 times higher cathepsin D activity was observed in the lysosome fraction. Activity of cathepsin D in brine increased according to the logarithmic function during low frequency-high power ultrasounds treatment or according to the linear function after multiple freezing-thawing of brine. Activity enhancement was achieved only in the brine devoid of lipids and suspension. Study results show also that measurement of lysosomal cathepsin D activity in the marinating brine requires also determining cathepsin E activity. Decreasing pore size of microfilter from 2.7 to 0.3 μm significantly reduced the lysosome content in the brine. The presence of lysosomes and the possibility of their separation as well as the likely release of cathepsins shall be considered during industrial application of the marinating brine, as new cathepsins preparations in fish and meat technology. © 2016 Institute of Food Technologists®

  16. Rock-fluid chemical interactions at reservoir conditions: The influence of brine chemistry and extent of reaction

    Science.gov (United States)

    Anabaraonye, B. U.; Crawshaw, J.; Trusler, J. P. M.

    2016-12-01

    Following carbon dioxide injection in deep saline aquifers, CO2 dissolves in the formation brines forming acidic solutions that can subsequently react with host reservoir minerals, altering both porosity and permeability. The direction and rates of these reactions are influenced by several factors including properties that are associated with the brine system. Consequently, understanding and quantifying the impacts of the chemical and physical properties of the reacting fluids on overall reaction kinetics is fundamental to predicting the fate of the injected CO2. In this work, we present a comprehensive experimental study of the kinetics of carbonate-mineral dissolution in different brine systems including sodium chloride, sodium sulphate and sodium bicarbonate of varying ionic strengths. The impacts of the brine chemistry on rock-fluid chemical reactions at different extent of reactions are also investigated. Using a rotating disk technique, we have investigated the chemical interactions between the CO2-saturated brines and carbonate minerals at conditions of pressure (up to 10 MPa) and temperature (up to 373 K) pertinent to carbon storage. The changes in surface textures due to dissolution reaction were studied by means of optical microscopy and vertical scanning interferometry. Experimental results are compared to previously derived models.

  17. Gypsum and hydrohalite dynamics in sea ice brines

    Science.gov (United States)

    Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary

    2017-09-01

    Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its

  18. Subsurface transport of inorganic and organic solutes from experimental road spreading of oil-field brine

    International Nuclear Information System (INIS)

    Bair, E.S.; Digel, R.K.

    1990-01-01

    A study designed to evaluate ground water quality changes resulting from spreading oil-field brine on roads for ice and dust control was conducted using a gravel roadbed that received weekly applications of brine eight times during the winter phase and 11 times during the summer phase of the study. A network of 11 monitoring wells and five pressure-vacuum lysimeters was installed to obtain ground water and soil water samples. Thirteen sets of water-quality samples were collected and analyzed for major ions, trace metals, and volatile organic compounds. Two sets of samples were taken prior to brine spreading, four sets during winter-phase spreading, five sets during summer-phase spreading, and two sets during the interim between the winter and summer phases. A brine plume delineated by elevated specific-conductance values and elevated chloride concentrations in ground water samples to exceed US EPA public drinking-water standards by two-fold during the winter phase and five-fold during the summer phase. No other major ions, trace metals, or volatile organic compounds exceeded the standards during the winter or summer phases. More than 99% dilution of the solutes in the brine occurred between the roadbed surface and the local ground water flow system. Further attenuation of calcium, sodium, potassium, and strontium resulted from adsorption, whereas further attenuation of benzene resulted from volatilization and adsorption

  19. Ice Control with Brine on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars

    traffic flow the spread rate of pure sodium chloride (and thus the environmental impact) in the pre-salting operations was cut back by more than one third. Compared to neighbouring counties the use of salt is less than fifty percent per square meter. In addition, supply of brine from two mixer...... of interpreting this information. The improvements gained by the county of Funen were mainly due to the use of technologies (brine spreading with nozzles) giving a more precise spread pattern than the traditional gritting of pre-wetted salt. Major challenges in the process have been to verify the higher quality...... of the nozzles spread pattern, to ensure maximum utilization of volume of brine carried by the spreading vehicles and to control the mixing of brine without getting stratification in the mixture. Moreover, of course, to ensure political approval of abandoning a well-served technology and to organize...

  20. CONTACT ANGLE OF YUCCA MOUNTAIN WELDED TUFF WITH WATER AND BRINES

    International Nuclear Information System (INIS)

    H. Kalia

    2006-01-01

    A number of tests were performed to acquire contact angles between Yucca Mountain welded tuff from Topopah Springs Lower Lithophysal geologic unit and various brine solutions. The tests were performed on core disks received from Sample Management Facility (SMF), oven dried to a constant weight and the core disks vacuum saturated in: distilled water, J-13 water, calcium chloride brine and sodium chloride brine to constant weight. The contact angles were acquired from eight points on the surface of the core disks, four on rough surface, and four on polished surface. The contact angle was measured by placing a droplet of the test fluid, distilled water, J-13 water, calcium chloride brine and sodium chloride brine on the core disks. The objective of this test was to acquire contact angles as a potential input to estimating capillary forces in accumulated dust on the waste packages and drip shields slated for the proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada. It was noted that once the droplet contacts the test surface, it continues to spread hence the contact angle continues to decrease with elapsed time. The maximum observed angle was at time 0 or when the drop contacted the rock surface. The measured contact angle, in all cases has significant scatter. In general, the time zero contact angles for core disks saturated in sodium chloride brine were smaller than those saturated in calcium chloride brine, distilled water, and J-13 water. The contact angles for samples saturated in distilled water, J-13 water and calcium chloride brine at time zero were similar. There was slight difference between the observed contact angles for smooth and rough surface of the test samples. The contact angles for smooth surfaces were smaller than for the rough surfaces

  1. Carbon dioxide/brine wettability of porous sandstone versus solid quartz: An experimental and theoretical investigation.

    Science.gov (United States)

    Alnili, Firas; Al-Yaseri, Ahmed; Roshan, Hamid; Rahman, Taufiq; Verall, Michael; Lebedev, Maxim; Sarmadivaleh, Mohammad; Iglauer, Stefan; Barifcani, Ahmed

    2018-08-15

    Wettability plays an important role in underground geological storage of carbon dioxide because the fluid flow and distribution mechanism within porous media is controlled by this phenomenon. CO 2 pressure, temperature, brine composition, and mineral type have significant effects on wettability. Despite past research on this subject, the factors that control the wettability variation for CO 2 /water/minerals, particularly the effects of pores in the porous substrate on the contact angle at different pressures, temperatures, and salinities, as well as the physical processes involved are not fully understood. We measured the contact angle of deionised water and brine/CO 2 /porous sandstone samples at different pressures, temperatures, and salinities. Then, we compared the results with those of pure quartz. Finally, we developed a physical model to explain the observed phenomena. The measured contact angle of sandstone was systematically greater than that of pure quartz because of the pores present in sandstone. Moreover, the effect of pressure and temperature on the contact angle of sandstone was similar to that of pure quartz. The results showed that the contact angle increases with increase in temperature and pressure and decreases with increase in salinity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    Science.gov (United States)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  3. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases...

  4. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher, E-mail: cgriffith@utexas.edu; Daigle, Hugh [University of Texas at Austin, Department of Petroleum and Geosystems Engineering (United States)

    2017-01-15

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from ~3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of ~500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of ~330 nm.

  5. Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore

    Science.gov (United States)

    Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni

    2018-03-01

    Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.

  6. Effects of temperature, temperature gradients, stress, and irradiation on migration of brine inclusions in a salt repository

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1979-07-01

    Available experimental and theoretical information on brine migration in bedded salt are reviewed and analyzed. The effects of temperature, thermal gradients, stress, irradiation, and pressure in a salt repository are among the factors considered. The theoretical and experimental (with KCl) results of Anthony and Cline were used to correlate and explain the available data for rates of brine migration at temperatures up to 250 0 C in naturally occurring crystals of bedded salt from Lyons and Hutchinson, Kansas. Considerations of the effects of stressing crystals of bedded salt on the migratin properties of brine inclusions within the crystals led to the conclusion that the most probable effects are a small fractional increase in the solubility of the salt within the liquid and a concomitant and equal fractional increase in the rate of the thermal gradient-induced migration of the brine. The greatest uncertainty relative to the prediction of rates of migration of brine into a waste emplacement cavity in bedded salt is associated with questions concerning the effects of the grain boundaries (within the aggregates of single crystals which comprise a bedded salt deposit) on brine migration through the deposit. The results of some of the estimates of rates and total amounts of brine inflow to HLW and SURF waste packages emplaced in bedded salt were included to illustrate the inflow volumes which might occur in a repository. The results of the brine inflow estimates for 10-year-old HLW emplaced at 150 kW/acre indicated inflow rates starting at 0.7 liter/year and totaling 12 liters at 30 years after emplacement. The results of the estimates for 10-year-old PWR SURF emplaced at 60 kW/acre indicated a constant inflow of 0.035 liter/year for the first 35 years after emplacement

  7. REFUSE OF FERMENTATION BRINES IN THE CUCUMBER PICKLING INDUSTRY

    Science.gov (United States)

    The project evaluated on a commercial scale the technological and economic feasibility of recycling spent cucumber fermentation brine. Two brine treatment procedures, heat treatment and chemical treatment, were used. The results showed that brine recycling was practical on a comm...

  8. A review of theories on the origins of saline waters and brines in the Canadian Precambrian Shield

    International Nuclear Information System (INIS)

    Bottomley, D.J.

    1996-02-01

    Groundwater at depths greater that 500 m in the Canadian Precambrian Shield is typically saline with a sodium-calcium/chloride chemical composition. Brines with dissolved solid concentrations exceeding 100 g/L have been encountered in several deep mines (>1000 m) on the Shield. Theories on the origins of these deep saline waters and brines can be grouped into two general categories: (1) autochthonous (in situ) origins attributable to silicate mineral hydrolysis over geologic time scales, leaching of fluid inclusions or radiolysis effects, and (2) allochthonous (external) sources caused by the infiltration of brine of modified seawater origins in the geologic past. Although the chemical and isotopic compositions of these waters clearly reflect the effects of reaction between the water and their silicate host rocks, it is unlikely that the high chlorinity of the brines is in an autochthonous attribute. It is proposed that the compositions of these brines are most compatible with the Paleozoic residual brine hypothesis of Spencer (1987). This theory invokes deep infiltration of a high-density residual brine, formed by the evaporation of seawater during Devonian time, into underlying Precambrian basement rocks where subsequent chemical modifications occurred. (author) 39 refs., 2 figs

  9. Physiological characteristics of bacteria isolated from water brines within permafrost

    Science.gov (United States)

    Shcherbakova, V.; Rivkina, E.; Laurinavichuis, K.; Pecheritsina, S.; Gilichinsky, D.

    2004-01-01

    In the Arctic there are lenses of overcooled water brines (cryopegs) sandwiched within permafrost marine sediments 100 120 thousand years old. We have investigated the physiological properties of the pure cultures of anaerobic Clostridium sp. strain 14D1 and two strains of aerobic bacteria Psychrobacter sp. isolated from these cryopegs. The structural and physiological characteristics of new bacteria from water brines have shown their ability to survive and develop under harsh conditions, such as subzero temperatures and high salinity.

  10. Inhibition of Weld Corrosion in Flowing Brines Containing Carbon Dioxide

    OpenAIRE

    Alawadhi, Khaled

    2009-01-01

    The aim of this research was to study the effectiveness of a typical oilfield corrosion inhibitor, which is considered to be a green inhibitor (non toxic to the environment) in controlling internal corrosion of welded X65 pipeline steel in brines saturated with carbon dioxide at one bar pressure, under dynamic flowing conditions, over a range of temperatures. Several experimental configurations were used ranging from a simple flat plate design to a novel rotating cylinder electrode, to all...

  11. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  12. Stratification and space-time variability of Red Sea hot brines

    Energy Technology Data Exchange (ETDEWEB)

    Monin, A S; Plakhin, E A

    1982-11-01

    The results of hydrophysical studies in Red Sea hot brines prefaced with historical information are presented. The CTD-recorder readings show stratification of the upper brine in the Atlantis II Deep into meter-scale layers, in agreement with laboratory findings. Repeated soundings with the AIST CTD meter of the upper brine interface in the Valdivia Deep recorded internal waves of 3 to 4-h periods. The observations show the different nature of brines in the four deeps studied and the lack of contact between the brine layers of the Chain and Discovery deeps.

  13. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  14. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  15. Uranium mobility in non-oxidizing brines: field and experimental evidence

    International Nuclear Information System (INIS)

    Giblin, A.M.; Appleyard, E.C.

    1987-01-01

    The present distribution of U in the Wollaston Sediments in Saskatchewan can be related to the movement of brines as revealed in Na-Ca-Mg-Cl-metasomes. Experiments were conducted at 60 and 200 0 C under stringently non-oxidizing conditions using solvents ranging from distilled water to a Ca-Na-K brine formulated to simulate the major element composition of the Salton Sea geothermal brines. The experiments were conducted on natural pitchblende (UOsub(2.67)) and synthetic uraninite (UOsub(2.01)). Natural pitchblende was more strongly dissolved than the synthetic uraninite, and the synthetic Salton Sea brine was a more potent solvent than distilled water, 1:4 diluted Salton Sea brine, or pure NaCl brine. Within analytical limits of detection the dissolved U is present in the uranous (U 4+ ) state. The evidence demonstrates empirically the mechanism of dissolution of naturally occurring U minerals in reduced brines and describes a geological case where this appears to have happened. (author)

  16. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA

    International Nuclear Information System (INIS)

    Haluszczak, Lara O.; Rose, Arthur W.; Kump, Lee R.

    2013-01-01

    Large quantities of highly saline brine flow from gas wells in the Marcellus Formation after hydraulic stimulation (“fracking”). This study assesses the composition of these flowback waters from the Marcellus shale in Pennsylvania, USA. Concentrations of most inorganic components of flowback water (Cl, Br, Na, K, Ca, Mg, Sr, Ba, Ra, Fe, Mn, total dissolved solids, and others) increase with time from a well after hydraulic stimulation. Based on results in several datasets reported here, the greatest concentration of Cl − in flowback water is 151,000 mg/L. For total Ra (combined 226 Ra and 228 Ra) in flowback, the highest level reported is 6540 pCi/L. Flowback waters from hydraulic fracturing of Marcellus wells resemble brines produced from conventional gas wells that tap into other Paleozoic formations in the region. The Br/Cl ratio and other parameters indicate that both types of brine formed by the evaporation of seawater followed by dolomitization, sulfate reduction and subsurface mixing with seawater and/or freshwater. Trends and relationships in brine composition indicate that (1) increased salt concentration in flowback is not mainly caused by dissolution of salt or other minerals in rock units, (2) the flowback waters represent a mixture of injection waters with highly concentrated in situ brines similar to those in the other formations, and (3) these waters contain concentrations of Ra and Ba that are commonly hundreds of times the US drinking water standards.

  17. Uranium, RADON and radon isotopes in selected brines of Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Walencik, A.; Zipper, W.; Dorda, J.; Przylibski, T.A.

    2010-01-01

    Natural radioactive isotopes were studied in nine different types of brines from four locations in Poland. Investigated brines are exploited from various geological structures composed of the rocks of different chemical and mineral composition as well as different age and depth. All investigated brines are used in balneotherapy (i.e. baths, inhalations, showers). The main goal of this study was to obtain some basic knowledge on the activity range of natural elements such as uranium, RADON and radon in different brine types in Poland and their variability depending on their location in certain geological structures. Activities of 234,238 U, 226,228 Ra and 222 Rn isotopes were measured with the use of two nuclear spectrometry techniques: liquid scintillation and alpha spectrometry. The activity concentrations of 222 Rn vary from below 1 to 76.1±3.7 Bq/l, for the 226 Ra isotope from 0.19±0.01 to 85.5±0.4 Bq/l and for 228 Ra from below 0.03 to 2.17±0.09 Bq/l. For uranium isotopes, the concentrations are in the range from below 0.5 to 5.1±0.4 mBq/l for 238 U and from 1.6±0.4 to 45.6±2.0 mBq/l for 2 34U . The obtained results indicate high RADON activity concentrations corresponding to high mineralization of waters. (authors)

  18. Molecular Dynamics Simulation Study of Carbon Dioxide, Methane, and Their Mixture in the Presence of Brine

    KAUST Repository

    Yang, Yafan; Nair, Arun Kumar Narayanan; Sun, Shuyu

    2017-01-01

    We perform molecular dynamics simulation study of CO2, methane, and their mixture in the presence of brine over a broad range of temperature (311–473 K), pressure (up to about 100 MPa), and NaCl concentration (up to about 14 wt %). The general

  19. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic.

    Science.gov (United States)

    Møller, Annette K; Barkay, Tamar; Abu Al-Soud, Waleed; Sørensen, Søren J; Skov, Henrik; Kroer, Niels

    2011-03-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but levels of most isolates were not temperature dependent. Of the resistant isolates, 25% reduced Hg(II) to Hg(0). No relation between resistance level, ability to reduce Hg(II) and phylogenetic group was observed. An estimation of the potential bacterial reduction of Hg(II) in snow suggested that it was important in the deeper snow layers where light attenuation inhibited photoreduction. Thus, by reducing Hg(II) to Hg(0), mercury-resistant bacteria may limit the supply of substrate for methylation processes and, hence, contribute to lowering the risk that methylmercury is being incorporated into the Arctic food chains. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes

    Science.gov (United States)

    Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve

    2018-03-01

    Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.

  1. Attempt to enrich of a new spontaneous fissioning nuclide by evaporation of natural brine

    International Nuclear Information System (INIS)

    Adamek, A.; Zhuravleva, E.L.; Constantinescu, M.; Constantinescu, o.; Chuburkov, Yu.T.

    1983-01-01

    The enrichment of the new spontaneous fissioning nuclide discovered in the Cheleken brine, was made by evaporation. The purpose of this work was the comparison of behaviour of the new spontaneous fissioning nuclide with that of the known elements in the formation processes of the high concentration brines. Spontaneous fission of the nuclide was measured by means of the counters for multiple emission of neutrons. It is shown that the new spontaneous fissioning nuclide was enriched as well as other trace elements (Hg, Tl, Bi and Pb) in a solution remained after the evaporation of the initial solution. The conclusion is drawn that from the sea water brines could be obtained by evaporation which are enriched in trace elements with an enrichment degree higher than the natural brines

  2. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.; Delshad, M.; Wheeler, M. F.

    2012-01-01

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  3. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.

    2012-11-03

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  4. Reaction and devitrification of a prototype nuclear-waste-storage glass with hot magnesium-rich brine

    International Nuclear Information System (INIS)

    Komarneni, S.; Freeborn, W.P.; Scheetz, B.E.; White, W.B.; McCarthy, G.J.

    1982-10-01

    PNL 76-68, a prototype nuclear waste storage glass, was reacted under hydrothermal conditions at 100, 200, and 300 C with NBT-6a (Ca-Mg-K-Na-Cl) brine. Reaction products were identified, the state of the residual glass determined, and the concentrations of various elements remaining in the solutions analyzed. Solid products formed by reaction of the glass and brine talc (hydrated magnesium silicate), powellite (CaMoO 4 ), hematite (Fe 2 O 3 ) and rarely an unidentified uranium-containing phase. Glass fragments were leached to depths of 300 to 500 μm, depending on time and temperature. Most elements were extracted, but the silicate framework remained intact. Distinct diffusion fronts due to K/Na exchange and Mg/Zn exchange were identified. A complex compositional layering develops in the outer reaction rind. The concentration of silica in brine solution was lower by an order of magnitude than the concentration of silica in deionized water reacted under similar conditions. The concentration of cesium, strontium, uranium, rare earths, and other alkali and alkaline earth elements in solution increases exponentially with temperature of reaction. Behavior of the transition metals is more complex. In general the extraction of elements from the glass by hydrothermal brine leads to concentrations in solution that are from 10 to 100 times higher than the concentrations obtained by deionized water extraction under similar conditions of temperature and pressure

  5. Fluid inclusion brine compositions from Palo Duro Basin salt sites

    International Nuclear Information System (INIS)

    Moody, J.B.

    1987-01-01

    The fluid inclusion analyses were done on salt samples from Lower San Andres Cycle 4 and 5. The stable isotope composition of the fluid inclusion brines was measured on duplicate samples taken from the same fluid inclusion brine for correlation of geochemical content with the stable isotopic content. The analyzed Palo Duro Basin salt fluid inclusions are predominantly one phase, i.e., the presence of a fluid only. However, many of the larger fluid inclusions do have a small vapor bubble. This liquid/vapor ratio is so high in these vapor-containing fluid inclusions that their behavior in a thermal gradient would be almost identical to that of all liquid inclusions. Closely associated with the fluid inclusions are cryptomelane where some fibers penetrate into halite host crystal. The fluid inclusions have a wide variability in content for those components that were analyzed, even within the same salt type. The fluid inclusion brines are also acidic, ranging from 3 to 6 as measured with pH test papers

  6. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 1: The participatory modeling approach

    Science.gov (United States)

    Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.

  7. An improved brine shrimp larvae lethality microwell test method.

    Science.gov (United States)

    Zhang, Yi; Mu, Jun; Han, Jinyuan; Gu, Xiaojie

    2012-01-01

    This article described an improved brine shrimp larvae lethality microwell test method. A simply designed connecting vessel with alternative photoperiod was used to culture and collect high yield of active Artemia parthenogenetica nauplii for brine shrimp larvae lethality microwell test. Using this method, pure A. parthenogenetica nauplii suspension was easily cultured and harvested with high density about 100-150 larvae per milliliter and the natural mortality was reduced to near zero by elimination of unnecessary artificial disturbance. And its sensitivity was validated by determination of LC(50)-24 h of different reference toxicants including five antitumor agents, two pesticides, three organic pollutants, and four heavy metals salts, most of which exhibited LC(50)-24 h between 0.07 and 58.43 mg/L except for bleomycin and mitomycin C with LC(50)-24 h over 300 mg/L.

  8. Chapter 6. Uranium extraction possibilities from natural uranium-bearing waters of complex salt composition. 6.2. Technology for uranium extraction from brine with a high content of ion-chlorine

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to technology for uranium extraction from brine with a high content of ion-chlorine. The content of basic anions and cations in lake waters of Sasik-Kul deposit was defined. Results of X-ray spectral analysis of salt residual after water evaporation from Sasik-Kul lake was discussed. Investigations revealed that uranium extraction from brines containing ion-chlorine is possible. The developed basic process flow diagram of uranium extraction from Sasik-Kul Lake' brine consists of the following basic stages: evaporation, leaching, catching of formed gases (HCl), sorption, desorption, deposition, drying and tempering.

  9. Chapter 6. Uranium extraction possibilities from natural uranium-bearing waters of complex salt composition. 6.2. Technology for uranium extraction from brine with a high content of ion-chlorine

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2011-01-01

    Present article is devoted to technology for uranium extraction from brine with a high content of ion-chlorine. The content of basic anions and cations in lake waters of Sasik-Kul deposit was defined. Results of X-ray spectral analysis of salt residual after water evaporation from Sasik-Kul lake was discussed. Investigations revealed that uranium extraction from brines containing ion-chlorine is possible. The developed basic process flow diagram of uranium extraction from Sasik-Kul Lake' brine consists of the following basic stages: evaporation, leaching, catching of formed gases (HCl), sorption, desorption, deposition, drying and tempering.

  10. High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor.

    Science.gov (United States)

    Yokota, Nobuyuki; Watanabe, Yasutsugu; Tokutomi, Takaaki; Kiyokawa, Tomohiro; Hori, Tomoyuki; Ikeda, Daisuke; Song, Kang; Hosomi, Masaaki; Terada, Akihiko

    2018-02-01

    The goal of this study was to develop a startup strategy for a high-rate anaerobic ammonium oxidation (anammox) reactor to treat waste brine with high concentrations of ammonium from a natural gas plant. An upflow anaerobic sludge blanket (UASB) anammox reactor with an effective volume of 294 L was fed continuously with waste brine with a salinity of 3% and a NH 4 + concentration of 180 mg-N/L, as well as a NaNO 2 solution. By inoculating a methanogenic granular biomass as a biomass carrier, the reactor attained the maximum volumetric nitrogen removal rate (NRR) of 10.7 kg-N/m 3 /day on day 209, which was 1.7 times higher than the highest reported NRR for wastewater of comparable salinity. High-throughput sequencing of 16S rRNA gene amplicons revealed that Candidatus Scalindua wagneri was enriched successfully in granules in the UASB, and it replaced Methanosaeta and became dominant in the granule. The inhibitory effect of NO 2 - on the anammox reaction in the granules was assessed by a 15 N tracer method, and the results showed that anammox activity was maintained at 60% after exposure to 300 mg-N/L of NO 2 - for 24 h. Compared with previous studies of the susceptibilities of Candidatus Brocadia and Candidatus Kuenenia to NO 2 - , the enriched marine anammox bacteria were proven to have comparable or even higher tolerances for high NO 2 - concentrations after a long exposure.

  11. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions.

    Science.gov (United States)

    Valderrama, W B; Mills, E W; Cutter, C N

    2009-11-01

    Chilled brine solutions are used by the food industry to rapidly cool ready-to-eat meat products after cooking and before packaging. Chlorine dioxide (ClO(2)) was investigated as an antimicrobial additive to eliminate Listeria monocytogenes. Several experiments were performed using brine solutions made of sodium chloride (NaCl) and calcium chloride (CaCl(2)) inoculated with L. monocytogenes and/or treated with 3 ppm of ClO(2). First, 10 and 20% CaCl(2) and NaCl solutions (pH 7.0) were inoculated with a five-strain cocktail of L. monocytogenes to obtain approximately 7 log CFU/ml and incubated 8 h at 0 degrees C. The results demonstrated that L. monocytogenes survived in 10% CaCl(2), 10 and 20% NaCl, and pure water. L. monocytogenes levels were reduced approximately 1.2 log CFU/ml in 20% CaCl(2). Second, inoculated ( approximately 7 log CFU/ml) brine solutions (10 and 20% NaCl and 10% CaCl(2)) treated with 3 ppm of ClO(2) resulted in a approximately 4-log reduction of the pathogen within 90 s. The same was not observed in a solution of 20% CaCl(2); further investigation demonstrated that high levels of divalent cations interfere with the disinfectant. Spent brine solutions from hot dog and ham chilling were treated with ClO(2) at concentrations of 3 or 30 ppm. At these concentrations, ClO(2) did not reduce L. monocytogenes. Removal of divalent cations and organic material in brine solutions prior to disinfection with ClO(2) should be investigated to improve the efficacy of the compound against L. monocytogenes. The information from this study may be useful to processing establishments and researchers who are investigating antimicrobials in chilling brine solutions.

  12. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California

    Science.gov (United States)

    Zukin, Jeffrey G.; Hammond, Douglas E.; Teh-Lung, Ku; Elders, Wilfred A.

    1987-10-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (~300°C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF. Rock/Brine concentration ratios ( Rc = (dpm/ g) rock/(dpm/ g) brine) were found to vary from near unity for isotopes of Ra, Pb and Rn to about 5 × 10 5 for 232Th. The high sorptivity of 232Th is closely followed by that of 238U and 234U ( Rc ~ 5 × 10 4), suggesting that U is retained in the +4 oxidation state by the reducing conditions in the brines. The relatively high solubility of 210Pb and 212Pb is attributed to formation of chloride complexes, while the high Ra solubility is attributed to chloride complexing, a lack of suitable adsorption sites due to the high brine salinity and temperature, and the reducing conditions that prevent MnO 2 and RaSO 4 from forming. The 228Ra /226Ra ratios in the brines are approximately equal to those of their parents ( 232Th /230Th ) in associated rocks, indicating that Ra equilibration in the brine-rock system is achieved within the mean life of 228Ra (8.3 years). The 224Ra /228Ra ratios in these brines are about 0.7, indicating that either (1) brine composition is not homogeneous and 224Ra decays in fracture zones deficient in Ra and Th as the brine travels to the wellhead or (2) Ra equilibration in the brine-host rock system is not complete within the mean life of 224Ra (5.2 days) because the desorption of 224Ra from the solid phase is impeded. The 228Ac /228Ra activity ratio in the SSGF brines studied is <0.1, and from this ratio the residence time of 228Ac in the brine before sorption onto solid surfaces is estimated to be <70

  13. Brine: a computer program to compute brine migration adjacent to a nuclear waste canister in a salt repository

    International Nuclear Information System (INIS)

    Duckworth, G.D.; Fuller, M.E.

    1980-01-01

    This report presents a mathematical model used to predict brine migration toward a nuclear waste canister in a bedded salt repository. The mathematical model is implemented in a computer program called BRINE. The program is written in FORTRAN and executes in the batch mode on a CDC 7600. A description of the program input requirements and output available is included. Samples of input and output are given

  14. Oil exudation and histological structures of duck egg yolks during brining.

    Science.gov (United States)

    Lai, K M; Chung, W H; Jao, C L; Hsu, K C

    2010-04-01

    Changes in oil exudation and histological structures of salted duck egg yolks during brining up to 5 wk were investigated. During brining, the salt contents of albumen, exterior yolk (hardened portion), and interior yolk (soft or liquid portion) gradually increased accompanied by slight decreases in moisture content. The hardening ratio of salted egg yolks increased rapidly to about 60% during the first week of brining and then reached 100% at the end of brining. After brining, part of the lipids in salted egg yolk became free due to the structural changes of low-density lipoprotein induced by dehydration and increase of salt content, and more free lipids in salted egg yolk were released after the cooking process. With the brining time increased up to 5 wk, the outer region of the cooked salted yolk gradually changed into dark brown, brown, orange, and then dark brown, whereas the center region changed into light yellow, yellow, dark yellow, and then yellow again. The microstructures of cooked salted egg yolks showed that the yolk spheres in the outer and middle regions retained their original shape, with some shrinking and being packed more loosely when brining time increased, and the exuded oil filled the space between the spheres. Furthermore, the yolk spheres in the center region transformed to a round shape but still showed granulation after 4 wk of brining, whereas they were mostly disrupted after 2 to 5 wk of brining. One of the most important characteristics of cooked salted egg yolks, gritty texture, contributed to oil exudation and granulated yolk spheres were observed at the brining time of 4 wk.

  15. Searching for brine on Mars using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    2016-07-01

    In the last few years, water ice and perchlorate salts capable of melting this ice and producing liquid solutions have been discovered at the surface and shallow subsurface of Mars. In addition to via melting of ice, perchlorate salts may also form liquid solutions by absorbing water vapor when the relative humidity is above a certain threshold in a process known as deliquescence. Formed either by melting or deliquescence, liquid solutions (brine) are the most likely way of liquid water activity on the Martian surface and in the shallow subsurface and are therefore important to understand the habitability of Mars. Using Raman spectroscopy, we provide reference spectra of various mixing states of liquid water, water ice and calcium perchlorate, all of which can occur during brine formation. We focus on the perchlorate symmetric stretching band and the O-H stretching vibrational band to distinguish brine from crystalline salt and water ice. We show that perchlorate brines can be identified by analyzing the peaks and their widths in the decomposed Raman spectra of the investigated samples. This serves as an important reference for future in-situ Raman spectrometers on Mars, such as those on the ExoMars and Mars 2020 rovers and can aid in the detection of brine formation on Mars. (Author)

  16. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  17. Near-field environment research at PNL relevant to brine migration phenomena

    International Nuclear Information System (INIS)

    Pederson, L.R.; Gray, W.J.; Hodges, F.N.

    1987-01-01

    Heat and radiation resulting from emplacement of a high level nuclear waste package in a repository in salt will cause physical and chemical changes in the host rock and any brines present. These changes may alter the performance of waste package materials. Gamma radiolysis decomposes water into hydrogen and oxygen, hydrogen peroxide, and various other free radical and ionic species. Gamma ray irradiation of rock salt decomposes that salt to sodium metal colloids and neutral chlorine (unknown form), changing both its physical and chemical properties. Sodium metal will react, if contacted by water, to form sodium hydroxide plus hydrogen gas, while chlorine will react to form hydrochloric plus hypochlorous acids. If irradiated salts are completely dissolved, little impact on the chemical environment is expected because the acids and bases formed will neutralize each other. Heat from the waste package can alter the chemistry of the host rock. Changes in temperature can also alter the chemistry of brines by precipitation of phases with retrograde solubility, addition of more soluble salt components to the brine, and by reaction with clays and other impurities in the salt. Some of these reactions could be accompanied by significant shifts in the pH. In experiments to date, no important changes in chemistry have been observed when typical Permian Basin intrusion or inclusion brines were heated up to 150 0 C with no excess site-specific salt present. When excess salt was included, acidic shifts were noted, increasing with brine-salt interaction time and temperature

  18. INTRAVAL Phase 2 WIPP 1 test case report: Modeling of brine flow through halite at the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Beauheim, R.L.

    1997-05-01

    This report describes the WIPP 1 test case studied as part of INTRAVAL, an international project to study validation of geosphere transport models. The WIPP 1 test case involved simulation of measured brine-inflow rates to boreholes drilled into the halite strata surrounding the Waste Isolation Pilot Plant repository. The goal of the test case was to evaluate the use of Darcy's law to describe brine flow through halite. The general approach taken was to try to obtain values of permeability and specific capacitance that would be: (1) consistent with other available data and (2) able to provide reasonable simulations of all of the brine-inflow experiments performed in the Salado Formation. All of the teams concluded that the average permeability of the halite strata penetrated by the holes was between approximately 10 -22 and 10 -21 m 2 . Specific capacitances greater than 10 -10 Pa -1 are inconsistent with the known constitutive properties of halite and are attributed to deformation, possibly ongoing, of the halite around the WIPP excavations. All project teams found that Darcy-flow models could replicate the experimental data in a consistent and reasonable manner. Discrepancies between the data and simulations are attributed to inadequate representation in the models of processes modifying the pore-pressure field in addition to the experiments themselves, such as ongoing deformation of the rock around the excavations. Therefore, the conclusion from the test case is that Darcy-flow models can reliably be used to predict brine flow to WIPP excavations, provided that the flow modeling is coupled with measurement and realistic modeling of the pore-pressure field around the excavations. This realistic modeling of the pore-pressure field would probably require coupling to a geomechanical model of the stress evolution around the repository

  19. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  20. Effects of brine contamination from energy development on wetland macroinvertebrate community structure in the Prairie Pothole Region

    Science.gov (United States)

    Preston, Todd M.; Borgreen, Michael J.; Ray, Andrew M.

    2018-01-01

    Wetlands in the Prairie Pothole Region (PPR) of North America support macroinvertebrate communities that are integral to local food webs and important to breeding waterfowl. Macroinvertebrates in PPR wetlands are primarily generalists and well adapted to within and among year changes in water permanence and salinity. The Williston Basin, a major source of U.S. energy production, underlies the southwest portion of the PPR. Development of oil and gas results in the coproduction of large volumes of highly saline, sodium chloride dominated water (brine) and the introduction of brine can alter wetland salinity. To assess potential effects of brine contamination on macroinvertebrate communities, 155 PPR wetlands spanning a range of hydroperiods and salinities were sampled between 2014 and 2016. Brine contamination was documented in 34 wetlands with contaminated wetlands having significantly higher chloride concentrations, specific conductance and percent dominant taxa, and significantly lower taxonomic richness, Shannon diversity, and Pielou evenness scores compared to uncontaminated wetlands. Non-metric multidimensional scaling found significant correlations between several water quality parameters and macroinvertebrate communities. Chloride concentration and specific conductance, which can be elevated in naturally saline wetlands, but are also associated with brine contamination, had the strongest correlations. Five wetland groups were identified from cluster analysis with many of the highly contaminated wetlands located in a single cluster. Low or moderately contaminated wetlands were distributed among the remaining clusters and had macroinvertebrate communities similar to uncontaminated wetlands. While aggregate changes in macroinvertebrate community structure were observed with brine contamination, systematic changes were not evident, likely due to the strong and potentially confounding influence of hydroperiod and natural salinity. Therefore, despite the observed

  1. Calcium extraction from brine water and seawater using oxalic acid

    Science.gov (United States)

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  2. Experimental evaporation of hyperacid brines: Effects on chemical composition and chlorine isotope fractionation

    Science.gov (United States)

    Rodríguez, Alejandro; van Bergen, Manfred J.; Eggenkamp, H. G. M.

    2018-02-01

    Hyperacid brines from active volcanic lakes are some of the chemically most complex aqueous solutions on Earth. Their compositions provide valuable insights into processes of elemental transfer from a magma body to the surface and interactions with solid rocks and the atmosphere. This paper describes changes in chemical and δ37Cl signatures observed in a 1750 h isothermal evaporation experiment on hyperacid (pH 0.1) sulphate-chloride brine water from the active lake of Kawah Ijen volcano (Indonesia). Although gypsum was the only evaporite mineral identified in the evolving brine, decreasing Si concentrations may ultimately result in amorphous silica precipitation. Geochemical simulations predict the additional formation of elemental sulphur at lower water activities (aH2O ≤ 0.65) that were not reached in the experiment. Absence of other sulphates and halides despite the high load of dissolved elements (initial TDS ca. 100 g/kg) can be attributed to increased solubility of metals, promoted by extensive formation of complexes between the variety of cations and the major anions (HSO4-, Cl-, F-) present. Chlorine deviations from a conservative behaviour point to losses of gaseous hydrogen chloride (HCl(g)) and consequently an increase in Br/Cl ratios. Chlorine isotope fractionation that accompanied the escape of HCl(g) showed a marked change in sign and magnitude in the course of progressive evaporation of the brine. The calculated factor of fractionation between HCl(g) and dissolved Cl for the initial interval (before 500 h) is positive (1000lnαHCl(g)-Cldiss. = + 1.55 ± 0.49‰to + 3.37 ± 1.11‰), indicating that, at first, the escaping HCl(g) was isotopically heavier than the dissolved Cl remaining in the brine. Conversely, fractionation shifted to the opposite direction in the subsequent interval (1000lnαHCl(g)-Cldiss. = 5.67 ± 0.17‰to - 5.64 ± 0.08‰), in agreement with values reported in literature. It is proposed that Cl isotopic fractionation in

  3. Selective Recovery of Metals from Geothermal Brines

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, Susanna [SRI International, Menlo Park, CA (United States); Bhamidi, Srinivas [SRI International, Menlo Park, CA (United States); Hornbostel, Marc [SRI International, Menlo Park, CA (United States); Nagar, Anoop [SRI International, Menlo Park, CA (United States); Perea, Elisabeth [SRI International, Menlo Park, CA (United States)

    2016-12-16

    The objective of this project was to determine the feasibility of developing a new generation of highly selective low-cost ion-exchange resins based on metal-ion imprinted polymers for the separation of metals from geothermal fluids. Expansion of geothermal energy production over the entire U.S. will involve exploitation of low-to-medium temperature thermal waters. Creating value streams from the recovery of critical and near-critical metals from these thermal waters will encourage geothermal expansion. Selective extraction of metals from geothermal fluids is needed to design a cost-effective process for the recovery of lithium and manganese-two near-critical metals with well-known application in the growing lithium battery industry. We have prepared new lithium- and manganese-imprinted polymers in the form of beads by crosslinking polymerization of a metal polymerizable chelate, where the metal acts as a template. Upon leaching out the metal template, the crosslinked polymer is expected to leave cavities defined by the ligand functional group with enhanced selectivity for binding the template metal. We have demonstrated that lithium- and manganese-imprinted polymer beads can be used as selective solid sorbents for the extraction of lithium and manganese from brines. The polymers were tested both in batch extractions and packed bed lab-scale columns at temperatures of 45-100°C. Lithium-imprinted polymers were found to have Li+ adsorption capacity as high as 2.8 mg Li+/g polymer at 45°C. Manganese-imprinted polymers were found to have a Mn2+ adsorption capacity of more than 23 mg Mn2+/g polymer at 75°C. The Li+ extraction efficiency of the Li-imprinted polymer was found to be more that 95% when a brine containing 390 ppm Li+, 410 ppm Na+, and 390 ppm K+ was passed through a packed bed of the polymer in a lab-scale column at 45°C. In brines containing 360 ppm Li

  4. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  5. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  6. Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report

    International Nuclear Information System (INIS)

    Coyle, A.J.; Eckert, J.; Kalia, H.

    1987-01-01

    This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs

  7. Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability

    Science.gov (United States)

    Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.

  8. Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry C. Hull; Carolyn W. Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  9. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    Science.gov (United States)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  10. Improving the performance of brine wells at Gulf Coast strategic petroleum reserve sites

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.B.; Quong, R. (eds.)

    1979-11-05

    At the request of the Department of Energy, field techniques were developed to evaluate and improve the injection of brine into wells at Strategic Petroleum Reserve (SPR) sites. These wells are necessary for the disposal of saturated brine removed from salt domes where oil is being stored. The wells, which were accepting brine at 50 percent or less of their initial design rates, were impaired by saturated brine containing particulates that deposited on the sand face and in the geologic formation next to the wellbore. Corrosion of the brine-disposal pipelines and injection wells contributed to the impairment by adding significant amounts of particulates in the form of corrosion products. When tests were implemented at the SPR sites, it was found that the poor quality of injected brines was the primary cause of impaired injection; that granular-media filtration, when used with chemical pretreatment, is an effective method for removing particulates from hypersaline brine; that satisfactory injection-well performance can be attained with prefiltered brines; and that corrosion rates can be substantially reduced by oxygen-scavenging.

  11. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    Science.gov (United States)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  12. Monitoring of Miit glass solution interactions by brine analysis

    International Nuclear Information System (INIS)

    Sassoon, R.E.; Gong, M.; Adel-Hadadi, M.; Brandys, M.; Barkatt, A.; Macedo, P.B.

    1989-01-01

    Analyses of brine samples taken from borehole MIIT=8 at the WIPP site were carried out in order to study the leaching behavior of the brine in this system. The standard addition method was used with the analytical techniques of AA, DCP and ICP-MS to determine the concentration of the components in the brine. The changes in the concentration of the major components, Na, Mg and K can be explained by reactions of the brine with the rock salt walls of the borehole. From the data obtained for the other components no leaching of the SRL-Y glass discs in the test could be observed. It was however possible to determine an upper limit for leaching of the glass from isotope ratio studies made on Li which yielded a value for the leach rate of lithium from the glass of 0.117 g m -2 d -1

  13. Modeling brine inflow to Room Q: A numerical investigation of flow mechanisms

    International Nuclear Information System (INIS)

    Freeze, G.A.; Christian-Frear, T.L.; Webb, S.W.

    1997-04-01

    A hydrologic modeling study was performed to gain insight into the flow mechanisms around Room Q. A summary of hydrologic and structural data and of predictive fluid flow models from Room Q are provided. Six years of measured data are available from the time of excavation. No brine accumulation in Room Q was measured in the first two years following excavation. However, there is considerable uncertainty associated with this early-time data due to inadequate sealing of the room. Brine may have been lost to evaporation or it may have flowed into newly created disturbed rock zone (DRZ) porosity resulting from excavation. Non-zero brine accumulation rates were measured from 2--5 years, but brine accumulation within the room dropped to zero after 5.5 years. A conceptual model for brine inflow to Room Q was developed which assumes far-field Darcy flow combined with an increasing DRZ pore volume. Numerical simulations employed TOUGH28W and used predictive DRZ porosity increase with time from SPECTROM-32 rock deformation simulations. Simulated brine inflow showed good agreement with measured brine accumulation rates for the first five years. Two important conclusions were drawn from the simulation results: (1) early-time brine inflow to the room can be reduced to zero if the DRZ pore volume increases with time, and (2) brine accumulation (inflow) rates from 2 to 5 years suggest a far-field permeability of 5 x 10 -22 m 2 with a bulk rock compressibility of 5.4 x 10 -12 Pa -1

  14. Experimental and simulation studies on mineral trapping of CO2 with brine

    International Nuclear Information System (INIS)

    Soong, Y.; Goodman, A.L.; McCarthy-Jones, J.R.; Baltrus, J.P.

    2004-01-01

    The reaction of carbon dioxide (CO 2 ) with brine samples collected from the Oriskany Formation in Indiana County, PA, was investigated in an autoclave reactor under various conditions. A geochemical code, PHREEQC, was used as to simulate the reaction in the autoclave reactor. The combined experimental and modeling data suggests that pH (pH > 9) plays a key role in the formation of carbonate minerals. The effects of temperature and CO 2 pressure have a lesser impact on the formation of carbonate minerals

  15. Bead Evaporator for Complete Water and Salt Recovery from Brine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Brine Evaporation and Mineralization System (BEMS) is proposed for 100% water recovery from highly contaminated wastewater as well as water...

  16. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping

  17. High pressure ices are not the end of the story for large icy moons habitability: experimental studies of salts effects on high pressure ices and the implications for icy worlds large hydrosphere structure and chemical evolution

    Science.gov (United States)

    Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier

    2017-10-01

    The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new

  18. Production and characterization of a functional Iranian white brined cheese by replacement of dairy fat with vegetable oils.

    Science.gov (United States)

    Achachlouei, B Fathi; Hesari, J; Damirchi, S Azadmard; Peighambardoust, Sh; Esmaiili, M; Alijani, S

    2013-10-01

    Full-fat cheese usually contains high amounts of saturated fatty acids and cholesterol, which may have negative health effects. In this study, full-fat white brined cheese, as a control sample, and experimental cheeses with olive and canola oils (T1, white brined cheese containing 50% canola oil, T2, white brined cheese containing 50% olive oil, T3, white brined cheese containing 100% canola oil and T4, white brined cheese containing 100% olive oil) were prepared from bovine milk. Physicochemical properties, lipolysis, proteolysis patterns and sensorial properties in the prepared samples were determined during 80 days of storage at 20-day intervals. Cheese incorporating vegetable oils showed lower amounts of saturated fatty acids and higher amounts of unsaturated fatty acids compared with the full-fat cheese (control) samples. Moisture, pH, lipolysis value, as assessed by the acid-degree value, and proteolysis values (pH 4.6 SN/TN% and NPN/TN%) significantly (p titrable acidity decreased during 40 days of ripening but then increased slightly. Sensory properties of white brined cheese incorporating with vegetable oils were different from those of full-fat cheese samples. White brined cheese containing olive and canola oils (100% fat substitution) received better sensory scores compared to other samples. The results showed that it is possible to replace dairy fat with olive and canola oils, which can lead to produce a new healthy and functional white brined cheese.

  19. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    Science.gov (United States)

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.

  20. Heat Exchangers for Utilization of the Heat of High-Temperature Geothermal Brines

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.

    2018-03-01

    The basic component of two-circuit geothermal systems is the heat exchanger. When used in geothermal power systems, conventional shell-and-tube and plate heat exchangers cause problems related to the cleaning of the latter from salt-deposition and corrosion products. Their lifetime does not exceed, as a rule, 1 year. To utilize the heat of high-temperature geothermal brines, a heat exchanger of the "tube-in-tube" type is proposed. A heat exchanger of this design has been operated for several years in Ternair geothermal steam field; in this heat exchanger, the thermal potential of the saline thermal water is transferred to the fresh water of the secondary circuit of the heating system for apartment houses. The reduction in the weight and size characteristics of the heat exchangers is a topical problem that can be solved with the help of heat transfer enhancers. To enhance the heat transfer process in the heat exchanger, longitudinal ribbing of the heat exchange surface is proposed. The increase in the heat exchange surface from the heat carrier side by ribbing results in an increase in the amount of the heat transferred from the heating agent. The heat exchanger is easy to manufacture and is assembled out of components comprised of two concentrically positioned tubes of a definite length, 3-6 m, serially connected with each other. The method for calculation of the impact of the number and the size of the longitudinal ribs on the heat transfer in the well heat exchanger is presented and a criterion for the selection of the optimal number and design parameters of the ribs is formulated. To prevent the corrosion and salt deposition in the heat exchanger, the use of an effective OEDFK (oxyethylidenediphosphonic acid) agent is proposed. This agent has a long-lasting corrosion-inhibiting and antiscaling effect, which is explained by the formation of a strongly adhesive chelate layer difficult to wash off the surface. The passivating OEDFK layer is restored by periodical

  1. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  2. Brine Shrimp Toxicity Evaluation Of Some Tanzanian Plants Used ...

    African Journals Online (AJOL)

    Plants which are used by traditional healers in Tanzania have been evaluated to obtain preliminary data of their toxicity using the brine shrimps test. The results indicate that 9 out of 44 plant species whose extracts were tested exhibited high toxicity with LC50 values below 20μg/ml. These include Aloe lateritia Engl.

  3. Sorption-reagent treatment of brines produced by reverse osmosis unit for liquid radioactive waste management

    International Nuclear Information System (INIS)

    Avramenko, V. A.; Zheleznov, V. V.; Sergienko, V. I.; Chizhevsky, I. Yu

    2003-01-01

    The results of the pilot plant tests (2002-2003) of the sorption-reagent decontamination of high salinity radioactive waste (brines) remaining after the low-salinity liquid radioactive waste (LRW) treatment in the reverse-osmosis unit from long-lived radionuclides are presented. The sorption-reagent materials used in this work were developed in the Institute of Chemistry FEDRAS. They enable one to decontaminate brines with total salt content up to 50 g/l from long-lived radionuclides of Cs, Sr and Co. At joint application of the reverse-osmosis and sorption-reagent technologies total volume of solid radioactive waste (SRW) decreases up to 100-fold as compared to the technology of cementation of reverse osmosis brines. In this case total cost of LRW treatment and SRW disposal decreases more than 10-fold. Brines decontaminated from radionuclides are then diluted down to the ecologically safe total salts content in water to be disposed of. Tests were performed to compare the efficiency of technologies including evaporation of brines remaining after reverse osmosis process and their decontamination by means of the sorption-reagent method. It was shown that, as compared to evaporation, the sorption-reagent technology provides substantial advantages as in regard to radioactive waste total volume reduction as in view of total cost of the waste management

  4. Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method

    Science.gov (United States)

    Xie, Jian.-Fei.; He, S.; Zu, Y. Q.; Lamy-Chappuis, B.; Yardley, B. W. D.

    2017-08-01

    In this paper, the migration of supercritical carbon dioxide (CO2) in realistic sandstone rocks under conditions of saline aquifers, with applications to the carbon geological storage, has been investigated by a two-phase lattice Boltzmann method (LBM). Firstly the digital images of sandstone rocks were reproduced utilizing the X-ray computed microtomography (micro-CT), and high resolutions (up to 2.5 μm) were applied to the pore-scale LBM simulations. For the sake of numerical stability, the digital images were "cleaned" by closing the dead holes and removing the suspended particles in sandstone rocks. In addition, the effect of chemical reactions occurred in the carbonation process on the permeability was taken into account. For the wetting brine and non-wetting supercritical CO2 flows, they were treated as the immiscible fluids and were driven by pressure gradients in sandstone rocks. Relative permeabilities of brine and supercritical CO2 in sandstone rocks were estimated. Particularly the dynamic saturation was applied to improve the reliability of the calculations of the relative permeabilities. Moreover, the effects of the viscosity ratio of the two immiscible fluids and the resolution of digital images on the relative permeability were systematically investigated.

  5. Portable brine evaporator unit, process, and system

    Science.gov (United States)

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  6. Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Schijf, Johan; Baar, Hein J.W. de; Millero, Frank J.; Byrne, R.H.

    1995-01-01

    Vertical distributions of dissolved rare earth elements (REEs) are presented for the anoxic, highly sulfidic brines of Bannock Basin in the eastern Mediterranean Sea. REE concentrations at the seawater-brine interface are the highest ever recorded in the water column of an anoxic basin and

  7. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    Science.gov (United States)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  8. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula

    KAUST Repository

    Chehab, Noura A.

    2017-05-03

    Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8 ± 2.1 A/m2-anode in MECs operated at a set anode potential of +0.2 V vs. Ag/AgCl (+0.405 V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool.

  9. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  10. Modeling the morphogenesis of brine channels in sea ice.

    Science.gov (United States)

    Kutschan, B; Morawetz, K; Gemming, S

    2010-03-01

    Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and vertical planes. We develop a suitable phenomenological model for the formation of brine channels both referring to the Ginzburg-Landau theory of phase transitions as well as to the chemical basis of morphogenesis according to Turing. It is possible to conclude from the critical wave number on the size of the structure and the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental values. The model creates channels of similar size as observed experimentally. An extension of the model toward channels with different sizes is possible. The microstructure of ice determines the albedo feedback and plays therefore an important role for large-scale global circulation models.

  11. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references

  12. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.

    Science.gov (United States)

    Li, Qi; Huang, Bin; Chen, Xin; Shi, Yi

    2015-05-15

    Bioregeneration of nitrate-laden ion exchange brine is desired to minimize its environmental impacts, but faces common challenges, i.e., enriching sufficient salt-tolerant denitrifying bacteria and stabilizing brine salinity and alkalinity for stable brine biotreatment and economically removing undesired organics derived in biotreatment. Incorporation of 0.25 M bicarbonate in 0.5 M chloride brine little affected resin regeneration but created a benign alkaline condition to favor bio-based brine regeneration. The first-quarter sulfate-mainly enriched spent brine (SB) was acidified with carbon source acetic acid for using CaCl2 at an efficiency >80% to remove sulfate. Residual Ca(2+) was limited below 2 mM by re-mixing the first-quarter and remained SB to favor denitrification. Under [Formula: see text] system buffered pH condition (8.3-8.8), nitrate was removed at 0.90 gN/L/d by hematite-enriched well-settled activated sludge (SVI 8.5 ml/g) and the biogenic alkalinity was retained as bicarbonate. The biogenic alkalinity met the need of alkalinity in removing residual Ca(2+) after sulfate removal and in CaCl2-induced CaCO3 flocculation to remove 63% of soluble organic carbon (SOC) in biotreated brine. Carbon-limited denitrification was also operated after activated sludge acclimation with sulfide to cut SOC formation during denitrification. Overall, this bicarbonate-incorporation approach, stabilizing the brine salinity and alkalinity for stable denitrification and economical removal of undesired SOC, suits long-term cost-effective brine bioregeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines

    Science.gov (United States)

    Strehlau, Jennifer H.; Toner, Brandy M.; Arnold, William A.; Penn, R. Lee

    2017-01-01

    The reactivity of iron oxyhydroxide nanoparticles in low pH and high ionic strength solutions was quantified to assess abiotic contributions to oxidation-reduction chemistry in acidic brine environments, such as mine groundwater seepage, lakes in Western Australia, and acid mine drainage settings, which are of global interest for their environmental impacts and unique geomicrobiology. Factors expected to influence accessible and reactive surface area, including Fe(II) adsorption and aggregate size, were measured as a function of pH and CaCl2 concentration and related to the kinetics of redox reactions in aqueous suspensions of synthetic goethite (α-FeOOH), akaganeite (β-FeOOH), and ferrihydrite (Fe10O14(OH)2) nanoparticles. Aqueous conditions and iron oxyhydroxides were chosen based on characterization of natural iron-rich mine microbial mats located in Soudan Underground Mine State Park, Minnesota, USA. Quinone species were used as redox sensors because they are well-defined probes and are present in natural organic matter. Fe(II) adsorption to the iron oxyhydroxide mineral surfaces from aqueous solution was measurable only at pH values above 4 and either decreased or was not affected by CaCl2 concentration. Concentrations at or above 0.020 M CaCl2 in acetate buffer (pH 4.5) induced particle aggregation. Assessment of Fe(II) adsorption and particle aggregation in acidic brine suggested that accessible reactive surface area may be limited in acidic brines. This was supported by observations of decreasing benzoquinone reduction rate by adsorbed Fe(II) at high CaCl2 concentration. In contrast, the hydroquinone oxidation rate increased at high CaCl2 concentrations, which may be due to suppressed adsorption of Fe(II) generated by the reaction. Results suggest that iron geochemical cycling in acidic brine environments will be substantially different than for iron oxyhydroxides in low-saline waters with circumneutral pH. These findings have implications for acidic

  14. CO2/Brine transport into shallow aquifers along fault zones.

    Science.gov (United States)

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  15. A network model for characterizing brine channels in sea ice

    Science.gov (United States)

    Lieblappen, Ross M.; Kumar, Deip D.; Pauls, Scott D.; Obbard, Rachel W.

    2018-03-01

    The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  16. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea

    KAUST Repository

    Wang, Yong

    2014-02-04

    A hypoxic/suboxic brine pool at a depth of about 850 m was discovered near the Thuwal cold seeps in the Red Sea. Filled with high concentrations of hydrogen sulfide and ammonia, such a brine pool might limit the spread of eukaryotic organisms. Here, we compared the communities of the eukaryotic microbes in a microbial mat, sediments and water samples distributed in 7 sites within and adjacent to the brine pool. Taxonomic classification of the pyrosequenced 18S rRNA amplicon reads showed that fungi highly similar to the species identified along the Arabic coast were almost ubiquitous in the water and sediment samples, supporting their wide distribution in various environments. The microbial mat displayed the highest species diversity and contained grazers and a considerable percentage of unclassified species. Phylogeny-based methods revealed novel lineages representing a majority of the reads from the interface between the sea water and brine pool. Phylogenetic relationships with more reference sequences suggest that the lineages were affiliated with novel Alveolata and Euglenozoa inhabiting the interface where chemosynthetic prokaryotes are highly proliferative due to the strong chemocline and halocline. The brine sediments harbored abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system. 2014 Wang, Zhang, Cao, Shek, Tian, Wong, Batang, Al-suwailem and Qian.

  17. Modeling of brine migration in halite

    International Nuclear Information System (INIS)

    Cheung, H.; Fuller, M.E.; Gaffney, E.S.

    1979-01-01

    When canisters containing radwastes are emplaced in a repository the heat produced by the decaying radwaste will cause moderate thermal gradients to develop which will cause the brine present in a halite medium (salt deposits) to accumulate around the canister. Four different models of the migration process have been reviewed to determine their suitability as a working model. One model predicts that inclusions smaller than 0.1 mm dimension probably will not migrate. The other models do not consider size as a factor. Thermal diffusion (Soret effect) is considered insignificant in three models, while in the fourth model it is added to the concentration diffusion term. The following conclusions can be made: Temperature is the most significant parameter in all models and must be known as a function of time, and distance from the canister. All four models predict about the same migration velocity for it is a given set of conditions; for 100 0 C and 1 0 C/cm thermal gradient, it is 3.0, 4.8, 5.6 and 6.4 mm/y. Diffusion of ions through the brine inclusions is the rate controlling mechanism. The difference between the thermal gradients in the liquid and in the solid should always be considered and is a function of droplet shape. The model based upon work by Nernst is easiest to use, but it predicts the lowest migration rate. The maximum volume of pure brine accumulated at the canister surface would be less than 20-40 liters in 50 years, for a canister initial thermal power of 3.5 kW.Bitterns would migrate proportionately less volume. A computer code, BRINE, was developed to make these calculations by means of any of the four models

  18. Geochemistry of Salado formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogeneous with respect to composition but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs

  19. Geochemistry of Salado Formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogenous with respect to composition, but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs

  20. Experimental alteration of R7T7 glass in salt brines at 90 deg C and 150 deg C

    International Nuclear Information System (INIS)

    Godon, N.; Vernaz, E.; Gin, S.; Beaufort, D.; Thomassin, J.H.

    1991-01-01

    Static experiments have been developed to investigate the R7T7 glass corrosion in four natural salt brines (brines 1 and 3: pure halite, brines 2 and 4: high Mg, K fluid inclusions rich halite), at 90 deg C and 150 deg C with 0.7 cm -1 S/V ratio and at 11 different running times. Analysis of brines after alteration (pHmeter and ICP) added to a detailed study of the crystalline phases developed at the interface glass-brine (XRD,SEM and Microprobe), showed that the influence of the compositional difference is more important on the nature of the secondary phases formed than on the corrosion rate of the glass. After 91 days of alteration at 150 deg C stady states to be reached (after 40 days at 90 deg C). A long term experiment (1 year) is necessary to confirm this hypothesis. 7 refs., 7 figs., 2 tabs

  1. Solubility of Nd in brine

    International Nuclear Information System (INIS)

    Khalili, F.I.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1994-01-01

    The solubility of Nd(III) has been measured at 23±3 C in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl 2 with an ionic strength of 7.8 M (9.4 m) a solid compound of Nd(III) at each pcH was assigned from X-ray diffraction patterns. The log values of the experimental solubilities decrease fomr -3 at pcH 6.4 to -5.8 at pcH 8.4; at pcH 10.4 and 12.4 the solubility was below the detection limit of -7.5. The experimental solubility does not follow closely the variation with pcH estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. (orig.)

  2. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  3. Systematics, functional morphology and distribution of a bivalve (Apachecorbula muriatica gen. et sp. nov.) from the rim of the 'Valdivia Deep' brine pool in the Red Sea

    KAUST Repository

    Oliver, Pere Graham

    2014-11-11

    The deep brine pools of the Red Sea comprise extreme, inhospitable habitats yet house microbial communities that potentially may fuel adjacent fauna. We here describe a novel bivalve from a deep-sea (1525 m) brine pool in the Red Sea, where conditions of high salinity, lowered pH, partial anoxia and high temperatures are prevalent. Remotely operated vehicle (ROV) footage showed that the bivalves were present in a narrow (20 cm) band along the rim of the brine pool, suggesting that it is not only tolerant of such extreme conditions but is also limited to them. The bivalve is a member of the Corbulidae and named Apachecorbula muriatica gen. et sp. nov. The shell is atypical of the family in being modioliform and thin. The semi-infaunal habit is seen in ROV images and reflected in the anatomy by the lack of siphons. The ctenidia are large and typical of a suspension feeding bivalve, but the absence of \\'guard cilia\\' and the greatly reduced labial palps suggest that it is non-selective as a response to low food availability. It is proposed that the low body mass observed is a consequence of the extreme habitat and low food availability. It is postulated that the observed morphology of Apachecorbula is a result of paedomorphosis driven by the effects of the extreme environment on growth but is in part mitigated by the absence of high predation pressures. © Marine Biological Association of the United Kingdom, 2014.

  4. Brine migrations in the Athabasca Basin platform, alteration and associated fluid-rock exchanges

    International Nuclear Information System (INIS)

    Mercadier, J.; Cathelineau, M.; Richard, A.; Boiron, M.Ch.; Cuney, M.; Milesi, J.P.

    2009-01-01

    Uranium deposits of Athabasca Basin (Saskatchewan, Canada) are considered as the richest in the world. They result from massive percolation of basin brines in the underlying platform. The authors describe the brine movements and how structures and micro-fractures promoted this percolation until very important depths (hundreds of meters under the discordance), and their chemical modifications as they interacted with platform rocks, thus promoting the transformation of an initially sodic brine into a uranium-enriched calcic brine which is essential to the formation of discordance-type deposit

  5. Domal salt brine migration experiments at Avery Island, Louisiana

    International Nuclear Information System (INIS)

    Krause, W.B.; Gnirk, P.F.

    1981-01-01

    Three in-situ brine migration experiments were performed in domal salt in the Avery Island mine located in southwestern Louisiana. The primary measurements included temperature, moisture collection, and pre- and post-test permeability at the experimental sites. Experimental data are discussed and compared with calculations based on the single-crystal brine migration theory. Comparisons indicate reasonable agreement between experiment and theory

  6. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    International Nuclear Information System (INIS)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs

  7. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  8. Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption

    Science.gov (United States)

    Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki

    In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.

  9. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, David

    2012-12-31

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field

  10. A carbon inventory for Orca Basin brines and sediments

    International Nuclear Information System (INIS)

    Sackett, W.M.; Brooks, J.M.; Bernard, B.B.; Schwab, C.R.; Chung, H.; Parker, R.A.

    1979-01-01

    Orca Basin, an intraslope depression at a depth of about 2400 m on the continental slope of the north-central Gulf of Mexico, contains an anoxic, hypersaline brine similar to composition to those reported in the Red Sea. Concentrations and stable carbon isotope compositions of various inorganic and organic carbon species have been determined on the brine and sediments in order to gain an understanding of the origin and cycling of carbon in this unique environment. ΣCO 2 in the brine (55 mg C/l) is about twice seawater with delta 13 C sub(PDB)=-16.4per thousand and Δ 14 C=-501per thousand. CH 4 has a concentration of 12 mg C/l and delta 13 C=-73.5per thousand. Dissolved and particulate organic carbon concentrations are seven times higher and have delta 13 C values several permil different than the overlying seawater, ΣCO 2 and CH 4 in the interstitial waters are considerably higher in concentrations and isotropically light than the overlying brine. Solution of near-surface salt deposits by seawater with subsequent microbial production and consumption of methane can be used to explain most of the data. (Auth.)

  11. Threshold temperature gradient effect on migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    Theories of the migration of brine inclusions in salt were interpreted as simple physical processes, and theories by Russian and US workers were shown to yield the same results. The migration theory was used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients were compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of threshold gradients helps explain the existence of brine inclusions in natural salt deposits

  12. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  13. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  14. Well bore Flow Treatment Used to Predict Radioactive Brine Releases to the Surface from Future Drilling Penetrations into the Waste Isolation Pilot Plant (WIPP), New Mexico, USA

    International Nuclear Information System (INIS)

    Brien, D.G.O.; Stoelzel, D.M.; Hadgu, T.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is the U.S. Department of Energy's (DOE) mined geologic repository in southeastern New Mexico, USA.This site is designed for the permanent burial of transuranic radioactive waste generated by defense related activities.The waste produces gases when exposed to brine. This gas generation may result in increased pressures over time. Therefore, a future driller that unknowingly penetrates through the site may experience a blowout. This paper describes the methodology used to predict the resultant volumes of contaminated brine released

  15. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula.

    Science.gov (United States)

    Shehab, Noura A; Ortiz-Medina, Juan F; Katuri, Krishna P; Hari, Ananda Rao; Amy, Gary; Logan, Bruce E; Saikaly, Pascal E

    2017-09-01

    Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8±2.1A/m 2 -anode in MECs operated at a set anode potential of +0.2V vs. Ag/AgCl (+0.405V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enhanced Brine Dewatering System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide an easily scalable means of completely recovering usable water from byproducts created by...

  17. Enhanced Brine Dewatering System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide a scalable means of completely recovering usable water from byproducts created by reverse...

  18. Evaluation and analysis of underground brine resources in the southern coastal area of Laizhou Bay

    Science.gov (United States)

    Tian, M.; Zhu, H. T.; Feng, J.; Zhao, Q. S.

    2016-08-01

    The southern coastal districts of Laizhou Bay are some of the most important areas for underground brine exploitation in Shandong Province. Recently, these areas have been gradually developed by the underground brine mining industry. Such economic interest has led to brine exploitation so that underground brine resources are running out. Based on this phenomenon, this study describes the supply, runoff and draining conditions of the area by collecting and organizing the background information of the studied area. Hydrogeological parameters are then calculated according to pumping tests, and the amount of sustainable resources in the coastal areas of the Southern Bank of Laizhou Bay are then calculated based on the uniform distribution of wells. Under the circumstances of underground brine mining, the exploitation potential of the underground brine is evaluated in accordance with the calculation results of exploitation quantum. Finally, suggestions are provided for the sustainable exploitation of underground brine in the area.

  19. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  20. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    Science.gov (United States)

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  1. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Saulnier, G.J. Jr.; Avis, J.D.

    1991-08-01

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10 -14 to 10 -11 m/s (permeabilities of about 10 -21 to 10 -18 m 2 ) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects

  2. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  3. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  4. Evolution of mineralizing brines in the east Tennessee Mississippi Valley-type ore field

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; Gesink, J.A.; Haynes, F.M. (Univ. of Michingan, Ann Arbor (USA))

    1989-05-01

    The east Tennessee Mississippi Valley-type (MVT) ore field contains barite-fluorite and sphalterite deposits in a continuous paleoaquifer consisting of breccia zones in the Upper Cambrian-Lower Ordovician Knox Group. Paragenetic observations and fluid inclusion compositions in these deposits indicate that the Knox paleoaquifer was invaded first by Ca-rich brines (Ca:Na about 1) that deposited fluorite and barite, and later by Na-Ca brines (Ca:Na = 0.1 to 0.5) that deposited sphalerite. Geologic relation sindicate that these brines were derived from the southeast, in the area of the Middle Ordovician Servier foreland shale basin, and that imposed by fluorite solubility indicate further that all original connate water in the Sevier basin was required to deposit the estimated flourite reserves of the ore field.Thus, the later, sphalerite-depositing brines represent recycled meteoric water from the Sevier basin or connate brines from underlying (Cambrian) shales.

  5. Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-12

    This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

  6. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  7. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  8. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp ( Pandalus borealis )

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Kjeldgaard, J.; Modberg, A.

    2008-01-01

    Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced...... and lactic acids were studied. Furthermore, the effect of adding diacetate to brined shrimp was evaluated. A single batch of cooked and peeled shrimp was used to study both industrially and manually processed brined shrimp with respect to the effect of process hygiene on microbial changes and the shelf life...... of products. Concentrations of microorganisms on newly produced brined shrimp from an industrial scale processing line were 1.0-2.3 log (CFU g(-1)) higher than comparable concentrations in manually processed samples. This resulted in a substantially shorter shelf life and a more diverse spoilage microflora...

  9. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  10. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.

    Science.gov (United States)

    Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.

    1987-01-01

    Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.

  11. Final report of “A Detailed Study of the Physical Mechanisms Controlling CO2-Brine Capillary Trapping in the Subsurface” (University of Arizona, DE-SC0006696)

    Energy Technology Data Exchange (ETDEWEB)

    Schaap, Marcel G. [Univ. of Arizona, Tucson, AZ (United States)

    2016-07-25

    Carbon capture and storage (CCS) of carbon dioxide emissions generated by production or combustion of fossil fuels is a technologically viable means to reduce the build-up of CO2 in the atmosphere and oceans. Using advantages of scale and location, CCS is particularly suitable for large point sources near ubiquitous deep saline aquifers, depleted gas reservoirs, or at production reservoirs for enhanced oil recovery (EOR). In the BES-funded research project, Oregon State University (OSU) carried out capillary trapping experiments with proxy fluids that mimic the properties of the scCO2/brine system under ambient temperatures and pressures, and successfully developed a unique and novel x-ray compatible, high-pressure, elevated temperature setup to study the scCO2/brine system under challenging reservoir conditions. Both methodologies were applied to a variety of porous media, including synthetic (glass bead) and geologic (Bentheimer sandstone) materials. The University of Arizona (UA) developed pore-scale lattice Boltzmann (LB) models which are able to handle the experimental conditions for proxy fluids, as well as the scCO2/brine system, that are capable of simulating permeability in volumes of tens of millions of fluid elements. We reached the following summary findings (main institute indicated): 1. (OSU/UA) To understand capillary trapping in a multiphase fluid-porous medium system, the system must be analyzed from a pore-scale force balance perspective; trapping can be enhanced by manipulating wetting and nonwetting phase fluid properties. 2. (OSU) Pore-scale fluid connectivity and topology has a clear and direct effect on nonwetting phase capillary trapping efficiency. 3. (OSU) Rock type and flow regime also have a pronounced effects on capillary trapping. 4. (OSU/UA) There is a predictable relationship between NWP connectivity and NWP saturation, which allows for development of injection strategies that optimize trapping. The commonly used Land model (Land

  12. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    Science.gov (United States)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and

  13. Guidelines to Facilitate the Evaluation of Brines for Winter Roadway Maintenance Operations.

    Science.gov (United States)

    2017-09-19

    This document presents guidelines to facilitate the evaluation of brines for winter weather roadway maintenance applications in Texas. Brines are used in anti-icing applications which typically consist of placing liquid snow and ice control chemicals...

  14. [Experimental interaction of halophilic prokaryotes and opportunistic bacteria in brine].

    Science.gov (United States)

    Selivanova, E A; Nemtseva, N V

    2013-01-01

    Study the effect of extremely halophilic archaea and moderately halophilic bacteria on preservation of opportunistic bacteria in brine. 17 strains of moderately halophilic bacteria and 2 strains of extremely halophilic archaea were isolated from continental hypersaline lake Razval of Sol-Iletsk area of Orenburg Region. Identification of pure cultures of prokaryotes was carried out taking into account their phenotype properties and based on determination of 16S RNA gene sequence. The effect of halophilic prokaryote on elimination of Escherichia coli from brine was evaluated during co-cultivation. Antagonistic activity of cell extracts of the studied microorganisms was evaluated by photometric method. A more prolonged preservation of an E. coli strain in brine in the presence of live cells of extremely halophilic archaea Halorubrum tebenquichense and moderately halophilic bacteria Marinococcus halophilus was established. Extracts of cells of extremely halophilic archaea and moderately halophilic bacteria on the contrary displayed antagonistic activity. The protective effect of live cells of halophilic prokaryotes and antagonistic activity of their cell extracts change the period of conservation of opportunistic bacteria in brine that regulates inter-microbial interactions and changes the period of self-purification that reflects the sanitary condition of a hypersaline water body.

  15. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    International Nuclear Information System (INIS)

    Winslow, C.D.

    1981-03-01

    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10 -11 to 10 -5 M and a Cs(I) concentration range of 10 -8 to 10 -5 M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week

  16. Lithium recovery from salt lake brine by H2TiO3.

    Science.gov (United States)

    Chitrakar, Ramesh; Makita, Yoji; Ooi, Kenta; Sonoda, Akinari

    2014-06-21

    The details of the ion exchange properties of layered H2TiO3, derived from the layered Li2TiO3 precursor upon treatment with HCl solution, with lithium ions in the salt lake brine (collected from Salar de Uyuni, Bolivia) are reported. The lithium adsorption rate is slow, requiring 1 d to attain equilibrium at room temperature. The adsorption of lithium ions by H2TiO3 follows the Langmuir model with an adsorptive capacity of 32.6 mg g(-1) (4.7 mmol g(-1)) at pH 6.5 from the brine containing NaHCO3 (NaHCO3 added to control the pH). The total amount of sodium, potassium, magnesium and calcium adsorbed from the brine was lithium ions from the brine containing competitive cations such as sodium, potassium, magnesium and calcium in extremely large excess. The results indicate that the selectivity order Li(+) ≫ Na(+), K(+), Mg(2+), Ca(2+) originates from a size effect. The H2TiO3 can be regenerated and reused for lithium exchange in the brine with an exchange capacity very similar to the original H2TiO3.

  17. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  18. Review of the African distribution of the brine shrimp genus Artemia ...

    African Journals Online (AJOL)

    Brine shrimp (genus Artemia) are small (8 to 12 mm long) cosmopolitan crustaceans (Anostraca) found predominately in hypersaline water bodies such as inland salt lakes and pans, coastal lagoons, and salt works at salinity levels above 40 g·ℓ-1. They have been extensively studied due to their high monetary value as ...

  19. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  20. Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry Hull; Carolyn Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  1. Ring Resonator for Detection of Melting Brine Under Shallow Subsurface of Mars

    Science.gov (United States)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian C.

    2016-01-01

    Laboratory experimental evidence using Raman spectroscopy has shown that liquid brine may form below the shallow subsurface of Mars. A simpler experimental method to verify the presence of liquid brine or liquid water below Mars surface is needed. In this paper, a ring resonator is used to detect the phase change between frozen water and liquid water below a sandy soil that simulates the Mars surface. Experimental data shows that the ring resonator can detect the melting of thin layers of frozen brine or water up to 15 mm below the surface.

  2. Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K

    Science.gov (United States)

    Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.

    2013-05-01

    The concentration-based (stoichiometric) equilibrium solubility product of ikaite (CaCO3·6H2O) in seawater and cryogenic seawater-derived brines was determined at 1 atm total pressure over the temperature range from -1.1 to -7.5 °C and the salinity range from 34 to 124 in temperature-salinity pairs representative of sea ice brines. The solubility measurements were obtained in solutions that were undersaturated and supersaturated with respect to ikaite by equilibration with CO2/N2 gas mixtures of known pCO2 (20-400 μatm). The solutions were then equilibrated with synthetic ikaite (seed) for up to 3 months in a closed system. Arrival of the solid-solution system at a long-term chemical equilibrium was indicated by attainment of constant chemical solution composition with respect to total dissolved calcium, total dissolved inorganic carbon, and total alkalinity. Using these measurements, the stoichiometric equilibrium solubility product of ikaite (Ksp,ikaite∗=[Ca][CO32-], in molkgsolution-2) was determined, with the carbonate ion concentration computed from the measured total alkalinity and total dissolved inorganic carbon concentrations. The computed carbonate ion concentration and, by extension, the Ksp,ikaite∗ are both contingent on solving the system of equations that describe the parameters of the CO2 system in seawater by extrapolation to the experimental salinity and temperature conditions. The results show that the pKsp,ikaite∗=-logKsp,ikaite∗ in seawater of salinity 34 at -1.1 °C was 5.362 ± 0.004 and that the pKsp,ikaite∗ in sea ice at the freezing point of brines of salinity greater than 34 can be described as a function of temperature (T, in K) by the equation, pKsp,ikaite∗=-15489.09608+623443.70216T-1+2355.14596lnT, in the temperature range of 265.15 K 1 month) approach to chemical equilibrium when incubated without seeding ikaite crystals. Simple modeling indicated that ikaite should not precipitate from sea ice brines evolving under

  3. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

    1991-08-01

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  4. Assessment of brine migration risks along vertical pathways due to CO2 injection

    Science.gov (United States)

    Kissinger, Alexander; Class, Holger

    2015-04-01

    Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the

  5. Chemistry of brines in salt from the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico: a preliminary investigation

    International Nuclear Information System (INIS)

    Stein, C.L.; Krumhansl, J.L.

    1986-03-01

    We present here analyses of macro- and microscopic (intracrystalline) brines observed within the WIPP facility and in the surrounding halite, with interpretations regarding the origin and history of these fluids and their potential effect(s) on long-term waste storage. During excavation, several large fluid inclusions were recovered from an area of highly recrystallized halite in a thick salt bed at the repository horizon (2150 ft below ground level). In addition, 52 samples of brine ''weeps'' were collected from walls of recently excavated drifts at the same stratigraphic horizon from which the fluid inclusion samples are assumed to have been taken. Analyses of these fluids show that they differ substantially in composition from the inclusion fluids and cannot be explained by mixing of the fluid inclusion populations. Finally, holes in the facility floor that filled with brine were sampled but with no stratographic control; therefore it is not possible to interpret the compositions of these brines with any accuracy, except insofar as they resemble the weep compositions but with greater variation in both K/Mg and Na/Cl ratios. However, the Ca and SO 4 values for the floor holes are relatively close to the gypsum saturation curve, suggesting that brines filling floor holes have been modified by the presence of gypsum or anhydrite, possibly even originating in one or more of the laterally continuous anhydrite units referred to in the WIPP literature as marker beds. In conclusion, the wide compositional variety of fluids found in the WIPP workings suggest that (1) an interconnected hydrologic system which could effectively transport radonuclides away from the repository does not exist; (2) brine migration studies and experiments must consider the mobility of intergranular fluids as well as those in inclusions; and (3) near- and far-field radionuclide migration testing programs need to consider a wide range of brine compositions rather than a few reference brines

  6. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density

  7. Coupled modelling of convergence, steel corrosion, gas production and brine flow in a rock salt repository

    International Nuclear Information System (INIS)

    Becker, D.A.; Hirsekorn, R.P.

    2013-01-01

    This poster presents the global simulation of the behaviour of thick-walled steel containers piled up in a borehole in a rock salt repository. The simulation takes into account: the convergence by the creeping of rock salt, the backfill and waste compaction, the porosity dependent flow resistance, the anaerobic corrosion (iron to magnetite transformation, gas production, brine consumption, water consumption and salt precipitation) and pressure development. Mechanical influence of corrosion has not yet been taken into account in the integrated code LOPOS

  8. Biological screening of chitosan derivatives using Artemia spp. (brine shrimp test)

    International Nuclear Information System (INIS)

    Rozaini Mohd Zohdi; Norimah Yusof; Asnah Hassan

    2006-01-01

    The present study reported on the screening of six selected chitosan derivatives using the brine shrimp lethality bioassay. In addition, the irradiation effects towards the compounds at 25 kGy were also studied. Chitosan is a natural polysaccharide derived from chitin, extracted from the exoskeletons of crustaceans and insects as well as walls of some bacteria and fungi. Brine shrimp test is employed for the screening of toxicity of chitosan derivatives. Toxicity test was carried out by adding different concentrations of tested samples to approximately 5 to 15 Artemia salina larvae. Biological activity using the brine shrimp bioassay was recorded as LC 50 i.e. lethal concentration that kills 50% of the larvae within 24 hours of contact with the samples. Compounds are considered toxic when the LC 50 value is lower than 1 mg/ml by brine shrimp bioassay and practically non-toxic when the value is larger. Of the samples tested, none were toxic to the brine shrimp (LC 50 > 1 mg/ml). The LC 50 values of all chitosan derivatives tested, control and irradiated at 25 kGy were above 1 mg/ml thus all tested samples are considered non-toxic. This study demonstrated that irradiation at 25 kGy showed no significant effects towards the toxicity of the chitosan derivatives. After irradiation, only NO-CMC exhibited marked decrease in LC 50 value, reduced by 3-fold from 34.96 mg/ml to 11.07 mg/ml while O-CMC (5.45 mg/ml to 5 mg/ml) showed no clear differences based on rough estimation. This study suggested that brine shrimp bioassay is a simple, reliable and convenient method that could provide useful clues of the relative toxic potential of the sample tested. (Author)

  9. Brine Dewatering Using Ultrasonic Nebulization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for manned space exploration. Resupply of water is prohibitively costly for extended missions. It is anticipated...

  10. Coiled Brine Recovery Assembly (CoBRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable...

  11. Brine Dewatering Using Ultrasonic Nebulization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for future manned space exploration. Resupply of water is prohibitively costly for such extended missions. Water...

  12. Distillation Brine Purification for Resource Recovery Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Wastewater processing systems for space generate residual brine that contains water and salts that could be recovered to reduce life support consumables. The project...

  13. Approach to recover strategic metals from brines

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E.; Harrar, J.; Gregg, D.

    1981-09-16

    The objective of the proposed research is to evaluate hypersaline brines from geothermal sources and salt domes as possible sources for some strategic metals. This research is suggested because several previous analyses of brine from geothermal wells in the Imperial Valley, California, and from Gulf Coast salt domes, indicate near commercial values for platinum as well as other metals (i.e., gold, silver). Extraction of the platinum should be technically feasible. A research program should include more complete systematic sampling and analysis for resource delineation, followed by bench-scale investigation of several potential extraction processes. This could be followed by engineering feasibility and design studies, for extraction of the metals either as a by-product of other operations or in a stand-alone process.

  14. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    Science.gov (United States)

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-09-01

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na + , K + , Ca 2+ , Mg 2+ , Sr 2+ , Cl - , SO 4 2- , HCO 3 - , NO 3 - , F - , and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content

  15. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    Science.gov (United States)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  16. Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: the influence of quenching.

    Science.gov (United States)

    Azerrad, Sara P; Gur-Reznik, Shirra; Heller-Grossman, Lilly; Dosoretz, Carlos G

    2014-10-01

    Among the main restrictions for the implementation of advanced oxidation processes (AOPs) for removal of micropollutants present in reverse osmosis (RO) brines of secondary effluents account the quenching performed by background organic and inorganic constituents. Natural organic matter (NOM) and soluble microbial products (SMP) are the main effluent organic matter constituents. The inorganic fraction is largely constituted by chlorides and bicarbonate alkalinity with sodium and calcium as main counterions. The quenching influence of these components, separately and their mixture, in the transformation of model compounds by UVA/TiO2 was studied applying synthetic brines solutions mimicking 2-fold concentrated RO secondary effluents brines. The results were validated using fresh RO brines. Diatrizoate (DTZ) and iopromide (IOPr) were used as model compound. They have been found to exhibit relative high resistance to oxidation process and therefore represent good markers for AOPs techniques. Under the conditions applied, oxidization of DTZ in the background of RO brines was strongly affected by quenching effects. The major contribution to quenching resulted from organic matter (≈70%) followed by bicarbonate alkalinity (≈30%). NOM displayed higher quenching than SMP in spite of its relative lower concentration. Multivalent cations, i.e., Ca(+2), were found to decrease effectiveness of the technique due to agglomeration of the catalyst. However this influence was lowered in presence of NOM. Different patterns of transformation were found for each model compound in which a delayed deiodination was observed for iopromide whereas diatrizoate oxidation paralleled deiodination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Calculated radiation doses from radionuclides brought to the surface if future drilling intercepts the WIPP repository and pressurized brine

    International Nuclear Information System (INIS)

    Channell, J.K.

    1982-01-01

    This report describes a scenario in which an exploratory borehole connects an underlying brine reservoir with the repository and results in saturation of the waste storage area. A subsequent borehole brings portions of this radionuclide contaminated brine to the surface. Radiation odses are calculated for time periods of 125, 400, and 1000 years after repository closing for the following: (1) external radiation doses for workers at the borehole location; (2) inhalation doses for workers at the borehole location; (3) external and inhalation doses for a resident located 360 meters downwind; (4) ingestion doses for the downwind resident from locally grown produce, milk, and meat; and (5) population doses from inhalation within a 50-mile radius. The probability of the various calculated doses occurring was estimated. Probability was included in the report because of a belief that probability considerations are useful in evaluating the acceptability of unlikely events and to encourage others to provide a more detailed evaluation using more sophisticated methodology. Since the probabilities presented in this report were calculated using a simple methodology, with some parameter values chosen arbitrarily, they should be considered as approximate examples, not accurate numbers. The reasonableness of the scenario and the significance of the results are also discussed

  18. Certain questions about analysis of natural gas disolved in brine

    Energy Technology Data Exchange (ETDEWEB)

    Tezuka, M; Nakamura, M; Omi, K

    1983-01-01

    The composition of the gaseous phase of stratum brines is determined and the analysis technique is described. Ordinary analysis is performed with the assumptions that the contents of small components (excluding C02 and N2) are ignorably small and that the gas contains no 02. The determined concentrations of 02 and the proportional share of N2 are calculated from results of analysis as bound with pollutants. The high sensitivity of modern analytical methods makes it possible to identify quite small and trace concentrations of components, but corrections for air contamination may partially depreciate these results. Data are cited from gas chromatographic identifications of the components of gases disolved in the stratum brines of a Japanese deposit. C2H6 is established in all samples and C3H8 in two thirds of the samples, where H2 and helium were not detected anywhere. The concentrations of the gas phase on the whole in the brine were low. 02 falls into the samples in a water dissolved state; this demands the use of unconventional proportion of 02 to N2 (1 to 3.55), which is characteristic for air and a proportion of 1 to 2 which is characteristic for disolved air. With the conventional ordinary technique the consideration of the air contamination leads to a substantial underestimate of the N2 results. At the same time, the incorrect introduction of corrections for N2 has no effect on the heat creativity of the disolved gas.

  19. Thermodynamic modeling of phases equilibrium in aqueous systems to recover potassium chloride from natural brines

    Directory of Open Access Journals (Sweden)

    Ruberlan Gomes da Silva

    2017-01-01

    Full Text Available Chemical fertilizers, such as potassium chloride, ammonium nitrate and other chemical products like sodium hydroxide and soda ash are produced from electrolyte solutions or brines with a high content of soluble salts. Some of these products are manufactured by fractional crystallization, when several salts are separated as solid phases with high purity (>90%. Due to the large global demand for potassium fertilizers, a good knowledge about the compositions of salts and brines is helpful to design an effective process. A thermodynamic model based on Pitzer and Harvie's model was used to predict the composition of crystallized salts after water removal by forced evaporation and cooling from multicomponent solutions or brines. Initially, the salts’ solubilities in binary systems (NaCl–H2O, KCl–H2O and MgCl2–H2O and ternary system (KCl–MgCl2–H2O were calculated at 20 °C and compared with literature data. Next, the model was compared to our experimental data on the quinary system NaCl–KCl–MgCl2–CaCl2–H2O system at 20 °C. The Pitzer and Harvie's model represented well both the binary and ternary systems. Besides, for the quinary system the fit was good for brine densities up to 1350 kg/m3. The models were used to estimate the chemical composition of the solutions and salts produced by fractional crystallization and in association with material balance to respond to issues related to the production rates in a solar pond containing several salts dissolved, for instance, NaCl, KCl, MgCl2 and CaCl2.

  20. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  1. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  2. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    Science.gov (United States)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  3. Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight

    Science.gov (United States)

    Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne

    2014-01-01

    Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.

  4. In situ brine migration experiments at the Avery Island salt mine

    International Nuclear Information System (INIS)

    Krause, W.B.; Van Sambeek, L.L.; Stickney, R.G.

    1980-01-01

    An in situ brine movement study was conducted at the Avery Island Salt Mine of the International Salt Company in southwestern Louisiana. The objective of the in situ experiments was to relate field measurements to previously determined laboratory and analytical results for the purpose of determining the rate and amount of brine movement through dome salt when subjected to heating. The heating in the experiments was provided by electrical heaters emplaced in the salt mine floor. An understanding of thermally induced brine movement is essential from the standpoint of identifying conditions which may influence the physical integrity of the nuclear waste canisters or impede the functional performance of the waste package system in a nuclear waste repository in geologic salt. 28 refs

  5. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  6. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  7. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  8. Deep brine recognition upstream the EBE syndicate. Geochemical and isotopic investigations. Final report

    International Nuclear Information System (INIS)

    2009-01-01

    The authors report and discuss the results obtained after performing a drilling upstream the drinkable water harnessing field of a water supply syndicate in Alsace (Ensisheim, Bollwiller and surroundings), in order to confirm the existence of a deep brine source. This brine is diluted by recent waters. The first isotopic investigations do not allow the origin of this brine to be identified, but fractures due to some seismic events are suspected. The report presents the drilling and the various aspects of the chemical and isotopic studies (sampling, physico-chemical analysis, dating, identification of various isotopes)

  9. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege; Kaartvedt, Stein

    2015-01-01

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013

  10. Electrochemical corrosion studies of the TStE 355 fine-grained structural steel in sulfide containing brine

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Berg, H. von.

    1994-04-01

    Previous corrosion studies have shown that the unalloyed fine-grained steel TStE 355 (Material No. 1.0566) is a promising material for the manufacturing of long-lived high-level waste (HLW) containers that could act as a barrier in a rock-salt repository. Considering this fact, further electrochemical corrosion tests were performed in order to determine the influence of sulfide ions (1 -200 ppm), present as salt impurities in disposal relevant NaCl-brine (T = 55 -90 C), on the corrosion behaviour of this steel grade. For comparison, tests were carried out in the sulfide-free brine, too. (orig.) [de

  11. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  12. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  13. The use of bacconcentrate Herobacterin in brine cheese technology

    Directory of Open Access Journals (Sweden)

    I. Slyvka:

    2017-12-01

    Full Text Available In the article a comparative analysis of the use of the bacterial preparation Herobacterin and the starter RSF-742 (Chr. Hansen, Denmark in the technology of brine cheese was conducted. Herobacterin is a bacterial preparation created using bacteria Lactococcus lactis, Lactobacillus plantarum, Enterococcus faecium, Leuconostoc mesenteroides and Lactococcus garvieae, isolated from traditional Carpathian brine cheese brynza and identified using classical microbiological and modern molecular genetic methods (RAPD-PCR, RFLP-PCR, sequencing of the 16S rRNA gene. The results of investigations of organoleptic, physico-chemical, syneretical and microbiological parameters of cheese brynza with use of preparation Herobacterin are presented in comparison with the starter RSF-742, which includes cultures: Lactococcus lactis subsp. сremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus, Lactobacillus helveticus. The use of Herobacterin has a positive effect on organoleptic, physico-chemical and microbiological parameters, all parameters complied with the requirements of DSTU 7065:2009. The level of survival of lactic acid bacteria in brynza during maturation and storage is high, which confirms the correctness of the selection of strains to preparation Herobakterin, which demonstrated good adaptability to the composition and properties of ewe's milk.

  14. Coastal California Wastewater Effluent as a Resource for Seawater Desalination Brine Commingling

    Directory of Open Access Journals (Sweden)

    Kelly E. Rodman

    2018-03-01

    Full Text Available California frequently experiences water scarcity, especially in high population areas. This has generated increased interest in using the Pacific Ocean as a water resource, with seawater desalination becoming a popular solution. To mitigate the environmental impacts of the high salinity brine from seawater desalination, California recommends commingling brine with wastewater effluent before ocean discharge. Results reveal that throughout the California coast, approximately 4872 MLD (1287 MGD of treated wastewater are discharged into the ocean and might be available as dilution water. Most of this dilution water resource is produced in Southern California (3161 MLD or 835 MGD and the San Francisco Bay Area (1503 MLD or 397 MGD, which are also the areas with the highest need for alternative water sources. With this quantity of dilution water, in principle, over 5300 MLD (1400 MGD of potable water could be produced in California through seawater desalination. Furthermore, this study provides a survey of the treatment levels and typical discharge violations of ocean wastewater treatment facilities in California.

  15. Understanding the kinetics of sulfate reduction in brines by hydrogen: Progress report

    International Nuclear Information System (INIS)

    Strachan, D.M.

    1988-07-01

    Experiments were conducted with mixtures of hydrogen gas and each of PBB1 and PBB3 brines to examine the reduction kinetics of sulfate in high ionic strength solutions. Results from the experiments with brines showed that the kinetics of sulfate reduction is slower in high ionic strength solutions than the kinetics in low ionic strength solutions. However, the kinetic mechanism does not seem to alter the slow kinetics, but the addition of much larger quantities of sulfide, about 40 mM, does accelerate the reduction of sulfate. Since the proposed reaction mechanism for the reduction of sulfate by hydrogen gas involves the reaction of sulfide with sulfate, slow initial kinetics in the absence of sulfide is understandable, but also implies an unknown rate-limiting reaction. Precipitation of calcium sulfate(s) and calcium sulfide may limit the sulfide and sulfate concentrations to low values. The coexistence of anhydrite and oldhamite may indicate a part of the Ca-S-H 2 O that has not yet been investigated. 6 refs., 4 figs., 3 tabs

  16. Toxicity testing of restorative dental materials using brine shrimp larvae (Artemia salina).

    Science.gov (United States)

    Milhem, Manar M; Al-Hiyasat, Ahmad S; Darmani, Homa

    2008-01-01

    This study investigated the effect of extracts of different composites, glass ionomer cement (GIC)s and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy), a conventional GIC (Ketac-Fil), a resin-modified glass ionomer cement (Vitremer), two compomers (F2000; Dyract AP), and a flowable compomer (Dyract Flow) were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability) followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively). One-way ANOVA revealed highly significant differences between the resin composite materials (plarvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (pshrimp larvae followed by GICs and then composites.

  17. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  18. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and

  19. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    Science.gov (United States)

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  20. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.)

  1. Studies on antimicrobial activity and brine shrimp lethality of crude samples of six different species of puffer fishes

    Directory of Open Access Journals (Sweden)

    Masilamani Mohan Raj

    2015-07-01

    Full Text Available Objective: To evaluate the antimicrobial activity and brine shrimp lethality activity of six different species of puffer fishes, including Cyclichthys orbicularis, Diodon holocanthus, Canthigaster solandri, Arthron hispidus, A. inermis and Lagocephalua inermis (L. inermis. Methodology: The puffer fishes were collected from Annangkovil Fish Landing Centre (Lattitude 11°30.47' N; Longitude 79°47.02' E, Parangipettai, Southeast Coast of India during summer season because of availability. Fresh tissue samples were collected from the clearly washed specimens, extracted with methanol at 37 °C for 3 days and filtered through Whatman No. 1 filter paper. The solvents such as methanol and ethanol were concentrated by using rotary evaporator under reduced pressure. The dark brown gummy mass was stored at 4 °C for further analysis. Prepared crude samples were analysed with human pathogens to assess the antibacterial activity and this was carried out by using standard disc diffusion method. The brine shrimp lethality was calculated as the percentage of mortality which was firstly calculated by dividing the number of dead larvae by the total number and then multiplied to 100%. Results: The antibacterial activity of crude extract of puffer fishes were exhibited against 10 different human bacterial pathogens. Among the ten human pathogens, Arthron hispidus showed maximum zone of inhibition (8 mm against Staphylococcus aureus while L. inermis showed minimum activity (1 mm against Proteus mirabilis and no zone of inhibition was observed against Staphylococcus aureus. Brine shrimp lethality was examined with six puffer fish extracts. Cyclichthys orbicularis showed maximum mortalities as 100% and L. inermis showed minimum mortalities as 70% at a concentration of 500 µg/mL. Conclusion: In conclusion, the study showed the preliminary investigation of crude extracts of puffer fishes about the prominent activity against human bacterial pathogens. The extracts had

  2. Genomic and Transcriptomic Evidence for Carbohydrate Consumption Among Microorganisms in a Cold Seep Brine Pool

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    2016-11-01

    Full Text Available The detailed lifestyle of microorganisms in deep-sea brine environments remains largely unexplored. Using a carefully calibrated genome binning approach, we reconstructed partial to nearly-complete genomes of 51 microorganisms in biofilms from the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota and Thaumarchaeota. By comparison with close relatives of these microorganisms, we identified a number of unique genes associated with organic carbon metabolism and energy generation. These genes included various glycoside hydrolases, nitrate and sulfate reductases, putative bacterial microcompartment biosynthetic clusters (BMC, and F420H2 dehydrogenases. Phylogenetic analysis suggested that the acquisition of these genes probably occurred through horizontal gene transfer (HGT. Metatranscriptomics illustrated that glycoside hydrolases are among the most highly expressed genes. Our results suggest that the microbial inhabitants are well adapted to this brine environment, and anaerobic carbohydrate consumption mediated by glycoside hydrolases and electron transport systems (ETSs is a dominant process performed by microorganisms from various phyla within this ecosystem.

  3. Genomic and Transcriptomic Evidence for Carbohydrate Consumption among Microorganisms in a Cold Seep Brine Pool

    KAUST Repository

    Zhang, Weipeng

    2016-11-15

    The detailed lifestyle of microorganisms in deep-sea brine environments remains largely unexplored. Using a carefully calibrated genome binning approach, we reconstructed partial to nearly-complete genomes of 51 microorganisms in biofilms from the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs) belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota, and Thaumarchaeota. By comparison with close relatives of these microorganisms, we identified a number of unique genes associated with organic carbon metabolism and energy generation. These genes included various glycoside hydrolases, nitrate and sulfate reductases, putative bacterial microcompartment biosynthetic clusters (BMC), and F420H2 dehydrogenases. Phylogenetic analysis suggested that the acquisition of these genes probably occurred through horizontal gene transfer (HGT). Metatranscriptomics illustrated that glycoside hydrolases are among the most highly expressed genes. Our results suggest that the microbial inhabitants are well adapted to this brine environment, and anaerobic carbohydrate consumption mediated by glycoside hydrolases and electron transport systems (ETSs) is a dominant process performed by microorganisms from various phyla within this ecosystem.

  4. Salted herring brine as a coating or additive for herring (Clupea harengus) products — A source of natural antioxidants?

    DEFF Research Database (Denmark)

    Albertos, Irene; Gringer, Nina; Rico, Daniel

    2016-01-01

    The objective of this study was to characterise herring brine and assess its use as natural antioxidant in herring preservation. Herring brines from different marinated products (brine from fillet-ripened spice-cured herring SC, traditional barrel-salted spice-cured herring TSp and brine from...

  5. Indoor tests to investigate the effect of brine depth on the performance of solar still

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Marwah A.W.; Jabbar N. Khalifa, Abdul [Nahrain University, College of Engineering, Jadiriya, P.O. Box 64040, Baghdad (Iraq)

    2013-07-01

    Many experimental and numerical studies have been done on different configurations of solar stills to optimize the design by examining the effect of climatic, operational and design parameters on its performance. One of the most important of the operational parameters that has received a considerable attention in the literature is the brine depth. This paper reports indoor experimental investigations on the effect of brine depth on the productivity and efficiency of the solar stills at four different brine depths of 1.5, 2, 4 and 5.5 cm. Indoor tests were used by simulating the solar input by proper electric heaters located at the bottom of the still for heating the water contained in the basin of the still. The present study validated the decreasing trend in productivity with the increase of brine depth and showed that the still productivity could be influenced by the brine depth by up to 24%.

  6. Effects of gamma radiation on the survival and growth of brine shrimp, Artemia salina

    International Nuclear Information System (INIS)

    Engel, D.W.; Davis, E.M.

    1976-01-01

    To determine the effects of gamma radiation on the survival and growth of brine shrimp, nauplii and adults were exposed to different doses of radiation and maintained at different salinities and temperatures. The LD 50 determination demonstrated that nauplii were thirty to forty times more sensitive than the adults and had a 25-day LD 50 of 450 rads. Radiation and salinity reduced survival of adult female brine shrimp more than the males. The interaction of salinity, 5 and 50 ppt, temperature, 10, 20 and 30 0 C, and radiation, 25 to 100 kilorads, decreased the survival of both male and female brine shrimp, with the males having the greater sensitivity. Brine shrimp nauplii irradiated with doses of 500 and 2,500 rads had accelerated growth and matured earlier than the controls. A test of the effect of crowding on growth showed that volume per individual was important, and a dose of 500 rads accelerated brine shrimp growth in all concentrations, with the greatest increase at 8 ml/nauplius

  7. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    Science.gov (United States)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  8. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  9. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  10. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  11. Helium leak testing of a radioactive contaminated vessel under high pressure in a contaminated environment

    International Nuclear Information System (INIS)

    Winter, M.E.

    1996-01-01

    At ANL-W, with the shutdown of EBR-II, R ampersand D has evolved from advanced reactor design to the safe handling, processing, packaging, and transporting spent nuclear fuel and nuclear waste. New methods of processing spent fuel rods and transforming contaminated material into acceptable waste forms are now in development. Storage of nuclear waste is a high interest item. ANL-W is participating in research of safe storage of nuclear waste, with the WIPP (Waste Isolation Pilot Plant) site in New Mexico the repository. The vessel under test simulates gas generated by contaminated materials stored underground at the WIPP site. The test vessel is 90% filled with a mixture of contaminated material and salt brine (from WIPP site) and pressurized with N2-1% He at 2500 psia. Test acceptance criteria is leakage -7 cc/seconds at 2500 psia. The bell jar method is used to determine leakage rate using a mass spectrometer leak detector (MSLD). The efficient MSLD and an Al bell jar replaced a costly, time consuming pressure decay test setup. Misinterpretation of test criterion data caused lengthy delays, resulting in the development of a unique procedure. Reevaluation of the initial intent of the test criteria resulted in leak tolerances being corrected and test efficiency improved

  12. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density 37 refs, 15 figs

  13. Brine migration test - Asse salt mine, Federal Republic of Germany

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1988-03-01

    This document is the final report on the Cooperative German-American 'Brine Migration Tests' that were performed at the Asse Salt Mine in the Federal Republic of Germany (FRG), the Office of Nuclear Waste Isolation (ONWI), Columbus, Ohio, and the Institut fuer Tieflagerung (IfT), Braunschweig, of the Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF). Final test and equipment design as well as manufacturing and installation was carried out by Westinghouse Electric Corporation. The tests were designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. The performance of an array of candidate waste package materials, test equipment and procedures under repository conditions will be evaluated with a view towards future in-depth testing of potential repository sites. (orig./RB)

  14. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    Science.gov (United States)

    Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  15. In-situ fracture mapping using geotomography and brine tracers

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Ramirez, A.L.; Lytle, R.J.

    1981-01-01

    The Lawrence Livermore National Laboratory is currently assessing the capabilities of high resolution geophysical methods to characterize geologic sites for the disposal of high level nuclear waste. A successful experiment has recently been performed in which salt water tracers and high frequency electromagnetic waves were utilized to map rock mass fracture zones in-situ. Multiple cross-borehole EM transmissions were used to generate a tomographic image of the fractured rock region between two boreholes. The tomographs obtained correlate well with conventional wireline geophysical logs which can be used to infer the location of fractured zones in the rock mass. This indirect data suggests that the geotomography and brine tracer technique may have merit in mapping fractured zones between boreholes

  16. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  17. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  18. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  19. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    Science.gov (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann

  20. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  1. Water Recovery from Brine in the Short and Long Term: A KSC Approach

    Science.gov (United States)

    Lunn, Griffin; Melendez, Orlando; Anthony, Steve

    2014-01-01

    KSC has spent many years researching Hollow Fiber Membrane Bioreactors as well as research encompassing:Alternate ammonia removal/Advanced oxidation. Brine purification technologies KSC-ISRU has built an electrolysis cell for the removal of acids in ISRU mining brines. Our goal is to combine all such technologies.

  2. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  3. State-of-the-art review of brine migration studies in salt. Technical memorandum report RSI-0075

    International Nuclear Information System (INIS)

    Gnirk, P.F.; Krause, W.B.; Fossum, A.F.

    1981-09-01

    This report provides a state-of-the-art review of brine migration studies in rock salt. Emphasis is placed on the review of literature relating to brine migration phenomena around nuclear waste canisters. This review includes experimental work which has been conducted in the laboratory and in the field. In addition to the literature review, some additional thoughts on brine migration are given and a series of laboratory experiments is proposed. The proposed laboratory experiments are designed to determine whether or not a relationship exists between brine migration and temperature, temperature gradient and stress in rock salt. 34 references, 9 figures, 3 tables

  4. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  5. Meltability and Stretchability of White Brined Cheese: Effect of Emulsifier Salts

    OpenAIRE

    Khaled Abu-Alruz; Ayman S. Mazahreh; Ali F. Al-Shawabkeh; Amer A. Omari; Jihad M. Quasem

    2009-01-01

    Problem statement: This study was based on the hypothesis that by adding low concentrations of emulsifier salts, may specifically act on the cross linking bonds of the protein matrix, to the original brine (storage medium) it would be possible to induce meltability and stretchability in white brined cheese. Approach: A new apparatus for measuring the actual stretchability was designed and constructed; measurements on different cheese samples proved its validity and reliability to measure stre...

  6. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  7. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  8. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  9. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.

    2013-11-28

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  10. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.; Ghazy, Mohamed A.; Sayed, Ahmed; Ouf, Amged; El-Dorry, Hamza; Siam, Rania

    2013-01-01

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  11. Hydraulic accumulator-compressor for geopressured enhanced oil recovery

    Science.gov (United States)

    Goldsberry, Fred L.

    1988-01-01

    A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.

  12. Brine shrimp lethality and antibacterial activity of extracts from the bark of Schleichera oleosa

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-08-01

    Full Text Available Objective: To determine the antibacterial efficacy and brine shrimp toxicity of extracts (hexane, dichloromethane, ethyl acetate, methanol and water obtained from the bark of Schleichera oleosa. Methods: The powdered bark sample was Soxhlet extracted sequentially in hexanes, dichloromethane, ethyl acetate, methanol and water. Antibacterial evaluation was carried out by following the agar diffusion method and amoxicillin disc was used as a reference. Slightly modified Meyer’s method was used to determine the toxicity of the extracts in brine shrimps. Results: Among the nine bacterial strains tested, the methanolic and aqueous extracts showed promising antibacterial efficacy against Serratia marcescens, Escherarichia coli, Bacillus subtilis and Micrococcus luteus. None of the extracts were found significantly toxic to brine shrimps. Conclusions: Strong antibacterial activity and low brine shrimp toxicity of methanolic and aqueous extracts can provide new antibacterial compounds.

  13. Formation of brine channels in sea ice.

    Science.gov (United States)

    Morawetz, Klaus; Thoms, Silke; Kutschan, Bernd

    2017-03-01

    Liquid salty micro-channels (brine) between growing ice platelets in sea ice are an important habitat for CO 2 -binding microalgaea with great impact on polar ecosystems. The structure formation of ice platelets is microscopically described and a phase field model is developed. The pattern formation during solidification of the two-dimensional interstitial liquid is considered by two coupled order parameters, the tetrahedricity as structure of ice and the salinity. The coupling and time evolution of these order parameters are described by a consistent set of three model parameters. They determine the velocity of the freezing process and the structure formation, the phase diagram, the super-cooling and super-heating region, and the specific heat. The model is used to calculate the short-time frozen micro-structures. The obtained morphological structure is compared with the vertical brine pore space obtained from X-ray computed tomography.

  14. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  15. Performance evaluation of a once-through multi-stage flash distillation system: Impact of brine heater fouling

    International Nuclear Information System (INIS)

    Baig, Hasan; Antar, Mohamed A.; Zubair, Syed M.

    2011-01-01

    Multi-stage flash distillation (MSF) system modeling involves a number of process variables. An estimation of all these process variables requires both analytical solutions and experimental/field analysis. However, the accurate estimate of variables related to the brine heater operation in a MSF system is very important for a reliable operation of the system. For example, steam operating conditions as well as the brine properties including fouling of the brine heater tubes have a significant effect on the heat transfer characteristics of the brine heater, which in turn influence the distillate output from the system. In this study, the effect of various design as well as operating conditions on the performance ratio (PR), brine temperature and salinity as it leaves the last flash stage are investigated in a once-through system. Increasing the number of stages from 24 to 32 has a significant effect on the PR, it ranges between 79% (for ΔT = 1.5) and 327% (for ΔT = 2.3) for a top-brine temperature of 106 o C. This value increase as the top-brine temperature increases. Increasing the stage-to-stage temperature difference increases the water salinity as it leaves the final stage and reduces its temperature that would imply better energy utilization within the plant. Results show that brine side heat exchanger fouling has a significant effect in decreasing the overall heat transfer coefficient, which reduces the production rate as the fouling increases with time. A sensitivity analysis to identify the key parameters, which can have a significant influence on the desalination plant performance, is carried out in an attempt to contribute a better understanding and operation of MSF desalination processes.

  16. Mg/Al HYDROTALCITE-LIKE SYNTHESIZED FROM BRINE WATER FOR EOSIN YELLOW REMOVAL

    Directory of Open Access Journals (Sweden)

    Eddy Heraldy

    2011-11-01

    Full Text Available Attempts to synthesis of Mg/Al HTlc using magnesium from several raw material resources are widely investigated. One of raw material would purpose as source of magnesium to synthesis of Mg/Al HTlc is brine water which is well known as the desalination process wastewater. Mg/Al HTlc are widely investigated for their potential applications in research and industrial processes as adsorbents, anionic exchange, catalysts and /or catalyst precursors for the preparation of inorganic materials and pharmaceutical industry excipients. As adsorbents, Mg/Al HTlc are receiving greater interests in the environmental community due to their high adsorption capacity. However, there is no literature available on the synthesis of Mg/Al HTlc from brine water except from artificial seawater. The objective of this research is to synthesis of Mg/Al HTlc from brine water and its ability tested for eosin yellow (EY removal. Characterization of the Mg/Al HTlc synthesized was confirmed through X-ray Diffraction and FT-IR Spectroscopy. The effect of various experimental parameters was investigated using a batch adsorption technique. In this manner, the adsorption isotherms, adsorption kinetics, and pH effects upon EY adsorption on Mg/Al HTlc were examined. The result showed that EY data fit well with the pseudo-second order kinetic model. The isothermal data could be well described by the Freundlich equation. The adsorption capacity was 2.41 × 10-1 mol g-1, and adsorption energy of EY was 24.89 kJ mol-1.

  17. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  18. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  19. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore

    2015-01-01

    Marinated herring processing brines, which are usually discarded, are rich in salt, protein, non-protein nitrogen, iron, fatty acids, antioxidant and even possess enzymatic activity. This study investigated the performance of ceramic ultrafiltration of two herring spice brines with a major focus...

  20. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  1. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (Artemia salina

    Directory of Open Access Journals (Sweden)

    Manar M. Milhem

    2008-08-01

    Full Text Available This study investigated the effect of extracts of different composites, glass ionomer cement (GICs and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy, a conventional GIC (Ketac-Fil, a resin-modified glass ionomer cement (Vitremer, two compomers (F2000; Dyract AP, and a flowable compomer (Dyract Flow were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively. One-way ANOVA revealed highly significant differences between the resin composite materials (p<0.001. Follow-up comparison between the composite groups by Tukey's pairwise multiple-comparison test (α =0.05 showed that the extract of Synergy was significantly less toxic than the extracts of all the other materials except that of Solitaire 2. The compomers showed 100% lethality, while the percentage of viable larvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (p<0.001. Follow-up comparison between the groups by Tukey's test (α = 0.05 showed that the toxic effect of the extracts of the compomers were significantly greater than that of Ketac-Fil, and Vitremer. The differences in the toxic effects of Vitremer and Ketac-Fil were not statistically significant. In conclusion, the toxicity of composite materials varied according to their chemical composition. Compomers were the most lethal materials to brine shrimp larvae followed by GICs and then composites.

  2. Slumping of brine mounds : bounds on behaviour

    NARCIS (Netherlands)

    Philips, J.R.; Duijn, van C.J.

    1996-01-01

    Two modifications of the approximate analysis of interface motion during two-fluid density-driven flows of De Josselin de Jong (Proc. Euromech., 143: 75–82, 1981) are applied to the slumping of finite two-dimensional and axisymmetric brine mounds. Both lead to simple similarity solutions. One

  3. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  4. Fermentation cover brine reformulation for cucumber processing with low salt to reduce bloater defect

    Science.gov (United States)

    Reformulation of calcium chloride cover brine for cucumber fermentation was explored as a mean to minimize the incidence of bloater defect. This study particularly focused on cover brine supplementation with calcium hydroxide, sodium chloride (NaCl), and acids to enhance buffer capacity, inhibit the...

  5. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.). 14 refs.

  6. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  7. Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies

    Science.gov (United States)

    This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. When water is recovered from a saline source, a brine conc...

  8. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  9. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  10. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  11. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  12. Consolidation and permeability of salt in brine

    International Nuclear Information System (INIS)

    Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

    1981-07-01

    The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0) 3 ), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl 2 showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85 0 C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste

  13. Influence of radiolytic products on the chemistry of uranium VI in brines

    International Nuclear Information System (INIS)

    Lucchini, J-F.; Reed, D.T.; Borkowski, M.; Rafalski, A.; Conca, J.

    2004-01-01

    In the near field of a salt repository of nuclear waste, ionizing radiations can strongly affect the chemistry of concentrated saline solutions. Radiolysis can locally modify the redox conditions, speciation, solubility and mobility of the actinide compounds. In the case of uranium VI, radiolytic products can not only reduce U(VI), but also react with uranium species. The net effect on the speciation of uranyl depends on the relative kinetics of the reactions and the buildup of molecular products in brine solutions. The most important molecular products in brines are expected to be hypochlorite ion, hypochlorous acid and hydrogen peroxide. Although U(VI) is expected not to be significantly affected by radiolysis, the combined effects of the major molecular radiolytic products on the chemistry of U(VI) in brines have not been experimentally established previously. (authors)

  14. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  15. Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA

    Science.gov (United States)

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Preston, Todd

    2012-01-01

    Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl−-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.

  16. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  17. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  18. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea.

    KAUST Repository

    Sagar, Sunil; Esau, Luke; Hikmawan, Tyas I.; Antunes, Andre; Holtermann, Karie; Stingl, Ulrich; Bajic, Vladimir B.; Kaur, Mandeep

    2013-01-01

    High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes

  19. The solubility of UO22+ in dilute sodium chloride solutions and in high-ionic strength sodium sulfate and chlorine brines

    International Nuclear Information System (INIS)

    Marquez, L.N.; Kadkhodayan, B.; Wruck, D.A.

    1995-01-01

    Uranium is a major component of high-level nuclear waste. In an oxidizing environment, UO 2 2+ would be expected to be the dominant dissolved species in solution. In addition to dilute solutions, because high-level nuclear waste may be stored in repositories containing salt, it is important to characterize the aqueous chemistry of UO 2 2+ and the solubility-controlling U(VI) solids in high-ionic strength brines as a function of pH. We have studied the solubility of UO 2 2+ by precipitation of solid phase in 0.001 molal NaCl, 5.2 molal NaCl, and saturated Na 2 SO 4 at pH values ranging from 5 to 12. The solution concentrations were measured by alpha particle liquid scintillation counting. The precipitated solids were characterized by powder x-ray diffraction, electron microscopy, infrared spectroscopy, and x-ray photoelectron spectroscopy

  20. Brine crude oil interactions at the oil-water interface

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    The impact of brine salinity and its ionic composition on oil displacement efficiency has been investigated extensively in recent years due to the potential of enhanced oil recovery (EOR). Wettability alterations through relative interactions at the mineral surface have been the basis of proposed...... in enhancing oil emulsion formation by increasing interactions between polar acids and brine solutions. The results propose the potential use of HPO42- ions in reservoirs having inactive mineral surfaces. The relative oil affinity of different ions including K+, Na+, Mg2+, and Ca2+ (cations), and Cl-, SO42...... and thus reduces the interfacial viscoelasticity of the trapped oil. These results show significant correlation between oil emulsion formation and increased oil recovery. Copyright 2015; Society of Petroleum Engineers...

  1. Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE

    Science.gov (United States)

    Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.

    2014-01-01

    Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.

  2. Long-term brine migration through an engineered shaft seal system

    International Nuclear Information System (INIS)

    Fryar, D.G.; Beach, J.A.; Kelley, V.A.; Knowles, M.K.

    1997-01-01

    The shaft seal system for the Waste Isolation Pilot Plant (WIPP) must provide a barrier to the migration of fluids within the shafts to prevent the release of contaminants to the accessible environment. To investigate the performance of the shaft seal system, a set of fluid flow performance models was developed based upon the physical characteristics of the WIPP shaft seal system and the surrounding geologic media. This paper describes the results of a numerical model used to investigate the long-term potential for brine migration through the shaft seal system. Modeling results demonstrate that the WIPP shaft seal system will effectively limit brine migration within the repository shafts

  3. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  4. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  5. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  6. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  7. Radiation chemistry of salt-mine brines and hydrates

    International Nuclear Information System (INIS)

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl 2 solutions and MgCl 2 hydrates at temperatures in the range of 30 to 180 0 C were investigated through experiments. A principal objective was to establish the values for the yields of H 2 [G(H 2 )] and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H 2 ) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143 0 C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45 0 C. Changes in the relative amounts of MgCl 2 and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O 2 into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H 2 was present as O 2 . We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H 2 from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85 0 C, to about 30 and 40% for temperatures in the ranges 100 to 143 0 C and 30 to 45 0 C, respectively. We did not establish the mechanism whereby the air affected the yields of H 2 and O 2 . The values found in this work for G(H 2 ) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H 2 in pure H 2 O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H 2 ) in 2 M NaCl solutions at room temperature

  8. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  9. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  10. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  11. Chemical composition of selected Kansas brines as an aid to interpreting change in water chemistry with depth

    Science.gov (United States)

    Dingman, R.J.; Angino, E.E.

    1969-01-01

    Chemical analyses of approximately 1,881 samples of water from selected Kansas brines define the variations of water chemistry with depth and aquifer age. The most concentrated brines are found in the Permian rocks which occupy the intermediate section of the geologic column of this area. Salinity decreases below the Permian until the Ordovician (Arbuckle) horizon is reached and then increases until the Precambrian basement rocks are reached. Chemically, the petroleum brines studied in this small area fit the generally accepted pattern of an increase in calcium, sodium and chloride content with increasing salinity. They do not fit the often-predicted trend of increases in the calcium to chloride ratio, calcium content and salinity with depth and geologic age. The calcium to chloride ratio tends to be asymptotic to about 0.2 with increasing chloride content. Sulfate tends to decrease with increasing calcium content. Bicarbonate content is relatively constant with depth. If many of the hypotheses concerning the chemistry of petroleum brines are valid, then the brines studied are anomolous. An alternative lies in accepting the thesis that exceptions to these hypotheses are rapidly becoming the rule and that indeed we still do not have a valid and general hypothesis to explain the origin and chemistry of petroleum brines. ?? 1969.

  12. Long-term gas and brine migration at the Waste Isolation Pilot Plant: Preliminary sensitivity analyses for post-closure 40 CFR 268 (RCRA), May 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This report describes preliminary probabilistic sensitivity analyses of long term gas and brine migration at the Waste Isolation Pilot Plant (WIPP). Because gas and brine are potential transport media for organic compounds and heavy metals, understanding two-phase flow in the repository and the surrounding Salado Formation is essential to evaluating long-term compliance with 40 CFR 268.6, which is the portion of the Land Disposal Restrictions of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act that states the conditions for disposal of specified hazardous wastes. Calculations described here are designed to provide guidance to the WIPP Project by identifying important parameters and helping to recognize processes not yet modeled that may affect compliance. Based on these analyses, performance is sensitive to shaft-seal permeabilities, parameters affecting gas generation, and the conceptual model used for the disturbed rock zone surrounding the excavation. Brine migration is less likely to affect compliance with 40 CFR 268.6 than gas migration. However, results are preliminary, and additional iterations of uncertainty and sensitivity analyses will be required to provide the confidence needed for a defensible compliance evaluation. Specifically, subsequent analyses will explicitly include effects of salt creep and, when conceptual and computational models are available, pressure-dependent fracturing of anhydrite marker beds

  13. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  14. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  15. Delineation of brine contamination in and near the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana, 2004-09

    Science.gov (United States)

    Thamke, Joanna N.; Smith, Bruce D.

    2014-01-01

    The extent of brine contamination in the shallow aquifers in and near the East Poplar oil field is as much as 17.9 square miles and appears to be present throughout the entire saturated zone in contaminated areas. The brine contamination affects 15–37 billion gallons of groundwater. Brine contamination in the shallow aquifers east of the Poplar River generally moves to the southwest toward the river and then southward in the Poplar River valley. The likely source of brine contamination in the shallow aquifers is brine that is produced with crude oil in the East Poplar oil field study area. Brine contamination has not only affected the water quality from privately owned wells in and near the East Poplar oil field, but also the city of Poplar’s public water-supply wells. Three water-quality types characterize water in the shallow aquifers; a fourth water-quality type in the study area characterizes the brine. Type 1 is uncontaminated water that is suitable for most domestic purposes and typically contains sodium bicarbonate and sodium/magnesium sulfate as the dominant ions. Type 2 is moderately contaminated water that is suitable for some domestic purposes, but not used for drinking water, and typically contains sodium and chloride as the dominant ions. Type 3 is considerably contaminated water that is unsuitable for any domestic purpose and always contains sodium and chloride as the dominant ions. Type 3 quality of water in the shallow aquifers is similar to Type 4, which is the brine that is produced with crude oil. Electromagnetic apparent conductivity data were collected in the 106 square-mile area and used to determine extent of brine contamination. These data were collected and interpreted in conjunction with water-quality data collected through 2009 to delineate brine plumes in the shallow aquifers. Monitoring wells subsequently were drilled in some areas without existing water wells to confirm most of the delineated brine plumes; however, several possible

  16. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  17. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  18. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  19. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems : the Critical Role of Divalent Cations

    NARCIS (Netherlands)

    Haagh, Martinus Everardus Johannes; Sîretanu, Igor; Duits, Michel; Mugele, Friedrich Gunther

    2017-01-01

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting

  20. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines

    NARCIS (Netherlands)

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still

  1. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    NARCIS (Netherlands)

    Vavourakis, C.D.; Ghai, R.; Rodriguez-valera, F.; Sorokin, D.Y.; Tringe, S.G.; Hugenholtz, P.; Muyzer, G.

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still

  2. Liquid interfacial water and brines in the upper surface of Mars

    Science.gov (United States)

    Moehlmann, Diedrich

    2013-04-01

    Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.

  3. Effects of NaCl on Fermentative Metabolism of Mature Green Tomatoes cv. Ailsa Craig in Brine

    Directory of Open Access Journals (Sweden)

    Sotirios Fragkostefanakis

    2010-01-01

    Full Text Available The effect of osmotic strength on gene expression and activity of the major enzymes of fermentative metabolism of mature green tomato fruit (Solanum lycopersicum cv. Ailsa Craig has been studied by exposing fruit to brine containing 0 (water, 5 and 10 % NaCl. The fruits were surface sterilized prior to treatment to prevent the growth of microbes naturally present on the skin of the fruit. Changes in fruit expression of fermentation genes and the activity of the respective enzymes as well as physicochemical quality characteristics (soluble solid content, titratable acidity, pH and firmness were studied in both fruit and brine for 0.5, 1, 1.5, 2, 3, 7 and 14 days. Discrepancies in responses that resulted from the different salt concentrations were obtained at molecular and quality levels. The complex kinetics of solutes between the fruit and the surrounding solution due to osmotic potential has led to different responses of the tissue to fermentation. Tomato fruit showed cracking soon after storage in water; water-stored fruit had higher titratable acidity, lower soluble solid content, and higher induction of anaerobic metabolism as indicated by the expression or the activity of the fermentation enzymes compared to fruit stored in brine with 5 or 10 % NaCl. No cracking was observed in fruit stored in 5 (isotonic or 10 % NaCl (hypertonic brine, though in the latter, signs of dehydration were observed. The presence of salt in brine reduced the intensity of fermentative metabolism as indicated by the lower gene expression and enzyme activity. However, fruit stored in brine with 5 % NaCl survived longer than with 0 or 10 % NaCl. The presence of 5 % NaCl in brine caused mild changes of both the fermentative metabolism and the physicochemical characteristics and prevented fruit deterioration during storage.

  4. Changes of washing water during debittering and the brine during storage of irradiated olive fruits (Olea europea. L.)

    International Nuclear Information System (INIS)

    AL-Bachir, M.

    2001-01-01

    Olive fruits (Olea europea. var. Surrany) treated with 0, 1, 2 and 3 kGy of gamma irradiation were debittered in distilled water for 8 days and stored in brine for 12 months at room temperature. Total dissolved and inorganic dissolved solids, Na, K, Ca, electric conductivity (EC) and pH values were evaluated in washing wastewater (daily), and in brine (after 6 and 12 months). The results showed that gamma irradiation increased the total and inorganic dissolved solids, Na and K in washing wastewater, and in brine throughout debittering and storage periods. Also, gamma irradiation had an effect on EC and pH values of washing wastewater and brine [es

  5. Thermodynamics of high temperature brines

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.; Bradley, D.J.; Rogers, P.S.Z.; Peiper, J.C.

    1979-04-01

    Osmotic and activity coefficient data and enthalpy and heat capacity data for NaCl solutions at saturation pressure of water from 0 to 300{sup 0}C and to saturation composition have been simultaneously fit to a 30 parameter equation. The data are reproduced by the equation, in most cases, to within experimental error. Calculated values of the osmotic coefficient, the activity of water, the activity of NaCl, and the heat capacity, enthalpy and entropy of the solution are given in Tables in 25{sup 0}C intervals from 0 to 300{sup 0}C and concentrations from 0.25 to 25 wt% NaCl.

  6. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE

    International Nuclear Information System (INIS)

    COOKE GA; DUNCAN JB; LOCKREM LL

    2008-01-01

    This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria

  7. Comparison of antimicrobial activities of brine salting, Chlorinated ...

    African Journals Online (AJOL)

    Chemical preservatives can be used to reduce the overall microbial populations in fish and fish products. This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and Moringa oleifera plant extracts treatments on enteric bacteria in Rastrineobola argentea and Oreochromis niloticus fish ...

  8. Storage quality in different brines of pickled capers (Capparis spp.

    Directory of Open Access Journals (Sweden)

    Özcan, Musa

    1999-08-01

    Full Text Available Middle sized buds of Capparis spinosa L. var. spinosa and Capparis ovata Desf. var. canescens (Coss. Heywood collected from wild plants were pickled for two months. The buds after the fermentation were processed in 10% and 20% brines. Storage stability of the fermented capers was determined by physical, chemical and microbiological analysis at certain interval in 10 and 20% old or fresh brines 180 days. Storaged in 10% and 20% old or fresh brines for 180 days of pickled buds of both species maintained the product quality in all samples. Acidity was higher in old brine during storage. Lactic acid bacteria (LAB growth was observed only in 10% fresh brine, it decreased from initial and 30 days at C. ovata and C. spinosa, respectively. C. spinosa, compared with C. ovata was desirable due to low sediment and more firm texture. During storage of buds in fresh brines, sediment and off-flavour were not observed for both species. Pickled products can be stored in fresh brine long-term containing at least 10% salt concentration.

    Se encurtieron durante dos meses botones florales de tamaño intermedio de Capparis spinosa L. var. spinosa y Capparis ovata Desf. var. canescens (Coss recogidos de plantas silvestres. Las alcaparras después de la fermentación se conservaron en salmueras del 10% y 20%. Las alcaparras fermentadas fueron mantenidas durante 180 días en salmueras usadas o recién preparadas (frescas del 10 y 20%, determinándose a intervalos la estabilidad durante la conservación por análisis físicos, químicos y microbiológicos. La calidad del producto se mantuvo en todas las muestras de alcaparras fermentadas durante los 180 días, tanto en 10% como en 20% y en salmueras usadas o frescas. La acidez durante la conservación fue mayor en salmueras usadas. El crecimiento de bacterias del ácido láctico se observó sólo en salmueras frescas del 10

  9. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  10. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common

  11. Microbial Diversity and Ecology in the Interfaces of the Deep-sea Anoxic Brine Pools in the Red Sea

    KAUST Repository

    Hikmawan, Tyas I.

    2015-05-01

    Deep-sea anoxic brine pools are one of the most extreme ecosystems on Earth, which are characterized by drastic changes in salinity, temperature, and oxygen concentration. The interface between the brine and overlaying seawater represents a boundary of oxic-anoxic layer and a steep gradient of redox potential that would initiate favorable conditions for divergent metabolic activities, mainly methanogenesis and sulfate reduction. This study aimed to investigate the diversity of Bacteria, particularly sulfate-reducing communities, and their ecological roles in the interfaces of five geochemically distinct brine pools in the Red Sea. Performing a comprehensive study would enable us to understand the significant role of the microbial groups in local geochemical cycles. Therefore, we combined culture-dependent approach and molecular methods, such as 454 pyrosequencing of 16S rRNA gene, phylogenetic analysis of functional marker gene encoding for the alpha subunits of dissimilatory sulfite reductase (dsrA), and single-cell genomic analysis to address these issues. Community analysis based on 16S rRNA gene sequences demonstrated high bacterial diversity and domination of Bacteria over Archaea in most locations. In the hot and multilayered Atlantis II Deep, the bacterial communities were stratified and hardly overlapped. Meanwhile in the colder brine pools, sulfatereducing Deltaproteobacteria were the most prominent bacterial groups inhabiting the interfaces. Corresponding to the bacterial community profile, the analysis of dsrA gene sequences revealed collectively high diversity of sulfate-reducing communities. Desulfatiglans-like dsrA was the prevalent group and conserved across the Red Sea brine pools. In addition to the molecular studies, more than thirty bacterial strains were successfully isolated and remarkably were found to be cytotoxic against the cancer cell lines. However, none of them were sulfate reducers. Thus, a single-cell genomic analysis was used to study

  12. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  14. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    Science.gov (United States)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  15. Changes of washing water during debittering and the brine during storage of irradiated olive fruits (Olea Europea. 1.)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2003-01-01

    Olive fruits (Olea Europea. var. Surrany) treated with 0, 1, 2, and 3 kGy of gamma irradiation were debittered in distilled water for 8 days and stored in brine for 12 months at room temperature. Total dissolved and inorganic dissolved solids, Na, K, Ca, electric conductivity (EC) and pH values were evaluated in washing wastewater 9 daily), and in brine (after 6 and 12 months). The results showed that gamma irradiation increased the total and inorganic dissolved solids, Na and K in washing wastewater, and in brine throughout debittering and storage periods. Also, gamma irradiation had an effect on EC and pH values of washing wastewater and brine. (author)

  16. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  17. The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Webb, S.W.; Larson, K.W.

    1996-02-01

    The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied

  18. The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)

    1996-02-01

    The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

  19. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  20. Evaluation of the bioactivities of some Myanmar medicinal plants using brine shrimp (Artemia salina) toxicity test

    International Nuclear Information System (INIS)

    Sabai; Khin Khin Win Aung; Nwe Ni Thin; Kyi Shwe; Tin Myint Htwe

    2001-01-01

    For a variety of toxic substances, brine shrimp larvae (Artemia salina) are usually used as a simple bioassay method and it is also applied for natural product research. The brine shrimp larvae (nauplii) are obtained by natural hatching method from Artemia cysts. By using the larvae, the results from these experiments lead to the lethal dose, LD 50 values of extracts of selected medicinal plants. Activities of a broad range of plant extracts are manifested as toxicity to the brine shrimp. Screening results with six plant extracts are compared with pure caffeine. This method is rapid, reliable, inexpensive and convenient. (author)

  1. Transport of radionuclides by concentrated brine in a porous medium with micropore-macropore structure

    International Nuclear Information System (INIS)

    Hassanizadeh, S.M.

    1987-01-01

    This work concerns itself with the study of effects of soil aggregation and high salt concentrations on the transport of radionuclides by concentrated brine flowing through an aggregated porous medium. The medium is considered to be composed of porous rock aggregates separated by macropores through which the brine flows and transport of salt and radionuclides takes place. The aggregates contain dead-end pores, cracks, and stationary pockets collectively called micropores. The micropore space does not contribute to the flow, but it serves as a storage for salt and radionuclides. Adsorption of radionuclides takes place at internal surfaces of aggregates where they assume that a linear equilibrium isotherm describes the process. A one-dimensional numerical model is developed which is based on two sets of equations: one set for the flow and transport of salt and another set for transport of radionuclides. Results of numerical experiments clearly indicate that the existence of high salt concentrations markedly reduces the peak of nuclides concentration and slows down their movement. Also, it is found that diffusive mass exchange between macropores and aggregates results in a pronounced lowering of the radionuclides concentration peaks. 9 references, 7 figures

  2. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  3. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  4. Thermal gradient brine inclusion migration in salt study: gas-liquid inclusions, preliminary model

    International Nuclear Information System (INIS)

    Olander, D.R.; Machiels, A.J.

    1979-10-01

    Natural salt deposits contain small cubical inclusions of brine distributed through the salt. Temperature gradients, resulting from storing heat-generating wastes in the salt, can cause the inclusions to move through the salt. Prediction of the rate and amount of brine-inclusion migration is necessary for the evaluation of bedded or domed salts as possible media for waste repositories. Inclusions filled exclusively with liquid migrate up the temperature gradient towards the heat source. The solubility of salt in the brine inclusion increases with temperature. Consequently, salt dissolves into the inclusion across the hot surface and crystallizes out at the cold surface. Diffusion of salt within the liquid phase from the hot to the cold faces causes the inclusions to move in the opposite direction. In so doing, they change shape and eventually become rectangular parallelipipeds with a width (dimension perpendicular to the thermal gradient) much larger than the thickness (dimension in the direction of the thermal gradient). The inclusions may also contain a gas phase predominantly consisting of water vapor. These entities are termed two-phase or gas-liquid inclusions. The two-phase inclusions usually migrate down the temperature gradient away from the heat source remaining more-or-less cubical. A two-phase inclusion also forms when an all-liquid inclusion reaches the waste package; upon opening up at the salt-package interface, the brine partially evaporates and the inclusion reseals with some insoluble gas trapped inside. These gas-liquid inclusions proceed to move down the temperature gradient, in the opposite sense of the all-liquid inclusions. The gas-liquid inclusions phenomenon provides a pathway by which radionuclides leached from the wasteform by the brine can be transported away from the waste package and thus might have greater access to the biosphere

  5. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  6. Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Vaughn, P.; Butcher, B.; Helton, J.; Swift, P.

    1993-10-01

    At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ''disposal-unit boundary'' or the Standard's accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations

  7. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  8. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    Science.gov (United States)

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  9. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  10. Kinetics of ikaite precipitation and dissolution in seawater-derived brines at sub-zero temperatures to 265 K

    Science.gov (United States)

    Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.

    2014-09-01

    The kinetics of calcium carbonate hexahydrate (ikaite) precipitation and dissolution were investigated in seawater and seawater-derived brines at sub-zero temperatures using the constant addition experimental technique. The steady state rate of these two processes was found to be a function of the deviation of the solution from equilibrium with respect to ikaite and conformed to the same empirical rate law as the anhydrous CaCO3 polymorphs, calcite and aragonite. In addition to the saturation state of the brine with respect to ikaite, the salinity of the brine and the temperature of the reaction evidently exerted some control on the ikaite precipitation kinetics, while the dissolution kinetics of the polymorph were not noticeably influenced by these two parameters. The experimental salinity and temperature conditions were equivalent to those at thermal equilibrium between brine and ice in the sea ice cover of polar seas. Simple modelling of the CO2 system by extrapolation of the oceanic equivalent to sea ice brines showed that the physical concentration of seawater ions and the changes in ikaite solubility as a function of salinity and temperature, both inherent in the sea ice system, would be insufficient to drive the emergent brines to ikaite supersaturation and precipitation in sea ice down to -8 °C. The loss of dissolved inorganic carbon to the gas phase of sea ice and to sympagic autotrophs are two independent mechanisms which, in nature, could prompt the brine CO2 system towards ikaite supersaturation and precipitation. Under these conditions, the steady state precipitation rate of ikaite was found to be fast enough for rapid formation within short time scales (days to weeks) in sea ice. The observed ikaite dissolution kinetics were also found conducive to short turn-over time scales of a few hours to a few days in corrosive solutions, such as surface seawater.

  11. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  12. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  13. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea.

    KAUST Repository

    Sagar, Sunil

    2013-02-06

    High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes inhabiting bacteria interesting candidates for the search of novel bioactive molecules.

  14. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  15. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  16. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  17. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  18. Real-time monitoring of calcium carbonate precipitation from geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Stamatakis, E.; Muller, J.; Chatzichristos, C.

    2005-01-01

    The objective of the present work has been to study calcite scale formation in geothermal wells. Effective scale management requires on-line monitoring of scaling tendencies as well as detection and identification of scale deposits. In that respect, a gamma-ray attenuation technique was designed and evaluated in the lab for the real-time measurements of scale formation under flow conditions. As a first step we have obtained a preliminary thermodynamic prediction of the stability of a specific geothermal brine (GPK2-S2), regarding CaCO{sub 3} precipitation, under various P-T conditions, using the MultiScale simulation tool. Based on the tool's outcomes the experimental work for the study of calcite scale formation focused on confirming the results. The aim was to find the lowest system pressure at which no scale takes place under specific conditions (temperature, water composition, inhibitor concentration). The precipitation rates for calcite scale in absence and presence of a scale inhibitor were also obtained in the course of this study. (author)

  19. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  20. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); L.A. Peletier (Bert); R.J. Schotting (Ruud)

    1996-01-01

    textabstractIn this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume

  1. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  2. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions.

    Science.gov (United States)

    Carroll, Susan A; McNab, Walt W; Torres, Sharon C

    2011-11-11

    Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface.

  3. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    Directory of Open Access Journals (Sweden)

    Giordano Thomas H

    2002-09-01

    can mobilize up to 3% of the total Pb and up to 1.3% of the total Zn as carboxylate complexes. Furthermore, these percentages, under the most favorable conditions, correspond to approximately 1 to 100 ppm of these metals in solution; concentrations that are adequate to form economic deposits of these metals. However, the field evidence suggests that all of these optimum conditions for carboxylate complexation are rarely met at the same time. A comparison of the composite ore fluid compositions from this study and modern brine data shows that the ore brines, corresponding to log –pH conditions based on the Anderson (1975 and Giordano (1994 model fluids, are similar in many respects to modern, high trace-metal petroleum-field brines. The principal differences between modern high trace-metal brines and the composite ore fluids of Anderson (1975 and Giordano (1994 relate to their carboxylate anion content. The reported concentrations of monocarboxylate anions (∑monocbx and dicarboxylate anions (Edicbx in high trace-metal petroleum-field brines (-1 and -1, respectively are significantly lower than the concentrations assumed in the modelled brines of this study (∑monocbx = 7 700 mg L-1 and ∑dicbx = 300 mg L-1. There are also major differences in the corresponding total chloride to carboxylate ratio (∑mCl/∑mcbx and monocarboxylate to dicarboxylate ratio (∑mmonocbx/∑mdicbx. Modern high trace-metal brines have much higher ∑mCl/∑mcbx values and, therefore, the contribution of carboxylate complexes to the total Pb and Zn content in these modern brines is likely to be significantly less than the 1 to 3 percent for the composite ore fluids of Anderson (1975 and Giordano (1994. The composite ore-brine based on the Giordano and Barnes (1981 MVT ore fluid is comparable to the high salinity (> 170 000 mg L-1 TDS subset of modern brines characterized by low trace-metal content and high total reduced sulfur (∑H2S. A comparison of the Sverjensky (1984 composite ore-brine

  4. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  5. Long-Term CO2 Exposure Experiments - Geochemical Effects on Brine-Saturated Reservoir Sandstone

    Science.gov (United States)

    Fischer, Sebastian; Zemke, Kornelia; Liebscher, Axel; Wandrey, Maren

    2010-05-01

    The injection of CO2 into deep saline aquifers is the most promising strategy for the reduction of CO2 emissions to the atmosphere via long-term geological storage. The study is part of the CO2SINK project conducted at Ketzin, situated 40 km west of Berlin. There, food grade CO2 has been pumped into the Upper Triassic Stuttgart Formation since June 2008. The main objective of the experimental program is to investigate the effects of long-term CO2 exposure on the physico-chemical properties of the reservoir rock. To achieve this goal, core samples from observation well Ktzi 202 have been saturated with synthetic brine and exposed to CO2 in high quality steel autoclaves at simulated reservoir P-T-conditions of 5.5 MPa and 40 ° C. The synthetic brine had a composition representative of the formation fluid (Förster et al., 2006) of 172.8 g/l NaCl, 8.0 g/l MgCl2×2H2O, 4.8 g/l CaCl2×2H2O and 0.6 g/l KCl. After 15 months, the first set of CO2-exposed samples was removed from the pressure vessels. Thin sections, XRD, SEM as well as EMP data were used to determine the mineralogical features of the reservoir rocks before and after the experiments. Additionally, NMR relaxation and MP was performed to measure poroperm and pore size distribution values of the twin samples. The analyzed samples are fine- to medium grained, moderately well- to well sorted and weakly consolidated sandstones. Quartz and plagioclase are the major components, while K-feldspar, hematite, white & dark mica, chlorite and illite are present in minor and varying amounts. Cements are composed of analcime, dolomite and anhydrite. Some samples show mm- to cm-scale cross-beddings. The laminae comprise lighter, quartz- and feldspar-dominated layers and dark-brownish layers with notably less quartz and feldspars. The results are consistent with those of Blaschke et al. (2008). The plagioclase composition indicates preferred dissolution of the Ca-component and a trend toward albite-rich phases or even pure

  6. Brine treatment, smoking and storage techniques: their effects on the ...

    African Journals Online (AJOL)

    Journal of Food Technology in Africa ... Brine treatment, smoking and storage techniques: their effects on the microbial quality of smoked mackerel. ... off odour development, softening of the fish and positively affected personal preference.

  7. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  8. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    Science.gov (United States)

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  9. Unique Prokaryotic Consortia in Geochemically Distinct Sediments from Red Sea Atlantis II and Discovery Deep Brine Pools

    Science.gov (United States)

    Siam, Rania; Mustafa, Ghada A.; Sharaf, Hazem; Moustafa, Ahmed; Ramadan, Adham R.; Antunes, Andre; Bajic, Vladimir B.; Stingl, Uli; Marsis, Nardine G. R.; Coolen, Marco J. L.; Sogin, Mitchell; Ferreira, Ari J. S.; Dorry, Hamza El

    2012-01-01

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction. PMID:22916172

  10. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    Directory of Open Access Journals (Sweden)

    Rania Siam

    Full Text Available The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The 'polyextremophiles' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA revealed that one sulfur (S-rich Atlantis II and one nitrogen (N-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1, group II was characteristic for the N-rich Discovery sample (DD-1, and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  11. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    KAUST Repository

    Siam, Rania

    2012-08-20

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The \\'polyextremophiles\\' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  12. Enhanced oil recovery system

    Science.gov (United States)

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  13. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  14. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  15. Geochemical evolution of brines in the Salar of Uyuni, Bolivia.

    Science.gov (United States)

    Rettig, S.L.; Jones, B.F.; Risacher, F.

    1980-01-01

    Recent analyses of brines from the Salars of Uyuni and Coipasa have been compared with published data for Lakes Titicaca and Poopo to evaluate solute compositional trends in these remnants of two large Pleistocene lakes once connected by overflow from the N to the S of the Bolivian Altiplano. From Titicaca to Poopo the water shows an increase in Cl and N somewhat greater than the total solutes. Ca and SO4 increase to a lesser extent than total dissolved solids, and carbonate species are relatively constant. Between Poopo and Coipasa proportions of Ca, SO4 and CO3 continue to decrease. At Coipasa and Uyuni, the great salars frequently evaporate to halite saturation. Halite crystallization is accompanied by an increased K, Mg and SO4 in residual brines. - from Authors

  16. Effect of different brine concentrations and ripening period on some ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    25240, Erzurum, Turkey. Accepted 25 ... ripened soft cheese that is maturated in brine to develop the desired ... functions, salt exerts a number of important effects on cheese. ..... In: Fox PF (ed) Cheese: chemistry, physics and.

  17. determination of toxicity levels of some savannah plants using brine

    African Journals Online (AJOL)

    DR. AMINU

    DETERMINATION OF TOXICITY LEVELS OF SOME SAVANNAH PLANTS. USING BRINE ... Adoum, O. A.. Department of Pure and Industrial Chemistry, Bayero University, P.M.B. 3011, Kano – Nigeria. ... 1000, 100, and 10 µg/ml, respectively.

  18. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  19. A Pliocene marine diatom δ18O record of terrestrial-marine feedbacks and orbitally-paced cryogenic brine formation in the McMurdo Dry Valleys

    Science.gov (United States)

    Dodd, J. P.; Abbott, T.; Gibbons, J. A.

    2017-12-01

    Orbital frequencies are well documented in a number of terrestrial and marine climate records throughout the Cenozoic; however, assessing the feedbacks and timing of terrestrial-marine systems on glacial-interglacial timescales is often challenging. This is particularly the case in high-latitude, near-shore environments where traditional proxy records like benthic foraminifera are absent. Here we present oxygen isotope (δ18O and δ17O) values from marine diatom silica in the mid-Pliocene (3.5 - 4.7Ma) section of the AND-1B core from McMurdo Sound, Antarctica. Diatom silica δ18O values range between +28.1 and +36.4‰ VSMOW. Over a range of temperatures (0 to 10°C) that reflect both growth and shallow (fall on a mixing line between marine and meteoric waters, which also supports our cryogenic brine hypothesis. The AND-1B δ18O values have an inverse relationship with the stacked benthic foraminifera δ18O record where lower δ18O values in the AND-1B diatom silica correspond with colder intervals, and we interpret variations in the diatom δ18O values as increased brine flux from the MDV to McMurdo Sound. Currently, subsurface brines in the MDV are hydrologically connected with McMurdo Sound. Density-driven transport of these brines from the MDV to the marine costal environments during the warm mid-Pliocene indicate a potentially overlooked terrestrial source of hypersaline waters. Although the lateral extent of these brines is not known, mixing between the terrestrial cryogenic brines and seawater may represent a significant flux of hypersaline water to the marine environment during warmer-than-present global conditions.

  20. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  1. High-pressure applications in medicine and pharmacology

    International Nuclear Information System (INIS)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C

    2004-01-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic

  2. Vapor pressure lowering effects due to salinity and suction pressure in the depletion of vapor-dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A. [Aquater S.p.A., Pisa (Italy); Calore, C. [Istituto Internazionale per le Ricerche Geotermiche-CNR, Pisa (Italy); Pruess, K. [Lawrence Berkeley Lab., Berkeley, CA (United States)

    1995-03-01

    The equation-of-state module able to handle saline brines with non-condensible gas, developed for the TOUGH2 simulator, has been improved to include vapor pressure lowering (VPL) due to suction pressure as represented by Kelvin`s equation. In this equation the effects of salt are considered whereas those of non-condensible gas have currently been neglected. Numerical simulations of fluid production from tight matrix blocks have been performed to evaluate the impact of VPL effects due to salinity and suction pressure on the depletion behaviour of vapor-dominated geothermal reservoirs. Previous studies performed neglected VPL due to suction pressure showed that for initial NaCl mass fractions above threshold values, {open_quotes}sealing{close_quotes} of the block occurs and large amounts of liquid fluid may not be recovered. On the other hand, below the threshold value the matrix block dries out due to fluid production. The inclusion of VPL due to suction pressure does not allow complete vaporization of the liquid phase. As a result, the threshold NaCl concentration above which sealing of the matrix block occurs is increased. Above the {open_quotes}critical{close_quotes} NaCl concentration, block depletion behaviour with and without the VPL due to suction pressure is almost identical, as liquid phase saturation remains high even after long production times. As the VPL due to suction pressure depends mainly on capillary pressure, the shape of capillary pressure functions used in numerical simulations is important in determining VPL effects on block depletion.

  3. Study on scale formation and suppression in heat-exchange systems for simulated geothermal brines. Final report, January 12, 1976-March 5, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.S.; King, J.E.; Bullard, G.R.

    1978-01-01

    Control of scale formation in heat exchangers using simulated geothermal waters can be achieved by lowering the pH of the water to pH 6 or lower. This does not, however, appear to be an economic approach for highly buffered geothermal brines and would lead to severe corrosion problems. Two commercial scale control agents, Calgon CL-165 and Monsanto Dequest 2060, showed promise of effecting scaling in a minor way and should be tested further on actual geothermal waters. Other scale control methods tested were unsuccessful. These included seeding experiments, turbulence promotin and electostatic and electromagnetic devices reputated to modify scale formation. The experiments were performed with tube-in-shell heat exchangers using simulated geothermal waters prepared from a salt dome solution based brine. The scale formed was primarily silica with a small percent of calcium carbonate and traces of magnesium and iron. Physically it was a hydrous soft solid adhering only lightly to the heat exchange surface. This is not typical of geothermal water scales encountered in high temperature brine operations and the results of the scale control expeirments should be evaluated with that in mind.

  4. What Is High Blood Pressure Medicine?

    Science.gov (United States)

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  5. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  6. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-01-01

    In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections

  7. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  8. A novel high-pressure vessel for simultaneous observations of seismic velocity and in situ CO2 distribution in a porous rock using a medical X-ray CT scanner

    Science.gov (United States)

    Jiang, Lanlan; Nishizawa, Osamu; Zhang, Yi; Park, Hyuck; Xue, Ziqiu

    2016-12-01

    Understanding the relationship between seismic wave velocity or attenuation and CO2 saturation is essential for CO2 storage in deep saline formations. In the present study, we describe a novel upright high-pressure vessel that is designed to keep a rock sample under reservoir conditions and simultaneously image the entire sample using a medical X-ray CT scanner. The pressure vessel is composed of low X-ray absorption materials: a carbon-fibre-enhanced polyetheretherketone (PEEK) cylinder and PEEK vessel closures supported by carbon-fibre-reinforced plastic (CFRP) joists. The temperature was controlled by a carbon-coated film heater and an aramid fibre thermal insulator. The assembled sample cell allows us to obtain high-resolution images of rock samples during CO2 drainage and brine imbibition under reservoir conditions. The rock sample was oriented vertical to the rotation axis of the CT scanner, and seismic wave paths were aligned parallel to the rotation axis to avoid shadows from the acoustic transducers. The reconstructed CO2 distribution images allow us to calculate the CO2 saturation in the first Fresnel zone along the ray path between transducers. A robust relationship between the seismic wave velocity or attenuation and the CO2 saturation in porous rock was obtained from experiments using this pressure vessel.

  9. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    Solar stills put into operation by taking known quantities of sea water of different salinities varying from 27.75-36.27 x 10 super(3) during April-May 1990, indicated fresh water yield of 55-68% (av. 64). The volumes of brine as well as those...

  10. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  11. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  12. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  13. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  14. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-01-01

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described

  15. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    Noda, Fumio; Hayashi, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  16. Carbonate and carbon isotopic evolution of groundwater contaminated by produced water brine with hydrocarbons

    International Nuclear Information System (INIS)

    Atekwana, Eliot A.; Seeger, Eric J.

    2015-01-01

    The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ"1"3C_D_I_C) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO_3"−-rich, SO_4"2"−-rich and Cl"−-rich. The HCO_3"−-rich groundwater is undergoing closed system carbonate evolution from soil CO_2_(_g_) and weathering of aquifer carbonates. The SO_4"2"−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl"−-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ"1"3C_D_I_C of the HCO_3"−-rich groundwater was controlled by nearly equal contribution of carbon from soil CO_2_(_g_) and the aquifer carbonates, such that the δ"1"3C of carbon added to the groundwater was −11.6‰. In the SO_4"2"−-rich groundwater, gypsum induced dedolomitization increased the "1"3C such that the δ"1"3C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl"−-rich groundwater, common ion induced precipitation of calcite depleted the "1"3C such that the δ"1"3C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution. - Highlights: • We studied carbonate and δ"1"3C evolution in groundwater contaminated by produced water brine. • Multiple processes affect the carbonate and δ"1"3C evolution of the groundwater. • The processes are carbonate weathering, dedolomitization and common ion induce calcite precipitation. • The δ"1"3C added to DIC was −11.6‰ for weathering, −9.4‰ for dedolomitization

  17. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  18. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  19. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  20. Reverse osmosis brine for phosphorus recovery from source separated urine.

    Science.gov (United States)

    Tian, Xiujun; Wang, Guotian; Guan, Detian; Li, Jiuyi; Wang, Aimin; Li, Jin; Yu, Zhe; Chen, Yong; Zhang, Zhongguo

    2016-12-01

    Phosphorus (P) recovery from waste streams has recently been recognized as a key step in the sustainable supply of this indispensable and non-renewable resource. The feasibility of using brine from a reverse osmosis (RO) membrane unit treating cooling water as a precipitant for P recovery from source separated urine was evaluated in the present study. P removal efficiency, process parameters and precipitate properties were investigated in batch and continuous flow experiments. More than 90% of P removal was obtained from both undiluted fresh and hydrolyzed urines by mixing with RO brine (1:1, v/v) at a pH over 9.0. Around 2.58 and 1.24 Kg of precipitates could be recovered from 1 m 3 hydrolyzed and fresh urine, respectively, and the precipitated solids contain 8.1-19.0% of P, 10.3-15.2% of Ca, 3.7-5.0% of Mg and 0.1-3.5% of ammonium nitrogen. Satisfactory P removal performance was also achieved in a continuous flow precipitation reactor with a hydraulic retention time of 3-6 h. RO brine could be considered as urinal and toilet flush water despite of a marginally higher precipitation tendency than tap water. This study provides a widely available, low - cost and efficient precipitant for P recovery in urban areas, which will make P recovery from urine more economically attractive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Observations of brine drainage networks and microstructure of first-year sea ice

    Science.gov (United States)

    Cole, D. M.; Shapiro, L. H.

    1998-09-01

    Brine drainage networks and the microstructure of first-year sea ice have been examined at two locations near Barrow, northern Alaska. A method for obtaining full-depth sections of ice sheets up to 1.8 m thick is presented and shown to provide information on the spatial distribution and geometry of brine drainage networks on a scale of meters. A number of such sections from the two test sites are presented which reveal a greater variety of main channel and side branch configurations than is typically observed in ice grown in the laboratory. Vertical and horizontal micrographs and thin section photographs were obtained in November 1993, and March and May 1994 at a test site in the relatively protected Elson Lagoon. The resulting time series of photographic records provide detailed information on the size, shape, and spatial distribution of the brine- and gas-filled inclusions and a means to quantify their size and shape changes with time. An example of the changes with time in inclusion sizes and aspect ratios in the vertical and horizontal directions for a depth of 0.2 m, with a given thermal history is also presented.

  2. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles

    International Nuclear Information System (INIS)

    Xiong Zhong; Zhao Dongye; Pan Gang

    2009-01-01

    Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs ) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH 4 + and N 2 , can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu-Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.

  3. The role of climate in the accumulation of lithium-rich brine in the Central Andes

    International Nuclear Information System (INIS)

    Godfrey, L.V.; Chan, L.-H.; Alonso, R.N.; Lowenstein, T.K.; McDonough, W.F.; Houston, J.; Li, J.; Bobst, A.; Jordan, T.E.

    2013-01-01

    Highlights: • δ 7 Li of waters and rocks in the Central Andes were measured. • Halite/brine partition coefficients of lithium and δ 7 Li of halite were determined. • Li-rich brines have a high component of fluids of geothermal origin. • Removal of lithium by clays is minor relative to other regions of the world. • The weathering flux of lithium and sodium decouple according to climate state. - Abstract: Lithium-rich brine within the sub-surface of the Salar del Hombre Muerto (SHM) salt pan in the Andes of northwestern Argentina has a chemical and isotopic composition which is consistent with Li derived from several sources: the modern halite saturated lagoon, Li-rich salts and brines formed recently, and dissolution of halite which precipitated from ancient saline lakes. SHM lies in the closed basin that includes part of the massive Cerro Galán caldera which is drained by the Río los Patos, which is responsible for 90% of surface runoff into the salar. The low Li isotope composition, +3.4‰, of this river is consistent with significant contributions of geothermal spring water. As water drains through the volcaniclastic deposits which cover a large proportion of the basin, Li removal, as indicated by decreasing Li/Na, occurs but without significant isotope fractionation. This indicates a mechanism of surface sorption onto smectite or ferrihydrite rather than Li incorporation into octahedral structural sites of clays. These observations suggest that conditions in this high altitude desert have limited the dilution of hydrothermal spring water as well as the formation of clay minerals, which jointly have allowed the Li resource to accumulate rapidly. Changes in climate on a multi-millennial time scale, specifically in the hydrologic budget, have resulted in solute accumulation rates that have been variable through time, and decoupled Li and Na fluxes. Inflow to the salar under modern conditions has high Li/Na (7.9 × 10 −3 by wt) with δ 7 Li

  4. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    from 3.65 - 4.63 ppm. The definite volumes of seawater samples (3.7 litres) taken in stills for desalination correspond to 13.08 - 31.16 mg of net boron content. Analyses on the recovery of the total content of boron in brines as well as in the bitterns...

  5. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  6. Salting by Vacuum Brine Impregnation in Nitrite-Free Lonza: Effect on Enterobacteriaceae.

    Science.gov (United States)

    Serio, Annalisa; Chaves-López, Clemencia; Rossi, Chiara; Pittia, Paola; Rosa, Marco Dalla; Paparella, Antonello

    2017-01-24

    Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI) as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or strain-dependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  7. Salting by vacuum brine impregnation in nitrite-free lonza: effect on Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Annalisa Serio

    2017-01-01

    Full Text Available Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or straindependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  8. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  9. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  10. Building a Geochemical View of Microbial Salt Tolerance: Halophilic Adaptation of Marinococcus in a Natural Magnesium Sulfate Brine

    Directory of Open Access Journals (Sweden)

    Mark G. Fox-Powell

    2018-04-01

    Full Text Available Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride-dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada. This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg2+ and SO42- ions (2.369 and 2.840 M, respectively, and grew at extremes of ionic strength not normally encountered in Na+/Cl- brines (12.141 mol liter-1. Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na2SO4, MgCl2, and MgSO4, yet despite this plasticity the strain was still restricted; requiring either Na+ or Cl- to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance.

  11. Building a Geochemical View of Microbial Salt Tolerance: Halophilic Adaptation of Marinococcus in a Natural Magnesium Sulfate Brine.

    Science.gov (United States)

    Fox-Powell, Mark G; Cockell, Charles S

    2018-01-01

    Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride-dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada). This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg 2+ and SO 4 2- ions (2.369 and 2.840 M, respectively), and grew at extremes of ionic strength not normally encountered in Na + /Cl - brines (12.141 mol liter -1 ). Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na 2 SO 4 , MgCl 2 , and MgSO 4 , yet despite this plasticity the strain was still restricted; requiring either Na + or Cl - to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance.

  12. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  13. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  14. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  15. Brine contamination to aquatic resources from oil and gas development in the Williston Basin, United States

    Science.gov (United States)

    Gleason, Robert A.; Contributions by Chesley-Preston, Tara L.; Coleman, James L.; Haines, Seth S.; Jenni, Karen E.; Nieman, Timothy L.; Peterman, Zell E.; van der Burg, Max Post; Preston, Todd M.; Smith, Bruce D.; Tangen, Brian A.; Thamke, Joanna N.; Gleason, Robert A.; Tangen, Brian A.

    2014-01-01

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States and the provinces of Manitoba and Saskatchewan in Canada, has been a leading domestic oil and gas producing region for more than one-half a century. Currently, there are renewed efforts to develop oil and gas resources from deep geologic formations, spurred by advances in recovery technologies and economic incentives associated with the price of oil. Domestic oil and gas production has many economic benefits and provides a means for the United States to fulfill a part of domestic energy demands; however, environmental hazards can be associated with this type of energy production in the Williston Basin, particularly to aquatic resources (surface water and shallow groundwater) by extremely saline water, or brine, which is produced with oil and gas. The primary source of concern is the migration of brine from buried reserve pits that were used to store produced water during recovery operations; however, there also are considerable risks of brine release from pipeline failures, poor infrastructure construction, and flow-back water from hydraulic fracturing associated with modern oilfield operations. During 2008, a multidisciplinary (biology, geology, water) team of U.S. Geological Survey researchers was assembled to investigate potential energy production effects in the Williston Basin. Researchers from the U.S. Geological Survey participated in field tours and met with representatives from county, State, tribal, and Federal agencies to identify information needs and focus research objectives. Common questions from agency personnel, especially those from the U.S. Fish and Wildlife Service, were “are the brine plumes (plumes of brine-contaminated groundwater) from abandoned oil wells affecting wetlands on Waterfowl Production Areas and National Wildlife Refuges?” and “are newer wells related to Bakken and Three Forks development different than the older

  16. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    Science.gov (United States)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  17. Fate of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes during storage of fermented green table olives in brine.

    Science.gov (United States)

    Argyri, Anthoula A; Lyra, Efstathia; Panagou, Efstathios Z; Tassou, Chrysoula C

    2013-10-01

    The survival of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes during the storage of fermented green table olives cv. Halkidiki in brine was studied in parallel with the evolution of lactic acid bacteria (LAB), yeasts and pH. The olives were previously fermented with a starter culture (a potential probiotic strain of Lactobacillus pentosus B281--starter process) or with the indigenous microbiota (control). After the end of fermentation, olives were placed in brine, inoculated with a cocktail of 5 strains of E. coli O157:H7, 5 strains of L. monocytogenes and 4 strains of S. Enteritidis, with a final concentration in the brine of ca. 7.0 log CFU/ml, and subsequently packaged in polyethylene pouches and stored at 20 °C. The population of E. coli O157:H7 reduced gradually and was detected in the brine until the 27th day of storage in both cases (i.e., starter and control process), and on olive fruits until the 19th and 16th days of storage in the starter and control process, respectively. S. Enteritidis population showed also a decrease and it was detected until the 21st day of storage in both brine and olive fruits in both cases. The population of L. monocytogenes declined during storage and it was detected until the 31st day of storage in both brine and olive fruits in both cases, showing a longer survival period in comparison to the other two studied pathogens. The presence of the potential probiotic starter did not affect the pathogen survival. The results demonstrated that even though the growth of the pathogenic strains was not supported, they may survive for a long period in a stressful environment of a fermented product with low pH value (4.2) and high salt concentration (6.0%). These results are a valuable contribution to risk assessment studies related to ready to eat foods in general. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  19. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  20. Handling the problem of the brine tubing bend on the basis of experiences gained during UGS - Mogilno construction

    International Nuclear Information System (INIS)

    Zola, P.; Skwarczynski, S.

    2005-01-01

    In the article problems of brine tubing bending and bent string cutting methods in the well conditions has been described. Implementation of safety joint in the brine string as an alternative solution that eliminates the need of cutting has been presented as well. (authors)

  1. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  2. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of radiolytic products on corrosion in brines

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-07-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacturing of long-lived high-level waste containers that could act as a radionuclide barrier in a rock-salt repository. In the present work, the influence of some important oxidizing radiolytic products generated in gamma irradiated brines on the electrochemical corrosion behaviour of the preselected fine-grained steel TStE 355 was studied. The steel was examined by potentiodynamic and potentiostatic polarization methods at 90 C in a disposal relevant NaCl-rich brine containing radiolytic products such as H 2 O 2 , ClO - , ClO 3 - and ClO 4 - at concentrations between 10 -4 and 10 -2 M/l. The significance of the radiolytic products to steel corrosion depends on their concentration at the metal-brine interface, which in turn, depends on many factors such as the dose rate, the amount of water present in the disposal area, the escape of gases (e.g. H 2 )

  3. Pressure Retarded Osmosis (PRO): Past experiences, current developments, and future prospects

    KAUST Repository

    Sarp, S.; Li, Z.; Saththasivam, J.

    2016-01-01

    Pressure Retarded Osmosis (PRO) has attracted worldwide attention with respect to its salinity gradient energy production potential, and low energy desalination applications. PRO processes, which use Seawater Reverse Osmosis (SWRO) brine as draw solutions, have a higher potential of being applied to any new, and existing membrane based seawater desalination systems, as an energy production and/or conservation process. Hydraulic pressure is applied on a high salinity draw solution, and the hydraulic pressure of the high salinity draw solution can be kept relatively constant during operation, even though the volumetric flow rate is to be increased. Therefore, the draw side of the PRO process can be considered near-isobaric, in most cases. The harvested Gibbs free energy of mixing, and the volumetric expansion can explain this near-isobaric behavior of the draw side in the PRO process. Thus, PRO can be used to multiply the internal energy of the draw solution with respect to the ratio of the permeated water flux. Even though PRO has very high theoretical potential for energy production and/or recovery, there are several shortcomings, which should be answered before the realization of the scale up applications, such as; thermodynamic process optimization, high power density membranes, and high efficiency hydraulic pressure conversion and recovery systems. This review gives detailed information about the PRO process including; (1) theoretical background, (2) membranes for PRO, (3) experimental and large scale applications, and (4) economic feasibility of PRO applications.

  4. Pressure Retarded Osmosis (PRO): Past experiences, current developments, and future prospects

    KAUST Repository

    Sarp, S.

    2016-01-16

    Pressure Retarded Osmosis (PRO) has attracted worldwide attention with respect to its salinity gradient energy production potential, and low energy desalination applications. PRO processes, which use Seawater Reverse Osmosis (SWRO) brine as draw solutions, have a higher potential of being applied to any new, and existing membrane based seawater desalination systems, as an energy production and/or conservation process. Hydraulic pressure is applied on a high salinity draw solution, and the hydraulic pressure of the high salinity draw solution can be kept relatively constant during operation, even though the volumetric flow rate is to be increased. Therefore, the draw side of the PRO process can be considered near-isobaric, in most cases. The harvested Gibbs free energy of mixing, and the volumetric expansion can explain this near-isobaric behavior of the draw side in the PRO process. Thus, PRO can be used to multiply the internal energy of the draw solution with respect to the ratio of the permeated water flux. Even though PRO has very high theoretical potential for energy production and/or recovery, there are several shortcomings, which should be answered before the realization of the scale up applications, such as; thermodynamic process optimization, high power density membranes, and high efficiency hydraulic pressure conversion and recovery systems. This review gives detailed information about the PRO process including; (1) theoretical background, (2) membranes for PRO, (3) experimental and large scale applications, and (4) economic feasibility of PRO applications.

  5. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  6. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  7. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  8. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea

    KAUST Repository

    Wang, Yong; Zhang, Wei Peng; Cao, Hui Luo; Shek, Chun Shum; Tian, Ren Mao; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan

    2014-01-01

    abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system. 2014 Wang

  9. Characterization of Phytochemicals and Antioxidant Activities of Red Radish Brines during Lactic Acid Fermentation

    Directory of Open Access Journals (Sweden)

    Pu Jing

    2014-07-01

    Full Text Available Red radish (Raphanus L. pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5–19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15–30 µg/mL. 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2–92.2 µg/mL, whereas the total phenolic content was 206–220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants.

  10. Inactivation of Shiga toxin-producing O157:H7 and non-O157:H7 Shiga toxin-producing Escherichia coli in brine-injected, gas-grilled steaks.

    Science.gov (United States)

    Luchansky, John B; Porto-Fett, Anna C S; Shoyer, Bradley A; Call, Jeffrey E; Schlosser, Wayne; Shaw, William; Bauer, Nathan; Latimer, Heejeong

    2011-07-01

    We quantified translocation of Escherichia coli O157:H7 (ECOH) and non-O157:H7 verocytotoxigenic E. coli (STEC) into beef subprimals after brine injection and subsequently monitored their viability after cooking steaks cut therefrom. Beef subprimals were inoculated on the lean side with ca. 6.0 log CFU/g of a five-strain cocktail of rifampin-resistant ECOH or kanamycin-resistant STEC, and then passed once through an automatic brine-injector tenderizer, with the lean side facing upward. Brine solutions (9.9% ± 0.3% over fresh weight) consisted of 3.3% (wt/vol) of sodium tripolyphosphate and 3.3% (wt/vol) of sodium chloride, prepared both with (Lac(+), pH = 6.76) and without (Lac(-), pH = 8.02) a 25% (vol/vol) solution of a 60% potassium lactate-sodium diacetate syrup. For all samples injected with Lac(-) or Lac(+) brine, levels of ECOH or STEC recovered from the topmost 1 cm (i.e., segment 1) of a core sample obtained from tenderized subprimals ranged from ca. 4.7 to 6.3 log CFU/g; however, it was possible to recover ECOH or STEC from all six segments of all cores tested. Next, brine-injected steaks from tenderized subprimals were cooked on a commercial open-flame gas grill to internal endpoint temperatures of either 37.8 °C (100 °F), 48.8 °C (120 °F), 60 °C (140 °F), or 71.1 °C (160 °F). Regardless of brine formulation or temperature, cooking achieved reductions (expressed as log CFU per gram) of 0.3 to 4.1 of ECOH and 0.5 to 3.6 of STEC. However, fortuitous survivors were recovered even at 71.1 °C (160 °F) for ECOH and for STEC. Thus, ECOH and STEC behaved similarly, relative to translocation and thermal destruction: Tenderization via brine injection transferred both pathogens throughout subprimals and cooking highly contaminated, brine-injected steaks on a commercial gas grill at 71.1 °C (160 °F) did not kill all cells due, primarily, to nonuniform heating (i.e., cold spots) within the meat. Copyright ©, International Association for Food Protection

  11. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    KAUST Repository

    Abdallah, Rehab Z.

    2014-09-23

    Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, Essack M, Lafi FF, Bajic VB, El-Dorry H and Siam R (2014) Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front. Microbiol. 5:487. doi: 10.3389/fmicb.2014.00487

  12. Effect of brine flow rate on the performance of a spiral-jacketed thermal storage tank used for SDHW systems: A computational fluid dynamics study

    International Nuclear Information System (INIS)

    Baek, Seung Man; Nam, Jin Hyun; Hong, Hiki; Kim, Charn-Jung

    2011-01-01

    This study numerically investigates the effect of the brine flow rate on the thermal performance of a spiral-jacketed thermal storage tank (TST) installed in a solar domestic hot water (SDHW) system. The spiral-jacketed TST is a TST with a mantle heat exchanger, consisting of a vertical, cylindrical water tank for energy storage and a spiral brine flow path attached to the tank wall for heat transfer. A computational fluid dynamics (CFD) model was constructed based on the actual geometry of a spiral-jacketed TST. In addition, the boundary conditions were defined by considering solar radiation and ambient temperature data that were measured during experimental operation of the SDHW system. The numerical results demonstrated that an increase in the brine flow rate enhances the thermal efficiency of the TST due to higher heat transfer coefficients in the spiral path, and also leads to reduced thermal stratification in the TST. On the other hand, a lower brine flow rate increased the heat transfer rate at the inlet of the spiral path near the top of the TST, which resulted in enhanced thermal stratification. The optimal range for the rate of brine flow rate is discussed with respect to the thermal efficiency of the TST and the required pumping power for brine circulation in the spiral flow path. - Highlights: → A CFD model was developed for a spiral-jacketed thermal storage tank (TST) installed in a solar domestic hot water (SDHW) system. → Effects of brine flow rate on the overall performance of the spiral-jacketed TST were numerically investigated. → Higher brine flow rates slightly increased the solar energy acquired by the TST, but it also increased the pump power required to circulate the brine. → Lower brine flow rates were found to be a better option for the spiral-jacketed TST, by maximizing the exergy of the SDHW system.

  13. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  14. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  15. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  16. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  17. Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York

    Science.gov (United States)

    Hayhurst, Brett; Kappel, William M.

    2014-01-01

    The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).

  18. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  19. Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea

    KAUST Repository

    Swift, Stephen A.

    2012-06-01

    In October 2008, we measured temperature and salinity in hot, hypersaline brine filling the Atlantis II and Discovery Deeps on the Red Sea spreading center west of Jeddah, Saudi Arabia. In agreement with previous observations in the Atlantis II Deep, we found a stack of four convective layers with vertically uniform temperature profiles separated by thin interfaces with high vertical temperature gradients. Temperature in the thick lower convective layer in the Atlantis II Deep continued to slowly increase at 0.1 °C/year since the last observations in 1997. Previously published data show that the temperature of all four convective layers increased since the 1960s at the same rate, from which we infer that diffusive vertical heat flux between convective layers is rapid on time scales of 3-5 years and, thus, heat is lost from the brine pools to overlying Red Sea Deep Water. Heat budgets suggest that the heat flux from hydrothermal venting has decreased from 0.54. GW to 0.18. GW since 1966. A tow-yo survey found that temperature in the upper convective layers changes about 0.2 °C over 5-6. km but the temperature in the lower brine layer remains constant. Temperature in the lower convective layer in the Discovery Deep remains unchanged at 48 °C. To explain these results, we hypothesize that heat flux from a hydrothermal vent in the floor of the Discovery Deep has been stable for 40 years, whereas temperature of the brine in the Atlantis II Deep is adjusting to the change in hydrothermal heat flux from the vent in the Southwest Basin. We found no changes in the upper transition layer at 1900-1990. m depth that appeared between 1976 and 1992 and suggest that this layer originated from the seafloor elsewhere in the rift. © 2012 Elsevier Ltd.

  20. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0 degrees C and 25 degrees C

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Vancanneyt, M.; Vilalta, N.E.

    2003-01-01

    MAP shrimps were characterized by phenotypic tests and identified as lactic acid bacteria (78 isolates), other Gram-positive bacteria (13 isolates) and Gram-negative bacteria (11 isolates). A selection of 48 LAB isolates were further characterized and identified by phenotypic tests and SDS-PAGE...... the dominant parts of spoilage associations of cooked and brined MAP shrimps stored at high and low temperatures, respectively. Significance and Impact of the Study: The SDS-PAGE technique and simple biochemical keys allowed the majority of LAB isolates from spoilage associations of cooked and brined MAP...

  1. Review of the impacts of leaking CO 2 gas and brine on groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P.; Lawter, Amanda R.; Bacon, Diana H.; Zheng, Liange; Kyle, Jennifer; Brown, Christopher F.

    2017-06-01

    This review paper provides a synthetic view of the existing knowledge and summarizes data and findings of the recent literature on the subject of the potential leaking of CO2 from the deep subsurface storage reservoirs and the effects on aquifer quality. New ideas and concepts are developed and insights are also provided. The objectives of this paper are to: 1) present and discuss potential risks for groundwater degradation due to CO2 gas and brine exposure; 2) identify the set of geochemical data required to assess and predict aquifer responses to CO2 and brine leakage. Specifically, this paper will discuss the following issues: 1) Aquifer responses (such as changes in aqueous phase/groundwater chemical composition; changes in solid phase chemistry and mineralogy; changes in the extent and rate of reactions and processes and possible establishment of a new network of reactions and processes affecting or controlling overall mobility of major, minor, and trace elements; development of conceptual and reduced order models (ROMs) to describe and predict aquifer responses); 2) The degree of impact such as significant or insignificant changes in pH and major, minor, and trace element release that depend on the following controlling variables; the effect of leaking plume characteristics (gas composition, pure CO2 and/or CO2 -CH4 -H2S mixtures and brine concentration and composition (trace metals); aquifer properties [such as initial aqueous phase conditions and mineralogy: minerals controlling sediments’ response (e.g., calcite, Si bearing minerals, etc.)]; overview of relevant hydrogeological and geochemical processes related to the impact of CO2 gas and brine on groundwater quality; the fate of the elements released from sediments or transported with brine (such as precipitation/incorporation into minerals (calcite and other minerals), adsorption, electron transfer reactions, the role of natural attenuation; whether or not the release of metals following exposure to

  2. Comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields

    International Nuclear Information System (INIS)

    Negrel, Philippe; Casanova, Joel

    2005-01-01

    A synthesis of Sr isotope data from shallow and deep groundwaters, and brines from the Fennoscandian and Canadian Shields is presented. A salinity gradient is evident in the water with concentrations varying from approximately 1-75 g L -1 below 1500 m depth in the Fennoscandian Shield and from 10 up to 300 g L -1 below 650 m depth in the Canadian Shield. Strontium isotope ratios were measured to assess the origin of the salinity and evaluate the degree of water-rock interaction in the systems. In both shields, the Sr concentrations are enriched relative to Cl, defining a positive trend parallel to the seawater dilution line and indicative of Sr addition through weathering processes. The depth distribution for Sr concentration increases strongly with increasing depth in both shields although the variation in Sr-isotope composition does not mirror that of Sr concentrations. Strontium-isotope compositions are presented for surface waters, and groundwaters in several sites in the Fennoscandian and Canadian Shields. Numerous mixing lines can be drawn reflecting water-rock interaction. A series of calculated lines links the surface end-members (surface water and shallow groundwater) and the deep brines; these mixing lines define a range of 87 Sr/ 86 Sr ratios for the deep brines in different selected sites. All sites show a specific 87 Sr/ 86 Sr signature and the occurrence of large 87 Sr/ 86 Sr variations is site specific in both shields. In Canadian Shield brines, the Sr isotope ratios clearly highlight large water rock interaction that increases the 87 Sr/ 86 Sr ratio from water that could have been of marine origin. In contrast to the Canadian Shield, groundwater does not occur in closed pockets in the Fennoscandian, and the well-constrained 87 Sr/ 86 Sr signatures in deep brines should correspond to a large, well-mixed and homogeneous water reservoir, whose Sr isotope signature results from water-rock interaction

  3. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  4. Determination of nickel in chloralkali electrolysis brines by X-ray fluorescence spectrometry on a membrane filter

    International Nuclear Information System (INIS)

    Andrade, L.L.; Minzl, E.

    1984-01-01

    X-ray fluorescence spectrometry after ammonium pyrrolidinedithiocarbamate (APDC) preconcentration is proposed for the determination of nickel in chloralkali electrolysis brines. The optimum conditions for the precipitation target tube, peak intensity, background, analysing crystal, counters and exposure time were investigated. The method was applied to chloralkali brines of evaporite salts (halite, sylvinite, carnallite and tachhydrite), sodium, potassium and magnesium salts, explored in Sergipe (Brazil), by Petrobras-Mineracao S.A.(Author) [pt

  5. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    Energy Technology Data Exchange (ETDEWEB)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  6. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  7. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  8. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  9. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  10. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    Science.gov (United States)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  11. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  12. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  13. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  14. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  15. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  16. Trends in high pressure developments for new perspectives

    Science.gov (United States)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  17. Rheological behavior of pork Biceps femoris muscle influenced by injection-tumbling process and brine type

    Directory of Open Access Journals (Sweden)

    Livia PĂTRAŞCU

    2014-12-01

    Full Text Available The effect of tumbling time (1-9 h, injection rate (20, 30, 40, and 50 % and k-carrageenan addition (0, 0.25, and 0.5 % on the rheological characteristics of pork Biceps femoris muscle were assessed. The results of the creep-recovery tests were analyzed using Burger’s equation. Increasing tumbling time up to 9 h along with injection rate also increased compliance values and decreased viscosity. K-carrageenan addition showed the occurrence of a more gel-like structure of the brine-meat system, causing further increase of the compliance and strain values. Samples injected with brine were more elastic compared to those containing k-carrageenan. A longer mechanical treatment provided a softer like matrix. Mathematical modeling of creep-compliance data showed a decreasing tendency for viscosity values with k-carrageenan addition. Discrete retarded elastic compliance values increased when adding k-carrageenan to meat-brine system. Addition of k-carrageenan did not affect the equilibrium compliance values.

  18. Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992

    International Nuclear Information System (INIS)

    Helton, J.C.; Bean, J.E.; Butcher, B.M.; Garner, J.W.; Vaughn, P.; Schreiber, J.D.; Swift, P.N.

    1993-08-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability

  19. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  20. Estimated radiation doses resulting if an exploratory borehole penetrates a pressurized brine reservoir assumed to exist below the WIPP repository horizon: a single hole scenario

    International Nuclear Information System (INIS)

    Bard, S.T.

    1982-03-01

    A radiation dose consequence analysis has been performed for a postulated scenario in which an exploratory gas or oil well-bore penetrates the repository and intercepts a brine reservoir in the Castile formation. The brine, corings and drilling mud are contained in a one acre holding pond on the surface. Upon the completion of drilling activities the dried holding pond area is reclaimed with a bulldozer to its original topographic conformation. The estimated radiation bone dose commitments to (1) a bulldozer operator, and (2) a member of a farm family 500 meters down wind are summarized for three penetration event times. The highest estimated 50 year bone dose commitment to an individual reclaiming the contaminated holding pond area was determined to be 590 mrem from the inhalation of CH-TRU wastes resuspended into the atmosphere at an event time of 100 years post-closure. A second dose model using a specific activity approach is developed in Appendix C for this same individual where an upper 50 year dose commitment of 450 mrem is calculated. Both of these derived estimates may be compared to the 5800 mrem to bone surfaces which may be expected from natural background radiation to an individual in the United States over a fifty year period