WorldWideScience

Sample records for high pressure balloon

  1. Ureteropelvic junction obstruction and ureteral strictures treated by simple high-pressure balloon dilation

    DEFF Research Database (Denmark)

    Osther, P J; Geertsen, U; Nielsen, H V

    1998-01-01

    The long-term results of simple high-pressure balloon dilation in the treatment of ureteropelvic junction obstruction (UPJO) and ureteral strictures were evaluated. A total of 77 consecutive patients were treated: 40 had UPJO and 37 ureteral strictures. The etiology of the obstruction included...... years, success was achieved in only 25% of cases. There were no major complications. It was concluded that simple high-pressure balloon dilation is a safe and reasonably effective technique for the management of most ureteral strictures and congenital UPJO with symptom debut in adult life. Balloon...

  2. Cutting balloon and high-pressure balloon dilation for palliative treatment of congenital double-chambered right ventricle and primary infundibular stenosis in a Golden retriever dog.

    Science.gov (United States)

    Schober, Karsten E; Rhinehart, Jaylyn; Kohnken, Rebecca; Bonagura, John D

    2017-12-01

    Combined cutting balloon and high-pressure balloon dilation was performed in a dog with a double-chambered right ventricle and severe infundibular stenosis of the right ventricular outflow tract. The peak systolic pressure gradient across the stenosis decreased by 65% after dilation (from 187 mmHg before to 66 mmHg after) affirming the intervention as successful. However, early re-stenosis occurred within 3 months leading to exercise intolerance, exercise-induced syncope, and right-sided congestive heart failure. Cutting balloon followed by high-pressure balloon dilation provided temporary but not long-term relief of right ventricular obstruction in this dog. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  4. How to perform combined cutting balloon and high pressure balloon valvuloplasty for dogs with subaortic stenosis.

    Science.gov (United States)

    Kleman, Mandi E; Estrada, Amara H; Maisenbacher, Herbert W; Prošek, Robert; Pogue, Brandon; Shih, Andre; Paolillo, Joseph A

    2012-01-01

    Subvalvular aortic stenosis (SAS) is one of the most common congenital cardiac malformations in dogs. Unfortunately, the long term success rate and survival data following either open heart surgery or catheter based intervention has been disappointing in dogs with severe subaortic stenosis. Medical therapy is currently the only standard recommended treatment option. A cutting balloon dilation catheter has been used successfully for resistant coronary artery and peripheral pulmonary arterial stenoses in humans. This catheter is unique in that it has the ability to cut, or score, the stenotic region prior to balloon dilatation of the stenosis. The use of cutting balloon valvuloplasty combined with high pressure valvuloplasty for dogs with severe subaortic stenosis has recently been reported to be a safe and feasible alternative therapeutic option. The following report describes this technique, outlines the materials required, and provides some 'tips' for successful percutaneous subaortic balloon valvuloplasty. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  6. Development of a Super-Pressure Balloon with an Improved Design

    Science.gov (United States)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  7. High-pressure balloon dilation in a dog with supravalvular aortic stenosis.

    Science.gov (United States)

    Pinkos, A; Stauthammer, C; Rittenberg, R; Barncord, K

    2017-02-01

    A 6-month-old female intact Goldendoodle was presented for diagnostic work up of a grade IV/VI left basilar systolic heart murmur. An echocardiogram was performed and revealed a ridge of tissue distal to the aortic valve leaflets at the sinotubular junction causing an instantaneous pressure gradient of 62 mmHg across the supravalvular aortic stenosis and moderate concentric hypertrophy of the left ventricle. Intervention with a high-pressure balloon dilation catheter was pursued and significantly decreased the pressure gradient to 34 mmHg. No complications were encountered. The patient returned in 5 months for re-evaluation and static long-term reduction in the pressure gradient was noted. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  9. Blood pressure normalization post-jugular venous balloon angioplasty.

    Science.gov (United States)

    Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael

    2015-05-01

    This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the

  10. Intrarectal pressures and balloon expulsion related to evacuation proctography.

    Science.gov (United States)

    Halligan, S; Thomas, J; Bartram, C

    1995-01-01

    Seventy four patients with constipation were examined by standard evacuation proctography and then attempted to expel a small, non-deformable rectal balloon, connected to a pressure transducer to measure intrarectal pressure. Simultaneous imaging related the intrarectal position of the balloon to rectal deformity. Inability to expel the balloon was associated proctographically with prolonged evacuation, incomplete evacuation, reduced anal canal diameter, and acute anorectal angulation during evacuation. The presence and size of rectocoele or intussusception was unrelated to voiding of paste or balloon. An independent linear combination of pelvic floor descent and evacuation time on proctography correctly predicted maximum intrarectal pressure in 74% of cases. No patient with both prolonged evacuation and reduced pelvic floor descent on proctography could void the balloon, as maximum intrarectal pressure was reduced in this group. A prolonged evacuation time on proctography, in combination with reduced pelvic floor descent, suggests defecatory disorder may be caused by inability to raise intrarectal pressure. A diagnosis of anismus should not be made on proctography solely on the basis of incomplete/prolonged evacuation, as this may simply reflect inadequate straining. PMID:7672656

  11. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  12. MHD simulation of high wavenumber ballooning-like modes in LHD

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2008-10-01

    Dynamical growths of high-wavenumber ballooning modes are studied through full-3D nonlinear MHD simulations of the Large Helical Device. The growths of the ballooning modes are identified by studying the growth rates and the radial profiles of the Fourier coefficients of fluctuation variables. The mechanisms to weaken the growth of instability, such as the local fattening of the pressure and the energy release to the parallel kinetic energy, are found being insufficient to suppress the high-wavenumber ballooning modes. Consequently, the mean pressure profile is totally modified when the evolutions of the ballooning modes are saturated. The numerical results reveal that we need some mechanisms which do not originate from an ideal MHD to achieve a mild, saturated behaviors beyond the growths of unstable high ballooning modes in the helical device. The parallel heat conductivity is proposed as one of possible non-ideal mechanisms. (author)

  13. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  14. Measurement of hepatic venous pressure gradient revisited: Catheter wedge vs balloon wedge techniques

    Directory of Open Access Journals (Sweden)

    S Timothy Chelliah

    2011-01-01

    Full Text Available Aims: To evaluate the accuracy of measurement of hepatic venous pressure gradient by catheter wedge as compared to balloon wedge (the gold standard. Materials and Methods: Forty-five patients having a clinical diagnosis of intrahepatic portal hypertension were subjected to the two different types of pressure measurements (catheter wedge and balloon wedge during transjugular liver biopsy under fluoroscopic guidance. Statistical Analysis: Spearman′s rank correlation coefficient, Bland-Altman plot for agreement, and single measure intraclass correlation were used for analysis of data. Results: There was a close correlation between the results obtained by both the techniques, with highly significant concordance (P < 0.0001. Hepatic venous pressure gradients as measured by the catheter wedge technique were either equal to or less than those obtained by the balloon wedge technique. Conclusions: The difference in hepatic venous pressure gradients measured by the two techniques is insignificant.

  15. Isothermal pumping analysis for high-altitude tethered balloons.

    Science.gov (United States)

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  16. Axial gas transport and loss of pressure after ballooning rupture of high burn-up fuel rods subjected to LOCA conditions

    International Nuclear Information System (INIS)

    Wiesenack, Wolfgang; Oberlaender, Barbara; Kekkonen, Laura

    2008-01-01

    The OECD Halden Reactor Project has implemented integral in-pile tests on issues related to fuel behaviour under LOCA conditions. In this test series, the interaction of bonded fuel and cladding, the behaviour of fragmented fuel around the ballooning area, and the axial gas communication in high burn-up rods as affected by gap closure and fuel-clad bonding are of major interest for the investigations. In the Halden reactor tests, the decay heat is simulated by a low level of nuclear heating, in contrast to the heating conditions implemented in hot laboratory set-ups, and the thermal expansion of fuel and cladding relative to each other is more similar to the real event. The paper deals with observations regarding the loss of rod pressure following the rupture of the cladding. In the majority of the tests conducted so far, the rod pressure dropped practically instantaneously as a consequence of ballooning rupture, while one test showed a remarkably slow pressure loss. The slow loss of pressure in this test was analysed, showing that the 'hydraulic diameter' of the rod over an un-distended upper part was about 30 - 35 μm which is typical of high burn-up fuel at hot-standby conditions. The 'plug' of fuel restricts the gas flow from the plenum through the fuel column and thus limits the availability of high pressure gas for driving the ballooning. This observation is relevant for the analysis of the behaviour of a full length fuel rod under LOCA conditions since restricted gas flow may influence bundle blockage and the number of failures. (authors)

  17. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  18. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    Science.gov (United States)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  19. High-pressure balloon valvuloplasty for severe pulmonary valve stenosis: a prospective observational pilot study in 25 dogs.

    Science.gov (United States)

    Belanger, Catherine; Gunther-Harrington, Catherine T; Nishimura, Satoko; Oldach, Maureen S; Fousse, Samantha L; Visser, Lance C; Stern, Joshua A

    2018-04-01

    We aimed to evaluate safety and efficacy of high-pressure balloon valvuloplasty (HPBVP) for treatment of canine severe pulmonary valve stenosis (PS). A secondary aim was to provide pre-procedure predictors of success. Twenty-five dogs. Prospective observational study. Dogs with severe PS (echocardiographically derived trans-pulmonary peak/maximum pressure gradient (EDPG) ≥80 mmHg) were recruited. All dogs underwent echocardiography before and 20-24hrs after HPBVP using a high-pressure balloon with rated burst pressures ranging from 12 to 18 ATM. Procedural success was defined as a post-HPBVP EDPG reduction of ≥50% or reduction into at least the moderate category of PS (50-79 mmHg). Optimal result was defined as a post-procedural EDPG ≤30 mmHg. Initial median (IQR) EDPG for all dogs was 96 (88, 127) mmHg with a post-operative median of 48 (36, 65) mmHg. The median EDPG reduction provided by HPBVP was 63% (39, 68); procedural success rate was 92% (23 dogs). Optimal results were achieved in 56% (14 dogs). There were no significant correlations between EDPG reduction and valve morphology (Type A and Type B) or severity of right ventricular hypertrophy. Pulmonary valve annulus diameter was the only echocardiographic variable that was significantly correlated to EDPG reduction (p = 0.02; r = -0.46). No dog experienced any anesthetic or surgical complications, and all patients survived the procedure. In this cohort of 25 dogs with severe PS, HPBVP was safe and effective. The procedural success rate and high number of optimal results achieved with HPBVP suggest future randomized controlled trials comparing HPBVP to conventional valvuloplasty are warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the rvec B field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field δB parallel and electrostatic potential Φ along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric δB parallel , and Φ structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta (β parallel ≥ O(1)) and pressure anisotropy (P perpendicular /P parallel > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values

  1. Numerical and experimental simulation of the mechanical behavior of super-pressure balloon subsystems

    Science.gov (United States)

    Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.

    2004-01-01

    Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.

  2. Cleft formation in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  3. Design of experiments and equipment to test the ballooning characteristics of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Forrest, C.F.; Stern, F.; Hart, R.G.

    1992-01-01

    Experiments have been planned and an apparatus has been designed to enable creep testing of end-of-life pressure tube specimens in a LOCA environment. Effects that could be studied include: annealing of irradiation damage during transient heating; effects of hydride blisters on pressure tube ballooning strains; and, effects of uniformly-distributed hydrogen content on pressure tube ballooning strains. The proposed experimental program will consist of separate effects creep tests on pressure tube sections under transient heating conditions

  4. Influence of Pressure-gradient and Shear on Ballooning Stability in Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Nakajima, N.

    2005-01-01

    Pressure-driven, ideal ballooning stability calculations are often used to predict the achievable plasma in stellarator configurations. In this paper, the sensitivity of ballooning stability to plasmas profile variations is addressed. A simple, semi-analytic method for expressing the ballooning growth rate, for each field line, as a polynomial function of the variation in the pressure gradient and the average magnetic shear from an original equilibrium has recently been introduced [Phys. Plasmas 11:9 (September 2004) L53]. This paper will apply the expression to various stellarator configurations and comment on the validity of various truncated forms of the polynomial expression. In particular, it is shown that in general it is insufficient to consider only the second order terms as previously assumed, and that higher order terms must be included to obtain accurate predictions of stability

  5. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  6. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  7. The effect of pressure anisotropy on ballooning modes in tokamak plasmas

    Science.gov (United States)

    Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.

    2018-06-01

    Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.

  8. Clefting in pumpkin balloons

    Science.gov (United States)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  9. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.

  10. Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak

    International Nuclear Information System (INIS)

    Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.

    1980-08-01

    A force balance relation, a representation for the poloidal beta (β/sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively

  11. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  12. Special Considerations for Qualifying Thin Films for Supper Pressure Pumpkin Ultra Long Duration Balloon (ULDB) Missions

    Science.gov (United States)

    Said, M.

    Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in

  13. Cutting-balloon angioplasty of resistant ureteral stenosis as bridge to stent insertion

    Energy Technology Data Exchange (ETDEWEB)

    Iezzi, R., E-mail: iezzir@virgilio.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, ' A. Gemelli' Hospital - Catholic University, L.go A Gemelli 8, 00168 Rome (Italy); Di Stasi, C.; Simeone, A.; Bonomo, L. [Department of Bioimaging and Radiological Sciences, Institute of Radiology, ' A. Gemelli' Hospital - Catholic University, L.go A Gemelli 8, 00168 Rome (Italy)

    2011-07-15

    Ureteral stenting is a routine, minimally invasive procedure performed for relief of benign or malignant obstruction. In case of ureteral stenosis, to allow a correct insertion of the stent, a predilatation of the ureter stenosis with a conventional balloon catheter can be necessary. In exceptional cases, it can be difficult to advance an 7-8 Fr JJ-catheter over a tight resistant ureter stenosis following unsuccessful high-pressure balloon dilatation. In the present report, we describe two cases of resistant ureter stenosis successfully dilated by a cutting-balloon following the failure of high-pressure balloon dilatation, allowing a correct and uncomplicated antegrade stent insertion.

  14. Cutting-balloon angioplasty of resistant ureteral stenosis as bridge to stent insertion

    International Nuclear Information System (INIS)

    Iezzi, R.; Di Stasi, C.; Simeone, A.; Bonomo, L.

    2011-01-01

    Ureteral stenting is a routine, minimally invasive procedure performed for relief of benign or malignant obstruction. In case of ureteral stenosis, to allow a correct insertion of the stent, a predilatation of the ureter stenosis with a conventional balloon catheter can be necessary. In exceptional cases, it can be difficult to advance an 7-8 Fr JJ-catheter over a tight resistant ureter stenosis following unsuccessful high-pressure balloon dilatation. In the present report, we describe two cases of resistant ureter stenosis successfully dilated by a cutting-balloon following the failure of high-pressure balloon dilatation, allowing a correct and uncomplicated antegrade stent insertion.

  15. Technologies developed by CNES balloon team

    Science.gov (United States)

    Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud

    CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling

  16. Analysis of the ballooning deformation of an internally pressurized thin-wall tube during fast thermal transients

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    A large-strain time-dependent thermoplastic analysis has been developed for the ballooning deformation of a thin-wall tube subjected to internal pressure, axial loading, and fast thermal transients. This deformation initiates with the onset of plastic instability in the material, the onset being determined by a plastic-instability criterion for strain-rate sensitive materials. The interaction among the local ballooning geometry, the state of stress, and the plastic flow process was considered, and integration of the flow equations yields the local curvature and the states of stress and strain in the vicinity of the maximum ballooning site. The effects of axial constraint and heating rate were also discussed. The analysis was applied to a LWR Zircaloy cladding subjected to a constant heating rate and a range of internal pressures. The results agree very well with experimental strain-time data obtained from tube-burst tests. In most cases, the time of rupture was accurately predicted despite the lack of complete material-property data

  17. GHOST balloons around Antarctica

    Science.gov (United States)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  18. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  19. Liquid- and air-filled catheters without balloon as an alternative to the air-filled balloon catheter for measurement of esophageal pressure.

    Science.gov (United States)

    Beda, Alessandro; Güldner, Andreas; Carvalho, Alysson R; Zin, Walter Araujo; Carvalho, Nadja C; Huhle, Robert; Giannella-Neto, Antonio; Koch, Thea; de Abreu, Marcelo Gama

    2014-01-01

    Measuring esophageal pressure (Pes) using an air-filled balloon catheter (BC) is the common approach to estimate pleural pressure and related parameters. However, Pes is not routinely measured in mechanically ventilated patients, partly due to technical and practical limitations and difficulties. This study aimed at comparing the conventional BC with two alternative methods for Pes measurement, liquid-filled and air-filled catheters without balloon (LFC and AFC), during mechanical ventilation with and without spontaneous breathing activity. Seven female juvenile pigs (32-42 kg) were anesthetized, orotracheally intubated, and a bundle of an AFC, LFC, and BC was inserted in the esophagus. Controlled and assisted mechanical ventilation were applied with positive end-expiratory pressures of 5 and 15 cmH2O, and driving pressures of 10 and 20 cmH2O, in supine and lateral decubitus. Cardiogenic noise in BC tracings was much larger (up to 25% of total power of Pes signal) than in AFC and LFC (<3%). Lung and chest wall elastance, pressure-time product, inspiratory work of breathing, inspiratory change and end-expiratory value of transpulmonary pressure were estimated. The three catheters allowed detecting similar changes in these parameters between different ventilation settings. However, a non-negligible and significant bias between estimates from BC and those from AFC and LFC was observed in several instances. In anesthetized and mechanically ventilated pigs, the three catheters are equivalent when the aim is to detect changes in Pes and related parameters between different conditions, but possibly not when the absolute value of the estimated parameters is of paramount importance. Due to a better signal-to-noise ratio, and considering its practical advantages in terms of easier calibration and simpler acquisition setup, LFC may prove interesting for clinical use.

  20. Liquid- and air-filled catheters without balloon as an alternative to the air-filled balloon catheter for measurement of esophageal pressure.

    Directory of Open Access Journals (Sweden)

    Alessandro Beda

    Full Text Available BACKGROUND: Measuring esophageal pressure (Pes using an air-filled balloon catheter (BC is the common approach to estimate pleural pressure and related parameters. However, Pes is not routinely measured in mechanically ventilated patients, partly due to technical and practical limitations and difficulties. This study aimed at comparing the conventional BC with two alternative methods for Pes measurement, liquid-filled and air-filled catheters without balloon (LFC and AFC, during mechanical ventilation with and without spontaneous breathing activity. Seven female juvenile pigs (32-42 kg were anesthetized, orotracheally intubated, and a bundle of an AFC, LFC, and BC was inserted in the esophagus. Controlled and assisted mechanical ventilation were applied with positive end-expiratory pressures of 5 and 15 cmH2O, and driving pressures of 10 and 20 cmH2O, in supine and lateral decubitus. MAIN RESULTS: Cardiogenic noise in BC tracings was much larger (up to 25% of total power of Pes signal than in AFC and LFC (<3%. Lung and chest wall elastance, pressure-time product, inspiratory work of breathing, inspiratory change and end-expiratory value of transpulmonary pressure were estimated. The three catheters allowed detecting similar changes in these parameters between different ventilation settings. However, a non-negligible and significant bias between estimates from BC and those from AFC and LFC was observed in several instances. CONCLUSIONS: In anesthetized and mechanically ventilated pigs, the three catheters are equivalent when the aim is to detect changes in Pes and related parameters between different conditions, but possibly not when the absolute value of the estimated parameters is of paramount importance. Due to a better signal-to-noise ratio, and considering its practical advantages in terms of easier calibration and simpler acquisition setup, LFC may prove interesting for clinical use.

  1. Usefulness of cutting balloon angioplasty for the treatment of congenital heart defects.

    Science.gov (United States)

    Kusa, Jacek; Mazurak, Magdalena; Skierska, Agnieszka; Szydlowski, Leslaw; Czesniewicz, Pawel; Manka, Lukasz

    2018-01-01

    Patients with complex congenital heart defects may have different hemodynamic prob-lems which require a variety of interventional procedures including angioplasty which involves using high-pressure balloons. After failure of conventional balloon angioplasty, cutting balloon angioplasty is the next treatment option available. The purpose of this study was to evaluate the safety and efficacy of cutting balloon angioplasty in children with different types of congenital heart defects. Cutting balloon angioplasty was performed in 28 children with different congenital heart defects. The indication for cutting balloon angioplasty was: pulmonary artery stenosis in 17 patients, creating or dilatation of interatrial communication in 10 patients, and stenosis of left subclavian artery in 1 patient. In the pulmonary arteries group there was a significant decrease in systolic blood pressure (SBP) in the proximal part of the artery from the average 74.33 ± 20.4 mm Hg to 55 ± 16.7 mm Hg (p cutting balloon angioplasty was performed after an unsuccessful classic Rashkind procedure. After cutting balloon angioplasty there was a significant widening of the interatrial communication. Cutting balloon angioplasty is a feasible and effective treatment option in different con-genital heart defects.

  2. Pioneering Space Research with Balloons

    Science.gov (United States)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  3. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  4. Percutaneous balloon dilation of pulmonary stenosis

    International Nuclear Information System (INIS)

    Hua Yangde; Huang Ming; Li Jinkang; Qian Jinqing; Chen Xiuyu; Yang Siyuan

    2003-01-01

    Objective: Review our experience of balloon dilation of valvular pulmonary stenosis in 32 cases. Methods: Totally 32 cases of pulmonary stenosis admitted from 1995-2001 with age of 1.5-13 yrs mean 6.8. Diagnosis was made by clinical manifestations, EKG, ECHO and angiocardiography. Results: Before dilation, the mean systolic pressure of right ventricle was (93.5 ± 28.5) mmHg, after the procedure it reduced to (42 ± 9.0) mmHg. The pressure gradient between right ventricle and pulmonary artery before dilation was (76 ± 30) mmHg and become (24.5 ± 8.5) mmHg after dilation. The gradient pressure after dilation was less than 25 mmHg in 90.6% cases. A case of Noonan syndrome showed no response to balloon dilation and died during valvulectomy from accompanying left ventricular cardiomyopathy. Conclusions: Balloon dilation of valvular pulmonary stenosis is effective and safe. The selection of proper diameter of pulmonary valvular rings and sized of the balloon are the major factors

  5. Ballooning of CANDU pressure tube in local thermal transients

    International Nuclear Information System (INIS)

    Mihalache, Maria; Ionescu, Viorel

    2008-01-01

    In certain LOCA scenarios for the CANDU fuel channel, the ballooning of the pressure tube and contact with the calandria tube can occur. After the contact moment, a radial heat transfer from cooling fluid to moderator takes place through the contact area. If the temperature of channel walls increases, the contact area is drying and the heat transfer becomes inefficiently. In INR-Pitesti the DELOCA code was developed to simulate the mechanical behaviour of pressure tube during pre-contact transition, and mechanical and thermal behaviour of pressure tube and calandria tube after occurrence of the contact between the two tubes. The code contains few models: thermal creep of Zr-2.5%Nb alloy, the heat transfer by conduction through the cylindrical walls, channel failure criteria and calculus of heat transfer at the calandria tube - moderator interface. This code evaluates the contact and channel failure moments. This paper gives a DELOCA code description and the fuel channel behaviour analysis, in transient temperature conditions of the pressure tube, using the materials properties, time and temperature dependencies of these properties as obtained in the different laboratories of the world and in the INR - Pitesti in the last years. DELOCA computer code simulated the fuel channel response to the constant heating rates of inside pressure tube surface. The paper presents contact temperature and time dependencies on the heating rate, and the appropriate fitting functions. (authors)

  6. Analysis of the ballooning deformation of an internally pressurized thin-wall tube during fast thermal transients

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    A large-strain, time-dependent thermoplastic analysis of ballooning deformation was developed. The true (or lagorithmic) strains, the Von Mises yield criterion and Prandtl-Reuss flow rules were used. The constitutive equation was expressed in terms of the temperature, effective stress, strain and strain rate. Material isotropy was assumed as a first approximation; note that at high temperatures even zircaloy tends to lose a substantial amount of its low-temperature anisotropy. The axisymmetry of ballooning was also assumed, which has actually been verified by numerous experiments to be accurate throughout the course of ballooning, except in the final stage when rupture is imminent. The thin-shell approximation was made, which proved to be adequate for the standard fuel claddings and which was advantageous in that the averaged state of stress was rendered determinate. The analysis led to a set of non-linear ordinary differential equations, which was then integrated by a fifth-order Runge-Kutta routine. The general formulation allows for a direct interpretation of the experimentally-observed effects of the heating rate and cladding axial constraints on the ballooning behavior. Its implications on the flow-blockage and cladding-rupture evaluations were discussed. The analysis was applied to zircaloy claddings subjected to simulated thermal transient conditions. Most of the required material properties were taken from the existing uniaxial tensile test data. Analyses were performed at a uniform heating rate of 115 0 C/sec with internal pressures ranging from 100 to 1200 psi. Satisfactory agreement was obtained between the predictions and the diametral strain-time data available from tube-burst tests

  7. Structure variations of pumpkin balloon

    Science.gov (United States)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  8. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    Science.gov (United States)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  9. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  10. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    Science.gov (United States)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  11. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P perpendicular /P parallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  12. Recent Developments in Scientific Research Ballooning

    International Nuclear Information System (INIS)

    Jones, W. Vernon

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program is committed to meeting the need for extended duration scientific investigations by providing advanced balloon vehicles and support systems. A sea change in ballooning capability occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990's. The attainment of 28-31 day flights and a record-breaking 42-day flight in, respectively, two and three circumnavigations of the continent has greatly increased the expectations of the scientific users. A new super-pressure balloon is currently under development for future flights of 60-100 days at any latitude, which would bring another sea change in scientific research ballooning

  13. Simulating clefts in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  14. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  15. A "Global Radiosonde and tracked-balloon Archive on Sixteen Pressure levels" (GRASP) going back to 1905 – Part 2: homogeneity adjustments for pilot balloon and radiosonde wind data

    OpenAIRE

    L. Ramella Pralungo; L. Haimberger

    2014-01-01

    This paper describes the comprehensive homogenization of the "Global Radiosonde and tracked balloon Archive on Sixteen Pressure levels" (GRASP) wind records. Many of those records suffer from artificial shifts that need to be detected and adjusted before they are suitable for climate studies. Time series of departures between observations and the National Atmospheric and Oceanic Administration 20th-century (NOAA-20CR) surface pressure only reanalysis have been calculated...

  16. A New Type of Captive Balloon for Vertical Meteorological Observation in Urban Area

    Science.gov (United States)

    Nakamura, M.; Sakai, S.; Ono, K.

    2010-12-01

    Many meteorological observations in urban area have been made in recent years in order to investigate the mechanism of heat island. However, there are few data of cooling process in urban area. For this purpose, high density observations in both space and time are required. Generally vertical meteorological observations can be made by towers, radars, balloons. These methods are limited by urban area conditions. Among these methods, a captive balloon is mainly used to about a hundred meter from ground in a vertical meteorological observation. Small airships called kytoons or advertising balloons, for example. Conventional balloons are, however, influenced by the wind and difficult to keep the specified position. Moreover, it can be dangerous to conduct such observations in the highly build-up area. To overcome these difficulties, we are developing a new type of captive balloon. It has a wing form to gain lift and keep its position. It is also designed small to be kept in a carport. It is made of aluminum film and polyester cloth in order to attain lightweight solution. We have tried floating a balloon like NACA4424 for several years. It was difficult to keep a wing form floating up over 100 meters from ground because internal pressure was decreased by different temperature. The design is changed in this year. The balloon that has wing form NACA4415 is similar in composition to an airplane. It has a big gasbag with airship form and two wing form. It is able to keep form of a wing by high internal pressure. We will report a plan for the balloon and instances of some observations.

  17. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q 95 , and lower collisionality

  18. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  19. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    Science.gov (United States)

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented

  20. Low-pressure balloon angioplasty with adjuvant pharmacological therapy in patients with acute ischemic stroke caused by intracranial arterial occlusions

    International Nuclear Information System (INIS)

    Nogueira, Raul G.; Schwamm, Lee H.; Buonanno, Ferdinando S.; Koroshetz, Walter J.; Yoo, Albert J.; Rabinov, James D.; Pryor, Johnny C.; Hirsch, Joshua A.

    2008-01-01

    The use of coronary balloons in the cerebral vasculature is limited due to their poor trackability and increased risk of vessel injury. We report our experience using more compliant elastomer balloons for thrombus resistant to intraarterial (IA) pharmacological and mechanical thrombolysis in acute stroke. We retrospectively analyzed 12 consecutive patients with an occluded intracranial artery treated with angioplasty using a low-pressure elastomer balloon. Angiograms were graded according to the Thrombolysis in Cerebral Infarction (TICI) and Qureshi grading systems. Outcomes were categorized as independent (modified Rankin scale, mRS, score ≤2), dependent (mRS score 3-5), or dead (mRS score 6). Included in the study were 12 patients (mean age 66±17 years, range 31-88 years; mean baseline National Institutes of Health stroke scale score 17±3, range 12-23). The occlusion sites were: internal carotid artery (ICA) terminus (five patients, including two concomitant cervical ICA occlusions), M1 segment (two patients), and basilar artery (two patients). Pharmacological treatment included intravenous (IV) t-PA only (two patients), IA urokinase only (nine patients), both IV t-PA and IA urokinase (one patient), and IV and/or IA eptifibatide (eight patients). Mean time to treatment was 5.9±3.9 h (anterior circulation) and 11.0±7.2 h (posterior circulation). Overall recanalization rate (TICI grade 2/3) was 91.6%. Procedure-related morbidity occurred in one patient (distal posterior inferior cerebellar artery embolus). There were no symptomatic hemorrhages. Outcomes at 90 days were independent (five patients), dependent (three patients) and dead (four patients, all due to progression of stroke with withdrawal of care). Angioplasty of acutely occluded intracranial arteries with low-pressure elastomer balloons results in high recanalization rates with an acceptable degree of safety. Prior use of thrombolytics may increase the chances of recanalization, and glycoprotein IIb

  1. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  2. Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors

    Science.gov (United States)

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-04-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.

  3. TMBM: Tethered Micro-Balloons on Mars

    Science.gov (United States)

    Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.

    2000-01-01

    The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.

  4. Accurate Determination of the Volume of an Irregular Helium Balloon

    Science.gov (United States)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  5. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    Science.gov (United States)

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  6. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  7. Rupture of the Renal Artery After Cutting Balloon Angioplasty in a Young Woman With Fibromuscular Dysplasia

    International Nuclear Information System (INIS)

    Oguzkurt, Levent; Tercan, Fahri; Gulcan, Oner; Turkoz, Riza

    2005-01-01

    A 24-year-old woman with uncontrollable high blood pressure for 3 months had significant stenosis of the left renal artery caused by fibromuscular dysplasia (FMD). The lesion was resistant to percutaneous transluminal angioplasty at 18 atm with a semicompliant balloon. Angioplasy with a 6 x 10 mm cutting balloon (CB) caused rupture of the artery. Low-pressure balloon inflation decreased but did not stop the leak. An attempt to place a stent-graft (Jostent; Jomed, Rangendingen, Germany) failed, and a bare, 6-mm balloon-expandable stent (Express SD; Boston Scientific, MN) was deployed to seal the leak, which had decreased considerably after long-duration balloon inflation. The bleeding continued, and the patient underwent emergent surgical revascularization of the renal artery with successful placement of a 6-mm polytetrafluoroethylene bypass graft. CBs should be used very carefully in the treatment of renal artery stenosis, particularly in patients with FMD

  8. Special considerations for qualifying thin films for super pressure pumpkin ultra long duration balloon missions

    Science.gov (United States)

    Said, Magdi A.

    2004-01-01

    The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.

  9. Design and evaluation of a continuum robot with extendable balloons

    Directory of Open Access Journals (Sweden)

    E. Y. Yarbasi

    2018-02-01

    Full Text Available This article presents the design and preliminary evaluation of a novel continuum robot actuated by two extendable balloons. Extendable balloons are utilized as the actuation mechanism of the robot, and they are attached to the tip from their slack sections. These balloons can extend very much in length without having a significant change in diameter. Employing two balloons in an axially extendable, radially rigid flexible shaft, radial strain becomes constricted, allowing high elongation. As inflated, the balloons apply a force on the wall of the tip, pushing it forward. This force enables the robot to move forward. The air is supplied to the balloons by an air compressor and its flow rate to each balloon can be independently controlled. Changing the air volumes differently in each balloon, when they are radially constricted, orients the robot, allowing navigation. Elongation and force generation capabilities and pressure data are measured for different balloons during inflation and deflation. Afterward, the robot is subjected to open field and maze-like environment navigation tests. The contribution of this study is the introduction of a novel actuation mechanism for soft robots to have extreme elongation (2000 % in order to be navigated in substantially long and narrow environments.

  10. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  11. Analysis of Flight of Near-Space Balloon

    Science.gov (United States)

    Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.

  12. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  13. Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons

    Science.gov (United States)

    Smith, David J.; Sowa, Marianne

    2017-01-01

    Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.

  14. Detection of Artificially Generated Seismic Signals using Balloon-borne Infrasound Sensors

    OpenAIRE

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-01-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free‐flying balloon is lower compared to one on a mo...

  15. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  16. Criteria for Second Stability for Ballooning Modes in Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2004-01-01

    An expression determining how variations in the pressure-gradient and average magnetic shear affect ballooning stability for a stellarator equilibrium is presented. The procedure for determining the marginal stability boundaries, for each field line, depends only on the equilibrium and a single ballooning eigenfunction calculation. This information is sufficient to determine if increasing pressure-gradient is stabilizing or destabilizing and to predict whether the configuration possess a second stable region

  17. An analysis of the deployment of a pumpkin balloon at Mars

    Science.gov (United States)

    Rand, J. L.; Phillips, M. L.

    2004-01-01

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, where the radius used to determine the stress is determined by the volume of the balloon, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. A suitable superpressure balloon has been designed using this technology which will carry 2 kg in the atmosphere of Mars. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a 10 kg system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred into the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon which alters the pressure distribution and shape. As a result, stresses are seen to increase beyond the design values which will require the balloon to be redesigned to accommodate this type of dynamic deployment.

  18. Resistive internal kink modes in a tokamak with high-pressure plasma

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.; Tatarinov, E.G.

    1988-01-01

    Theory of resistive internal kink modes in a tokamak with high-pressure plasma is developed. Equation for Fourie-image of disturbed displacment in a resistive layer ie derived with regard to effects of the fourth order by plasma pressure within the framework of single-liquid approach. In its structure this equation coincides with a similar equation for resistive balloon modes and has an exact solution expressed by degenerated hypergeometric function. A general dispersion equation for resistive kink modes is derived with regard to the effects indicated. It is shown that plasma pressure finiteness leads to the reduction of reconnection and tyring-mode increments

  19. Tackling the Issue of High Postoperative Pacemaker Implantation Rates in Sutureless Aortic Valve Replacement: Should Balloon Inflation be Removed from the Implantation Method of the Perceval Prosthesis?

    Science.gov (United States)

    Charles Blouin, Mathieu; Bouhout, Ismail; Demers, Philippe; Carrier, Michel; Perrault, Louis; Lamarche, Yoan; El-Hamamsy, Ismail; Bouchard, Denis

    2017-05-01

    Sutureless aortic valve replacement (AVR) is an emerging alternative to standard AVR in elderly and high-risk patients. This procedure is associated with a high rate of postoperative permanent pacemaker implantation (PPI). The study aim was to assess the impact on the rate of PPI of implanting the Perceval prosthesis without using balloon inflation. A total of 159 patients who underwent sutureless AVR using the Perceval prosthesis was included. Balloon inflation was used in 132 patients (Balloon group) and not used in the remaining 27 (No-Balloon group). Clinical, echocardiographic and electrocardiographic outcomes were assessed. There was no significant difference in PPI rate between the two groups (26% for Balloon group versus 22% in No-Balloon group; p = 0.700). Balloon inflation had no significant impact on the incidence of paravalvular leaks (p = 0.839), or on the need to return to cardiopulmonary bypass (CPB) intraoperatively due to paravalvular leak or unsatisfactory deployment (p >0.999). Mean and peak transaortic pressure gradients were similar between the two groups (p = 0.417 and p = 0.522, respectively). Cross-clamp and CPB times were shorter in the No-Balloon group (49.6 ± 15.9 min versus 61.1 ± 25.6 min and 64.1 ± 26.3 min versus 79.6 ± 35.4 min, respectively; p = 0.027 and p = 0.012, respectively). The two groups had similar postoperative PPI rates. Implanting the Perceval prosthesis without balloon inflation is safe and had no impact on paravalvular leaks, intraoperative complications or hemodynamic results. Reductions in aortic cross-clamp time and CPB time were observed when the balloon was not used.

  20. A new approach to the diagnosis of esophageal rupture due to balloon dilatation

    International Nuclear Information System (INIS)

    Song, Ho Young; Han, Young Min; Lee, Sang Young; Kuh, Ja Hong; Lee, Dong Kun; Chae, Soo Wan

    1990-01-01

    The diagnosis of esophageal rupture in balloon dilatation is usually made from clinical symptom of sharp chest pain, plain chest radiographs and esophagograms after dilation. It has some problems; the pain is varied patients to patients and bacterial flora in the mouth or esophagus can be mixed with the contrast media to flow into the mediastinum during esophagography, to create mediastinitis. We could make the diagnosis of esophageal rupture without using contrast media by the observation of the pressure change in the balloon during dilatation. An infusion pump, transducer and esophageal balloon were connected through a multi-way connector, and the transducer of them was also connected to an amplifier which was connected to a pressure monitor to record the balloon pressure. As balloon(20mm/3cm) inserted in the mid-thoracic esophagus under the fluoroscopic control was inflated until the esophagus was ruptured. Balloon was distended by injecting air in 15 rabbits(A group), and by injecting diluted contrast medium in 15 rabbits(B group). The pressure decrease after esophageal rupture was ranged from 94 to 160 mmHg(mean; 103) in A group and 340 to 1040 mmHg(mean; 537) in B group. The pressure curve of A group was smooth, regular and so accurate to make the diagnosis of esophageal rupture, whereas that of B group was irregular and not so accurate. In conclusion, our new method to make the diagnosis of esophageal rupture during balloon dilatation may be useful in patients of esophageal stricture

  1. Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.

    Science.gov (United States)

    Khir, Ashraf William; Bruti, Gianpaolo

    2013-07-01

    It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  2. Static and quasi-static analysis of lobed-pumpkin balloon

    Science.gov (United States)

    Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki

    The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.

  3. Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories

    Science.gov (United States)

    Schoeberl, M. R.; Jensen, E.; Podglajen, A.; Coy, L.; Lodha, C.; Candido, S.; Carver, R.

    2017-08-01

    Project Loon has been launching superpressure balloons since January 2013 to provide worldwide Internet coverage. These balloons typically fly between 18 and 21 km and provide measurements of winds and pressure fluctuations in the lower stratosphere. We divide 1560 Loon flights into 3405 two-day segments for gravity wave analysis. We derive the kinetic energy spectrum from the horizontal balloon motion and estimate the temperature perturbation spectrum (proportional to the potential energy spectrum) from the pressure variations. We fit the temperature (and kinetic energy) data to the functional form T'2 = T'o2[ω/ωο)α, where ω is the wave frequency, ωο is daily frequency, T'o is the base temperature amplitude, and α is the spectral slope. Both the kinetic energy and temperature spectra show -1.9 ± 0.2 power-law dependence in the intrinsic frequency window 3-50 cycles/day. The temperature spectrum slope is weakly anticorrelated with the base temperature amplitude. We also find that the wave base temperature distribution is highly skewed. The tropical modal temperature is 0.77 K. The highest amplitude waves occur over the mountainous regions, the tropics, and the high southern latitudes. Temperature amplitudes show little height variation over our 18-21 km domain. Our results are consistent with other limited superpressure balloon analyses. The modal temperature is higher than the temperature currently used in high-frequency gravity wave parameterizations.

  4. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    Science.gov (United States)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  5. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  6. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons

    Data.gov (United States)

    National Aeronautics and Space Administration — The project objective is to develop and test a sub-scale version of the Maraia Entry Capsule on a high altitude balloon. The capsule is released at 100,000 ft. The...

  7. Scientific Ballooning in India - Recent Developments

    Science.gov (United States)

    Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.

    Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  8. Upper gastrointestinal strictures: The results of balloon dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kil Woo; Lim, Hyo Keun; Choo, In Wook; Bae, Sang Hoon; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of); Yoo, Hyung Sik [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1990-12-15

    Balloon catheter dilatation of upper gastrointestinal strictures is an accepted mode of therapy. The authors report the balloon dilatation in 11 consecutive patients. The lesions treated included 10 benign strictures, and 1 esophageal cancer. Esophageal balloon were ranged from 2 mm in diameter, 4 cm in length, to 30 mm in diameter, 8 cm in length. Inflation was held for from 30 to 60 seconds and then repeated two or three times during each session. The balloons were inflated to pressure of from 2 to 12 atmospheres. There were from 1 to 13 dilatations. Two esophageal perforations were occurred in one esophagitis patient and other lye stricture patient. Two perforations were not required any surgical repair. All dilatation were performed without anesthesia. All strictures were responded immediately to dilatation. Prolonged course of treatment were needed with chronic severe esophagitis, lye stricture, gastrojejunostomy with chemotherapy, as a result, all patients, except esophageal cancer, could take regular diet after balloon catheter dilatation. Balloon catheter dilatation of upper gastrointestinal stenosis was effective and safe. It should be considered before other methods of treatment applicable.

  9. Stability of the pumpkin balloon

    Science.gov (United States)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  10. Scientific ballooning in India Recent developments

    Science.gov (United States)

    Manchanda, R. K.

    Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  11. Gondola development for CNES stratospheric balloons

    Science.gov (United States)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  12. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    Science.gov (United States)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  13. Effects of compressibility on the resistive ballooning mode

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Cooper, W.A.; Holmes, J.A.; Diamond, P.H.; Similon, P.L.

    1983-09-01

    The linear stability of the resistive ballooning mode, as described by the resistive MHD model, is investigated both analytically and numerically. When the pressure evolution is approximated by fluid convection (reduced MHD model), an instability driven by geodesic curvature, with a growth rate γ approx. eta/sup 1/3/β/sub rho//sup 2/3/, is found. For conditions relevant to the Impurity Study Experiment (ISX-B), it is shown that for modest poloidal beta (β/sub rho/ approx. = 1), high current, and relatively high temperatures, compressibility has a significant stabilizing influence, relative to the pressure convection model, for low toroidal mode number modes. However, at high β/sub rho/ (greater than or equal to 2), low current, and lower temperatures, compressibility has much less effect

  14. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    Science.gov (United States)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  15. Measurements of Intra‐Aortic Balloon Wall Movement During Inflation and Deflation: Effects of Angulation

    Science.gov (United States)

    Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R.

    2015-01-01

    Abstract The intra‐aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre‐, intra‐, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi‐recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra‐aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. PMID:25959284

  16. SMEX02 Balloon-borne Radiosonde Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes radiosonde measurements of upper air temperature and pressure, relative humidity, and wind direction and speed during the balloons' ascent to...

  17. ELMs and constraints on the H-mode pedestal: A model based on peeling-ballooning modes

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2003-01-01

    We propose a model for Edge Localized Modes (ELMs) and pedestal constraint based upon theoretical analysis of instabilities which can limit the pedestal height and drive ELMs. The sharp pressure gradients, and resulting bootstrap current, in the pedestal region provide free energy to drive peeling and ballooning modes. The interaction of peeling-ballooning coupling, ballooning mode second stability, and finite-Larmor-radius effects results in coupled peeling-ballooning modes of intermediate wavelength generally being the limiting instability. A highly efficient new MHD code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including con straits on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependant on the density and temperature separately, rather than simply on the pressure. A model of various ELM types is developed, and quantitatively compared to data. A number of observations agree with predictions, including ELM onset times, ELM depth and variation in pedestal height with collisionality and discharge shape. Stability analysis of series of model equilibria are used both o predict and interpret pedestal trends in existing experiments and to project pedestal constraints for future burning plasma tokamak designs. (author)

  18. Transition from resistive ballooning to neoclassical magnetohydrodynamic pressure-gradient-driven instability

    International Nuclear Information System (INIS)

    Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Charlton, L.A.; Callen, J.D.; Garcia, L.

    1988-10-01

    The linearized neoclassical magnetohydrodynamic equations, including perturbed neoclassical flows and currents, have been solved for parameter regimes where the neoclassical pressure-gradient-driven instability becomes important. This instability is driven by the fluctuating bootstrap current term in Ohm's law. It begins to dominate the conventional resistive ballooning mode in the banana-plateau collisionality regime [μ/sub e//ν/sub e/ /approximately/ √ε/(1 + ν/sub *e/) > ε 2 ] and is characterized by a larger radial mode width and higher growth rate. The neoclassical instability persists in the absence of the usual magnetic field curvature drive and is not significantly affected by compressibility. Scalings with respect to β, n (toroidal mode number), and μ (neoclassical viscosity) are examined using a large-aspect-ratio, three-dimensional initial-value code that solves linearized equations for the magnetic flux, fluid vorticity, density, and parallel ion flow velocity in axisymmetric toroidal geometry. 13 refs., 10 figs

  19. Finite pressure effects on the tokamak sawtooth crash

    International Nuclear Information System (INIS)

    Nishimura, Yasutaro

    1998-07-01

    The sawtooth crash is a hazardous, disruptive phenomenon that is observed in tokamaks whenever the safety factor at the magnetic axis is below unity. Recently, Tokamak Test Fusion Reactor (TFTR) experimental data has revealed interesting features of the dynamical pressure evolution during the crash phase. Motivated by the experimental results, this dissertation focuses on theoretical modeling of the finite pressure effects on the nonlinear stage of the sawtooth crash. The crash phase has been studied numerically employed a toroidal magnetohydrodynamic (MHD) initial value code deduced from the FAR code. For the first time, by starting from a concentric equilibrium, it has been shown that the evolution through an m/n = 1/1 magnetic island induces secondary high-n ballooning instabilities. The magnetic island evolution gives rise to convection of the pressure inside the inversion radius and builds up a steep pressure gradient across the island separatrix, or current sheet, and thereby triggers ballooning instabilities below the threshold for the axisymmetric equilibrium. Due to the onset of secondary ballooning modes, concomitant fine scale vortices and magnetic stochasticity are generated. These effects produce strong flows across the current sheet, and thereby significant modify the m = 1 driven magnetic reconnection process. The resultant interaction of the high-n ballooning modes with the magnetic reconnection process is discussed

  20. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES

    International Nuclear Information System (INIS)

    LAO, LL; SNYDER, PB; LEONARD, AW; OSBORNE, TH; PETRIE, TW; FERRON, JR; GROEBNER, RJ; HORTON, LD; KAMADA, Y; MURAKAMI, M; OIKAWA, T; PEARLSTEIN, LD; SAARELMA, S; STJOHN, HE; THOMAS, DM; TURNBULL, AD; WILSON, HR

    2002-01-01

    OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n ∼ 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P(prime) and the associated large edge bootstrap current density J BS . the interplay between P(prime) and J BS as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J BS is reduced

  1. A new TDRSS Compatible Transceiver for Long Duration HIgh Altitude Scientific Balloon Missions

    Science.gov (United States)

    Stilwell, B.; Siemon, M.

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real- time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be a le tob endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or

  2. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  3. Basic development of a small balloon-mounted telemetry and its operation system by university students

    Science.gov (United States)

    Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki

    In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling

  4. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  5. Measurements of Intra-Aortic Balloon Wall Movement During Inflation and Deflation: Effects of Angulation.

    Science.gov (United States)

    Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R; Khir, Ashraf W

    2015-08-01

    The intra-aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre-, intra-, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi-recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra-aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for

  6. Aviation investigation report : hard landing : fuel leak and fire[Sundance Balloons International Firefly 12B (hot air balloon) C-FNVM, Winnipeg, Manitoba, 15 nm NE, 11 August 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-08-15

    This investigation report discussed an incident in Winnipeg in which a hot air balloon attempting to land during strong winds was dragged on its side for approximately 700 feet. The balloon's burners struck the ground as the balloon came to a stop, after which a propane leak occurred. An intense, uncontrolled fire ensued as balloon passengers were exiting from the partially-inverted basket. The pilot and 2 passengers suffered serious injuries, while another 4 passengers suffered minor injuries. The balloon's 2 propane tanks and a fire extinguisher canister exploded during the fire, which destroyed the balloon's basket. The rigging of the balloon was examined and no failures were discovered. Pressure tests showed that the balloon's hoses started leaking at the crimped sleeve fittings at 150 psi. While the pilot had been informed of potentially heavy winds and thunderstorms, changes in wind speed and direction occurred earlier than the forecasted time of 10:00. It was concluded that standards are needed to ensure balloon cabin safety. Balloon operators do not currently require the use of protective helmets or gloves in case of dragged landings. A review will be conducted to address the issue of proposed emergency fuel shut-offs for balloons carrying fare-paying passengers. 2 figs.

  7. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    International Nuclear Information System (INIS)

    Saarelma, S.; Kurki-Suonio, T.; Guenter, S.; Zehrfeld, H.-P.

    2000-01-01

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments. (author)

  8. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    Science.gov (United States)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  9. Balloon dilation of congenital supravalvular pulmonic stenosis in a dog.

    Science.gov (United States)

    Treseder, Julia R; Jung, SeungWoo

    2017-03-30

    Percutaneous balloon valvuloplasty is considered the standard of care for treatment of valvular pulmonic stenosis, a common congenital defect in dogs. Supravalvular pulmonic stenosis is a rare form of pulmonic stenosis in dogs and standard treatment has not been established. Although, there have been reports of successful treatment of supravalvular pulmonic stenosis with surgical and stenting techniques, there have been no reports of balloon dilation to treat dogs with this condition. Here, a case of supravalvular pulmonic stenosis diagnosed echocardiographically and angiographically in which a significant reduction in pressure gradient was achieved with balloon dilation alone is presented.

  10. Solar research with stratospheric balloons

    Science.gov (United States)

    Vázquez, Manuel; Wittmann, Axel D.

    Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.

  11. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  12. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    Science.gov (United States)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  13. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  14. Australasian trends in intra-aortic balloon counterpulsation weaning: results of a postal survey.

    Science.gov (United States)

    Lewis, Peter A; Mullany, Daniel V; Courtney, Mary; Coyer, Fiona

    2006-12-01

    To generate baseline data describing Australasian intra-aortic balloon counterpulsation (IABP) weaning practice. A five-part questionnaire was mailed in April 2005 to all 192 intensive care units in Australia and New Zealand. 116 ICUs responded (response rate, 60%), and 54 reported using IABP. Most of the 54 were in hospitals which were public government-funded (65%), had between 100 and 500 beds (69%), and treated a minimum of 11 patients annually with IABP (60%). The most common method of withdrawing IABP support was ratio reduction alone (61%). ICUs most likely to undertake ratio weaning were higherend users of IABP (> 20 cases per annum) (P = 0.04). Other weaning practices involved a combination of ratio followed by volume reduction (17%), volume then ratio (11%), and volume only (4%). Approaching statistical significance, ratio reduction weaning less frequently required IABP reinsertion or inotropic increase after balloon removal (P = 0.07). ICUs with documented weaning policies were less likely to require IABP reinsertion or inotropic increase after balloon removal (P = 0.06). Criteria considered important before IABP weaning or removal were: blood pressure (92%); heart rate (76%); pulmonary artery wedge pressure (59%); noradrenaline dose (78%); adrenaline dose (57%); and dobutamine dose (57%). Ninety per cent of ICUs reported increasing inotropes after balloon removal only rarely (1:50 patients) or occasionally (1:10 patients), while 87% of ICUs reported never needing to reinsert the balloon or only rarely. The Australasian approach to IABP weaning is eclectic. While ratio reduction weaning appears the most successful manner of support withdrawal, it may be a consequence of a volume-outcome relationship, with high- end users achieving better results through IABP familiarity.

  15. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach

    Science.gov (United States)

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  16. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  17. Emergency medical support for a manned stratospheric balloon test program.

    Science.gov (United States)

    Blue, Rebecca S; Norton, Sean C; Law, Jennifer; Pattarini, James M; Antonsen, Erik L; Garbino, Alejandro; Clark, Jonathan B; Turney, Matthew W

    2014-10-01

    Red Bull Stratos was a commercial program that brought a test parachutist, protected by a full-pressure suit, in a stratospheric balloon with pressurized capsule to over 127,582 ft (38,969 m), from which he free fell and subsequently parachuted to the ground. Given that the major risks to the parachutist included ebullism, negative Gz (toe-to-head) acceleration exposure from an uncontrolled flat spin, and trauma, a comprehensive plan was developed to recover the parachutist under nominal conditions and to respond to any medical contingencies that might have arisen. In this report, the project medical team describes the experience of providing emergency medical support and crew recovery for the manned balloon flights of the program. The phases of flight, associated risks, and available resources were systematically evaluated. Six distinct phases of flight from an Emergency Medical Services (EMS) standpoint were identified. A Medical Support Plan was developed to address the risks associated with each phase, encompassing personnel, equipment, procedures, and communications. Despite geographical, communications, and resource limitations, the medical team was able to implement the Medical Support Plan, enabling multiple successful manned balloon flights to 71,615 ft (21,828 m), 97,221 ft (29,610 m), and 127,582 ft (38,969 m). The experience allowed refinement of the EMS and crew recovery procedures for each successive flight and could be applied to other high altitude or commercial space ventures.

  18. New concepts for interplanetary balloons and blimps, particularly for Titan

    Science.gov (United States)

    Nott, J.

    This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon

  19. Aortoseptal angle and pressure gradient reduction following balloon valvuloplasty in dogs with severe subaortic stenosis.

    Science.gov (United States)

    Shen, L; Estrada, A H; Côté, E; Powell, M A; Winter, B; Lamb, K

    2017-04-01

    To determine the relationship between aortoseptal angle (AoSA) and the short- and long-term systolic pressure gradient (PG) reduction following combined cutting and high-pressure balloon valvuloplasty (CB/HPBV) in dogs with severe subaortic stenosis. Retrospective study of 22 client-owned dogs of various breeds with severe subaortic stenosis (mean left ventricular to aortic PG = 143 mmHg; range = 80-322 mmHg) that underwent CB/HPBV. Initial angiographic and left apical and right-sided parasternal long-axis view echocardiographic video loops were used for measuring the angle between the plane of the interventricular septum and the longitudinal axis of the ascending aorta. The PG reduction ratio immediately after CB/HPBV and 6 and 12 months later were compared with AoSA. Weak correlations were observed for all instances of PG reduction ratio and AoSA type. Significantly greater mean differences of PG reduction ratio were observed for angles >160° than for angles 160° mean: 54.45, standard error [SE]: ±3.8; 160° mean: 57.73, SE: ±10.9; 160° mean: 76.11, SE: ±17.5; Dogs with AoSA >160° on right-sided parasternal long-axis view echocardiograms responded with a greater PG reduction following CB/HPBV than did dogs with AoSA dogs that are candidates for CB/HPBV. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. A method for sampling microbial aerosols using high altitude balloons.

    Science.gov (United States)

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Improved outcome with novel device for low-pressure PTCA in de novo and in-stent lesions

    International Nuclear Information System (INIS)

    Ischinger, Thomas A.; Solar, Ronald J.; Hitzke, Evelyn

    2003-01-01

    Purpose: Complex lesion morphology requiring the use of high pressure to effect lumen expansion and in-stent restenosis (ISR) remain two indications that challenge conventional PTCA balloons. We report on a new PTCA device that is designed to provide precise, low-pressure dilatation of both de novo and in-stent lesions. Methods: The FX miniRAIL catheter (FX) has an integral wire positioned external to a dilating balloon and a short, 12-mm guidewire lumen distal to the balloon. The balloon inflates against the guidewire and the external wire to prevent slippage and to introduce high focal longitudinal stresses at low inflation pressures. In this initial study, the FX was used in 37 lesions (25 de novo, 12 in-stent; vessel reference diameter=2.73±0.49 mm) in 30 patients. A stepwise inflation protocol and QCA were used to determine the balloon pressure at which the stenosis was resolved (stenosis resolution pressure, SRP). Results: All lesions (100%) were easily reached, crossed and dilated without complication. The SRP was 4.5±2.9 atm, and no balloon slippage was observed. Residual stenosis after FX was 26.39±13.29%. Minor dissections (Types A and B) were observed in eight lesions (21.6%). Target lesion revascularization (TLR) and target vessel revascularization (TVR) at follow-up (8.1±1.5 months) were 8.3% and 12.5%, respectively. Conclusion: The design of the FX is versatile and appears to provide for a safe, effective and improved low-pressure PTCA technique in de novo and in-stent lesions

  2. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  3. Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning-peeling model

    International Nuclear Information System (INIS)

    Loennroth, J-S; Parail, V; Dnestrovskij, A; Figarella, C; Garbet, X; Wilson, H

    2004-01-01

    This paper discusses predictive transport simulations of the type I ELMy high confinement mode (H-mode) with a theory-motivated edge localized mode (ELM) model based on linear ballooning and peeling mode stability theory. In the model, a total mode amplitude is calculated as a sum of the individual mode amplitudes given by two separate linear differential equations for the ballooning and peeling mode amplitudes. The ballooning and peeling mode growth rates are represented by mutually analogous terms, which differ from zero upon the violation of a critical pressure gradient and an analytical peeling mode stability criterion, respectively. The damping of the modes due to non-ideal magnetohydrodynamic effects is controlled by a term driving the mode amplitude towards the level of background fluctuations. Coupled to simulations with the JETTO transport code, the model qualitatively reproduces the experimental dynamics of type I ELMy H-mode, including an ELM frequency that increases with the external heating power. The dynamics of individual ELM cycles is studied. Each ELM is usually triggered by a ballooning mode instability. The ballooning phase of the ELM reduces the pressure gradient enough to make the plasma peeling unstable, whereby the ELM continues driven by the peeling mode instability, until the edge current density has been depleted to a stable level. Simulations with current ramp-up and ramp-down are studied as examples of situations in which pure peeling and pure ballooning mode ELMs, respectively, can be obtained. The sensitivity with respect to the ballooning and peeling mode growth rates is investigated. Some consideration is also given to an alternative formulation of the model as well as to a pure peeling model

  4. Antegrade deligation of iatrogenic distal ureteric obstruction utilising a high pressure balloon dilatation technique.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-02-01

    BACKGROUND: Iatrogenic trauma is the leading cause of ureteric injury with an incidence in abdominal and pelvic surgery varying between 0.4 and 2.5%. CASE: We report a case of ureteric obstruction caused by a haemostatic clip. There was associated rupture of the ureter proximal to the clip with intra-peritoneal leakage of urine. The patient was unfit for surgery and was managed by a novel procedure of endoluminal balloon deligation. CONCLUSION: Ureteric injuries are rare but potentially serious complications. They require prompt diagnosis and management depends on the patients\\' clinical condition, extent of injury and interval from injury to diagnosis. We have successfully demonstrated a new technique to treat ureteric obstruction caused by a haemostatic clip with associated ureteral rupture in a patient unfit for surgery.

  5. Properties of ballooning modes in the Heliotron configurations

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.

    2005-01-01

    The stability of ballooning modes is influenced by the local and global magnetic shear and local and global magnetic curvature so significantly that it is fairly difficult to get those general properties in the three dimensional configurations with strong flexibility due to the external coil system. In the case of the planar axis heliotron configurations allowing a large Shafranov shift, like LHD, properties of the high-mode-number ballooning modes have been intensively investigated. It has been analytically shown that the local magnetic shear comes to disappear in the stellarator-like global magnetic shear region, as the Shafranov shift becomes large. Based on this mechanism and the characteristics of the local and global magnetic curvature, it is numerically shown that the destabilized ballooning modes have strong three-dimensional properties (both poloidal and toroidal mode couplings) in the Mercier stable region, and that those are fairly similar to ballooning modes in the axisymmetric system in the Mercier unstable region. As is well known, however, no quantization condition is applicable to the ballooning modes in the three-dimensional system without symmetry, and so the results of the high-mode-number ballooning modes in the covering space had to be confirmed in the real space. Such a confirmation has been done in the Mercier stable region and also in the Mercier unstable region by using three dimensional linearized ideal MHD stability code cas3d. Confirming the relation between high-mode-number ballooning analyses by the global mode analyses, the method of the equilibrium profile variations has been developed in the tree dimensional system, giving dt/dψ - dP/dψ stability diagram corresponding to the s - α diagram in tokamaks. This method of profile variation are very powerful to investigate the second stability of high-mode-number ballooning modes and has been more developed. Recently it has been applied to the plasma in the inward-shifted LHD

  6. Clinical application of Inoue-balloon in percutaneous transluminal angioplasty for Budd-Chiari syndrome

    International Nuclear Information System (INIS)

    Mei Jian; Qu Jian; Zhu Yaoqing; Wang Lei; Liu Cheng

    2007-01-01

    Objective: To investigate the feasibility and effect of recanalization of inferior vena cava with percutaneous transluminal angioplasty(PTA)by Inoue-balloon. Methods: Eighty-nine patients with Budd-chiari syndrome (BCS )were treated with PTA by Inoue-balloon. Results: After PTA, the median (interquartile range)diameter of hepatic segment inferior vena cava increased from 0.00 (0.20-0.00) cm to 1.90 (2.00 1.47)cm; (P < 0.001), and the mean pressure of inferior vena cava reduced from (20.63 ± 7.22) mmHg to (12.13 ± 5.60) mmHg; (P < 0.001); with only less serious complications as rupture in two cases and without need of prior minor diameter balloon dilation in Inoue-balloon PTA. Conclusion: The advantages of Inoue- balloon PTA for BCS are more reliable and facile than those of polyethylene balloon, and may take the place in the foreseen future. (authors)

  7. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    He Qibing; Peng Qiyang; Qu Wenxiao

    1993-09-01

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  8. Development of a New Coaxial Balloon Catheter System for Balloon-Occluded Retrograde Transvenous Obliteration (B-RTO)

    International Nuclear Information System (INIS)

    Tanoue, Shuichi; Kiyosue, Hiro; Matsumoto, Shunro; Hori, Yuzo; Okahara, Mika; Kashiwagi, Junji; Mori, Hiromu

    2006-01-01

    Purpose. To develop a new coaxial balloon catheter system and evaluate its clinical feasibility for balloon-occluded retrograde transvenous obliteration (B-RTO). Methods. A coaxial balloon catheter system was constructed with 9 Fr guiding balloon catheter and 5 Fr balloon catheter. A 5 Fr catheter has a high flexibility and can be coaxially inserted into the guiding catheter in advance. The catheter balloons are made of natural rubber and can be inflated to 2 cm (guiding) and 1 cm (5 Fr) maximum diameter. Between July 2003 and April 2005, 8 consecutive patients (6 men, 2 women; age range 33-72 years, mean age 55.5 years) underwent B-RTO using the balloon catheter system. Five percent ethanolamine oleate iopamidol (EOI) was used as sclerosing agent. The procedures, including maneuverability of the catheter, amount of injected sclerosing agent, necessity for coil embolization of collateral draining veins, and initial clinical results, were evaluated retrospectively. The occlusion rate was assessed by postcontrast CT within 2 weeks after B-RTO. Results. The balloon catheter could be advanced into the proximal potion of the gastrorenal shunt beyond the collateral draining vein in all cases. The amount of injected EOI ranged from 3 to 34 ml. Coil embolization of the collateral draining vein was required in 2 cases. Complete obliteration of gastric varices on initial follow-up CT was obtained in 7 cases. The remaining case required re-treatment that resulted in complete obstruction of the varices after the second B-RTO. No procedure-related complications were observed. Conclusion. B-RTO using the new coaxial balloon catheter is feasible. Gastric varices can be treated more simply by using this catheter system

  9. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  10. Strong 'Quantum' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas

    International Nuclear Information System (INIS)

    Dewar, R. L.; Cuthbert, P.; Ball, R.

    2000-01-01

    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to ballooning-unstable plasma equilibria in the H-1NF helical axis stellarator and the Large Helical Device (LHD)

  11. Complex Coronary Interventions with the Novel Mozec™ CTO Balloon: The MOZART Registry.

    Science.gov (United States)

    Lupi, Alessandro; Rognoni, Andrea; Schaffer, Alon; Secco, Gioel G; Bongo, Angelo S

    2015-01-01

    Mozec™ CTO is a novel semicompliant rapid-exchange PTCA balloon catheter with specific features dedicated to treat complex coronary lesions like chronic total occlusions (CTOs). However, no data have been reported about the performance of this device in an all-comers population with complex coronary lesions. We evaluated the safety and success rate of Mozec™ CTO balloon in 41 consecutive patients with chronic stable angina and complex coronary lesions (15 severe calcified coronary stenoses, 15 bifurcation lesions with planned two-stent intervention, and 11 CTOs). Safety was assessed reporting the balloon burst rate after inflation exceeding the rated burst pressure (RBP) according to the manufacturer's reference table. Success was defined as the possibility to advance the device further the target lesion. The Mozec™ CTO balloon showed an excellent performance with a 93.3% success in crossing tight and severely calcified lesions (14/15 pts), a 93.3% success in engaging jailed side branches after stent deployment across bifurcations (14/15 pts), and a 90.9% success in crossing CTO lesions (10/11 pts). The burst rate at RBP of the Mozec™ CTO balloon was 6.7% (1/15 balloons) in the tight and severely calcified lesions, 6.7% (1/15 balloons) when dilating jailed vessels, and 9.1% (1/11 balloons) in CTOs. The novel Mozec™ CTO balloon dilatation catheter showed promising results when employed to treat complex lesions in an all-comers population. Further studies should clarify if this kind of balloon might reduce the need of more costly devices like over-the-wire balloons and microcatheters for complex lesions treatment.

  12. The GRAD high-altitude balloon flight over Antarctica

    International Nuclear Information System (INIS)

    Eichhorn, G.; Coldwell, R.L.; Dunnam, F.E.; Rester, A.C.; Trombka, J.I.; Starr, R.; Lasche, G.P.

    1989-01-01

    The Gamma Ray Advanced Detector(GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high altitude balloon at 36 km altitude at a latitude of 78 degree S over Antarctica for observations of gamma radiation emitted by the radioactive decay of 56 Co in the Supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software

  13. The role of flow shear in the ballooning stability of tokamak transport barriers

    International Nuclear Information System (INIS)

    Webster, A.J.; Wilson, H.R.; Scaife, A.M.M.

    2004-01-01

    A tokamak's economic performance is strongly affected by the plasma pressure that it may sustain, which in turn is limited by the maximum pressure gradients that may be supported. Ballooning modes are typically driven unstable by increasing the pressure gradient, and because they can radially extend across many rational surfaces, they can seriously reduce a plasma's energy confinement. Here an eigenmode formulation is used to study the stability of ballooning modes in internal transport barriers ('ITBs'), in which very strong pressure gradients and flow shears may be found. This extends previous studies that used an 'eikonal' formulation, as it enables the study of: ballooning modes with a finite toroidal mode-number n (finite wavelength perpendicular to the magnetic field), to find new solution branches, to obtain the eigenmode structures, and to investigate the effects of a radially varying equilibrium. The structure of a finite n ballooning mode in flow shear is found to be significantly affected by a radially varying equilibrium, and at low flow shears the growth rates are increased above those of modes studied in the limit of n→∞. The different solution branches can couple as the flow shear is increased, leading to a pair of asymmetric mode structures with complex conjugate growth rates. These effects are shown to be a consequence of the mode trying to localize at the most unstable radial location, and its desire to rotate with the flow. In addition, closer to marginal stability a sufficiently strong flow-shear can (at least for some cases), destabilize a previously stable mode

  14. Are drug-coated balloons cost effective for femoropopliteal occlusive disease? A comparison of bare metal stents and uncoated balloons.

    Science.gov (United States)

    Poder, Thomas G; Fisette, Jean-François

    2016-07-01

    To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.

  15. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  16. Percutaneous Transhepatic Cutting Balloon Papillotomy for Removal of Common Bile Duct Stones

    International Nuclear Information System (INIS)

    Oguzkurt, Levent; Ozkan, Ugur; Gumus, Burcak

    2009-01-01

    We report the case of a 66-year-old female who presented with jaundice secondary to recurrent adenocarcinoma of the gallbladder and several common bile duct stones. Percutaneous papillary dilatation was planned to remove the common bile duct stones. Papilla was dilated through the percutaneous approach with an 8-mm peripheral cutting balloon instead of a standard balloon. All the stones were pushed successfully into the duodenum with a saline flush. No complications were encountered. Use of a peripheral cutting balloon for dilatation of the papilla seems to be safe and effective because it has the advantage of controlled incision and dilatation of the target at low pressures.

  17. Immediate and Short-term Follow-Up of Aortic Coarctation Balloon Angioplasty and Stenting

    Directory of Open Access Journals (Sweden)

    Hasan Mottaghi Moghadam

    2017-12-01

    Full Text Available Background Aortic Coarcatation (CoA is one of the congenital heart diseases with the rate of 5-8% of Coronary heart diseases(CHDs. Balloon angioplasty is now one of the effective way of treatment for CoA, native or Re-coarctation (Re-CoA. We aimed to assess the immediate, and short term response to angioplasty and stenting, and also complications. Materials and Methods Balloon angioplasty with our without stenting was performed for 53 patients with native or Re-coarcatation angioplasty (39 balloon angioplasty alone, and 14 balloon and stenting. Pressure gradient across the CoA segment was measured initially by Echo and pre, and Post procedure. Echocardiography was also used for follow up assessment during 24 hours, one and 6 months afterward. Results Among 53 patients, 52.8% were male. There were 98.2% native and 3.8% Re-CoA. The mean age of patients was 8.65 ± 8.37 years, and the mean weight was 25.82±20.73 kg. The mean pressure gradient acrossthe CoA site before angioplasty was 24.88±12.32, and post procedure gradient was 4.77±6.42 (p

  18. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  19. Modified jailed balloon technique for bifurcation lesions.

    Science.gov (United States)

    Saito, Shigeru; Shishido, Koki; Moriyama, Noriaki; Ochiai, Tomoki; Mizuno, Shingo; Yamanaka, Futoshi; Sugitatsu, Kazuya; Tobita, Kazuki; Matsumi, Junya; Tanaka, Yutaka; Murakami, Masato

    2017-12-04

    We propose a new systematic approach in bifurcation lesions, modified jailed balloon technique (M-JBT), and report the first clinical experience. Side branch occlusion brings with a serious complication and occurs in more than 7.0% of cases during bifurcation stenting. A jailed balloon (JB) is introduced into the side branch (SB), while a stent is placed in the main branch (MB) as crossing SB. The size of the JB is half of the MB stent size. While the proximal end of JB attaching to MB stent, both stent and JB are simultaneously inflated with same pressure. JB is removed and then guidewires are recrossed. Kissing balloon dilatation (KBD) and/or T and protrusion (TAP) stenting are applied as needed. Between February 2015 and February 2016, 233 patients (254 bifurcation lesions including 54 left main trunk disease) underwent percutaneous coronary intervention (PCI) using this technique. Procedure success was achieved in all cases. KBD was performed for 183 lesions and TAP stenting was employed for 31 lesions. Occlusion of SV was not observed in any of the patients. Bench test confirmed less deformity of MB stent in M-JBT compared with conventional-JBT. This is the first report for clinical experiences by using modified jailed balloon technique. This novel M-JBT is safe and effective in the preservation of SB patency during bifurcation stenting. © 2017 Wiley Periodicals, Inc.

  20. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate

  1. Generalized math model for simulation of high-altitude balloon systems

    Science.gov (United States)

    Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.

    1985-01-01

    Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.

  2. Ideal ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Lazzaro, E.; O'Rourke, J.; Smeulders, P.; Schmidt, G.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, discharges with β approaching the Troyon-Sykes-Wesson critical value β c for optimised pressure profiles have been produced at low toroidal fields (B T =1.5T). In the second type, extremely high pressure gradients have been produced in the plasma core through pellet injection in the current rise phase of the discharge followed by strong additional heating. The stability of these discharges has been studied with the stability code HBT coupled to the equilibrium identification code IDENTC. The equilibrium pressure and diamagnetic function profiles are determined in IDENTC by an optimisation procedure to fit the external magnetic measurements. The resulting pressure profile in the equatorial plane is then compared with the profile derived from 'direct' measurements, i.e. electron density and temperature profiles measured by the LIDAR diagnostic system, ion-temperature profile measured by the charge-exchange diagnostic system, and ion density profile calculated from the Z eff and electron density profiles. Furthermore, the value of the safety factor q on axis is compared with that determined from polarimetry. When good agreement is found, the output data from IDENTC is passed directly to HBT to carry out the stability analysis. When there is not a good agreement, as in the case of pellet discharges with highly peaked pressure profiles, the equilibrium is reevaluated using the 'experimental' profile and the data from polarimetry. (author) 6 refs., 4 figs

  3. Detecting Seismic Infrasound Signals on Balloon Platforms

    Science.gov (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M.; Garcia, R.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-12-01

    The determination of the interior structure of a planet requires detailed seismic investigations - a process that entails the detection and characterization of seismic waves due to geological activities (e.g., earthquakes, volcanoes, etc.). For decades, this task has primarily been performed on Earth by an ever-expanding network of terrestrial seismic stations. However, on planets such as Venus, where the surface pressure and temperature can reach as high as 90 atmospheres and 450 degrees Celsius respectively, placing seismometers on the planet's surface poses a vexing technological challenge. However, the upper layers of the Venusian atmosphere are more benign and capable of hosting geophysical payloads for longer mission lifetimes. In order to achieve the aim of performing geophysical experiments from an atmospheric platform, JPL and its partners (ISAE-SUPAERO and California Institute of Technology) are in the process of developing technologies for detection of infrasonic waves generated by earthquakes from a balloon. The coupling of seismic energy into the atmosphere critically depends on the density differential between the surface of the planet and the atmosphere. Therefore, the successful demonstration of this technique on Earth would provide ample reason to expect success on Venus, where the atmospheric impedance is approximately 60 times that of Earth. In this presentation, we will share results from the first set of Earth-based balloon experiments performed in Pahrump, Nevada in June 2017. These tests involved the generation of artificial sources of known intensity using a seismic hammer and their detection using a complex network of sensors, including highly sensitive micro-barometers suspended from balloons, GPS receivers, geophones, microphones, and seismometers. This experiment was the first of its kind and was successful in detecting infrasonic waves from the earthquakes generated by the seismic hammer. We will present the first comprehensive analysis

  4. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  5. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    Science.gov (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.

  6. Achilles tests finally nail PWR fuel clad ballooning fears

    International Nuclear Information System (INIS)

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)

  7. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  8. Resistive ballooning modes in W7-AS and W7-X

    International Nuclear Information System (INIS)

    Kaiser, R.

    1993-01-01

    'Critical' pressure gradients due to resistive ballooning modes and their growth rates were computed for the W7-AS stellarator and for a HELIAS configuration with W7-X parameters, and the two configurations were compared. The results are based on the evaluation of a fourth order magnetic differential equation along closed magnetic field lines. The numerical procedure applying a variational approach uses the 'Garching resistive ballooning code', GARBO, which was originally developed for the stability analysis of axisymmetric plasmas. Concerning purely growing modes, this analysis shows that the favourable stability properties of W7-X, already optimized with respect to ideal ballooning modes, persist in the resistive regime: the destabilizing effect of resistivity is largely compensated by the stabilizing contribution of plasma compression. As a consequence, the ideal β limit continues only moderately shifted in the resistive case and likewise ideal ballooning stable equilibria (up to β 0 ≅ 5%) do not become resistively unstable. The situation is different for W7-AS. Greater resistive effects (in comparison with W7-X) are found in a configuration that is already ideally much more unstable. A basic feature in resistive calculations is the occurrence of overstable modes. These modes no longer show a stability threshold and, for realistic values of pressure and resistivity, linear instability is obtained for W7-AS as well as for W7-X, with growth rates and oscillation frequencies in the kilo-Hertz range. (author). 29 refs, 13 figs

  9. Balloon sinuplasty

    OpenAIRE

    Ahmad, Zahoor

    2010-01-01

    Balloon sinuplasty is a technique in endoscopic sinus surgery that involves minimally invasive procedures to dilate the obstructed or stenosed anatomical sinus pathways. Procedure is derived from the well-recognized techinique of angioplasty. This article highlights the procedural methods with review of literature and my personal experience in balloon sinupalsty.

  10. Incremental balloon deflation following complete resuscitative endovascular balloon occlusion of the aorta results in steep inflection of flow and rapid reperfusion in a large animal model of hemorrhagic shock.

    Science.gov (United States)

    Davidson, Anders J; Russo, Rachel M; Ferencz, Sarah-Ashley E; Cannon, Jeremy W; Rasmussen, Todd E; Neff, Lucas P; Johnson, M Austin; Williams, Timothy K

    2017-07-01

    To avoid potential cardiovascular collapse after resuscitative endovascular balloon occlusion of the aorta (REBOA), current guidelines recommend methodically deflating the balloon for 5 minutes to gradually reperfuse distal tissue beds. However, anecdotal evidence suggests that this approach may still result in unpredictable aortic flow rates and hemodynamic instability. We sought to characterize aortic flow dynamics following REBOA as the balloon is deflated in accordance with current practice guidelines. Eight Yorkshire-cross swine were splenectomized, instrumented, and subjected to rapid 25% total blood volume hemorrhage. After 30 minutes of shock, animals received 60 minutes of Zone 1 REBOA with a low-profile REBOA catheter. During subsequent resuscitation with shed blood, the aortic occlusion balloon was gradually deflated in stepwise fashion at the rate of 0.5 mL every 30 seconds until completely deflated. Aortic flow rate and proximal mean arterial pressure (MAP) were measured continuously over the period of balloon deflation. Graded balloon deflation resulted in variable initial return of aortic flow (median, 78 seconds; interquartile range [IQR], 68-105 seconds). A rapid increase in aortic flow during a single-balloon deflation step was observed in all animals (median, 819 mL/min; IQR, 664-1241 mL/min) and corresponded with an immediate decrease in proximal MAP (median, 30 mm Hg; IQR, 14.5-37 mm Hg). Total balloon volume and time to return of flow demonstrated no correlation (r = 0.016). This study is the first to characterize aortic flow during balloon deflation following REBOA. A steep inflection point occurs during balloon deflation that results in an abrupt increase in aortic flow and a concomitant decrease in MAP. Furthermore, the onset of distal aortic flow was inconsistent across study animals and did not correlate with initial balloon volume or relative deflation volume. Future studies to define the factors that affect aortic flow during balloon

  11. Second-generation endometrial ablation technologies: the hot liquid balloons.

    Science.gov (United States)

    Vilos, George A; Edris, Fawaz

    2007-12-01

    Hysteroscopic endometrial ablation (HEA) was introduced in the 1980s to treat menorrhagia. Its use required additional training, surgical expertise and specialized equipment to minimize emergent complications such as uterine perforations, thermal injuries and excessive fluid absorption. To overcome these difficulties and concerns, thermal balloon endometrial ablation (TBEA) was introduced in the 1990s. Four hot liquid balloons have been introduced into clinical practice. All systems consist of a catheter (4-10mm diameter), a silicone balloon and a control unit. Liquids used to inflate the balloons include internally heated dextrose in water (ThermaChoice, 87 degrees C), and externally heated glycine (Cavaterm, 78 degrees C), saline (Menotreat, 85 degrees ) and glycerine (Thermablate, 173 degrees C). All balloons require pressurization from 160 to 240 mmHg for treatment cycles of 2 to 10 minutes. Prior to TBEA, preoperative endometrial thinning, including suction curettage, is optional. Several RCTs and cohort studies indicate that the advantages of TBEA include portability, ease of use and short learning curve. In addition, small diameter catheters requiring minimal cervical dilatation (5-7 mm) and short duration of treatment cycles (2-8 min) allow treatment under minimal analgesia/anesthesia requirements in a clinic setting. Following TBEA serious adverse events, including thermal injuries to viscera have been experienced. To minimize such injuries some surgeons advocate the use of routine post-dilatation hysteroscopy and/or ultrasonography to confirm correct intrauterine placement of the balloon prior to initiating the treatment cycle. After 10 years of clinical practice, TBEA is thought to be the preferred first-line surgical treatment of menorrhagia in appropriately selected candidates. Economic modeling also suggested that TBEA may be more cost-effective than HEA.

  12. Radiosonde pressure sensor performance - Evaluation using tracking radars

    Science.gov (United States)

    Parsons, C. L.; Norcross, G. A.; Brooks, R. L.

    1984-01-01

    The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.

  13. Atmospheric Pressure Indicator.

    Science.gov (United States)

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  14. Status of the NASA Balloon Program

    Science.gov (United States)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-02-01

    In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.

  15. Successful application of MPD (managed pressure drilling) for prevention, control, and detection of borehole ballooning in tight gas reservoir in Cuervito Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, A.; Acevedo, O.; Nieto, L. [Petrobras (United States); Lambarria, J.E. [PEMEX Exploration and Production (Mexico); Perez, H. [Weatherford (United States)

    2011-07-01

    The Cuervito field is an oil play located in the Burgos Basin in northeastern Mexico. In order to reach the highest yielding sands, wells in the Cuervito field are usually set up with 3 casings. However, the ballooning effect, an elastoplastic behavior of a well's walls, occurs during drilling operations, leading to loss of circulation. Two methods, based on geological and geopressure data, were found to minimize this effect: either putting in an extra casing, or using an unconventional drilling technique. As the managed pressure drilling (MPD) technique is less complex and more elegant, a pilot project was implemented using this method on a well. Results showed that MPD minimized lost time and enhanced drilling efficiency. This paper demonstrated that the use of MPD in the Cuervito field is a good solution for identifying and controlling the ballooning effect and this technique was successfully applied to the next 3 wells drilled subsequently.

  16. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  17. Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon

    Science.gov (United States)

    Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.

    2015-09-01

    The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.

  18. Investigation of hot air balloon fatalities.

    Science.gov (United States)

    McConnell, T S; Smialek, J E; Capron, R G

    1985-04-01

    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  19. Variations in pulmonary artery occlusion pressure to estimate changes in pleural pressure.

    Science.gov (United States)

    Bellemare, Patrick; Goldberg, Peter; Magder, Sheldon A

    2007-11-01

    A readily available assessment of changes in pleural pressure would be useful for ventilator and fluid management in critically ill patients. We examined whether changes in pulmonary artery occlusion pressure (Ppao) adequately reflect respiratory changes in pleural pressure as assessed by changes in intraesophageal balloon pressure (Peso). We studied patients who had a pulmonary catheter and esophageal balloon surrounding a nasogastric tube as part of their care (n=24). We compared changes in Ppao (dPpao) to changes in Peso (dPeso) by Bland-Altman and regression analysis. Adequacy of balloon placement was assessed by performing Mueller maneuvers and adjusting the position to achieve a ratio of dPeso to change in tracheal pressure (dPtr) of 0.85 or higher. This was achieved in only 14 of the 24 subjects. We also compared dCVP to dPeso. The dPpao during spontaneous breaths and positive pressure breaths gave a good estimate of Peso but generally underestimated dPeso (bias=2.2 +8.2 and -3.9 cmH2O for the whole group). The dCVP was not as good a predictor (bias=2.9 +10.3 and -4.6). In patients who have a pulmonary artery catheter in place dPpao gives a lower estimate of changes in pleural pressure and may be more reliable than dPeso. The dCVP is a less reliable predictor than changes in pleural pressure.

  20. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  1. Use of CATHENA to model calandria-tube/moderator heat transfer after pressure-tube/calandria-tube ballooning contact

    International Nuclear Information System (INIS)

    Fan, H.Z.; Bilanovic, Z.; Nitheanandan, T.

    2004-01-01

    A study was performed to assess the effect of the calandria-tube/moderator heat transfer after pressure-tube/calandria tube ballooning contact using CATHENA. Results of this study indicated that the analytical tool, CATHENA, can be applied for pool boiling heat transfer on the external surface of a large diameter tube, such as the calandria tube used in CANDU reactors. The methodology in such CANDU-generic study can be used to simulate the tube surface with multiple boiling regimes and to assess the benefits of closely coupling thermalhydraulics modelling and fuel/fuel channel behaviour modelling. CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a one-dimensional, two-fluid thermalhydraulic simulation code designed by AECL to analyse two-phase flow and heat transfer in piping networks. The detailed heat transfer package in CATHENA allows a connection to be established from the multiple solid surfaces of tubes to the surrounding large amount of moderator water, which acts as a heat sink during a postulated loss of coolant event. The generalized heat transfer package within CATHENA allows the tube walls to be divided into several layers in the radial direction and several sectors in the circumferential direction, to account for heat transfer conditions in these two directions. The CATHENA code with the generalized heat transfer package is capable of capturing key pool-boiling phenomena such as nucleate, transition and film boiling heat transfer as well as an ability to model the rewet phenomenon to some extent. A CATHENA input model was generated and used in simulations of selected contact boiling experiment test cases. The transient wall temperatures have been calculated in different portions of the calandria tube. By using this model an adequate agreement was achieved between CATHENA calculation and experimental measurement The CATHENA code enables one to investigate the transient and local thermal-mechanical behaviour of the calandria tube

  2. Post-Transurethral Resection of the Prostate Inflation of Pressure-Controlled Endorectal Balloon-Impact on Postoperative Bleeding: A Preliminary Experimental Pilot Study.

    Science.gov (United States)

    Mohyelden, Khaled; Ibrahim, Hamdy; Abdel-Kader, Osman; Sherief, Mahmoud H; El-Nashar, Ahmed; Shaker, Hosam; Elkoushy, Mohamed A

    2016-02-01

    To evaluate the impact of rectal balloon (RB) inflation on post-transurethral resection of the prostate (TURP) bleeding in patients with symptomatic benign prostatic hyperplasia. After institutional review board approval, patients who were eligible for TURP were randomized into two equal groups, depending on whether they received postoperative endorectal balloon (RB) (GII) or not (GI). The tip of three-way Foley catheter was fixed to a balloon by a blaster strip to prepare air-tight RB. Postoperatively, the RB was inflated for 15 minutes by a pressure-controlled sphygmomanometer. Perioperative data were compared between both groups, including hemoglobin (Hb) deficit 24-hour postoperatively and at time of discharge. Functional outcomes, anorectal complaints, and adverse events were assessed perioperatively and after 1 and 3 months. Fifty patients were enrolled, including 13 (26%) patients who presented with indwelling urethral catheters. Baseline data and mean resected tissue weight were comparable between both groups, including preoperative Hb (p = 0.17). Immediate postoperative Hb deficit was, comparable between GI and GII patients (0.58 ± 0.18 vs 0.60 ± 0.2, p = 0.56) before RB inflation, respectively. However, compared to GI patients, mean Hb deficit significantly decreased in GII patients 24-hour postoperatively (0.2 ± 0.2 vs 0.7 ± 0.3 g, p = 0.002) and at time of discharge (0.8 ± 0.2 vs 1.3 ± 0.4 g, p = 0.003). GII patients needed significantly less postoperative irrigation (2.1 ± 1.6 vs 8.3 ± 1.8 L, p hematuria or clot retention in either group, while there were no anorectal complaints reported by GII patients. Post-TURP endorectal balloon inflation seems to be simple, safe, and an efficient procedure to reduce postoperative bleeding and irrigation volume. It is significantly associated with shorter catheterization time and hospital stay.

  3. Thromboembolic events associated with single balloon-, double balloon-, and stent-assisted coil embolization of asymptomatic unruptured cerebral aneurysms: evaluation with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Takigawa, Tomoji; Suzuki, Kensuke; Sugiura, Yoshiki; Suzuki, Ryotaro; Takano, Issei; Shimizu, Nobuyuki; Tanaka, Yoshihiro; Hyodo, Akio

    2014-01-01

    The introduction of the balloon remodeling and stent-assisted technique has revolutionized the approach to coil embolization for wide-neck aneurysms. The purpose of this study was to determine the frequency of thromboembolic events associated with single balloon-assisted, double balloon-assisted, and stent-assisted coil embolization for asymptomatic unruptured aneurysms. A retrospective review was undertaken by 119 patients undergoing coiling with an adjunctive technique for unruptured saccular aneurysms (64 single balloon, 12 double balloon, 43 stent assisted). All underwent diffusion-weighted imaging (DWI) within 24 h after the procedure. DWI showed hyperintense lesions in 48 (40 %) patients, and ten (21 %) of these patients incurred neurological deterioration (permanent, two; transient, eight). Hyperintense lesions were detected significantly more often in procedures with the double balloon-assisted technique (7/12, 58 %) than with the single balloon-assisted technique (16/64, 25 %, p = 0.05). Occurrence of new lesions was significantly higher with the use of stent-assisted technique (25/43, 58 %) than with the single balloon-assisted technique (p = 0.001). Symptomatic ischemic rates were similar between the three groups. The increased number of microcatheters was significantly related to the DWI abnormalities (two microcatheters, 15/63 (23.8 %); three microcatheters, 20/41 (48.8 %) (p = 0.008); four microcatheters, 12/15 (80 %) (p = 0.001)). Thromboembolic events detected on DWI related to coil embolization for unruptured aneurysms are relatively common, especially in association with the double balloon-assisted and stent-assisted techniques. Furthermore, the number of microcatheters is highly correlated with DWI abnormalities. The high rate of thromboembolic events suggests the need for evaluation of platelet reactivity and the addition or change of antiplatelet agents. (orig.)

  4. ELMs and constraints on the H-mode pedestal: A model based on peeling-ballooning modes

    International Nuclear Information System (INIS)

    Snyder, P.B.

    2002-01-01

    Maximizing the pedestal height while maintaining acceptable ELMs is a key issue for optimizing tokamak performance. We present a model for ELMs and pedestal constraints based upon theoretical analysis of edge instabilities which can limit the pedestal height and drive ELMs. Sharp pedestal pressure gradients drive large bootstrap currents which play a complex dual role in the stability physics. Consequently, the dominant modes are often intermediate-n coupled 'peeling-ballooning' modes, driven both by current and the pressure gradient. A highly efficient new MHD code, ELITE, is used to study these modes, and calculate quantitative stability constraints on the pedestal, including direct constraints on the pedestal height. A model of various ELM types is developed, and quantitatively compared to data from several tokamaks. A number of observations agree with predictions, including ELM onset times, ELM depth, and variation in pedestal height with discharge shape. Projections of pedestal stability constraints for Next Step designs, and nonlinear simulations of peeling-ballooning modes using the BOUT code are also presented. (author)

  5. Overview of and first observations from the TILDAE High-Altitude Balloon Mission

    OpenAIRE

    B. A. Maruca; R. Marino; D. Sundkvist; N. H. Godbole; S. Constantin; V. Carbone; H. Zimmerman

    2017-01-01

    Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest details of it, have mostly been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature hot-wire anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new...

  6. Ballooning instabilities in tokamaks with sheared toroidal flows

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs

  7. Expediency of using pneumatic balloons at the junction of a working face and gate roads

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, O V; Litvinov, Yu G; Ozerova, A S

    1983-02-01

    The paper discusses strata control at longwall faces in thin coal seams. Use of pneumatic balloons instead of timber cribbing at the junction of the face and ventilation road is evaluated. The seam is 0.68 m thick at a depth of 980 m and has gradients from 60 to 63 degrees. The face mined by the Poisk coal cutter is 126 m long. The ventilation road is protected by strips of stowing. Use of pneumatic balloons with an initial pressure of 150 kN instead of timber cribbing with an initial pressure of 30 kN reduces convergence of the roof and the floor at the working face by 39%. Damage to hydraulic props at the working face caused by roof subsidence decreases by 10 to 15%. Convergence rate (measured in mm/d) decreases by 41%. Use of pneumatic balloons for strata control at working faces in thin coal seams is recommended.

  8. High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations

    Science.gov (United States)

    Linford, Joel

    2010-10-01

    Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.

  9. Development of radioactive 166Ho-coated balloon and its dose estimation

    International Nuclear Information System (INIS)

    Park, K. B.; Kim, K. H.; Hong, Y. D.; Park, E. W.

    2000-01-01

    The use of balloon with radioisotope is a promising method to prevent restenosis after transluminal coronary arterial angioplasty or stent implantation. In this study, we have developed a new radioactive coated balloon, which is prepared by coating the surface of existing balloon with 166 Ho instead of being filled with beta sources which emit high energy beta-particles for the purpose of the delivery of sufficient radiation to the vessel wall. To estimate the safety of 166 Ho-coated balloon, leaching test and radiation resistance test of the balloon were performed. The absorbed dose distributions around the 166 Ho-coated balloon were estimated by means of Monte Carlo simulation and the initial activities for optimal therapeutic regimen were determined on the basis of this results

  10. Primary balloon angioplasty for symptomatic, high-grade intracranial stenosis.

    Science.gov (United States)

    Tomycz, Luke; Bansal, Neil K; Lockney, Tim; Strothers, Megan; Connors, John J; Shay, Scott; Singer, Robert J

    2013-01-01

    In light of recent controversy about the safety and efficacy of intracranial stenting, we sought to evaluate our experience with primary balloon angioplasty for symptomatic, high-grade intracranial stenosis. All intracranial angioplasty cases performed at Vanderbilt University Medical Center from 2006 to 2011 were retrospectively reviewed for degree of stenosis pre- and post-procedure. Immediate peri-procedural complications were evaluated as well as one-month and long-term outcomes. A total of 26 patients were included in the study with a mean age of 63.0 years and a mean follow-up of 350.2 days. The average pre-procedure stenosis was 71.2%. The immediate, average post-procedure stenosis was 46.6%, and the average post-procedure stenosis at last angiographic follow-up was 44.5%. Retreatment was required in only 3.8% of patients. The primary end-point of major stroke or death at 30 days was observed in 11.5%, and the overall intra-procedural complication rate was 7.7%. The incidence of stroke or death at last follow-up was 15.4%, which is comparable to the one-year stroke or death rate in the medical arm of the SAMPRISS trial. In this retrospective series, primary balloon angioplasty was found to be effective as a treatment option for symptomatic intracranial stenosis with the risk of stroke or death at 30 days higher than the medical arm of SAMPRIS but lower than the stenting arm. The one-year risk of stroke was comparable to that reported for the one-year outcomes in the SAMPRISS medical arm.

  11. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    International Nuclear Information System (INIS)

    SNYDER, P.B.; WILSON, H.R.; XU, X.Q.; WEBSTER, A.J.

    2004-01-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n ∼ 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces

  12. Pulmonary venous flows reflect changes in left atrial hemodynamics during mitral balloon valvotomy.

    Science.gov (United States)

    Yalçin, Fatih; El-Amrousy, Mahmoud; Müderrisoğlu, Haldun; Korkmaz, Mehmet; Flachskampf, Frank; Tuzcu, Murat; Garcia, Mario G; Thomas, James D

    2002-01-01

    Patients with mitral stenosis have usually blunted pulmonary venous (PV) flow, because of decreased mitral valve area and diastolic dysfunction. The authors compared changes in Doppler PV velocities by using transesophageal echocardiography (TEE) against hemodynamics parameters before and after mitral balloon valvotomy to observe relevance of PV velocities and endsystolic left atrial (LA) pressure-volume relationship. In 25 patients (aged 35 +/- 17 years) with mitral stenosis in sinus rhythm, changes in LA pressure and volumes were compared with PV velocities before and after valvotomy. Mitral valve area, mitral gradients, and deceleration time were obtained. Mitral valve area and mitral gradients changed from 1 +/- 0.2 cm2 and 14.6 +/- 5.4 mmHg to 1.9 +/- 0.3 cm2 and 6.3 +/- 1.7 mmHg, respectively (pLA pressure were correlated with changes in S/D (r=0.57, pLA pressure-volume relationship were also correlated with changes in S/D (r=0.52, pLA pressure-volume relationship decreased after mitral balloon valvotomy, as a result of a large decrease in pressure. PV systolic/diastolic (S/D) waves ratio reflects endsystolic LA pressure-volume relationship and may be used as another indicator of successful valvotomy.

  13. The effect of plasma beta on high-n ballooning stability at low magnetic shear

    Science.gov (United States)

    Connor, J. W.; Ham, C. J.; Hastie, R. J.

    2016-08-01

    An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.

  14. A balloon-borne prototype for demonstrating the concept of JEM-EUSO

    Science.gov (United States)

    von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.

    2014-05-01

    EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.

  15. Retrieving Balloon Data in Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ultra Long Duration Balloon (ULDB) program will soon make flights lasting up to 100 days. Some flights may generate high data rates and retrieving this data...

  16. Extending the golden hour: Partial resuscitative endovascular balloon occlusion of the aorta in a highly lethal swine liver injury model.

    Science.gov (United States)

    Russo, Rachel M; Williams, Timothy K; Grayson, John Kevin; Lamb, Christopher M; Cannon, Jeremy W; Clement, Nathan F; Galante, Joseph M; Neff, Lucas P

    2016-03-01

    Combat-injured patients may require rapid and sustained support during transport; however, the prolonged aortic occlusion produced by conventional resuscitative endovascular balloon occlusion of the aorta (REBOA) may lead to substantial morbidity. Partial REBOA (P-REBOA) may permit longer periods of occlusion by allowing some degree of distal perfusion. However, the ability of this procedure to limit exsanguination is unclear. We evaluated the impact of P-REBOA on immediate survival and ongoing hemorrhage in a highly lethal swine liver injury model. Fifteen Yorkshire-cross swine were anesthetized, instrumented, splenectomized, and subjected to rapid 10% total blood loss followed by 30% liver amputation. Coagulopathy was created through colloid hemodilution. Randomized swine received no intervention (control), P-REBOA, or complete REBOA (C-REBOA). Central mean arterial pressure (cMAP), carotid blood flow, and blood loss were recorded. Balloons remained inflated in the P-REBOA and C-REBOA groups for 90 minutes followed by graded deflation. The study ended at 180 minutes from onset of hemorrhage or death of the animal. Survival analysis was performed, and data were analyzed using repeated-measures analysis of variance with post hoc pairwise comparisons. Mean survival times in the control, P-REBOA, and C-REBOA groups were, 25 ± 21, 86 ± 40, and 163 ± 20 minutes, respectively (p golden hour while maintaining cMAP and carotid flow at physiologic levels.

  17. 21 CFR 874.4100 - Epistaxis balloon.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control internal...

  18. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  19. Energy transport requirements for tokamak reactors in the second ballooning stability regime

    International Nuclear Information System (INIS)

    Potok, R.E.; Bromberg, L.; Cohn, D.R.

    1986-01-01

    The authors present an analysis of ignition confinement constraints on a tokamak reactor operating in the second regime of ballooning stability. This regime is characterized by flat plasma pressure profiles, with a sharp pressure gradient near a conducting first wall at the plasma edge. The energy confinement time is determined by transport processes across the pressure gradient region. The authors have found that the required transport needed for ignition in the edge region is very close to the value predicted by neoclassical ion conductivity scaling. Only by carefully tailoring the conductivity scaling across the flux coordinate were the authors able to match both the kink stability and ignition requirements. With optimistic assumptions, R/sub o/ ≅ 7 m appears to be the minimum major radius for an economical tokamak reactor in the second ballooning stability regime. This paper presents a base design case at R/sub o/ = 7 m, and shows how the reactor design varies with changes in major radius, ion transport scaling, and electron transport scaling

  20. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  1. Collapse of the balloon-expandable stent in the common iliac artery due to minor external compression in a lean patient

    International Nuclear Information System (INIS)

    Park, Sung Eun; Choi, Ho Cheol; Choi, Dae Seob; Lee, Sang Min; Lee, Jung Eun; Cho, Su Beom; Ahn, Jong Hwa

    2017-01-01

    A 60-year-old lean man with claudication due to severe stenosis of the right common iliac artery (CIA) underwent balloon-expandable stent deployment. Nineteen months later, claudication and lower limb ischemia in the patient recurred after minor external pressure and computed tomography indicated collapse of the right CIA stent. We performed balloon angioplasty again and self-expandable stent deployment was performed, and the patient's symptoms were relieved. We suggest that the CIA in a lean person could be susceptible to external pressure

  2. The stability of ideal and resistive ballooning modes in the presence of equilibrium flows

    International Nuclear Information System (INIS)

    Sundaram, A.K.; Sen, A.

    1989-01-01

    Ideal and resistive ballooning modes have been the topic of extensive study in view of their important role in constraining plasma β or in causing degradation in electron energy confinement time. Much of these works in the literature have been done for static equilibrium. Recently several experiments on ISX, PDX and currently on TFTR and JET have demonstrated the presence of toroidal and poloidal flows due to asymmetry in the neutral beam injection (NBI). Also equilibrium flows can arise through diffusive processes in tokamak plasmas. Such flows induced by external sources or dissipative processes affect the form and location of the magnetic surfaces and also modify the density and pressure profiles in the equilibrium. In this paper, we therefore examine the effect of mass flows on the evolution of high (m,n) ideal and resistive ballooning modes using the simplified MHD equations. (author) 2 refs

  3. Rectal Balloon for the Immobilization of the Prostate Internal Motion

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Beak, Jong Geal; Kim, Joo Ho; Jeon, Byong Chul; Cho, Jeong Hee; Kim, Dong Wook; Song, Tae Soo; Cho, Jae Ho; Na, Soo Kyong

    2005-01-01

    The using of endo-rectal balloon has proposed as optimal method that minimized the motion of prostate and the dose of rectum wall volume for treated prostate cancer patients, so we make the customized rectal balloon device. In this study, we analyzed the efficiency of the Self-customized rectal balloon in the aspects of its reproducibility. In 5 patients, for treatment planning, each patient was acquired CT slice images in state of with and without rectal balloon. Also they had CT scanning same repeated third times in during radiation treatment (IMRT). In each case, we analyzed the deviation of rectal balloon position and verified the isodose distribution of rectum wall at closed prostate. Using the rectal balloon, we minimized the planning target volume (PTV) by decreased the internal motion of prostate and overcome the dose limit of radiation therapy in prostate cancer by increased the gap between the rectum wall and high dose region. The using of rectal balloon, although, was reluctant to treat by patients. View a point of immobilization of prostate internal motion and dose escalation of GTV (gross tumor volume), its using consider large efficient for treated prostate cancer patients.

  4. Clinical study of columnar balloon dilatation therapy for severe dysphagia caused by upper esophageal sphincter achalasia after stroke

    Directory of Open Access Journals (Sweden)

    Wei-bo SHAO

    2017-03-01

    Full Text Available Objective To investigate the mechanism and effect of columnar balloon dilatation therapy on treating patients with severe dysphagia caused by upper esophageal sphincter (UES achalasia after stroke. Methods Sixty -four patients with severe dysphagia caused by UES achalasia after stroke were diagnosed through Video Fluoroscopic Swallowing Study (VFSS and esophageal dynamics testing. The patients were randomly divided into control group (N = 32 and treatment group (N = 32. Patients in control group were treated with routine drug treatment and routine rehabilitation training, while patients in treatment group were treated with columnar balloon dilatation therapy on the basis of routine treatment. The treatment end point was either the patient resuming an oral diet or after 4-weeks treatment. All cases were evaluated by swallowing function of VFSS, high resolution manometry (HRM and scores of the severity of dysphagia before treatment and at treatment end point. Results Compared with before treatment, UES resting pressure (P = 0.000 and residual pressure (P = 0.000 were significantly decreased, peak pressure was significantly increased (P = 0.000, duration of relaxation was prolonged (P = 0.000, and scores of the severity of dysphagia were significantly increased (P = 0.000, 0.000 in both groups after treatment. Compared with control group, UES resting pressure (P = 0.001 and residual pressure (P = 0.000 were significantly decreased, peak pressure was significantly increased (P = 0.002, duration of relaxation was prolonged (P = 0.000, and scores of the severity of dysphagia were significantly increased (P = 0.000 in treatment group after treatment. Until the treatment end point or after 4-week treatment, the total effective rate in treatment group was significantly higher than that in control group [93.75% (30/32 vs. 81.25% (26/32; χ2 = 4.010, P = 0.000]. Conclusions Columnar balloon dilatation therapy is effective for reducing the tension of upper

  5. An Overview of Current and Future Stratospheric Balloon Mission Capabilities

    Science.gov (United States)

    Smith, Michael

    The modern stratospheric balloon has been used for a variety of missions since the late 1940's. Capabilities of these vehicles to carry larger payloads, fly to higher altitudes, and fly for longer periods of time have increased dramatically over this time. In addition to these basic performance metrics, reliability statistics for balloons have reached unprecedented levels in recent years. Balloon technology developed in the United States in the last decade has the potential to open a new era in economical space science using balloons. As always, the advantage of the balloon platform is the fact that missions can be carried out at a fraction of the cost and schedule of orbital missions. A secondary advantage is the fact that instruments can be re-flown numerous times while upgrading sensor and data processing technologies from year to year. New mission capabilities now have the potential for enabling ground breaking observations using balloons as the primary platform as opposed to a stepping stone to eventual orbital observatories. The limit of very high altitude balloon missions will be explored with respect to the current state of the art of balloon materials and fabrication. The same technological enablers will also be applied to possibilities for long duration missions at mid latitudes with payloads of several tons. The balloon types and their corresponding mission profiles will be presented in a performance matrix that will be useful for potential scientific users in planning future research programs.

  6. Pre-test prediction and post-test analysis of PWR fuel rod ballooning in the MT-3 in-pile LOCA simulation experiment in the NRU reactor

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The USNRC and the UKAEA have jointly funded a series of in-pile LOCA simulation experiments in the Canadian NRU reactor in order to secure further information on the thermal hydraulic and clad deformation response of PWR fuel rod bundles. Test MT-3 in the series was performed using reflood rate and rod internal pressure conditions specified by the UK nuclear industry. The parameters were selected to ensure the development of a near-isothermal clad temperature history during which zircaloy was required to balloon and rupture near the alpha-alpha/beta phase transition. Specification of the reflood rate conditions was assisted by the performance of a precursor test on an unpressurised rod bundle and by complementary application of appropriate thermal hydraulic analyses. Identification of the rod internal pressure needed to cause ballooning and rupture was achieved using a creep deformation model, BALLOON, in conjunction with the clad thermal history defined by the prior thermal hydraulic test. This paper presents the basis of the BALLOON analysis and describes its application in calculating the fill gas pressure for rods MT-3, their axial ballooning profile and the clad temperature at peak radial strain elevations. (author)

  7. Global assimilation of X Project Loon stratospheric balloon observations

    Science.gov (United States)

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  8. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J.; Dake, S.; Oda, H.; Miyamura, O.; Fuki, M.; Jones, W.V.; Gregory, J.; Hayashi, T.; Takahashi, U.; Tominaga, Y.; Wefel, J.P.; Fountain, W.; Derrickson, J.; Parnell, T.A.; Roberts, E.; Tabuki, T.; Watts, J.W.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  9. Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon.

    Science.gov (United States)

    Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F

    2014-04-01

    Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM.

  10. Fasting and meal-suppressed ghrelin levels before and after intragastric balloons and balloon-induced weight loss

    NARCIS (Netherlands)

    Mathus-Vliegen, E. M. H.; Eichenberger, R. I.

    2014-01-01

    Intragastric balloons may be an option for obese patients with weight loss failure. Its mode of action remains enigmatic. We hypothesised depressed fasting ghrelin concentrations and enhanced meal suppression of ghrelin secretion by the gastric fundus through balloon contact and balloon-induced

  11. Collapse of the balloon-expandable stent in the common iliac artery due to minor external compression in a lean patient

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Eun; Choi, Ho Cheol; Choi, Dae Seob; Lee, Sang Min; Lee, Jung Eun [Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju (Korea, Republic of); Cho, Su Beom; Ahn, Jong Hwa [Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon (Korea, Republic of)

    2017-08-15

    A 60-year-old lean man with claudication due to severe stenosis of the right common iliac artery (CIA) underwent balloon-expandable stent deployment. Nineteen months later, claudication and lower limb ischemia in the patient recurred after minor external pressure and computed tomography indicated collapse of the right CIA stent. We performed balloon angioplasty again and self-expandable stent deployment was performed, and the patient's symptoms were relieved. We suggest that the CIA in a lean person could be susceptible to external pressure.

  12. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  13. Development of an Interferometric Phased Array Trigger for Balloon-Borne Detection of the Highest Energy Cosmic Particles

    Science.gov (United States)

    Vieregg, Abigail

    interferometric phased array trigger for these impulsive radio detectors, a new type of trigger that will improve sensitivity substantially and expedite the discovery of the highest energy particles in our universe. We have developed an 8- channel interferometric trigger board for ground-based applications that will be deployed in December 2017 with the ground-based Askaryan Radio Array (ARA) experiment at the South Pole. Preliminary Monte Carlo simulations indicate that the cosmogenic neutrino event rate will go up by a factor of 3 with the new trigger. The true power of the interferometric trigger is in scaling to large numbers of channels, and the discovery space that is only available from a balloon platform at the highest energies is extremely appealing. We will build on and extend the NASA investment in the ANITA Long Duration Balloon (LDB) mission and the many other complementary particle astrophysics LDB missions by developing the electronics required to bring a large-scale radio interferometric trigger to a balloon platform, extending the scientific reach of any future LDB or Super Pressure Balloon (SPB) mission for radio detection of the highest energy cosmic particles. We will develop an interferometric trigger system that is scalable to O(100) channels and suitable for use on a balloon platform. Under this proposal, we will: 1) Design and fabricate interferometric trigger hardware for balloon-borne cosmic particle detectors that is scalable to large numbers of channels O(100) by reducing the power consumption per channel, increasing the number of channels per board, and developing high-speed communication capability between boards. 2) Perform a trade study and inform design decisions for future balloon missions by further developing our Monte Carlo simulation and adapting it to balloon geometries.

  14. Postoperative Outcomes of Mitral Valve Repair for Mitral Restenosis after Percutaneous Balloon Mitral Valvotomy

    Directory of Open Access Journals (Sweden)

    Seong Lee

    2015-10-01

    Full Text Available Background: There have been a number of studies on mitral valve replacement and repeated percutaneous mitral balloon valvotomy for mitral valve restenosis after percutaneous mitral balloon valvotomy. However, studies on mitral valve repair for these patients are rare. In this study, we analyzed postoperative outcomes of mitral valve repair for mitral valve restenosis after percutaneous mitral balloon valvotomy. Methods: In this study, we assessed 15 patients (mean age, 47.7±9.7 years; 11 female and 4 male who underwent mitral valve repair between August 2008 and March 2013 for symptomatic mitral valve restenosis after percutaneous mitral balloon valvotomy. The mean interval between the initial percutaneous mitral balloon valvotomy and the mitral valve repair was 13.5±7 years. The mean preoperative Wilkins score was 9.4±2.6. Results: The mean mitral valve area obtained using planimetry increased from 1.16±0.16 cm2 to 1.62±0.34 cm2 (p=0.0001. The mean pressure half time obtained using Doppler ultrasound decreased from 202.4±58.6 ms to 152±50.2 ms (p=0.0001. The mean pressure gradient obtained using Doppler ultrasound decreased from 9.4±4.0 mmHg to 5.8±1.5 mmHg (p=0.0021. There were no early or late deaths. Thromboembolic events or infective endocarditis did not occur. Reoperations such as mitral valve repair or mitral valve replacement were not performed during the follow-up period (39±16 months. The 5-year event-free survival was 56.16% (95% confidence interval, 47.467–64.866. Conclusion: On the basis of these results, we could not conclude that mitral valve repair could be an alternative for patients with mitral valve restenosis after percutaneous balloon mitral valvotomy. However, some patients presented with results similar to those of mitral valve replacement. Further studies including more patients with long-term follow-up are necessary to determine the possibility of this application of mitral valve repair.

  15. Application of new balloon catheters in the treatment of congenital heart defects

    Directory of Open Access Journals (Sweden)

    Roland Fiszer

    2016-08-01

    Full Text Available Introduction : Balloon angioplasty (BAP and aortic or pulmonary balloon valvuloplasty (BAV, BPV are well-established treatment options in congenital heart defects. Recently, significant technological progress has been made and new catheters have been implemented in clinical practice. Aim: To analyze the results of BAP, BAV and BPV with the new balloon catheter Valver and its second generation Valver II, which the company Balton (Poland launched and developed. These catheters have not been clinically evaluated yet. Material and methods: We performed 64 interventions with Valver I and Valver II. With Valver I the following procedures were performed: 17 BPV (including 9 in tetralogy of Fallot – TOF, 10 BAV and 27 BAP in coarctations of the aorta (CoA – including 9 native and 18 after surgery. With Valver II ten interventions were done – 3 BPV, 2 pulmonary supravalvular BAP (after switch operations, 2 BAP of recoarctations and 3 other BAP. Age of the patients ranged from a few days to 40 years. Results: All procedures were completed successfully, without rupture of any balloon catheters. The pressure gradient drop was statistically significant in all groups: BPV in isolated pulmonary valvular stenosis 28.1 mm Hg (mean, BPV in TOF 18.7 mm Hg, BAV 32.8 mm Hg, BAP in native CoA 15.4 mm Hg and in recoarctations 18.6 mm Hg. In 3 cases during rapid deflation of Valver I, wrinkles of the balloons made it impossible to insert the whole balloon into the vascular sheath (all were removed surgically from the groin. No such complication occured with Valver II. Conclusions : Valver balloon catheters are an effective treatment modality in different valvular and vascular stenoses.

  16. Two Tethered Balloon Systems

    Science.gov (United States)

    Youngbluth, Otto; Owens, Thomas L.; Storey, Richard W.

    1990-01-01

    Systems take meteorological measurements for variety of research projects. Report describes work done by NASA Langley Research Center in atmospheric research using tethered balloon systems composed of commercially available equipment. Two separate tethered balloon systems described in report have payloads and configurations tailored to requirements of specific projects. Each system capable of measuring atmospheric parameter or species in situ and then telemetering this data in real time to ground station. Meteorological data and concentration of ozone typically measured. Indicates instrumented tethered balloon systems have distinct advantages over other systems for gathering data on troposphere.

  17. The stabilizing effect of core pressure on the edge pedestal in MAST plasmas

    International Nuclear Information System (INIS)

    Chapman, I.T.; Simpson, J.; Saarelma, S.; Kirk, A.; O'Gorman, T.; Scannell, R.

    2015-01-01

    The pedestal pressure measured in Mega Ampere Spherical Tokamak plasmas has been shown to increase as the global plasma pressure increases. By deliberately suppressing the transition into the high-confinement regime, the core plasma pressure was systematically altered at the time of the first edge localized mode. Stability analysis shows that the enhanced Shafranov shift at higher core pressure stabilizes the ballooning modes driven by the pedestal pressure gradient, consequently allowing the pedestal to reach higher pressures. (paper)

  18. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Goedbloed, J.P.; Rem, J.; Sakanaka, P.H.; Schep, T.J.; Venema, M.

    1983-01-01

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  19. ELMs and constraints on the H-mode pedestal: peeling-ballooning stability calculation and comparison with experiment

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2004-01-01

    We review and test the peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints, a model based upon theoretical analysis of magnetohydrodynamic (MHD) instabilities that can limit the pedestal height and drive ELMs. A highly efficient MHD stability code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including constraints on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependent on the density and temperature separately, rather than simply on the pressure. ELITE stability calculations are directly compared with experimental data for a series of plasmas in which the density is varied and ELM characteristics change. In addition, a technique is developed whereby peeling-ballooning pedestal constraints are calculated as a function of key equilibrium parameters via ELITE calculations using series of model equilibria. This technique is used to successfully compare the expected pedestal height as a function of density, triangularity and plasma current with experimental data. Furthermore, the technique can be applied for parameter ranges beyond the purview of present experiments, and we present a brief projection of peeling-ballooning pedestal constraints for burning plasma tokamak designs. (author)

  20. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  1. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  2. Unconventional ballooning structures for toroidal drift waves

    International Nuclear Information System (INIS)

    Xie, Hua-sheng; Xiao, Yong

    2015-01-01

    With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas, gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal positions or with multiple peaks. It is found that these unconventional ballooning structures are associated with different eigen states for the most unstable mode. At weak gradient (low confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground eigen state and the ballooning mode structure becomes unconventional. This result implies that the pedestal of H-mode could have better confinement than L-mode

  3. GRAINE balloon experiment in 2015

    Directory of Open Access Journals (Sweden)

    Rokujo Hiroki

    2017-01-01

    Full Text Available Observations of cosmic gamma rays are important for studying high energy phenomena in the universe. Since 2008, the Large Area Telescope on the Fermi satellite has surveyed the whole gamma-ray sky in the sub-GeV/GeV energy region, and accumurated a large amount of data. However, observations at the low galactic latitude remains difficult because of a lack of angular resolution, increase of background flux originating from galactic diffuse gamma rays, etc. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE is a gamma-ray observation project with a new balloon-borne emulsion gamma-ray telescope. Nuclear emulsion is a high-resolution 3D tracking device. It determines the incident angle with 0.1∘ resolution for 1 GeV gamma rays (1.0∘ for 100 MeV, and has linear polarization sensitivity. GRAINE aims at precise observation of gamma-ray sources, especially in the galactic plane, by repeating long-duration balloon flights with large-aperture-area (10 m2 high-resolution emulsion telescopes. In May 2015, we performed a balloon-borne experiment in Alice Springs, Australia, in order to demonstrate the imaging performance of our telescope. The emulsion telescope that has an aperture area of 0.4 m2 was employed in this experiment. It observed the Vela pulsar (the brightest gamma-ray source in the GeV sky at an altitude of 37 km for 6 hours out of the flight duration of 14 hours. In this presentation, we will report the latest results and the status of the GRAINE project.

  4. Abdominal cavity balloon for preventing a patient's bleeding

    OpenAIRE

    Naber, E.E.H.; Rutten, H.J.T.; Jakimowicz, J.J.; Goossens, R.H.M.; Moes, C.C.M.; Buzink, S.N.

    2007-01-01

    The invention relates to an abdominal cavity balloon for preventing a haemorrhage in a patient's pelvic region, comprising an inflatable balloon, wherein the balloon is pro vided with a smooth surface and with a strip that is flex- urally stiff and formed to follow the balloon's shape for po sitioning the balloon.

  5. Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009

    Directory of Open Access Journals (Sweden)

    D. F. Hurst

    2011-12-01

    Full Text Available We compare coincident, in situ, balloon-borne measurements of temperature (T and pressure (P by two radiosondes (Vaisala RS92, Intermet iMet-1-RSB and similar measurements of relative humidity (RH by RS92 sondes and frost point hygrometers. Data from a total of 28 balloon flights with at least one pair of radiosondes are analyzed in 1-km altitude bins to quantify measurement differences between the sonde sensors and how they vary with altitude. Each comparison (T, P, RH exposes several profiles of anomalously large measurement differences. Measurement difference statistics, calculated with and without the anomalous profiles, are compared to uncertainties quoted by the radiosonde manufacturers. Excluding seven anomalous profiles, T differences between 19 pairs of RS92 and iMet sondes exceed their measurement uncertainty limits (2 σ 31% of the time and reveal a statistically significant, altitude-independent bias of 0.5 ± 0.2 °C. Similarly, RS92-iMet P differences in 22 non-anomalous profiles exceed their uncertainty limits 23% of the time, with a disproportionate 83% of the excessive P differences at altitudes >16 km. The RS92-iMet pressure differences increase smoothly from −0.6 hPa near the surface to 0.8 hPa above 25 km. Temperature and P differences between all 14 pairs of RS92 sondes exceed manufacturer-quoted, reproducibility limits (σ 28% and 11% of the time, respectively. About 95% of the excessive T differences are eliminated when 5 anomalous RS92-RS92 profiles are excluded. Only 5% of RH measurement differences between 14 pairs of RS92 sondes exceed the manufacturer's measurement reproducibility limit (σ. RH measurements by RS92 sondes are also compared to RH values calculated from frost point hygrometer measurements and coincident T measurements by the radiosondes. The influences of RS92-iMet Tand P differences on RH values and water vapor mixing

  6. Asymptotic stability boundaries of ballooning modes in circular tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; Bondeson, A.; Chance, M.S.

    1987-06-01

    The model ballooning mode equation of Connor, Hastie, and Taylor for large-aspect-ratio circular tokamaks is analyzed in the limit of large pressure gradient, and corresponding expressions for stability boundaries are derived. In particular, it is found that for a fixed radial wave number, there exists an infinite sequence of unstable bands, and that minimizing over the radial wave numbers leads to asymptotic merging between the neighboring bands

  7. Calculating Payload for a Tethered Balloon System

    Science.gov (United States)

    Charles D. Tangren

    1980-01-01

    A graph method to calculate payload for a tethered balloon system, with the supporting helium lift and payload equations. is described. The balloon system is designed to collect emissions data during the convective-lift and no-convective-lift phases of a forest fire. A description of the balloon system and a list of factors affecting balloon selection are included....

  8. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhang, Geoffrey G.; Finkelstein, Steven E.; Biagioli, Matthew C.

    2011-01-01

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken with each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 ± 0.002 for contrast/saline solution and 0.808 ± 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 ± 0.010 and 0.781 ± 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.

  9. Stability of Balloon-Retention Gastrostomy Tubes with Different Concentrations of Contrast Material: In Vitro Study

    International Nuclear Information System (INIS)

    Lopera, Jorge E.; Alvarez, Alex; Trimmer, Clayton; Josephs, Shellie; Anderson, Matthew; Dolmatch, Bart

    2009-01-01

    The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm 3 , respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containing a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.

  10. Percutaneous micro-balloon compression for treatment of high risk idiopathic trigeminal neuralgia

    International Nuclear Information System (INIS)

    Zou Jianjun; Ma Yi; Wang Bin; Li Yanfeng; Huang Haitao; Li Fuyong

    2008-01-01

    Objective: To evaluate the clinical effectiveness and complications of percutaneous micro- balloon compression (PMC) of trigeminal ganglion for high risk idiopathic trigeminal neuralgia. Methods: To analyze retrospectively the clinical data of 3053 cases of idiopathic trigeminal nemalgia, of which 804 cases were in high risk, who underwent PMC from Jan. 2001 to Dec. 2007 in our department. Results: 833 procedures were performed on these 804 patients. The immediate effective rate was 97.3%; with recurrence rate of 6.8%, ipsilateral paresthesia incidence 3.7%; and no keratohelcosis with approximately 2/3 masticator, muscles weakness and diplopia 0.2%. Mean follow-up time was 36 months. Conclusions: PMC procedure is very effective for idiopathic trigeminal neuralgia especially in high risk patients, and especially prefer for the pain involved the first branch neuralgia. (authors)

  11. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  12. Scientific ballooning. Proceedings of the symposium on the scientific use of balloons and related technical problems, Innsbruck, Austria, May 29-June 10, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Riedler, W

    1979-01-01

    The book includes works on operational and technical aspects of balloon launching I and II, cooperative balloon campaigns, and new developments in scientific use of balloons. The specific topics discussed are coordinated balloon and rocket measurements of stratospheric wind shears and turbulence, ballooning in Japan and India, magnetospheric processes investigated with data taken from balloon flights, and remote sensing of middle atmosphere winds from balloon platforms.

  13. In vitro analysis of balloon cuffing phenomenon: inherent biophysical properties of catheter material or mechanics of catheter balloon deflation?

    Science.gov (United States)

    Chung, Eric; So, Karina

    2012-06-01

    To investigates the different methods of balloon deflation, types of urinary catheters and exposure to urine media in catheter balloon cuffing. Bardex®, Bard-Lubri-Sil®, Argyle®, Releen® and Biocath® were tested in sterile and E.Coli inoculated urine at 0, 14 and 28 days. Catheter deflation was performed with active deflation; passive deflation; passive auto-deflation; and excision of the balloon inflow channel. Balloon cuffing was assessed objectively by running the deflated balloon over a plate of agar and subjectively by 3 independent observers. Bardex®, Argyle® and Biocath® showed greater degree of catheter balloon cuffing (p deflation was the worst method (p 0.05). Linear regression model analysis confirmed time as the most significant factor. The duration of catheters exposure, different deflation methods and types of catheters tested contributed significantly to catheter balloon cuffing (p < 0.01).

  14. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    Science.gov (United States)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  15. Esophageal achalasia : results of balloon dilation

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-08-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia.

  16. Esophageal achalasia : results of balloon dilation

    International Nuclear Information System (INIS)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young

    1996-01-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia

  17. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.

  18. Early Cosmic Ray Research with Balloons

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Michael, E-mail: michael.walter@desy.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  19. Early Cosmic Ray Research with Balloons

    Science.gov (United States)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  20. Early Cosmic Ray Research with Balloons

    International Nuclear Information System (INIS)

    Walter, Michael

    2013-01-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster

  1. Millimeter and submillimeter observations from the Atacama plateau and high altitude balloons

    Science.gov (United States)

    Devlin, Mark

    2002-05-01

    A new generation of ground-based and sub-orbital platforms will be operational in the next few years. These telescopes will operate from high sites in Chile and Antarctica, and airborne platforms where the atmosphere is transparent enough to allow sensitive measurements in the millimeter and submillimeter bands. The telescopes will employ state-of-the-art instrumentation including large format bolometer arrays and spectrometers. I will discuss the results of our observations in the Atacama region of Chile (MAT/TOCO), our future observations on the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) now under construction, and our proposed Atacama Cosmology Telescope (ACT). .

  2. Ballooning mode second stability region for sequences of tokamak equilibria

    International Nuclear Information System (INIS)

    Sugiyama, L.; Mark, J.W.K.

    A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln γ and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary

  3. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  4. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    Science.gov (United States)

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  5. Clinical, manometric, and ultrasonographic results of pneumatic balloon dilatation vs. lateral internal sphincterotomy for chronic anal fissure: a prospective, randomized, controlled trial.

    Science.gov (United States)

    Renzi, Adolfo; Izzo, Domenico; Di Sarno, Giandomenico; Talento, Pasquale; Torelli, Francesco; Izzo, Giuseppe; Di Martino, Natale

    2008-01-01

    This prospective, randomized, controlled trial was designed to compare the clinical, functional, and morphologic results of pneumatic balloon dilatation with lateral internal sphincterotomy for the treatment of chronic anal fissure. All patients with symptomatic chronic anal fissure were randomly assigned to pneumatic balloon dilatation or lateral internal sphincterotomy and invited to complete a standardized questionnaire inquiring about their symptoms. Anal ultrasonography and anal manometry were performed before and six months after surgery. A proctologic examination was performed between the fifth and sixth postoperative weeks. Anal continence, scored by using a validated continence grading scale, was evaluated preoperatively at 1 and 6 weeks and at 12 and 24 months. Fifty-three patients, who satisfied selection criteria, were enrolled in the trial. Four patients (7.5 percent) were lost to follow-up. Twenty-four patients (11 males; mean age, 42 +/- 8.2 years) underwent pneumatic balloon dilatation and 25 patients (10 males; mean age, 44 +/- 7.3 years) underwent lateral internal sphincterotomy. Fissure-healing rates were 83.3 percent in the pneumatic balloon dilatation and 92 percent in the lateral internal sphincterotomy group. Recurrent anal fissure was observed in one patient (4 percent) after lateral internal sphincterotomy. At anal manometry, mean resting pressure decrements obtained after pneumatic balloon dilatation and lateral internal sphincterotomy were 30.5 and 34.3 percent, respectively. After pneumatic balloon dilatation, anal ultrasonography did not show any significant sphincter damage. At 24-month follow-up, the incidence of incontinence, irrespective of severity, was 0 percent in the pneumatic balloon dilatation group and 16 percent in the lateral internal sphincterotomy group (P < 0.0001). As lateral internal sphincterotomy, pneumatic balloon dilatation grants a high anal fissure-healing rate but with a statistically significant reduction in

  6. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  7. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    Science.gov (United States)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; hide

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  8. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness

    International Nuclear Information System (INIS)

    Bensaleh, S.

    2010-01-01

    The MammoSite ® breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman–Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the 192 Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of ≤2 mm and a maximum source deviation of ≤1 mm.

  9. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won [Konyang University Hospital, Daejeon (Korea, Republic of)

    2005-12-15

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful.

  10. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    International Nuclear Information System (INIS)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won

    2005-01-01

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful

  11. An improved model to predict nonuniform deformation of Zr-2.5 Nb pressure tubes

    International Nuclear Information System (INIS)

    Lei, Q.M.; Fan, H.Z.

    1997-01-01

    Present circular pressure-tube ballooning models in most fuel channel codes assume that the pressure tube remains circular during ballooning. This model provides adequate predictions of pressure-tube ballooning behaviour when the pressure tube (PT) and the calandria tube (CT) are concentric and when a small (<100 degrees C) top-to-bottom circumferential temperature gradient is present on the pressure tube. However, nonconcentric ballooning is expected to occur under certain postulated CANDU (CANada Deuterium Uranium) accident conditions. This circular geometry assumption prevents the model from accurately predicting nonuniform pressure-tube straining and local PT/CT contact when the pressure tube is subjected to a large circumferential temperature gradient and consequently deforms in a noncircular pattern. This paper describes an improved model that predicts noncircular pressure-tube deformation. Use of this model (once fully validated) will reduce uncertainties in the prediction of pressure-tube ballooning during a postulated loss-of-coolant accident (LOCA) in a CANDU reactor. The noncircular deformation model considers a ring or cross-section of a pressure tube with unit axial length to calculate deformation in the radial and circumferential directions. The model keeps track of the thinning of the pressure-tube wall as well as the shape deviation from a reference circle. Such deviation is expressed in a cosine Fourier series for the lateral symmetry case. The coefficients of the series for the first m terms are calculated by solving a set of algebraic equations at each time step. The model also takes into account the effects of pressure-tube sag or bow on ballooning, using an input value of the offset distance between the centre of the calandria tube and the initial centre of the pressure tube for determining the position radius of the pressure tube. One significant improvement realized in using the noncircular deformation model is a more accurate prediction in

  12. Simultaneous stent expansion/balloon deflation technique to salvage failed balloon remodeling.

    Science.gov (United States)

    Ladner, Travis R; He, Lucy; Davis, Brandon J; Froehler, Michael T; Mocco, J

    2016-04-01

    Herniation, with possible embolization, of coils into the parent vessel following aneurysm coiling remains a frequent challenge. For this reason, balloon or stent assisted embolization remains an important technique. Despite the use of balloon remodeling, there are occasions where, on deflation of the balloon, some coils, or even the entire coil mass, may migrate. We report the successful use of a simultaneous adjacent stent deployment bailout technique in order to salvage coil prolapse during balloon remodeling in three patients. Case No 1 was a wide neck left internal carotid artery bifurcation aneurysm, measuring 9 mm×7.9 mm×6 mm with a 5 mm neck. Case No 2 was a complex left superior hypophyseal artery aneurysm, measuring 5.3 mm×4 mm×5 mm with a 2.9 mm neck. Case No 3 was a ruptured right posterior communicating artery aneurysm, measuring 4 mm×4 mm×4.5 mm with a 4 mm neck. This technique successfully returned the prolapsed coil mass into the aneurysm sac in all cases without procedural complications. The closed cell design of the Enterprise VRD (Codman and Shurtleff Inc, Raynham, Massachusetts, USA) makes it ideal for this bailout technique, by allowing the use of an 0.021 inch delivery catheter (necessary for simultaneous access) and by avoiding the possibility of an open cell strut getting caught on the deflated balloon. We hope this technique will prove useful to readers who may find themselves in a similar predicament. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Embolization of carotid-cavernous fistula using a silicone balloon and a tracker-catheter system

    International Nuclear Information System (INIS)

    Kim, Sun Yong; Cho, Kil Ho; Park, Bok Hwan

    1992-01-01

    With the recent introduction and development of the detachable balloon system, it has become the treatment of choice in the management of carotid cavernous fistulas(CCFs). But, since most delivery systems for embolization of CCF mainly depend on flow guidance for balloon delivery, in case of small fistula, pseudo aneurysm and arterialized venous collaterals, failure of balloon embolization can occur. To overcome these limitation, the authors designed and used a new versatile, steerable, and flow-guided detachable balloon system by using a Tracker catheter system with silicone or latex balloons. Using this maneuver, we could get successful fistula occlusion in 7 out of 8 patients (silicone balloon). But in one case, we had to occlude the internal carotid artery at the fistula site, proximal and distal cervical portions of the internal carotid artery. This balloon delivery system proved to provide high selectivity for fistula and relatively ease of handing

  14. Anderson localization and ballooning eigenfunctions

    International Nuclear Information System (INIS)

    Dewar, R.L.; Cuthbert, P.

    1999-01-01

    In solving the ballooning eigenvalue for a low-aspect-ratio stellarator equilibrium it is found that the quasiperiodic behaviour of the equilibrium quantities along a typical magnetic field line can lead to localization of the ballooning eigenfunction (Anderson localization) even in the limit of zero shear. This localization leads to strong field-line dependence of the ballooning eigenvalue, with different branches attaining their maximum growth rates on different field lines. A method is presented of estimating the field-line dependence of various eigenvalue branches by using toroidal and poloidal symmetry operations on the shear-free ballooning equation to generate an approximate set of eigenfunctions. These zero-shear predictions are compared with accurate numerical solutions for the H-1 Heliac and are shown to give a qualitatively correct picture, but finite shear corrections will be needed to give quantitative predictions

  15. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  16. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  17. High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope

    Science.gov (United States)

    Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  18. Application of Electrocautery Needle Knife Combined with Balloon Dilatation versus Balloon Dilatation in the Treatment of Tracheal Fibrotic Scar Stenosis.

    Science.gov (United States)

    Bo, Liyan; Li, Congcong; Chen, Min; Mu, Deguang; Jin, Faguang

    Electrocautery needle knives can largely reduce scar and granulation tissue hyperplasia and play an important role in treating patients with benign stricture. The aim of this retrospective study was to evaluate the efficacy and safety of electrocautery needle knife combined with balloon dilatation versus balloon dilatation alone in the treatment of tracheal stenosis caused by tracheal intubation or tracheotomy. We retrospectively analysed the clinical data of 43 patients with tracheal stenosis caused by tracheotomy or tracheal intubation in our department from January 2013 to January 2016. Among these 43 patients, 23 had simple web-like stenosis and 20 had complex steno sis. All patients were treated under general anaesthesia, and the treatment methods were (1) balloon dilatation alone, (2) needle knife excision of fibrotic tissue combined with balloon dilatation, and (3) needle knife radial incision of fibrotic tissue combined with balloon dilatation. After treatment the symptoms, such as shortness of breath, were markedly improved immediately in all cases. The stenosis degree of patients who were treated with the elec-trocautery needle knife combined with balloon dilatation had better improvement compared with that of those treated with balloon dilatation treatment alone after 3 months (0.45 ± 0.04 vs. 0.67 ± 0.05, p knife combined with balloon dilatation is an effective and safe treatment for tracheal fibrotic stenosis compared with balloon dilatation alone. © 2017 S. Karger AG, Basel.

  19. Diffuse gamma ray measurement above 20 MeV with a balloon borne experiment

    International Nuclear Information System (INIS)

    Parlier, B.; Forichon, M.; Montmerle, T.; Agrinier, B.; Palmeira, R.

    1975-01-01

    During two balloon flights of a spark chamber gamma ray telescope launched from Sao Jose dos Campos (Brazil) in 1973, the growth of the secondary gamma rays in function of the atmospheric pressure has been monitored. The extrapolation to zero residual atmosphere giving evidence of an extraterrestrial flux is discussed [fr

  20. SiPM-based azimuthal position sensor in ANITA-IV Hi-Cal Antarctic balloon experiment

    Science.gov (United States)

    Novikov, A.; Besson, D.; Chernysheva, I.; Dmitrenko, V.; Grachev, V.; Petrenko, D.; Prohira, S.; Shustov, A.; Ulin, S.; Uteshev, Z.; Vlasik, K.

    2017-01-01

    Hi-Cal (High-Altitude Calibration) is a balloon-borne experiment that will be launched in December, 2016 in Antarctica following ANITA-IV (Antarctic Impulsive Transient Antenna) and will generate a broad-band pulse over the frequency range expected from radiation induced by a cosmic ray shower. Here, we describe a device based on an array of silicon photomultipliers (SiPMs) for determination of the azimuthal position of Hi-Cal. The angular resolution of the device is about 3 degrees. Since at the float altitude of ˜38 km the pressure will be ˜0.5 mbar and temperature ˜ - 20 °C, the equipment has been tested in a chamber over a range of corresponding pressures (0.5 ÷ 1000) mbar and temperatures (-40 ÷ +50) °C.

  1. SiPM-based azimuthal position sensor in ANITA-IV Hi-Cal Antarctic balloon experiment

    International Nuclear Information System (INIS)

    Novikov, A; Besson, D; Chernysheva, I; Dmitrenko, V; Grachev, V; Petrenko, D; Shustov, A; Ulin, S; Uteshev, Z; Vlasik, K; Prohira, S

    2017-01-01

    Hi-Cal (High-Altitude Calibration) is a balloon-borne experiment that will be launched in December, 2016 in Antarctica following ANITA-IV (Antarctic Impulsive Transient Antenna) and will generate a broad-band pulse over the frequency range expected from radiation induced by a cosmic ray shower. Here, we describe a device based on an array of silicon photomultipliers (SiPMs) for determination of the azimuthal position of Hi-Cal. The angular resolution of the device is about 3 degrees. Since at the float altitude of ∼38 km the pressure will be ∼0.5 mbar and temperature ∼ − 20 °C, the equipment has been tested in a chamber over a range of corresponding pressures (0.5 ÷ 1000) mbar and temperatures (−40 ÷ +50) °C. (paper)

  2. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  3. Recent activities on the scientific ballooning in Japan

    International Nuclear Information System (INIS)

    Nisimura, J.; Hirosawa, H.

    1984-01-01

    Scientific ballooning is Japan has been organized by the Institute of Space and Astronautical Science, and about 15 balloons have been launched each year from Sanriku Balloon Center that belongs to this Institute. The balloon center is located in the northern part of Japan. The observations cover the field of X-ray, gamma-ray, infrared astronomy, cosmic rays, and atmospheric science. Systems of lon duration flights such as 'Boomerang Balloons', and fine attitude control systems were developed and widely applied to the scientific observations. International collaborative works were performed in Australia and Indonesia last year. Some details of these activities are reported and possible future collaborations with Braziian balloon group are also discussed. (Author) [pt

  4. Observation and nursing of complications due to high re-perfusion injury occurring after balloon angioplasty for diabetic vascular diseases of lower extremity

    International Nuclear Information System (INIS)

    Zhang Lingling; Zhu Yueqi; Mou Ling

    2011-01-01

    Objective: To evaluate the symptomatic nursing in treating the complications caused by high re-perfusion which develops after balloon angioplasty for the treatment of diabetic vascular diseases of lower extremity. Methods: Eighteen patients with lower limb ischemia caused by diabetes mellitus developed high re-perfusion injury complications after receiving balloon angioplasty. The patients were randomly and equally divided into study group and control group. The special nursing measures designed by the author's department, including raising the diseased lower limb, enforcing the flexion and extension movement of the leg, cold compress, wound exposure, etc. were carried out for patients of study group, while no special nursing measures were adopted for patients of control group. The clinical results, such as limb pain, swelling and subcutaneous petechia after re-perfusion injury, were evaluated and compared between two groups. Results: After the treatment, the limb pain, swelling and subcutaneous petechia due to high re-perfusion injury in study group were relieved more markedly than that in control group, the difference in evaluation score between two groups was statistically significant (P<0.01). Conclusion: The special symptomatic nursing measures are very effective in relieving the high re-perfusion injury after balloon angioplasty for the treatment of diabetic lower limb ischemia. (authors)

  5. Overview of the NASA balloon R&D program

    Science.gov (United States)

    Smith, I. Steve, Jr.

    1994-01-01

    The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.

  6. Balloon pulmonary valvotomy – Not just a simple balloon dilatation

    Directory of Open Access Journals (Sweden)

    Subhendu Mohanty

    2014-07-01

    Full Text Available Balloon pulmonary valvotomy is the preferred mode of treatment in patients with isolated pulmonary valvar stenosis and has shown good long term results. It is generally considered a safe procedure with few complications. There have been however, case reports of potentially fatal acute severe pulmonary edema occurring after the procedure in some patients. The cause of this complication and its pathophysiology is still not clear. Its occurrence is also infrequent with less than 5 cases reported till now. We report a case of pulmonary valvar stenosis which developed acute severe refractory pulmonary edema immediately after balloon pulmonary valvotomy.

  7. BOU: Development of a low-cost tethered balloon sensing system for monitoring the lower atmosphere

    Science.gov (United States)

    Picos, Rodrigo; Lopez-Grifol, Alvaro; Martinez-Villagrassa, Daniel; Simó, Gemma; Wenger, Burkhard; Dünnermann, Jens; Jiménez, Maria Antonia; Cuxart, Joan

    2016-04-01

    The study of the atmospheric boundary layer, the lowest part of the atmosphere, and the processes that occur therein often requires the observation of vertical profiles of the main meteorological variables, i.e. air temperature and humidity, wind vector and barometric pressure. In particular, when the interest is focused on the air-surface interactions, a high vertical resolution over the first 500 m is required for the observations to describe the physical processes that occur immediately above the surface. Typically, these needs are covered with the use of captive balloons, which are helium-filled balloons tethered to a winch on the ground and a sensor package suspended a short distance below the balloon. Since the commercial version of such instrumental platforms are scarce and expensive, a new low-cost device has been developed in the last years: BOU (tethered Balloon sonde OWL-UIB). In this paper, we focus on the sensor package and data acquisition system part, that is able to fulfill the low-cost requirements. The system uses a low-cost Arduino Mega board as the processor, and stores all the data in a SD card, though an RF connection is also possible but more unreliable. The system has been configured to sample temperature, humidity, air pressure, wind speed, having also a magnetometer and an accelerometer. Sampling time was 1 second, though it was possible to set it faster. It is worth mentioning that the system is easily reconfigurable, and more sensors can be added. The system is powered by a Polymer battery of 1800mA , allowing the system to run continously for more than 6 hours. The temperature is acquired using three different sensors (a HYT 271 calibrated sensor with an accuracy of ±0.2 °C, plus the internal temperature sensors of the wind and pressure sensors, with accuracies around ±0.5 °C). The humidity is also sensed using the calibrated HYT 271 sensor, which features an accuracy of ±1.8%. Air pressure is sensed using a BMP080 sensor, which

  8. Treatment of symptomatic high-grade intracranial stenoses with the balloon-expandable Pharos stent: initial experience

    International Nuclear Information System (INIS)

    Kurre, W.; Berkefeld, J.; Mesnil de Rochemont, R. du; Sitzer, M.; Neumann-Haefelin, T.

    2008-01-01

    We report our first clinical experience with a CE-marked flexible monorail balloon-expandable stent for treatment of high-grade intracranial stenoses. Between April 2006 and November 2007 21 patients with symptomatic intracranial stenoses (>70%) were treated with the PHAROS stent. In seven patients, the procedure was performed during acute stroke intervention. Procedural success, clinical complication rates and mid-term follow-up data were prospectively recorded. During a median follow-up period of 7.3 months one additional patient died of an unknown cause 3 months after the intervention. A patient with a significant residual stenosis presented with a new stroke after further progression of the residual stenosis. None of the successfully treated patients experienced ipsilateral stroke. Recanalization of intracranial stenoses with the balloon-expandable Pharos stent is technically feasible. The periprocedural complication rate and mid-term follow-up results were in the range of previously reported case series. This pilot study was limited by the small sample size and severe morbidity of the included patients. Final evaluation of the efficacy of Pharos stent treatment demands further investigation. (orig.)

  9. Particle Astrophysics in NASA's Long Duration Balloon Program

    International Nuclear Information System (INIS)

    Gorham, Peter W.

    2013-01-01

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons

  10. Laser welding of balloon catheters

    Science.gov (United States)

    Flanagan, Aidan J.

    2003-03-01

    The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.

  11. NASA Langley Research Center tethered balloon systems

    Science.gov (United States)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  12. Percutaneous balloon valvuloplasty in mitral stenosis

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Oh, Byung Hee; Park, Kyung Ju; Kim, Seung Hyup; Lee, Young Woo; Han, Man Chung

    1989-01-01

    Percutaneous balloon valvuloplasty(PBV) was successfully performed in 8 mitral stenosis patients for recent 3 months. Five patients have aortic insufficiencies also and two patients have mitral regurgitations below grade II/IV. All patients showed sinus rhythm on EKG, and had no mitral valvular calcification on echocardiography and fluoroscopy. PBV resulted in an increase in mitral valve area from 1.22±0.22 to 2.57±0.86 cm 2 , a decrease in mean left atrial pressure from 23.4±9.6 to 7.5±3.4 mmHg and a decrease in mean mitral pressure gradient from 21.3±9.4 to 6.8±3.1 mmHg. There were no significant complications except 2 cases of newly appeared and mildly aggravated mitral regurgitation. We believe that PBV will become a treatment modality of choice replacing surgical commissurotomy or valve replacement in a group of mitral stenosis patients, because of its effectiveness and safety

  13. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  14. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  15. Gigantic balloon type artificial lightning generator

    Energy Technology Data Exchange (ETDEWEB)

    Horii; kenji

    1988-09-05

    This paper outlines a hot-air balloon type Van de Graaf 50-MV generator which can generate a 50,000,000 V, 0.2 to 0.3 coulomb artificial lightning comparable to natural lightning discharge and reports the results of investigation on discharging experiments conducted using this apparatus. The subjects covered are as follows: (1) Outline of the hot-air balloon type Van de Graaf 50-MV generator, (2) electric characteristics of the Van de Graaf 50-MV generator, (3) charge transfer with film and balloon charging, (4) the load of the balloon and buoyancy calculation, (5) leakage of charges, (6) study of charging experiments, and (7) evaluation of the apparatus and its method and problems to be solved. (4 figs, 4 tabs, 4 refs)

  16. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  17. Balloon cell nevus of the iris.

    Science.gov (United States)

    Morcos, Mohib W; Odashiro, Alexandre; Bazin, Richard; Pereira, Patricia Rusa; O'Meara, Aisling; Burnier, Miguel N

    2014-12-01

    Balloon cell nevus is a rare histopathological lesion characterized by a predominance of large, vesicular and clear cells, called balloon cells. There is only 1 case of balloon cell nevus of the iris reported in the literature. A 55 year-old man presented a pigmented elevated lesion in the right iris since the age of 12 years old. The lesion had been growing for the past 2 years and excision was performed. Histopathological examination showed a balloon cell nevus composed of clear and vacuolated cells without atypia. A typical spindle cell nevus of the iris was also observed. The differential diagnosis included xanthomatous lesions, brown adipocyte or other adipocytic lesions, clear cell hidradenoma, metastatic clear cell carcinoma of the kidney and clear cell sarcoma. The tumor was positive for Melan A, S100 protein and HMB45. Balloon cell nevus of the iris is rare but should be considered in the differential diagnosis of melanocytic lesions of the iris. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  19. Balloon dacryocystoplasty: Incomplete versus complete obstruction of the nasolacrimal system

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Lee, Sang Hoon; Han, Young Min; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul; Song, Ho Young

    1993-01-01

    Balloon dilatation of nasolacrimal drainage apparatus was attempted for the treatment of stenoses or obstructures of the nasolacrimal system in 49 eyes of 41 consecutive patients with complete obstructions and 16 eyes of 14 patients with incomplete obstructions. These two groups were compared with regards to the effectiveness of balloon dacryocystoplasty. All patients suffered from severe epiphora had already undergone multiple probings. A 0.018 inch hair or ball guide wire was introduced through the superior punctum into the inferior meatus of the nasal cavity and pulled out through the nasal aperture using a hemostat under nasal endoscopy. A deflated angiography balloon catheter was then introduced in a retrograde direction and dilated under fluoroscopic control. No major complications occurred in any of the patients. At 7 days after balloon dilatation, 25 of 49 eyes with complete obstruction demonstrated improvement in epiphora (initial success rate: 51.0%) and among them 17 eyes showed complete resolution of symptoms. Reocclusion occurred in 12 of the 25 eyes with initial improvement at the 2 months follow up. For the 16 eyes with incomplete obstruction, and improvement of epiphora was attained in 11 eyes (initial success rate 68.8%): 5 of these eyes showed complete resolution of epiphora, and 3 was failed to maintain initial improvement at the 2 month follow up. Although this study demonstrate that results of balloon dacryocystoplasty are not encouraging because of the high failure and recurrence rate, balloon dacryocystoplasty is a simple and safe nonsurgical technique that can be used to treat for obstructions of the nasolacrimal system. In addition, balloon dacryocystoplasty shows better results in incomplete obstruction than in complete obstruction than complete obstruction of the nasolacrimal system

  20. Transition to chaos for ballooning modes stabilized by finite Larmor radius effects

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, J; Wilhelmsson, H [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Elektromagnetisk Faeltteori

    1983-08-01

    The nonlinear dynamics of interacting ballooning modes, stabilized by finite Larmor radius effects is analyzed in terms of a set of equations, which exhibit stochastic properties. These are explicitly shown to depend on the balance between shear and driving pressure force. The onset of bifurcations and chaotic behaviour are directly identified with certain values of parameters characterizing the physical system.

  1. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  2. Effects of alpha populations on tokamak ballooning stability

    International Nuclear Information System (INIS)

    Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.

    1986-01-01

    Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. This effect is of particular importance in parameter regimes where the alpha pressure gradient begins to constitute a sizable fraction of the thermal plasma pressure gradient. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependence have been examined

  3. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  4. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  5. Original monitoring of desert dust in African air masses transported over the Mediterranean Sea by quasi-Lagrangian drifting balloons and sounding balloons during the summer 2013 ChArMEx field campaign

    Science.gov (United States)

    Dulac, F.; Renard, J. B.; Durand, P.; Denjean, C.; Bourgeois, Q.; Vignelles, D.; Jeannot, M.; Mallet, M.; Verdier, N.

    2017-12-01

    This study focuses on in situ balloon-borne measurements of mineral dust from summer regional field campaigns in the western Mediterranean basin performed in the framework of ChArMEx (the Chemistry and Aerosol Mediterranean Experiment; see special issue https://www.atmos-chem-phys.net/special_issue334.html). Due to long-range transport from Africa, the lower troposphere over this regional sea is subject to high levels of desert dust with a maximum during the long dry and sunny Mediterranean summer season. Based on developments of boundary-layer pressurized balloons (BLPBs) and of a dedicated optical particle counter named LOAC (Light Optical Aerosol Counter/sizer), we were able to perform original quasi-Lagrangian monitoring of desert dust aerosols over the sea. The strategy combined classical sounding balloons and drifting BLPBs to document both the vertical distribution and long-range transport. A total of 27 LOAC flights were successfully conducted from Minorca Isl. (Spain) or Levant Isl. (France), during 4 Saharan dust transport events, including 10 flights with BLPBs at drifting altitudes between 2.0 and 3.3 km above sea level. The longest flight exceeded 700 km and lasted more than 25 h. Numerous tests and validations of LOAC measurements were performed to qualify the instrument, including comparisons with concurrent airborne measurements, sounding balloons, and remote sensing measurements with an AERONET sun-photometer, and a ground-based and the CALIOP lidar systems. Aerosol optical depths in the balloon vicinity did not exceed about 0.4 but the presence of turbid dust layers was confirmed thanks to dual scattering angle measurements by LOAC allowing the identification of dust particles. LOAC data could generally be fitted by a 3-mode lognormal distribution at roughly 0.2, 4 and 30 µm in modal diameter. Up to about 10-4 dust particles larger than 40 µm per cm3 are reported and no significant evolution of the size distribution was observed during the

  6. Diagnostic examination of the urethra in the female and double-balloon urethrography as a diagnostic method

    International Nuclear Information System (INIS)

    Madeja, C.; Mutze, S.; Poetzschke, B.; Tunn, R.; Heinrich, G.; Hamm, B.

    1997-01-01

    The double-balloon urethrography can be recommended as an efficient diagnostic method for examination of the urethra in the female patient. Because of its improved controllability, retrograde application of the contrast agent is superior to other techniques. Complications can be avoided by maintaining constant pressure during contrast agent application. The few commercially available double-balloon instruments suffer from a number of deficiencies which are the reason for this technique having met with low acceptance, thus being only rarely applied. In addition, application of the instrument is not easy. Nevertheless, this diagnostic technique would deserve much more frequent application. (orig.) [de

  7. Boston's balloon dilatation for treatment of cardiac achalasia

    International Nuclear Information System (INIS)

    Yin Jianguo; Song Jinwen; Yang Yan; Liu Xiaohong; Fu Zhiming; Zhang Yaqin

    2001-01-01

    Objective: To review and summarize effectiveness and method of the Boston's balloon dilation in cardiac achalasia. Methods: The intensified guide wire was inserted into stomach through mouth cavity under TV control. The Boston's balloon was inserted to the cardiac stricture through the guide wire and dilatated with 15% contrast medium with to a maximum diameter for five minutes and then the balloon was dilatated again for 3-5 minutes, all together for 3-4 times. The severe stricture must be pre-dilatated with 20-25 mm diameter balloon. Results: The balloon insertion was technically successful in all 26 patients. The once success of balloon dilation was achieved in 24 patients and twice in other 2. Follow-up time was from 2 weeks to 31 months (mean 10.6 months). Recurrent stenosis had not occurred in all patients. Remission rate of dysphagia was 100%. Esophageal reflux occurred in 3 patients. Conclusions: The Boston's balloon dilatation is simple and effective for treatment of cardiac achalasia. The method sometimes may replace surgical procedure

  8. Clinical experience with the Monorail balloon catheter for coronary angioplasty.

    Science.gov (United States)

    Finci, L; Meier, B; Roy, P; Steffenino, G; Rutishauser, W

    1988-01-01

    The Monorail balloon catheter is distinctly different from other current balloon catheters: the guidewire passes through the balloon itself, exits the catheter proximal to the balloon, and runs alongside its small shaft (3 French) through the guiding catheter. Monorail coronary angioplasty was attempted in 61 patients on 73 lesions with balloons from 2.0 to 3.7 mm. Angiographic success was obtained in 66 lesions (90%). For 15 lesions, balloon exchanges were needed. In three lesions, the Monorail balloon failed to cross the lesion, while a standard balloon succeeded; two lesions could not be crossed with any balloon. Vessel occlusion occurred in four patients: two had emergency surgery without infarct (one died suddenly 4 days later and one had a stroke 1 day later), one was recanalized with a standard balloon, and one had a myocardial infarct. Continuous infusion of urokinase was used until patient 3 in whom problems with the delivery system led to cardiocerebral air embolization (with complete recovery). No thrombotic complications were observed in the subsequent 58 patients with only a bolus of 10,000 U of heparin. The Monorail balloon facilitates contrast injections and balloon exchanges but appears more difficult to pass through tight lesions. Omission of the previously recommended infusion with a thrombolytic agent proved safe.

  9. The Micro-Instrumentation Package: A Solution to Lightweight Ballooning

    Science.gov (United States)

    Juneau, Jill

    This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit

  10. Use of monorail PTCA balloon catheter for local drug delivery.

    Science.gov (United States)

    Trehan, Vijay; Nair, Girish M; Gupta, Mohit D

    2007-01-01

    We report the use of monorail coronary balloon as an infusion catheter to give bailout abciximab selectively into the site of stent thrombosis as an adjunct to plain old balloon angioplasty (POBA) in a patient of subacute stent thrombosis of the left anterior descending coronary artery. The balloon component (polyamide material) of the monorail balloon catheter was shaved off the catheter so that abciximab injected through the balloon port of the catheter exited out the shaft of the balloon catheter at the site from where the balloon material was shaved off. We believe that selective infusion with abciximab along with POBA established antegrade flow and relieved the patient's ischemia. In the absence of essential hardware to give intracoronary drugs in an emergency situation, one may employ our technique of infusion through a monorail balloon catheter after shaving the balloon component from the catheter.

  11. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  12. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  13. Balloon dacryocystoplasty study in the management of adult epiphora.

    LENUS (Irish Health Repository)

    Fenton, S

    2012-02-03

    PURPOSE: To determine the efficacy of dacryocystoplasty with balloon dilation in the treatment of acquired obstruction of the nasolacrimal system in adults. METHODS: Balloon dacryocystoplasty was performed in 52 eyes of 42 patients under general anaesthetic. A Teflon-coated guidewire was introduced through the canaliculus and manipulated through the nasolacrimal system and out of the nasal aperture. A 4 mm wide 3 cm coronary angioplasty balloon catheter was threaded over the guidewire in a retrograde fashion and dilated at the site of obstruction. RESULTS: There was complete obstruction in 30% of cases and partial obstruction in 70%. The most common site of obstruction was the nasolacrimal duct. The procedure was technically successful in 94% of cases. The overall re-obstruction rate was 29% within 1 year of the procedure. There was an anatomical failure rate of 17% for partial obstruction and 69% for complete obstruction within 1 year. CONCLUSIONS: Balloon dacryocystoplasty has a high recurrence rate. There may be a limited role for this procedure in partial obstructions. Further refinements of the procedure are necessary before it can be offered as a comparable alternative to a standard surgical dacryocystorhinostomy.

  14. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    Science.gov (United States)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall

  15. Experiments on ballooning in pressurized and transiently heated Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Markiewicz, M.E.; Erbacher, F.J.

    1988-02-01

    Single-rod burst tests were performed with Atucha I Zircaloy-4 cladding tubes in the REBEKA burst equipment of KfK. The objective was to investigate the ballooning and burst behavior of argentine cladding tubes obtained from NRG, Germany and CONVAR, Argentina. The burst data were compared with those of cladding tubes used in german PWR's. It was found that the burst data e.g. burst temperature, circumferential burst strain and its response to azimuthal temperature differences are identical for the Argentine and German tubing quality. The burst data are in good agreement with those of German PWR-Zircaloy tubes. Thus, the fuel rod behavior codes developed for German PWR's can also be used for the Argentine reactor Atucha I. (orig.) [de

  16. Ballooning behavior in the golden orbweb spider Nephilapilipes (Araneae: Nephilidae

    Directory of Open Access Journals (Sweden)

    Vanessa M.J. Lee

    2015-01-01

    Full Text Available Ballooning, a mode of aerial dispersal in spiders, is an innate behavior that requires appropriate physiological and meteorological conditions. Although only rarely reported in the golden orbweb spiders, family Nephilidae, the large geographic distributions of most nephilids—in particular of Nephila species—would imply that these spiders likely routinely disperse by ballooning in spite of giant female sizes. Here we study ballooning behavior in the golden orbweb spider Nephila pilipes (Fabricius, 1793. Specifically, we test for the propensity of spiderlings to deploy ballooning as a dispersal mechanism. We subjected a total of 59 first-instar spiderlings to a wind experiment at two wind speeds (2.17 ± 0.02 m s-1 and 3.17 ± 0.02 m s-1 under laboratory conditions. Under an average wind speed of 3.17 m s-1, none of the spiderlings exhibited pre-ballooning or ballooning behavior. However, at an average wind speed of 2.17 m s-1, 53 (89.8% spiderlings showed pre-ballooning behavior, and 17 (32.1% of the pre-ballooners ultimately ballooned. Our results concur with prior reports on spiderlings of other families that pre-ballooning behavior is a requirement for ballooning to occur. Furthermore, although we cannot rule out other dispersal mechanisms such as synanthropic spread, our findings suggest that the widespread N. pilipes uses ballooning to colonize remote oceanic islands.

  17. Retrograde transurethral balloon dilation of the prostate

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Wasserman, N.F.; Lund, G.; Hulbert, J.; Hunter, D.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1986-01-01

    A series of patients with documented benign prostatic hypertrophy evaluated by urodynamic studies, voiding cystourethrography, retrograde urethrography, and MR imaging underwent dilation performed using a retrograde transurethral approach with 25-mm balloon dilators inflated at a pressure of 3-4 atm for 10 minutes. Immediately after the procedure, retrograde and voiding cystourethrography as well as MR imaging were performed. A Foley catheter was left in place for 24 hours. Complete relief of symptoms has occurred in all of the patients during the follow-up period. No significant complications other than transient hematuria resulted from the procedure. Results of the comparison studies and of MR imaging are discussed

  18. Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms

    Science.gov (United States)

    Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.

    2018-02-01

    We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.

  19. Optimizing logistics for balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices by doing away with the indwelling balloon: concept and techniques.

    Science.gov (United States)

    Saad, Wael E; Nicholson, David B

    2013-06-01

    Since the conception of balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices 25 years ago, the placement of an indwelling balloon for hours has been central to the BRTO procedure. Numerous variables and variations of the BRTO procedure have been described, including methods to reduce sclerosant, combining percutaneous transhepatic obliteration, varying sclerosant, and using multiple sclerosants within the same procedure. However, the consistent feature of BRTO has always remained the indwelling balloon. Placing an indwelling balloon over hours for the BRTO procedure is a logistical burden that taxes the interventional radiology team and hospital resources. Substituting the balloon with hardware (coils or Amplatzer vascular plugs [AVPs] or both) is technically feasible and its risks most likely correlate with gastrorenal shunt (GRS) size. The current authors use packed 0.018- or 0.035-in coils or both for small gastric variceal systems (GRS size A and B) and AVPs for GRS sizes up to size E (from size A-E). The current authors recommend an indwelling balloon (no hardware substitute) for very large gastric variceal system (GRS size F). Substituting the indwelling balloon for hardware in size F and potentially size E GRS can also be risky. The current article describes the techniques of placing up to 16-mm AVPs through balloon occlusion guide catheters and then deflating the balloon once it has been substituted with the AVPs. In addition, 22-mm AVPs can be placed through sheaths once the balloon occlusion catheters are removed to further augment the 16-mm Amplatzer occlusion. To date, there are no studies describing, let alone evaluating, the clinical feasibility of performing BRTO without indwelling balloons. The described techniques have been successfully performed by the current authors. However, the long-term safety and effectiveness of these techniques is yet to be determined. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Intraluminal Palmaz stent implantation. First clinical case report on a balloon-expandable vessel prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Palmaz, J C; Richter, G M; Noeldge, G; Kauffmann, G W; Wenz, W

    1987-12-01

    A 74-year-old patient suffering from severe iliac artery stenosis and claudication was chosen to be the first candidate in the world to receive the Palmaz stent, a balloon-expandable intraluminal stent. This procedure was done in the Department of Radiology, University of Freiburg, FRG. The intervention and postprocedural course were uneventful. His walking distance improved from less than 100 m to unlimited walking capacity. The intra-arterial pressure gradient and ankle-arm pressure ratio also returned to normal.

  1. The Titan Sky Simulator ™ - Testing Prototype Balloons in Conditions Approximating those in Titan's Atmosphere

    Science.gov (United States)

    Nott, Julian

    This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical

  2. Giant High-Flow Type Pulmonary Arteriovenous Malformation: Coil Embolization with Flow Control by Balloon Occlusion and an Anchored Detachable Coil

    International Nuclear Information System (INIS)

    Kanematsu, Masayuki; Kondo, Hiroshi; Goshima, Satoshi; Tsuge, Yusuke; Watanabe, Haruo; Moriyama, Noriyuki

    2012-01-01

    Pulmonary arteriovenous malformations (PAVMs) are often treated by pushable fibered or non-fibered microcoils, using an anchor or scaffold technique or with an Amplatzer plug through a guiding sheath. When performing percutaneous transcatheter microcoil embolization, there is a risk of coil migration, particularly with high-flow type PAVMs. The authors report on a unique treatment in a patient with a giant high-flow PAVM whose nidus had a maximum diameter of 6 cm. A detachable coil, not detached from a delivery wire (an anchored detachable coil), was first placed in the feeding artery under flow control by balloon occlusion, and then multiple microcoils were packed proximally to the anchored detachable coil. After confirming the stability of the microcoils during a gradual deflation of the balloon, we finally released the first detachable coil. The nidus was reduced in size to 15 mm at one year postoperatively.

  3. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  4. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  5. 21 CFR 884.5050 - Metreurynter-balloon abortion system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...

  6. Simulation of peeling-ballooning modes with pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. Y. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Huang, J.; Sun, T. T.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2014-11-15

    The influence of pellet ablation on the evolution of peeling-ballooning (P-B) modes is studied with BOUT++ code. The atoms coming from pellet ablation can significantly reshape the plasma pressure profile, so the behaviors of P-B modes and edge localized mode (ELM) are modified dramatically. This paper shows that the energy loss associated with an ELM increases substantially over that without the pellet, if the pellet is deposited at the top of the pedestal. On the contrary, for pellet deposition in the middle of the pedestal region the ELM energy loss can be less.

  7. Development of indigenous linear low-density polyethylene film and other related techniques for heavy-load balloons in India

    Science.gov (United States)

    Redkar, R. T.

    1993-02-01

    A new grade of balloon film extruded out of LLDPE resin with Butene as comonomer and Cold Brittle Point (CBP) at -88°C was extruded and successfully flight tested with a 25 micron single shell 53,000 Cu.M. balloon carrying 330 Kg. payload to 33 Km. altitude. We have also produced superior LLDPE film out of Dowlex 2045 Dow Chemicals resin with Octene as comonomer, which has the cold brittle point lower than -90°C and superior mechanical properties at low temperatures. A high pressure hydrogen filling system capable of delivering 2200 Cu.Ft. of hydrogen per minute has been commissioned and successfully utilised in 11 flights. With this new filling system, the inflation time is drastically reduced by over 50% thereby reducing the duration of pre-launch stresses on the ground bubble. After the acceptance of our revised design criteria for balloons to be flown from equatorial latitudes by M/s.Winzen International Inc., U.S.A., 41 flights have been made, out of which 36 have been successful giving us a success record of 88%. Out of the 5 failures, 3 have been float failures with gross inflations exceeding 1950 kg, for which launch spool damage is a suspect. To reduce the spool damage, the shell thickness of the subsequent balloon was increased to 20.32 microns from 17.78 microns and the flight was a success. For further reducing the possibility of launch spool damage, a larger diameter spool is being designed.

  8. Balloon launching station, Mildura, Victoria

    International Nuclear Information System (INIS)

    The Mildura Balloon Launching Station was established in 1960 by the Department of Supply (now the Department of Manufacturing Industry) on behalf of the United States Atomic Energy Commission (USAEC) to determine the content of radioactive material in the upper atmosphere over Australia. The Station location and layout, staffing, balloon launching equipment, launching, tracking and recovery are described. (R.L.)

  9. [Balloon cell nevi of the conjunctiva (author's transl)].

    Science.gov (United States)

    Schlageter, P E; Daicker, B

    1975-06-01

    The clinical and histological features of three cases of conjunctival balloon cell nevi are described. This peculiar form of nevus is very rare in the conjunctiva. The findings are compared with the descriptions in the literature of dermal balloon cell nevi. They demonstrate, that the conjunctival and dermal tumours are of idential histological structure. The proliferations of the conjunctival epithelium often found in conjunctival nevi do not modify the balloon cell nevi. These can not be diagnosed clinically. The problems of the pathogenesis of the balloon cell nevi are discussed.

  10. Operator's Manual for SHEBA Powered Tether Balloon System

    Science.gov (United States)

    Lappen, Cara-Lyn; Randall, David A.

    1998-01-01

    The Surface Heat and Energy Budget of the Arctic (SHEBA) was an intensive field project which took place in the Arctic Ocean from October 1997 through October 1998. Its purpose was to measure as many facets of the Arctic environment as possible so that we would be able to better understand the interaction between the ice, atmosphere, and ocean and their interactions with global climate. One aspect of the atmospheric field component was launching tethered balloons to monitor the profiles of temperature, wind, pressure, and humidity, as well as examine the vertical structure of cloud droplet sizes and distributions. The tethered balloon that we used was one specially designed for use in freezing climates by SPEC Corporation in Boulder, Colorado. A special winch that was able to withstand Arctic temperature and weather became necessary when the testing of simple winch systems used in warmer climates failed under these extreme conditions. The purpose of this manual is to acquaint any new user to the powered tethered balloon system deployed at the The Surface Heat and Energy Budget of the Arctic (SHEBA ice camp. It includes a description of the preparations necessary to get ready for a launch, the mechanics of the actual launch, and an account of the proper procedure for taking down the equipment when finished. It will also include tips on how to minimize potential equipment failures, some trouble shooting, and some safety ideas. This manual is designed so that new operators can use the system with minimal previous training. At the end of this manual, the reader will find a quick checklist.

  11. Drug-Coated Balloon Angioplasty: A Novel Treatment for Pulmonary Artery In-Stent Stenosis in a Patient with Williams Syndrome.

    Science.gov (United States)

    Cohen, Jennifer L; Glickstein, Julie S; Crystal, Matthew A

    2017-12-01

    A 20-month-old boy with Williams syndrome had undergone multiple surgical and catheter-based interventions for resistant peripheral pulmonary arterial stenoses with eventual bilateral stent placement and conventional balloon angioplasty. He persistently developed suprasystemic right ventricular (RV) pressure. Angioplasty with a drug-coated balloon (DCB) was performed for in-stent restenosis and to remodel his distal pulmonary vessels bilaterally. This resulted in immediate improvement in the in-stent stenosis and resultant decrease in RV pressure. Follow-up catheterization two months later continued to show long-lasting improvement in the in-stent stenosis. We hypothesize that the anti-proliferative effects of DCBs may be of benefit in the arteriopathy associated with Williams syndrome. We report this as a novel use of a DCB in the pulmonary arterial circulation in a patient with Williams syndrome.

  12. Treatment of intracranial atherosclerotic stenoses with balloon dilatation and self-expanding stent deployment (WingSpan)

    Energy Technology Data Exchange (ETDEWEB)

    Henkes, H. [Robert Janker Klinik, Bonn (Germany); Alfried Krupp Krankenhaus, Klinik fuer Radiologie und Neuroradiologie, Essen (Germany); Miloslavski, E.; Lowens, S.; Reinartz, J. [Robert Janker Klinik, Bonn (Germany); Liebig, T.; Kuehne, D. [Alfried Krupp Krankenhaus, Klinik fuer Radiologie und Neuroradiologie, Essen (Germany)

    2005-03-01

    The endovascular treatment of atherosclerotic intracranial arterial stenoses has previously been based on balloon dilatation or the deployment of a balloon expandable stent. Both methods have advantages (balloon: flexibility; balloon expandable stent: high radial force) and drawbacks (balloon: risk of elastic recoil and dissection; balloon expandable stent: limited flexibility, risk of injury to the vessel due to excessive straightening, overexpansion at ends of stent). A new combination of balloon dilatation, followed by the deployment of a self-expanding microstent has been applied in 15 patients with atherosclerotic arterial stenoses, symptomatic despite medical treatment. An anatomically and clinically adequate result was achieved in all patients. The initial degree of stenosis was 72% (mean). Balloon dilatation resulted in an average residual stenosis of 54% (mean), reduced further to a mean of 38% after stent deployment. Arterial dissection, occlusion of the target artery or symptomatic distal emboli was not encountered. In one patient, a side branch occlusion occurred after dilatation of a M1 stenosis, with complete neurological recovery. All patients were either stable or improved 4 weeks after the treatment. Recurrent TIA did not occur in any patient. Balloon dilatation and subsequent deployment of a self-expandable stent for the treatment of symptomatic intracranial arterial stenoses combines the advantages of both techniques and allows a rapid, clinically effective and technically safe treatment of these frequently challenging lesions. (orig.)

  13. Treatment of intracranial atherosclerotic stenoses with balloon dilatation and self-expanding stent deployment (WingSpan)

    International Nuclear Information System (INIS)

    Henkes, H.; Miloslavski, E.; Lowens, S.; Reinartz, J.; Liebig, T.; Kuehne, D.

    2005-01-01

    The endovascular treatment of atherosclerotic intracranial arterial stenoses has previously been based on balloon dilatation or the deployment of a balloon expandable stent. Both methods have advantages (balloon: flexibility; balloon expandable stent: high radial force) and drawbacks (balloon: risk of elastic recoil and dissection; balloon expandable stent: limited flexibility, risk of injury to the vessel due to excessive straightening, overexpansion at ends of stent). A new combination of balloon dilatation, followed by the deployment of a self-expanding microstent has been applied in 15 patients with atherosclerotic arterial stenoses, symptomatic despite medical treatment. An anatomically and clinically adequate result was achieved in all patients. The initial degree of stenosis was 72% (mean). Balloon dilatation resulted in an average residual stenosis of 54% (mean), reduced further to a mean of 38% after stent deployment. Arterial dissection, occlusion of the target artery or symptomatic distal emboli was not encountered. In one patient, a side branch occlusion occurred after dilatation of a M1 stenosis, with complete neurological recovery. All patients were either stable or improved 4 weeks after the treatment. Recurrent TIA did not occur in any patient. Balloon dilatation and subsequent deployment of a self-expandable stent for the treatment of symptomatic intracranial arterial stenoses combines the advantages of both techniques and allows a rapid, clinically effective and technically safe treatment of these frequently challenging lesions. (orig.)

  14. Retained intraaortic balloon. Case report and review of the literature.

    Science.gov (United States)

    Grande, A M; Martinelli, L; Graffigna, A; Viganò, M

    1995-01-01

    We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home.

  15. Response of Balloon-Expandable Endoprosthetic Metallic Stents Subjected to Over-Expansion In Vitro

    International Nuclear Information System (INIS)

    Montague, B. J.; Kakimoto, W. M.; Arepally, A.; Razavi, M.; Dake, M. D.; Hofmann, L. V.

    2004-01-01

    We attempted to evaluate the in vitro behavior and performance of balloon-expandable endoprosthetic metallic stents subjected to over-expansion (OE). Seventy-two balloon-expandable endoprosthetic stents, representing 22 models from six manufacturers, were over- expanded in vitro. Stents were initially expanded to their maximum manufacturer- recommended diameter and then over-expanded incrementally to their endpoints. Endpoints for OE were either stent disarticulation or an inability to undergo further expansion despite balloon insufflation to maximum burst pressure. Measurements of stent dimensions were recorded at each overexpanded diameter and comparisons were made to manufacturer's specifications. A total of 288 balloon-driven expansions were performed on 72 stents. Sixteen stents were expanded to large diameters (≥ 16 mm), 20 stents underwent OE of 50% or greater. One model tended to disarticulate after OE greater than 50%. There were five models that had a tendency to disarticulate after minimal OE. Five models were resistant to OE (25% or less OE) but did not disarticulate. Nearly all stents showed some degree of foreshortening with OE, while 36 stents underwent foreshortening of 30% or more. Models that are not recommended for OE include Intrastent, Intrastent DoubleStrut, NIR Royale and Omniflex. Good candidates for OE include Intrastent DoubleStrut LD, Palmaz large, Medtronic Extra Support Biliary Plus and Medtronic Flexible Biliary. Palmaz XL remains the only model available for expansion from 20 to 28 mm in diameter. For the remaining stents, OE is possible, however, caution should be used

  16. Outcome in 55 dogs with pulmonic stenosis that did not undergo balloon valvuloplasty or surgery.

    Science.gov (United States)

    Francis, A J; Johnson, M J S; Culshaw, G C; Corcoran, B M; Martin, M W S; French, A T

    2011-06-01

    To determine the outcome, independent predictors of cardiac death, and the Doppler-derived pressure gradient cut-off for predicting cardiac death in dogs with pulmonic stenosis, with or without tricuspid regurgitation, that do not undergo balloon valvuloplasty or valve surgery. Review of medical records of two UK referral centres between July 1997 and October 2008 for all cases of pulmonic stenosis that had no balloon valvuloplasty or valve surgery. Inclusion criteria included a diagnosis of pulmonic stenosis; spectral Doppler pulmonic velocity greater than 1·6 m/s; characteristic valve leaflet morphological abnormalities. Exclusion criteria included concurrent significant cardiac defects, including tricuspid dysplasia. Dogs with tricuspid regurgitation were included. Dogs were classified according to Doppler-derived pressure gradients into mild, moderate or severe pulmonic stenosis categories. Presence of tricuspid regurgitation and severe stenosis were independent predictors of cardiac death. A pulmonic pressure gradient of more than 60 mmHg was associated with 86% sensitivity, and 71% specificity of predicting cardiac death. There is an increased probability of cardiac death in those cases which have a pulmonary pressure gradient greater than 60 mmHg and tricuspid regurgitation, though the effect of severity of tricuspid regurgitation on outcome was not measurable because of small sample sizes. These animals might benefit from intervention. © 2011 British Small Animal Veterinary Association.

  17. Balloon dilatation of ureteric strictures.

    Directory of Open Access Journals (Sweden)

    Punekar S

    2000-01-01

    Full Text Available AIMS: Evaluation of dilatation as a minimally invasive technique for the treatment of ureteric strictures. MATERIAL AND METHODS: We evaluated this technique in 16 patients with ureteric and secondary pelviureteric junction strictures from June 1998. Of these, 7 were men and 9 were women. The age range was from 14 to 40 years. RESULTS: Balloon dilatation was successful in 69% of patients. Strictures secondary to previous surgery had nearly 100% success. Of the 8 cases diagnosed as genitourinary tuberculosis, success rate was 50%. CONCLUSIONS: Factors affecting success of balloon dilatation are: a age of the stricture b length of the stricture and c etiology of the stricture. In a select group of patients with fresh post-operative or post-inflammatory strictures, balloon dilatation may be an attractive alternative to surgery.

  18. Demonstration of free-space optical communication for long-range data links between balloons on Project Loon

    Science.gov (United States)

    Moision, Bruce; Erkmen, Baris; Keyes, Edward; Belt, Todd; Bowen, Oliver; Brinkley, Devin; Csonka, Paul; Eglington, Michael; Kazmierski, Andrei; Kim, Nam-hyong; Moody, John; Tu, Thanh; Vermeer, William

    2017-02-01

    Internet connectivity is limited and in some cases non-existent for a significant part of the world's population. Project Loon aims to address this with a network of high-altitude balloons traveling in the stratosphere, at an altitude of approximately 20 km. The balloons navigate by using the stratified wind layers at different altitudes, adjusting the balloon's altitude to catch winds in a desired direction. Data transfer is achieved by 1) uplinking a signal from an Internet-connected ground station to a balloon terminal, 2) crosslinking the signal through the balloon network to reach the geographic area of the users, and 3) downlinking the signal directly to the end-users' phones or other LTE-enabled devices. We describe Loon's progress on utilizing free-space optical communications (FSOC) for the inter-balloon crosslinks. FSOC, offering high data rates and long communication ranges, is well-suited for communication between high-altitude platforms. A stratospheric link is sufficiently high to be above weather events (clouds, fog, rain, etc.), and the impact of atmospheric turbulence is significantly weaker than at ground level. In addition, being in the stratosphere as opposed to space helps avoid the typical challenges faced by space-based systems, namely operation in a vacuum environment with significant radiation. Finally, the angular pointing disturbances introduced by a floating balloon-based platform are notably less than any propelled platform, which simplifies the disturbance rejection requirements on the FSOC system. We summarize results from Project Loon's early-phase experimental inter-balloon links at 20 km altitude, demonstrating full duplex 130 Mbps throughput at distances in excess of 100 km over the course of several-day flights. The terminals utilize a monostatic design, with dual wavelengths for communication and a dedicated wide-angle beacon for pointing, acquisition, and tracking. We summarize the constraints on the terminal design, and the

  19. Under Pressure: Activities with a Vacuum Pump (and Some Marshmallows) Help Students Learn about Pressure.

    Science.gov (United States)

    Galus, Pamela

    2002-01-01

    Introduces a science demonstration that illustrates the effects of pressure and gravity on humans using a marshmallow man and a vacuum pump. Demonstrates the same concept with shaving cream, balloons, and boiling water without raising temperature. (YDS)

  20. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Bhavana [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Patel, Firuza D., E-mail: firuzapatel@gmail.com [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Aprem, Abi Santhosh [Corporate R and D Division, HLL Lifecare Limited, Karamana, Trivandrum (India)

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  1. Ballooning modes on open magnetic field lines

    International Nuclear Information System (INIS)

    Hameiri, E.

    1999-01-01

    The ballooning instability on open magnetic field lines is given a thorough mathematical analysis. It is shown that resistive bounding ends (endplates) induce the same stability properties as insulating ends. When unstable, the maximal growth rate increases monotonically with boundary resistivity. An interchange instability may be present, and one necessary condition for its stability is that ∫dl/B be constant on pressure surfaces. (This is an equilibrium existence condition for systems with closed magnetic field lines.) Another necessary condition for interchange stability has the same form as in the closed line case. Precise necessary and sufficient stability criteria are given for various types of bounding ends, including insulating, resistive, and perfectly conducting. copyright 1999 American Institute of Physics

  2. Pseudo-MHD ballooning modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.

    1996-08-01

    The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant open-quotes pseudo-MHDclose quotes model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for α > s 2 (2 7/3 /9) (r p /R 0 ) or-d√Β/dr > (2 1/6 /3)(s/ R 0q ), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas

  3. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  4. Endovascular rescue of a fused monorail balloon and cerebral protection device.

    Science.gov (United States)

    Campbell, John E; Bates, Mark C; Elmore, Michael

    2007-08-01

    To present a case of successful endovascular retrieval of a monorail predilation balloon fused to an embolic protection device (EPD) in the distal internal carotid artery (ICA) of a high-risk symptomatic patient. A 60-year-old man with documented systemic atherosclerotic disease had a severe (>70%) restenosis in the left ICA 3 years after endarterectomy. He was scheduled for carotid artery stenting (CAS) with cerebral protection; however, he developed unstable angina and was transferred to our facility, where the admitting team decided that staged CAS followed by coronary bypass grafting would be the best option. During the CAS procedure, a 6-mm AccuNet filter was passed across the lesion via a 6-F carotid sheath and deployed in the distal ICA without incident. However, the 4-x20-mm predilation monorail balloon was then advanced without visualizing the markers, resulting in inadvertent aggressive interaction that trapped the balloon's tip in the filter. Several maneuvers to separate the devices were unsuccessful. Finally, the filter/balloon combination was moved gently retrograde until the balloon was straddling the subtotal ICA lesion. The lesion was dilated to 4 mm with the balloon, and the sheath was gently advanced across the lesion as the balloon was deflated. Angiography excluded interval occlusion of the filter from the embolic debris during the aforementioned aggressive maneuvers and documented antegrade flow. The filter was slowly withdrawn into the 6-F sheath with simultaneous aspiration. A second 6-mm filter was deployed, and the procedure was completed satisfactorily. The patient did well, with no neurological sequelae. EPDs are an essential in carotid artery stenting and, keeping in mind the potential risks associated with their use, will help the operator avoid complications such as this one.

  5. Regional cerebral blood flow and CSF pressures during Cushing response induced by a supratentorial expanding mass

    International Nuclear Information System (INIS)

    Schrader, H.; Zwetnow, N.N.; Moerkrid, L.

    1985-01-01

    In order to delineate the critical blood flow pattern during the Cushing response in intracranial hypertension, regional cerebral blood flow was measured with radioactive microspheres in 12 anesthetized dogs at respiratory arrest caused either by expansion of an epidural supratentorial balloon or by cisternal infusion. Regional cerebrospinal fluid pressures were recorded and the local cerebral perfusion pressure calculated in various cerebrospinal compartments. In the 8 dogs of the balloon expansion group, the systemic arterial pressure was unmanipulated in 4, while it was kept at a constant low level (48 and 70 mm Hg) in 2 dogs and, in another 2 dogs, at a constant high level (150 and 160 mm Hg) induced by infusion of Aramine. At respiratory arrest, regional cerebral blood flow had a stereotyped pattern and was largely independent of the blood pressure level. In contrast, concomitant pressure gradients between the various cerebrospinal compartments varied markedly in the 3 animal groups increasing with higher arterial pressure. Flow decreased by 85-100% supratentorially and by 70-100% in the upper brain stem down to the level of the upper pons, while changes in the lower brain stem were minor, on the average 25%. When intracranial pressure was raised by cisternal infusion in 4 dogs, the supratentorial blood flow pattern at respiratory arrest was appriximately similar to the flow pattern in the balloon inflation group. However, blood flow decreased markedly (74-85%) also in the lower brain stem. The results constitute another argument in favour of the Cushing response in supratentorial expansion being caused by ischemia in the brain stem. The critical ischemic region seems to be located rostrally to the oblongate medulla, probably in the pons. (author)

  6. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  7. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  8. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  9. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  10. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  11. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  12. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  13. Ballooning mode stabilization by moderate sheared rotation

    International Nuclear Information System (INIS)

    Hameiri, E.

    1996-01-01

    Sheared toroidal plasma rotation has been known for some time to have a stabilizing effect on the ballooning modes. A recent calculation showed that a large flow shear, with dΩ/dq of the order of the Alfven toroidal frequency, can stabilize the ballooning modes. This latest result is, in fact, not so optimistic. For observed flows with Mach number of order unity one gets dΩ/dq smaller by a factor O(√β) from the required level (if the flow shear length is of the same order as the magnetic shear length). Moreover, the calculation does not take into account a possibly large transient growth of the mode amplitude due to its Floquet structures We show here that, in fact, there is a general tendency of the ballooning mode to stabilize as soon as the flow shear dΩ/dq exceeds the (O√β smaller) open-quotes slowclose quotes magnetosonic wave frequency. Our analysis is perturbative, where the small parameter is related to the small coupling between the slow and Alfven waves-as is the case in a high aspect-ratio tokamak. (In the perturbation it is important to take the Hamiltonian nature of the governing equations into account.) Moreover, our results apply to the relevant transient growth of the mode amplitude

  14. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  15. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    OpenAIRE

    Bustos, Claudio; Herrera, Claudio García; Celentano, Diego; Chen, Daming; Cruchaga, Marcela

    2016-01-01

    Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an...

  16. Cryo-balloon catheter localization in fluoroscopic images

    Science.gov (United States)

    Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.

  17. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  18. Sizing of patent ductus arteriosus in adults for transcatheter closure using the balloon pull-through technique.

    Science.gov (United States)

    Shafi, Nabil A; Singh, Gagan D; Smith, Thomas W; Rogers, Jason H

    2018-05-01

    To describe a novel balloon sizing technique used during adult transcatheter patent ductus arteriosus (PDA) closure. In addition, to determine the clinical and procedural outcomes in six patients who underwent PDA balloon sizing with subsequent deployment of a PDA occluder device. Transcatheter PDA closure in adults has excellent safety and procedural outcomes. However, PDA sizing in adults can be challenging due to variable defect size, high flow state, or anatomical complexity. We describe a series of six cases where the balloon- pull through technique was successfully performed for PDA sizing prior to transcatheter closure. Consecutive adult patients undergoing adult PDA closure at our institution were studied retrospectively. A partially inflated sizing balloon was pulled through the defect from the aorta into the pulmonary artery and the balloon waist diameter was measured. Procedural success and clinical outcomes were obtained. Six adult patients underwent successful balloon pull-through technique for PDA sizing during transcatheter PDA closure, since conventional angiography often gave suboptimal opacification of the defect. All PDAs were treated with closure devices based on balloon PDA sizing with complete closure and no complications. In three patients that underwent preprocedure computed tomography, the balloon size matched the CT derived measurements. The balloon pull-through technique for PDA sizing is a safe and accurate sizing modality in adults undergoing transcatheter PDA closure. © 2017 Wiley Periodicals, Inc.

  19. Residual lower esophageal sphincter pressure as a prognostic factor in the pneumatic balloon treatment of achalasia.

    Science.gov (United States)

    Park, Jung Ho; Lee, Yong Chan; Lee, Hyuk; Park, Hyojin; Youn, Young Hoon; Park, Hyung Seok; Lee, Tae Hee; Hong, Kyoung Sup

    2015-01-01

    Pneumatic balloon dilatation (PD) is a mainstay in achalasia treatment. The aim of this study was to identify predictive factors for successful treatment. We retrospectively reviewed 76 patients with a diagnosis of achalasia who underwent PD from June 2010 to May 2013. Clinical symptoms were assessed using Eckardt score and manometry data were analyzed using resting and relaxation pressure (4sIRP) of lower esophageal sphincter (LES) and the distal contractile integral (DCI), which was calculated for 10 s from the start of deglutition between the upper margin of the LES and lower margin of upper esophageal contraction. Patients with achalasia were classified into three groups based on the Chicago classification. Among 76 patients, 52 patients received PD, and the treatment was unsuccessful in 9 patients (6 in class I and 3 in class III). When comparing prognostic factors between successful and unsuccessful treatment groups, the mean value for 4sIRP in the unsuccessful treatment group was significantly lower than that in the successful treatment group (P treatment of achalasia (odds ratio, 1.092; 95% confidence interval, 1.001-1.191) even after adjustment for a series of confounding factors. Lower 4sIRP may be a prognostic indicator for poor treatment outcome after PD. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  20. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  1. Taking the Hot Air Out of Balloons.

    Science.gov (United States)

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  2. Paraplegia following intraaortic balloon circulatory assistance

    Directory of Open Access Journals (Sweden)

    Benício Anderson

    1999-01-01

    Full Text Available Intraaortic balloon counterpulsation is frequently used in patients experiencing severe ventricular dysfunction following maximal drug therapy. However, even with the improvement of percutaneous insertion techniques, the procedure has always been followed by vascular, infectious, and neurological complications. This article describes a case of paraplegia due to intraaortic balloon counterpulsation in the postoperative period of cardiac surgery.

  3. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Besson, D. [Department of Physics and Astronomy, University of Kansas, Lawrence 66045, KS (United States); Dagkesamanskii, R.; Kravchenko, E. [Radio Astronomy Observatory LPI RAS, Pushchino 142290, Moscow Region (Russian Federation); Kravchenko, I., E-mail: ikrav@cern.ch [Department of Physics and Astronomy, University of Nebraska, Lincoln, 68588, NE (United States); Zheleznykh, I. [Institute for Nuclear Research RAS, Moscow 117312 (Russian Federation)

    2012-01-11

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  4. Tethered balloons for radio detection of ultra high energy cosmic neutrinos in Antarctica

    International Nuclear Information System (INIS)

    Besson, D.; Dagkesamanskii, R.; Kravchenko, E.; Kravchenko, I.; Zheleznykh, I.

    2012-01-01

    We present a brief overview of experimental efforts in Antarctica to search for radio pulses from electron-hadron cascades produced by cosmic ultrahigh-energy neutrinos in Antarctic ice. Thus far, the essential features (energy thresholds, effective recording volumes, etc.) of Antarctic neutrino radio experiments can be classified according to the deployment scheme employed: either (1) on the surface of the glacier - RAMAND-type, (2) in holes in the ice at depths of several hundred meters - RICE-type or (3) on board of a stratospheric balloon at an altitude of 40 km - ANITA-type. We herein propose an alternative possibility, namely to use tethered balloons for placing the radio antennas at modest (compared to ANITA) altitudes above the ice surface (1-2 km). This configuration of antennas will reduce (as compared to ANITA) the energy threshold for detection of neutrinos and increase the observation time.

  5. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Orton, Nigel; Tome, Wolfgang A.; Chappell, Rick; Ritter, Mark A.

    2003-01-01

    Background and purpose: To compare the rectal wall and bladder volume in the high dose region with or without the use of a balloon catheter with both three-dimensional (3D)-conformal and intensity modulated radiation therapy (CRT, IMRT) approaches in the treatment of prostate cancer. Material and methods: Five patients with a wide range of prostate volumes and treated with primary external beam radiation therapy for localized prostate cancer were selected for analysis. Pinnacle TM treatment plans were generated utilizing a 3D conformal six-field design and an IMRT seven coplanar-field plan with a novel, three-step optimization and with ultrasound localization. Separate plans were devised with a rectal balloon deflated or air inflated with and without inclusion of the seminal vesicles (SV) in the target volume. The prescription dose was 76 Gy in 38 fractions of 2 Gy each. Cumulative dose-volume histograms (DVHs) were analyzed for the planning target volume (PTV), rectal wall, and bladder with an inflated (60 cc air) or deflated balloon with and without SV included. The volumes of rectal wall and bladder above 60, 65, and 70 Gy with each treatment approach were evaluated. Results: Daily balloon placement was well-tolerated with good patient positional reproducibility. Inflation of the rectal balloon in all cases resulted in a significant decrease in the absolute volume of rectal wall receiving greater than 60, 65, or 70 Gy. The rectal sparing ratio (RSR), consisting of a structure's high dose volume with the catheter inflated, divided by the volume with the catheter deflated, was calculated for each patient with and without seminal vesicle inclusion for 3D-CRT and IMRT. For 3D-CRT, RSRs with SV included were 0.59, 0.59, and 0.56 and with SV excluded were 0.60, 0.58, and 0.54 at doses of greater than 60, 65, and 70 Gy, respectively. Similarly, for IMRT, the mean RSRs were 0.59, 0.59, and 0.63 including SV and 0.71, 0.66, and 0.67 excluding SV at these same dose levels

  6. Deflation of gastric band balloon in pregnancy for improving outcomes.

    Science.gov (United States)

    Jefferys, Amanda E; Siassakos, Dimitrios; Draycott, Tim; Akande, Valentine A; Fox, Robert

    2013-04-30

    In line with the rise in the prevalence of obesity, an increasing number of women of childbearing age are undergoing laparoscopic adjustable gastric banding (LAGB), resulting in an increasing number of pregnancies with a band in place. Currently, there is no consensus on optimal band management in pregnancy. Some clinicians advocate leaving the band balloon inflated to reduce gestational weight gain and associated adverse perinatal outcomes. However, there are concerns that maintaining balloon inflation during pregnancy might increase the risk of band complications and adversely affect fetal development and/or growth as a result of reduced nutritional intake. To compare maternal and perinatal outcomes for elective gastric band balloon deflation versus intention to maintain balloon inflation during pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2012) and the Web of Science database (1940 to September 2012). Randomised-controlled trials comparing elective deflation of the gastric band balloon with intention to maintain balloon inflation in pregnant women who have undergone LAGB. Two review authors independently assessed studies for inclusion. No studies met the criteria for inclusion in the review. To date no randomised controlled trials exist that compare elective deflation of the gastric band balloon in pregnancy versus intention to maintain balloon inflation. Further research is needed to define the optimum management of the gastric band balloon in pregnancy.

  7. Particle-based optical pressure sensors for 3D pressure mapping.

    Science.gov (United States)

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  8. New developments in the clinical use of drug-coated balloon catheters in peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Naghi J

    2016-06-01

    Full Text Available Jesse Naghi, Ethan A Yalvac, Ali Pourdjabbar, Lawrence Ang, John Bahadorani, Ryan R Reeves, Ehtisham Mahmud, Mitul Patel Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California, San Diego, CA, USA Abstract: Peripheral arterial disease (PAD involving the lower extremity is a major source of morbidity and mortality. Clinical manifestations of PAD span the spectrum from lifestyle limiting claudication to ulceration and gangrene leading to amputation. Advancements including balloon angioplasty, self-expanding stents, drug-eluting stents, and atherectomy have resulted in high technical success rates for endovascular therapy in patients with PAD. However, these advances have been limited by somewhat high rates of clinical restenosis and clinically driven target lesion revascularization. The recent introduction of drug-coated balloon technology shows promise in limiting neointimal hyperplasia induced by vascular injury after endovascular therapies. This review summarizes the contemporary clinical data in the emerging area of drug-coated balloons. Keywords: drug-coated balloons, endovascular, percutaneous transluminal angioplasty, paclitaxel, peripheral arterial disease

  9. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  10. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  11. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  12. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  13. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  14. Balloon dilatation of iatrogenic urethral strictures

    International Nuclear Information System (INIS)

    Acunas, B.; Acunas, G.; Gokmen, E.; Celik, L.

    1988-01-01

    Balloon dilatation of the urethra was performed in five patients with iatrogenic urethral strictures. The urethral strictures were successfully negotiated and dilated in all patients. Redilatation became necessary in a period ranging from 3 to 10 months. The authors believe that balloon dilatation of the urethra can be safely and successfully performed; the procedure produces minimal trauma and immediate relief of symptoms. (orig.)

  15. Balloon catheter dilation of benign esophageal stenosis in children

    International Nuclear Information System (INIS)

    Fan Guoping; Yu Juming; Zhong Weixing; Zhu Ming; Wu Yeming; Shi Chengren

    2001-01-01

    Objective: To evaluate the methods and effect of balloon catheter dilation of benign esophageal stenosis in children. Methods: 9 cases had an anastomotic stenosis after surgical correction of esophageal atresia; 11 cases of esophageal stenosis due to ingestion of caustics; one case had an lower esophageal stenosis after Nissen surgery and one case after gastro-esophagoplasty. Age ranged from 17 days to 7 years. Each case had a barium esophagram before balloon dilation. The balloon size varied from 3 to 10 mm in diameter. Results: 21 cases were successful after dilation of balloon catheter. There were no esophageal perforation and complications. The satisfactory results maintained from six months to thirty months. Conclusions: Balloon catheter dilation is a simple, safe and reliable method for the treatment of benign esophageal strictures in children as the first choice

  16. Oesophageal strictures caused by the ingestion of corrosive agents: effectiveness of balloon dilatation in children

    Energy Technology Data Exchange (ETDEWEB)

    Doo, E.-Y. [Department of Radiology, Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Shin, J.H. [Department of Radiology, Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of)], E-mail: jhshin@amc.seoul.kr; Kim, J.H.; Song, H.-Y. [Department of Radiology, Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of)

    2009-03-15

    Aim: To evaluate the safety and clinical effectiveness of balloon dilatation in children for oesophageal strictures caused by the ingestion of corrosive agents. Materials and methods: The study comprised 11 children (median age 6 years; range 1-14 years) with oesophageal strictures caused by corrosive agents, who underwent a total of 36 balloon dilatation sessions. The technical and clinical success, recurrence of dysphagia, complications, and primary and secondary patency rates were retrospectively evaluated. Results: Technical success was achieved in 91% of patients and in 97% of balloon dilatation sessions. Clinical success (defined as improved food intake and reduced dysphagia within 1 month of the first balloon dilatation session) was achieved in 64% of patients (7/11). During the mean 35-month follow-up period (range 1-89 months), 10 (91%) patients experienced recurrence. Oesophageal rupture (types 1 or 2) occurred in 45% of patients and in 31% of balloon dilatation sessions. Primary patency rates at 6 months and 1, 2, 3, 4, and 5 years were 36, 27, 14, 14, 14, and 14%, respectively. Secondary patency rates at 6 months and 1, 2, 3, 4, and 5 years were 82, 82, 82, 56, 42, and 42%, respectively. The secondary patency rate was higher than the primary patency rate (p < 0.05). Conclusion: The present study examined oesophageal balloon dilatation for paediatric oesophageal strictures caused by the ingestion of corrosive agents. Although the technical success rate was high and there were no deaths, the clinical success rate was low owing to a high recurrence rate. However, repeated balloon dilatations resulted in an acceptable secondary patency rate.

  17. Characteristics of MHD stability of high beta plasmas in LHD

    International Nuclear Information System (INIS)

    Sato, M.; Nakajima, N.; Watanabe, K.Y.; Todo, Y.; Suzuki, Y.

    2012-11-01

    In order to understand characteristics of the MHD stability of high beta plasmas obtained in the LHD experiments, full MHD simulations have been performed for the first time. Since there is a magnetic hill in a plasma peripheral region, the ballooning modes extending into the plasma peripheral region with a chaotic magnetic field are destabilized. However, in the nonlinear phase, the core region comes under the in influence of the instabilities and the central pressure decreases. There is a tendency that modes are suppressed as the beta value and/or magnetic Reynolds number increase, which is consistent with a result that high beta plasmas enter the second stable region of the ideal ballooning modes as beta increases and remaining destabilized ballooning modes are considered to be resistive type. (author)

  18. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    Science.gov (United States)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  19. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Huang, J.; Tang, C. J.; Chen, S. Y.

    2016-01-01

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  20. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China)

    2016-05-15

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  1. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  2. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  3. Two-fluid effects on pressure-driven modes in a heliotron device

    International Nuclear Information System (INIS)

    Miura, H.; Ito, A.; Sato, M.; Goto, R.; Hatori, T.

    2014-10-01

    Two-fluid effects on the ballooning or pressure-driven unstable modes are studied numerically to understand physics in linear and nonlinear evolution of them in a heliotron device. Full 3D simulations for β 0 = 5% unstable magnetic configuration of the large helical device show that the introduction of the two-fluid term brings about broader radial profile and higher growth rate in the linear stage of the evolution, weakened parallel heat conduction, and lead to a saturation profile worse than that in the single-fluid MHD simulation. The numerical results show that suppression of high wave-number modes enhance the growth of low wave-number modes. The two-fluid effects and a plausible mild saturation of ballooning modes is discussed. (author)

  4. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  5. Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons

    Directory of Open Access Journals (Sweden)

    Claudio Bustos

    Full Text Available Abstract Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stress-strain evolution during the inflation test. The numerical pressure-displacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an eyeball under glaucoma conditions.

  6. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  7. Anderson localization of ballooning modes, quantum chaos and the stability of compact quasiaxially symmetric stellarators

    International Nuclear Information System (INIS)

    Redi, M.H.; Johnson, J.L.; Klasky, S.; Canik, J.; Dewar, R.L.; Cooper, W.A.

    2002-01-01

    The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,α,θ k ); s is the edge normalized toroidal flux, α is the field line variable, and θ k is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong 'quantum chaos'. The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit

  8. False coronary dissection with the new Monorail angioplasty balloon catheter.

    Science.gov (United States)

    Esplugas, E; Cequier, A R; Sabaté, X; Jara, F

    1990-01-01

    During percutaneous transluminal coronary angioplasty, the appearance of persistent staining in the vessel by contrast media suggests coronary dissection. We report seven patients in whom a false image of severe coronary dissection was observed during angioplasty performed with the new Monorail balloon catheter. This image emerges at the moment of balloon inflation, is distally located to the balloon, and disappears with balloon catheter deflation. No complications were associated with the appearance of this image.

  9. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  10. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    Science.gov (United States)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  11. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  12. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  13. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  14. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  15. Results of the 1973 NASA/JPL balloon flight solar cell calibration program

    Science.gov (United States)

    Yasui, R. K.; Greenwood, R. F.

    1975-01-01

    High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.

  16. Nationwide network of total solar eclipse high altitude balloon flights

    Science.gov (United States)

    Des Jardins, A. C.

    2017-12-01

    Three years ago we envisioned tapping into the strength of the National Space Grant Program to make the most of a rare astronomical event to engage the general public through education and to create meaningful long-lasting partnerships with other private and public entities. We believe strongly in giving student participants career-making opportunities through the use of the most cutting edge tools, resources, and communication. The NASA Space Grant network was in a unique position to engage the public in the eclipse in an awe-inspiring and educational way at a surprisingly small cost. In addition to public engagement, the multidisciplinary project presented an in-depth hands-on learning opportunity for the thousands of student participants. The project used a network of high altitude ballooning teams positioned along the path of totality from Oregon to South Carolina to conduct coordinated collaborative activities during the eclipse. These activities included 1) capturing and streaming live video of the eclipse from near space, 2) partnering with NASA Ames on a space biology experiment, and 3) conducting high-resolution atmospheric radiosonde measurements. This presentation will summarize the challenges, results, lessons learned, and professional evaluation from developing, training, and coordinating the collaboration. Details of the live streaming HD video and radiosonde activities are described in separate submissions to this session.

  17. Adjustable continence balloons

    DEFF Research Database (Denmark)

    Kjær, Line; Fode, Mikkel; Nørgaard, Nis

    2012-01-01

    Abstract Objective. This study aimed to evaluate the results of the Danish experience with the ProACT urinary continence device inserted in men with stress urinary incontinence. Material and methods. The ProACT was inserted in 114 patients. Data were registered prospectively. The main endpoints...... in urinary leakage > 50% was seen in 72 patients (80%). Complications were seen in 23 patients. All of these were treated successfully by removal of the device in the outpatient setting followed by replacement of the device. Another eight patients had a third balloon inserted to improve continence further....... Fourteen patients (12%) ended up with an artificial sphincter or a urethral sling. Sixty patients (63%) experienced no discomfort and 58 (61%) reported being dry or markedly improved. Overall, 50 patients (53%) reported being very or predominantly satisfied. Conclusions. Adjustable continence balloons seem...

  18. Laser Fenestration of Aortic Stent-Grafts Followed by Noncompliant vs Cutting Balloon Dilation: A Scanning Electron Microscopy Study.

    Science.gov (United States)

    Lin, Jing; Parikh, Niraj; Udgiri, Naval; Wang, Shaoxia; Miller, Daniel F; Li, Chaojing; Panneton, Jean; Nutley, Mark; Zhang, Ze; Huang, Yunfan; Lu, Jun; Zhang, Jingyi; Wang, Lu; Guidoin, Robert

    2018-06-01

    To examine the effects of in situ laser fenestration and subsequent balloon dilation (noncompliant vs cutting) on the graft fabric of 4 aortic stent-graft models. In an in vitro setup, the Zenith TX2, Talent, Endurant, and Anaconda aortic stent-grafts (all made of polyester graft material) were subjected to laser fenestration with a 2.3-mm-diameter probe at low and high energy in a physiologic saline solution followed by balloon dilation of the hole. For the first series of tests, 6-mm-diameter noncompliant balloons were used and replaced for the second series by 6-mm-diameter cutting balloons. Each procedure was performed 5 times (5 fenestrations per balloon type). The fenestrations were examined visually and with light and scanning electron microscopy. Each fenestration demonstrated various degrees of fraying and/or tearing regardless of the device. The monofilament twill weave of the Talent endograft tore in the warp direction up to 7.09±0.46 mm at high energy compared with 2.41±0.26 mm for the Endurant multifilament device. The fenestrations of the 3 endografts with multifilament weave (Zenith, Anaconda, and Endurant) showed more fraying; fenestration areas in the multifilament Endurant were >10 mm 2 at low and high energy. The fenestrations were free of melted fibers, but minor blackening of the filaments was observed in all devices. Overall, the cutting balloons resulted in worse tearing and damage. Of note, the edges of the dilated laser-formed fenestrations of the Talent and the Endurant grafts demonstrated evidence of additional shredded yarns. In situ fenestration does not cause any melting of the polyester; however, the observed structural damage to the fabric construction must be carefully considered. Cutting balloons caused various levels of tearing compared to the noncompliant balloons and cannot be recommended for use in this application. Rather, noncompliant balloons should be employed, but only with endografts constructed from multifilament yarns

  19. Balloon catheter dilatation for mitral stenosis and severe pulmonary hypertension

    International Nuclear Information System (INIS)

    Wang Manhong

    2002-01-01

    Objective: To determine the safety and efficacy of percutaneous balloon mitral valvuloplasty (PBMV) for patients with mitral stenosis and severe pulmonary hypertension, and to assess the changes in pulmonary systolic pressure during follow-up. Methods: Forty-two patients with rheumatic mitral stenosis and severe pulmonary hypertension (pulmonary systolic pressure > 75 mmHg) underwent PBMV using standard Inoue technique, and the changes in clinical functional status and echo Doppler pulmonary systolic pressure during follow-up were assessed. Results: PBMV was successful in 39 patients. Immediately after the procedure, mitral valve area increased from (0.83 +- 0.12) cm 2 to (1.75 +- 0.11) cm 2 , pulmonary systolic pressure decreased from (85 +- 7) mmHg to (61 +- 13) mmHg (all P < 0.001). Severe mitral regurgitation occurred in 3 patients, one of whom underwent mitral valve replacement. During follow-up (average 6 months), in 39 patients with successful PBMV, the clinical functional status was improved and pulmonary systolic pressure was further decreased despite unchanged mitral valve area. Conclusions: PBMV was safe and effective for patients with mitral stenosis and severe pulmonary hypertension. Clinical functional status was improved and pulmonary systolic pressure was continuously decreased during the short-term follow-up

  20. Balloon-tipped flow-directed catheters

    International Nuclear Information System (INIS)

    Ganz, P.; Swan, H.J.C.; Ganz, W.

    1986-01-01

    Diagnostic catheterization of the right side of the heart with semirigid cardiac catheters requires fluoroscopic guidance and substantial skill. Abnormal positions of the heart chambers and of the great vessels associated with cardiac dilatation or with congenital malformation present difficulties even to experienced laboratory cardiologists. These problems have been largely overcome by the introduction of balloon tipped flow directed catheters, which allow for rapid and relatively safe catheterization of the pulmonary artery without fluoroscopy. It was through the application of these catheters in the intensive care unit that the many pitfalls in the clinical assessment of hemodynamic disturbances became apparent. Although S3 gallop sounds may be useful in the clinical recognition of chronic ventricular failure, their presence or absence has limited predictive value in estimating left ventricular filling pressure in myocardial infarction. Information derived from right heart catheterization is often pivotal in the evaluation of hemodynamic disorders, in directing treatment, and in monitoring the results of therapy in critically ill patients

  1. Innovations in Balloon Catheter Technology in Rhinology.

    Science.gov (United States)

    D'Anza, Brian; Sindwani, Raj; Woodard, Troy D

    2017-06-01

    Since being introduced more than 10 years ago, balloon catheter technology (BCT) has undergone several generations of innovations. From construction to utilization, there has been a myriad of advancements in balloon technology. The ergonomics of the balloon dilation systems have improved with a focus on limiting the extra assembly. "Hybrid" BCT procedures have shown promise in mucosal preservation, including treating isolated complex frontal disease. Multiple randomized clinical trials report improved long-term outcomes in stand-alone BCT, including in-office use. The ever-expanding technological innovations ensure BCT will be a key component in the armamentarium of the modern sinus surgeon. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Quasi-periodic fluctuations of atmospheric pressure and cosmic rays observed in the stratosphere

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Abe, Toshiaki; Sakai, Takasuke; Kato, Masato; Kogami, Shinichi.

    1976-01-01

    Quasi-periodicities of barometric pressure and cosmic ray intensity, with 5.5-minute period and one hour persistency, have been observed by means of a high-precision barometer and a large plastic scintillation counter in a balloon at an altitude of --18 km over the Pacific Ocean. From characteristics of such short period fluctuations, it is suggested that the observed pressure fluctuation may possibly be caused by the internal atmospheric gravity wave whose amplitude and wave length are --30 m and --30 km respectively. (auth.)

  3. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  4. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  5. Observing Boundary-Layer Winds from Hot-Air Balloon Flights

    NARCIS (Netherlands)

    Bruijn, de E.I.F.; Haan, de S.; Bosveld, F.C.; Wichers Schreur, B.G.J.; Holtslag, A.A.M.

    2016-01-01

    High-resolution upper-air wind observations are sparse, and additional observations are a welcome source of meteorological information. In this paper the potential of applying balloon flights for upper-air wind measurements is explored, and the meteorological content of this information is

  6. [Mitral valvuloplasty with double balloon catheter. Analysis of 200 cases].

    Science.gov (United States)

    Gomes, N L; Esteves, C A; Braga, S L; Ramos, A I; Meneghelo, Z M; Mattos, L A; Pontes Júnior, S C; Arnoni, A S; Fontes, V F; Sousa, J E

    1992-04-01

    To study the immediate clinical, echocardiographic and hemodynamic results of 200 patients who underwent percutaneous mitral balloon valvotomy (PMV) with double balloon technique. Two hundred patients were submitted to PVM for treatment of congestive heart failure secondary to severe mitral stenosis, between August 1987 to July 1991. Their mean age was 35.2 years, and 86.5% were female patients: 81% of them was in functional class, New York Heart Association (NYHA) III or IV; 4% was in atrial fibrilation and 4% had previous surgical commissurotomy. PMV was successfully performed in 89% of the patients. The mitral valve area, by pressure half time method, increased from 0.91 +/- 0.27 to 2.10 +/- 0.47 cm2, p atrial septum could not be performed. Mitral regurgitation (MR) immediately after PMV appeared 1+ or more grade in 50 patients, increased in 8 patients and remained unchanged in 11 patients. Ten patients needed mitral valve replacement in the first 48h after PMV, for treatment of severe MR. PMV produces excellent immediate results and can be considered an alternative to surgery for the relief of mitral stenosis.

  7. Balloon Cell Urethral Melanoma: Differential Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    M. McComiskey

    2015-01-01

    Full Text Available Introduction. Primary malignant melanoma of the urethra is a rare tumour (0.2% of all melanomas that most commonly affects the meatus and distal urethra and is three times more common in women than men. Case. A 76-year-old lady presented with vaginal pain and discharge. On examination, a 4 cm mass was noted in the vagina and biopsy confirmed melanoma of a balloon type. Preoperative CT showed no distant metastases and an MRI scan of the pelvis demonstrated no associated lymphadenopathy. She underwent anterior exenterative surgery and vaginectomy also. Histology confirmed a urethral nodular malignant melanoma. Discussion. First-line treatment of melanoma is often surgical. Adjuvant treatment including chemotherapy, radiotherapy, or immunotherapy has also been reported. Even with aggressive management, malignant melanoma of the urogenital tract generally has a poor prognosis. Recurrence rates are high and the mean period between diagnosis and recurrence is 12.5 months. A 5-year survival rate of less than 20% has been reported in balloon cell melanomas along with nearly 20% developing local recurrence. Conclusion. To the best of our knowledge, this case is the first report of balloon cell melanoma arising in the urethra. The presentation and surgical management has been described and a literature review provided.

  8. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  9. Assessing the reproducibility of high definition urethral pressure profilometry and its correlation with an air-charged system.

    Science.gov (United States)

    Klünder, Mario; Amend, Bastian; Sawodny, Oliver; Stenzl, Arnulf; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Feuer, Ronny

    2017-06-01

    Recently, a new urodynamic method for the assessment of stress urinary incontinence called high definition urethral pressure profilometry (HD-UPP) has been introduced. This method combines a novel microtip catheter with advanced signal processing to enable spatial data location and the reconstruction of a pressure image inside the urethra. In order to assess the reproducibility of HD-UPP data, we statistically evaluate HD-UPP datasets and compare them to data from a double balloon air-charged system. Both catheters are used on sedated female minipigs. Data from the microtip catheter are processed through a signal reconstruction algorithm, urodynamic features are extracted, and compared to the air-charged system. Reproducibility of HD-UPP data is assessed by statistically evaluating consecutive, intra-individual datasets. HD-UPP delivers results in agreement with previous comparisons of microtip and air-charged systems. The average deviation of two consecutive, intra-individual pressure images is very low at 7 cm H 2 O. HD-UPP provides physicians with detailed information on the pressure distribution inside the urethra. Through comparison with an air-charged catheter, it is shown that HD-UPP delivers results in agreement with previous studies on the comparison of microtip and air-charged catheters. It provides excellent reproducibility, as the difference between sequentially measured profiles from the same minipig is significantly lower than the one between profiles from different minipigs. © 2016 Wiley Periodicals, Inc.

  10. Gastric emptying and intragastric balloon in obese patients.

    Science.gov (United States)

    Bonazzi, P; Petrelli, M D; Lorenzini, I; Peruzzi, E; Nicolai, A; Galeazzi, R

    2005-01-01

    Intragastric balloons have been proposed to induce weight loss in obese subjects. The consequences of the balloon on gastric physiology remain poorly studied. We studied the influence of an intragastric balloon on gastric emptying in obese patients. 12 patients were included in the study, with BMI (mean +/- SD) of 38.51 +/- 4.32 kg/m2. The balloon was inserted under light anaesthesia and endoscopic control, inflated with 700 ml saline, and removed 6 months later. Body weight and gastric emptying (T1/2 and T lag) using 13C-octanoic acid breath test were monitored before balloon placement, during its permanence and 2 months after removal. Mean weight loss was: 6.2 +/- 2.3 kg after one month; 12.4 +/- 5.8 kg after 3 months; 14.4 +/- 6.6 kg after 6 months and 10.1 +/- 4.3 kg two months after BIB removal. Gastric emptying rates were significantly decreased in the first periods with balloon in place, and returned to pre-implantation values after balloon removal. T1/2 was: 87 +/- 32 min before BIB positioning, 181 +/- 91 min after 1 month, 145 +/- 99 min after 3 months, 104 +/- 50 min after 6 months and 90 +/- 43 min 2 months after removal. T lag was 36 +/- 18 min before BIB positioning, 102 +/- 82 min after 1 month, 77 +/- 53 min after 3 months, 59 +/- 28 min after 6 months and 40 +/- 21 min. 2 months after removal. BIB in obese patients seems to be a good help in following the hypo caloric diet, especially during the first three months when the gastric emptying is slower and the sense of repletion is higher. After this period gastric emptying starts to return to normal and the stomach adapts to BIB loosing efficacy in weight loss.

  11. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Yong; Park, Hyun Mee; Kim, So Eun; Lee, Shin Hyung; Kim, Seung Hyeon; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1994-12-15

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study.

  12. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    International Nuclear Information System (INIS)

    Shin, Cheol Yong; Park, Hyun Mee; Kim, So Eun; Lee, Shin Hyung; Kim, Seung Hyeon; Lee, Chang Joon

    1994-01-01

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study

  13. Balloon dilatation of the prostatic urethra

    International Nuclear Information System (INIS)

    Lee, Yeon Soo; Shim, Hyung Jin; Cha, Kyung Soo; Hong, Ju Hee; Lim, Myung Ah; Kim, Cheol Soo

    1991-01-01

    We analyzed the result of transurethral balloon dilatation in 11 patients with benign prostatic hypertrophy. The procedures were performed under intravenous sedation and local anesthesia with double lumen balloon catheter at 4 atmosphere for 10 minutes. After dilatation, the prostatism symptom scores improved in 10 out of 11 patients and the mean diameter of the prostatic urethra significantly increased form 4.3 mm to 10.2 mm (ρ < 0.005). The procedures were successful not only in lateral lobe hypertrophy but also in median lobe hypertrophy of the prostate. Postdilatation MRI of 1 patient showed an intact prostatic capsule and no periprostatic hematoma. Complications did not develop except in 1 patient with mild hematuria and incontinence. These preliminary results suggest that transurethral balloon dilatation can be an effective and safe treatment modality for benign prostatic hypertrophy

  14. Wind-Driven Montgolfiere Balloons for Mars

    Science.gov (United States)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  15. Developing International Standards for Meteorological Balloon to Facilitate Industrial Progress

    Institute of Scientific and Technical Information of China (English)

    Deng Yizhi

    2011-01-01

    Meteorological balloon is made of natural rubber latex with a special process.On natural conditions,it carries the air sounding instrument into the high air to detect the meteorological elements in the air.As a means of delivery used in the aerological sounding,it is widely used in the meteorological,sailing,aeronautical,aerospace and other fields,and plays an extremely important role in the weather report,disaster prevention,disaster relief,guaranteeing ships and aircrafts to leave ports safely,and scientific research in relevant spaces,etc.Especially,the role of meteorological balloons is not ignorable in the forecast of extremely adverse weather frequently occurring around the world in recent years.

  16. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  17. Balloon-based adjuvant radiotherapy in breast cancer: comparison between 99mTc and HDR 192Ir

    Directory of Open Access Journals (Sweden)

    Tarcísio Passos Ribeiro de Campos

    2016-04-01

    Full Text Available Abstract Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods: Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice.

  18. Spectrum of ballooning instabilities in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Singleton, D B [Australian National Univ., ANU Supercomputing Facility, Canberra (Australia); Dewar, R L [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1995-08-01

    The recent revival of interest in the application of the `ballooning formalism` to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs.

  19. Spectrum of ballooning instabilities in a stellarator

    International Nuclear Information System (INIS)

    Cooper, W.A.; Singleton, D.B.; Dewar, R.L.

    1995-08-01

    The recent revival of interest in the application of the 'ballooning formalism' to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs

  20. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  1. Low Cost Variable Conductance Heat Pipe for Balloon Payload, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — While continuously increasing in complexity, the payloads of terrestrial high altitude balloons need a thermal management system to reject their waste heat and to...

  2. A balloon-borne experiment to investigate the Martian magnetic field

    Science.gov (United States)

    Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.

    1996-03-01

    The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.

  3. Achalasia of the cardia: experience with hydrostatic balloon dilatation in children

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Manasvi; Sajwany, Mohammed Jaffer [Department of Paediatric Surgery, Royal Hospital, Muscat (Oman); Fataar, Shadley [Department of Radiology, Royal Hospital, Muscat (Oman)

    2002-06-01

    Background: Achalasia is a disorder of oesophageal motility and is rare in children. The mainstay of therapy has been surgery with its attendant complications and long postoperative stay. Treatment by hydrostatic balloon dilatation, a less morbid procedure, has not found much favour. Objective: To review the overall efficacy of balloon dilatation for the treatment of achalasia in children and to highlight the high incidence of non-syndromic familial cases in Oman. Materials and methods: This is a retrospective study of all patients (n=12) with achalasia treated with balloon dilatation at the Royal Hospital, Muscat, from 1991 to 1999. The diagnosis was established with a barium oesophagogram. Dilatation was performed under general anaesthesia. On follow-up, the weight and recurrence of symptoms were recorded. Investigations were done only if the patients were symptomatic on follow-up. Recurrence was treated with further dilatation. Results: Of the 12 patients, 10 had excellent alleviation of symptoms. Two patients developed recurrence of symptoms which responded favourably to further dilatation. The average length of postoperative stay in the hospital was 2 days. Of these 12 patients, there were 3 sets of siblings who did not have any other syndromic associations. This group also showed very good prognosis. The mean follow-up period was 3.5 years for all patients. Conclusions: The results of balloon dilatation were very satisfactory. We also recommend this procedure when there is recurrence of symptoms. It has lower morbidity than surgery and hospital stay is shorter. Furthermore, we have a high rate of non-syndromic familial cases, all with a favourable outcome. (orig.)

  4. Achalasia of the cardia: experience with hydrostatic balloon dilatation in children

    International Nuclear Information System (INIS)

    Upadhyaya, Manasvi; Sajwany, Mohammed Jaffer; Fataar, Shadley

    2002-01-01

    Background: Achalasia is a disorder of oesophageal motility and is rare in children. The mainstay of therapy has been surgery with its attendant complications and long postoperative stay. Treatment by hydrostatic balloon dilatation, a less morbid procedure, has not found much favour. Objective: To review the overall efficacy of balloon dilatation for the treatment of achalasia in children and to highlight the high incidence of non-syndromic familial cases in Oman. Materials and methods: This is a retrospective study of all patients (n=12) with achalasia treated with balloon dilatation at the Royal Hospital, Muscat, from 1991 to 1999. The diagnosis was established with a barium oesophagogram. Dilatation was performed under general anaesthesia. On follow-up, the weight and recurrence of symptoms were recorded. Investigations were done only if the patients were symptomatic on follow-up. Recurrence was treated with further dilatation. Results: Of the 12 patients, 10 had excellent alleviation of symptoms. Two patients developed recurrence of symptoms which responded favourably to further dilatation. The average length of postoperative stay in the hospital was 2 days. Of these 12 patients, there were 3 sets of siblings who did not have any other syndromic associations. This group also showed very good prognosis. The mean follow-up period was 3.5 years for all patients. Conclusions: The results of balloon dilatation were very satisfactory. We also recommend this procedure when there is recurrence of symptoms. It has lower morbidity than surgery and hospital stay is shorter. Furthermore, we have a high rate of non-syndromic familial cases, all with a favourable outcome. (orig.)

  5. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  6. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  7. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  8. Acute stent recoil and optimal balloon inflation strategy: an experimental study using real-time optical coherence tomography.

    Science.gov (United States)

    Kitahara, Hideki; Waseda, Katsuhisa; Yamada, Ryotaro; Otagiri, Kyuhachi; Tanaka, Shigemitsu; Kobayashi, Yuhei; Okada, Kozo; Kume, Teruyoshi; Nakagawa, Kaori; Teramoto, Tomohiko; Ikeno, Fumiaki; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro

    2016-06-12

    Our aim was to evaluate stent expansion and acute recoil at deployment and post-dilatation, and the impact of post-dilatation strategies on final stent dimensions. Optical coherence tomography (OCT) was performed on eight bare metal platforms of drug-eluting stents (3.0 mm diameter, n=6 for each) during and after balloon inflation in a silicone mock vessel. After nominal-pressure deployment, a single long (30 sec) vs. multiple short (10 sec x3) post-dilatations were performed using a non-compliant balloon (3.25 mm, 20 atm). Stent areas during deployment with original delivery systems were smaller in stainless steel stents than in cobalt-chromium and platinum-chromium stents (pstrategies showed a significant impact on final stent expansion.

  9. Balloon-Assisted Chemoembolization Using a Micro-Balloon Catheter Alongside a Microcatheter for a Hepatocellular Carcinoma with a Prominent Arterioportal Shunt: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiai, Sodai, E-mail: hoshiai@sb4.so-net.ne.jp; Mori, Kensaku; Ishiguro, Toshitaka; Konishi, Takahiro; Uchikawa, Yoko [University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology (Japan); Fukuda, Kuniaki [University of Tsukuba Hospital, Department of Gastroenterology (Japan); Minami, Manabu [University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology (Japan)

    2017-04-15

    Although transcatheter arterial chemoembolization is one of the established treatments for hepatocellular carcinoma (HCC), it is difficult to treat HCCs with prominent arterioportal (AP) shunts because anticancer drugs and embolic materials migrate into the non-tumorous liver through the AP shunts and may cause liver infarction. We developed a novel method of balloon-assisted chemoembolization using a micro-balloon catheter alongside a microcatheter simultaneously inserted through a single 4.5-Fr guiding sheath, comprising proximal chemoembolization with distal arterial balloon occlusion. We applied this method to treat an HCC with a prominent distal AP shunt induced by previous proton beam therapy and achieved successful chemoembolization without non-tumorous liver infarction under temporal balloon occlusion of a distal AP shunt.

  10. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  11. Balloon sheaths for gastrointestinal guidance and access: a preliminary phantom study

    International Nuclear Information System (INIS)

    He, Xu; Shin, Ji Hoon; Kim, Hyo Cheol; Woo, Cheol Woong; Woo, Sung Ha; Choi, Won Chan; Kim, Jong Gyu; Lim, Jin Oh; Kim, Tae Hyung; Yoon, Chang Jin; Song, Ho Young; Kang, Wee Chang

    2005-01-01

    We wanted to evaluate the feasibility and usefulness of a newly designed balloon sheath for gastrointestinal guidance and access by conducting a phantom study. The newly designed balloon sheath consisted of an introducer sheath and a supporting balloon. A coil catheter was advanced over a guide wire into two gastroduodenal phantoms (one was with stricture and one was without stricture); group I was without a balloon sheath, group II was with a deflated balloon sheath, and groups III and IV were with an inflated balloon and with the balloon in the fundus and body, respectively. Each test was performed for 2 minutes and it was repeated 10 times in each group by two researchers, and the positions reached by the catheter tip were recorded. Both researchers had better performances with both phantoms in order of group IV, III, II and I. In group IV, both researchers advanced the catheter tip through the fourth duodenal segment in both the phantoms. In group I, however, the catheter tip never reached the third duodenal segment in both the phantoms by both the researchers. The numeric values for the four study groups were significantly different for both the phantoms (ρ < 0.001). A significant difference was also found between group III and IV for both phantoms (ρ < 0.001). The balloon sheath seems to be feasible for clinical use, and it has good clinical potential for gastrointestinal guidance and access, particularly when the inflated balloon is placed in the gastric body

  12. Large deformation and mechanics of flexible isotropic membrane ballooning in three dimensions by differential quadrature method

    International Nuclear Information System (INIS)

    Mozaffari, M.; Atai, A. A.; Mostafa, N.

    2009-01-01

    This paper presents a computationally efficient and accurate new methodology in the differential quadrature analysis of structural mechanics for flexible membranes ballooning in three dimensions under a negative air pressure differential. The differential quadrature method is employed to discretize the resulting equations in the axial direction as well as for the solution procedure. The weighting coefficients employed are not exclusive, and any accurate and efficient method such as the generalized differential quadrature method may be used to produce the methods weighting coefficients. A second-order paraboloid of revolution is assumed to describe the ballooning shape. This study asserts the accuracy, convergency, and efficiency of the methodology by solving some typical stability, straining analysis membrane problems, and comparing the results with those of the exact solutions and/or those of physical tests

  13. Large deformation and mechanics of flexible isotropic membrane ballooning in three dimensions by differential quadrature method

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M.; Atai, A. A.; Mostafa, N. [Islamic Azad University, Karaj (Iran, Islamic Republic of)

    2009-11-15

    This paper presents a computationally efficient and accurate new methodology in the differential quadrature analysis of structural mechanics for flexible membranes ballooning in three dimensions under a negative air pressure differential. The differential quadrature method is employed to discretize the resulting equations in the axial direction as well as for the solution procedure. The weighting coefficients employed are not exclusive, and any accurate and efficient method such as the generalized differential quadrature method may be used to produce the methods weighting coefficients. A second-order paraboloid of revolution is assumed to describe the ballooning shape. This study asserts the accuracy, convergency, and efficiency of the methodology by solving some typical stability, straining analysis membrane problems, and comparing the results with those of the exact solutions and/or those of physical tests

  14. Balloon-Borne, High Altitude Gravimetry: The Flight of DUCKY Ia (11 October 1983)

    Science.gov (United States)

    1985-12-31

    Figure 3.4 A Photograph of DUCKY la Minutes After Launch. For scale, the balloon-gondola system is about 400 ft from top to bottom 25 10 00 0 I- 0 N...Instituto di Metrologia ŕG. Colonnetti" (IMGC) Italy in 1980,13 and the Joint Institute for Laboratory Astro- physics (JILA) in 1982.14 The absolute

  15. Ozone profiles from tethered balloon measurements in an urban plume experiment

    Science.gov (United States)

    Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.

    1981-01-01

    NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.

  16. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  17. The role of scientific ballooning for exploration of the magnetosphere

    International Nuclear Information System (INIS)

    Block, L.P.; Lazutin, L.L.; Riedler, W.

    1984-11-01

    The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics. (Author)

  18. Montgolfiere balloon missions from Mars and Titan

    Science.gov (United States)

    Jones, Jack A.

    2005-01-01

    Montgolfieres, which are balloons that are filled with heated ambient atmospheric gas, appear promising for the exploration of Mars as well as of Saturn's moon, Titan. On Earth, Montgolfieres are also known as 'hot air balloons'. Commercial versions are typically heated by burning propane, although a number of radiant and solar-heated Montgolfieres have been flown on earth by CNES.

  19. [Balloon osteoplasty as reduction technique in the treatment of tibial head fractures].

    Science.gov (United States)

    Freude, T; Kraus, T M; Sandmann, G H

    2015-10-01

    Tibial plateau fractures requiring surgery are severe injuries of the lower extremities. Depending on the fracture pattern, the age of the patient, the range of activity and the bone quality there is a broad variation in adequate treatment.  This article reports on an innovative treatment concept to address split depression fractures (Schatzker type II) and depression fractures (Schatzker type III) of the tibial head using the balloon osteoplasty technique for fracture reduction. Using the balloon technique achieves a precise and safe fracture reduction. This internal osteoplasty combines a minimal invasive percutaneous approach with a gently rise of the depressed area and the associated protection of the stratum regenerativum below the articular cartilage surface. This article lights up the surgical procedure using the balloon technique in tibia depression fractures. Using the balloon technique a precise and safe fracture reduction can be achieved. This internal osteoplasty combines a minimally invasive percutaneous approach with a gentle raising of the depressed area and the associated protection of the regenerative layer below the articular cartilage surface. Fracture reduction by use of a tamper results in high peak forces over small areas, whereas by using the balloon the forces are distributed over a larger area causing less secondary stress to the cartilage tissue. This less invasive approach might help to achieve a better long-term outcome with decreased secondary osteoarthritis due to the precise and chondroprotective reduction technique.

  20. A model for asymmetric ballooning and analyses of ballooning behaviour of single rods with probabilistic methods

    International Nuclear Information System (INIS)

    Keusenhoff, J.G.; Schubert, J.D.; Chakraborty, A.K.

    1985-01-01

    Plastic deformation behaviour of Zircaloy cladding has been extensively examined in the past and can be described best by a model for asymmetric deformation. Slight displacement between the pellet and cladding will always exist and this will lead to the formation of azimuthal temperature differences. The ballooning process is strongly temperature dependent and, as a result of the built up temperature differences, differing deformation behaviours along the circumference of the cladding result. The calculated ballooning of cladding is mainly influenced by its temperature, the applied burst criterion and the parameters used in the deformation model. All these influencing parameters possess uncertainties. In order to quantify these uncertainties and to estimate distribution functions of important parameters such as temperature and deformation the response surface method was applied. For a hot rod the calculated standard deviation of cladding temperature amounts to 50 K. From this high value the large influence of the external cooling conditions on the deformation and burst behaviour of cladding can be estimated. In an additional statistical examination the parameters of deformation and burst models have been included and their influence on the deformation of the rod has been studied. (author)

  1. Location and data collection for long stratospheric balloon flights

    Science.gov (United States)

    Malaterre, P.

    Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.

  2. An indigenous economic technique of positive pressure retrograde urethrography in female patients

    Directory of Open Access Journals (Sweden)

    H Singh

    2001-01-01

    Full Text Available Usually double balloon catheter is required forpositive pressure retrograde urethrography in females. We describe a technique of positive pressure retrograde urethrography using Foley catheter and rubber stopper, inexpensive and could be adopted in any hospital or radiological suite.

  3. Euso-Balloon: A pathfinder mission for the JEM-EUSO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Osteria, Giuseppe, E-mail: osteria@na.infn.it [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Scotti, Valentina [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Università di Napoli Federico II, Dipartimento di Fisica, Naples (Italy)

    2013-12-21

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the ISS in 2017. The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the entire detection chain. EUSO-Balloon will measure the atmospheric and terrestrial UV background components, in different observational modes, fundamental for the development of the simulations. Through a series of flights performed by the French Space Agency CNES, EUSO-Balloon also has the potential to detect Extensive Air Showers (EAS) from above. EUSO-Balloon will be mounted in an unpressurized gondola of a stratospheric balloon. We will describe the instrument and the electronic system which performs instrument control and data management in such a critical environment.

  4. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  5. 78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-03-27

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female ACME...

  6. 77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2012-10-23

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... propose to adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry, Shropshire...

  7. 78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-02-12

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors...., Washington, DC 20590. For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd...

  8. Stimulus-response time to alarms of the intra-aortic balloon pump: safe care practices

    Directory of Open Access Journals (Sweden)

    Andrezza Serpa Franco

    Full Text Available ABSTRACT Objective: To characterize the sound alarms of the Intra-Aortic Balloon Pump (IABP during aortic counterpulsation therapy; to measure the stimulus-response time of the team to these; and to discuss the implications of increasing this time for patient safety from the alarm fatigue perspective. Method: This is an observational and descriptive study with quantitative and qualitative approach, case study type, carried out in a Cardiac Surgical Intensive Care Unit. Results: The most audible IABP alarm was the one of high priority increased-reduced diastolic blood pressure. The stimulus-response time was 33.9 seconds on average. Conclusion: Managing the alarms of these equipment is essential to minimize the occurrence of the alarm fatigue phenomenon and to offer a safer assistance to patients who rely on this technology.

  9. Use of Sengstaken-Blakemore intrahepatic balloon: an alternative for liver-penetrating injuries.

    Science.gov (United States)

    Fraga, Gustavo Pereira; Zago, Thiago Messias; Pereira, Bruno Monteiro; Calderan, Thiago Rodrigues Araujo; Silveira, Henrique Jose Virgili

    2012-09-01

    Severe lesions in the liver are associated with a high mortality rate. Alternative surgical techniques such as the use of an intrahepatic balloon may be effective and reduce mortality in severe hepatic lesions. This study aimed to demonstrate the experience of a university hospital in the use of the Sengstaken-Blakemore balloon in patients with transfixing penetrating hepatic injury as an alternative way to treat these challenging injuries. A retrospective study based on the trauma registry of a university hospital was performed. All patients admitted with hepatic penetrating injuries and treated with the Sengstaken-Blakemore balloon within the period 1990-2010 were reviewed. Forty-six patients with transfixing hepatic injuries were treated with the Sengstaken-Blakemore balloon in the study period. The most frequent cause of injury was gunshot wound (87 % of the patients). The mean trauma scores on admission were Revised Trauma Score (RTS) = 7.12 ± 1.46, Injury Severity Score (ISS) = 22.4 ± 9.7, and Abdominal Trauma Index (ATI) = 19.5 ± 11. According to the severity of the hepatic trauma, 71.8 % of patients had grade III, 23.9 % grade IV, and 4.3 % grade V injuries. Associated abdominal injuries were found in 89.1 % of the patients. The most frequent liver-related complications were hepatic abscess postoperative bleeding (8.6 %), biliary fistula (8.6 %), (4.3 %), and biliary peritonitis (2.1 %). Surgical reintervention was necessary in 14 patients (31.1 %). From those 14, only 3 had the balloon removed. The overall morbidity and mortality rates were 56.5 % and 23.9 % (11 patients), respectively. The knowledge of alternative surgical techniques is essential in improving survival in patients with severe penetrating hepatic injuries. The use of intrahepatic balloon is a viable surgical strategy.

  10. Immediate balloon deflation for prevention of persistent phrenic nerve palsy during pulmonary vein isolation by balloon cryoablation.

    Science.gov (United States)

    Ghosh, Justin; Sepahpour, Ali; Chan, Kim H; Singarayar, Suresh; McGuire, Mark A

    2013-05-01

    Persistent phrenic nerve palsy is the most frequent complication of cryoballoon ablation for atrial fibrillation and can be disabling. To describe a technique-immediate balloon deflation (IBD)-for the prevention of persistent phrenic nerve palsy, provide data for its use, and describe in vitro simulations performed to investigate the effect of IBD on the atrium and pulmonary vein. Cryoballoon procedures for atrial fibrillation were analyzed retrospectively (n = 130). IBD was performed in patients developing phrenic nerve dysfunction (n = 22). In vitro simulations were performed by using phantoms. No adverse events occurred, and all patients recovered normal phrenic nerve function before leaving the procedure room. No patient developed persistent phrenic nerve palsy. The mean cryoablation time to onset of phrenic nerve dysfunction was 144 ± 64 seconds. Transient phrenic nerve dysfunction was seen more frequently with the 23-mm balloon than with the 28-mm balloon (11 of 39 cases vs 11 of 81 cases; P = .036). Balloon rewarming was faster following IBD. The time to return to 0 and 20° C was shorter in the IBD group (6.7 vs 8.9 seconds; P = .007 and 16.7 vs 37.6 seconds; Pphrenic nerve palsy. Simulations suggest that IBD is unlikely to damage the atrium or pulmonary vein. Copyright © 2013 Heart Rhythm Society. All rights reserved.

  11. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  12. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  13. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  14. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  15. Advanced Onboard Energy Storage Solution for Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Balloon Programs at NASA are looking for a potential 100 day missions at mid-altitudes. These balloons would be powered by solar panels to take advantage of...

  16. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    OpenAIRE

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-01-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with differ...

  17. A Rare and Serious Unforeseen Complication of Cutting Balloon Angioplasty

    Directory of Open Access Journals (Sweden)

    Praveen Vemula

    2014-01-01

    Full Text Available Cutting balloon angioplasty (CBA is one of the adept ways of treating “in-stent restenosis.” Various complications related to cutting balloon angioplasty have been reported including arterial rupture, delayed perforation and fracture of microsurgical blades. Here we report a very unusual and inadvertent extraction of a stent previously deployed in the ramus intermedius coronary branch by a cutting balloon catheter. This required repeat stenting of the same site for an underlying dissection. Even though stent extraction is a rare complication it can be serious due to dissection, perforation, and closure of the artery. Physicians performing coronary artery interventions would need to be aware of this rare and serious complication especially if any difficulty is encountered while withdrawing the cutting balloon. Therefore, after removal, cutting balloon should be examined thoroughly for possible stent dislodgment or extraction when used for “in-stent restenosis.”

  18. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  19. Ballooning Interest in Science.

    Science.gov (United States)

    Kim, Hy

    1992-01-01

    Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)

  20. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  1. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  2. Exponential Growth of Nonlinear Ballooning Instability

    International Nuclear Information System (INIS)

    Zhu, P.; Hegna, C. C.; Sovinec, C. R.

    2009-01-01

    Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.

  3. Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks

    International Nuclear Information System (INIS)

    Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ

    1989-07-01

    High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs

  4. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  5. An investigation of electrostatically deposited radionuclides on latex balloons

    International Nuclear Information System (INIS)

    Price, T.; Caly, A.

    2012-01-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  6. An investigation of electrostatically deposited radionuclides on latex balloons

    Energy Technology Data Exchange (ETDEWEB)

    Price, T.; Caly, A., E-mail: Terry.Price@gmail.com [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2012-07-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  7. [Thermal balloon endometrial ablation for dysfunctional uterine bleeding: technical aspects and results. A prospective cohort study of 152 cases].

    Science.gov (United States)

    Kdous, Moez; Jacob, Denis; Gervaise, Amélie; Risk, Elie; Sauvanet, Eric

    2008-05-01

    Thermal balloon endometrial ablation is a new operative technique recently proposed in the treatment of dysfunctional uterine bleeding. To evaluate the efficacy of thermal balloon endometrial ablation in the treatment of dysfunctional uterine bleeding, and to identify the possible predictive factors for a successful outcome. A prospective study was conducted including 152 patients with chronic abnormal uterine bleeding refractory to medical treatment. All patients were treated by thermal balloon endometrial ablation (Thermachoice, Gynecare) between January 1, 1996 and December 31, 2003. patients were included if their uterine cavities sounded to less than 12 cm and had undergone hysteroscopy, pelvic ultrasound and endometrial biopsie showing no structural or (pre) malignant endometrial abnormalities. A balloon catheter was placed through the cervix and after inflation in the endometrial cavity with 5% dextrose in water, was heated to 87 +/- 5 degrees C. No one required cervical dilatation. Balloon pressures were 160 to 170 mm Hg. All patients underwent 8 minutes of therapy. The average patient was 47 years (range: 30-62 years) and was followed for a mean of 3 years and 7 months (range: 6 months - 8 years). 31.6% of women reported amennorhea, 16.5% hypomenorrhea and 21% eumenorrhea. Menorrhagea persisted in 11.2% of patients. No intraoperative complications and minor postoperative morbidity occured in 10.5% of patients. Three prgnancy complicated by spontaneous abortions were reported after the treatment. A total of 78% of women reported overall satisfaction with the endometrial ablation procedure and 18% were dissatisfied. 17.8% of patients underwent hysterectomy within 1 to 5 years of balloon endometrial ablation. Increasing age and menopause were significantly associated with increased odds of success (p < 0.05). Thermal balloon endometrial ablation is a simple, easy, effective, and minimally invasive procedure in menhorragic women with no desire for further

  8. A balloon borne telescope for planetary observations with a fine pointing technology

    Science.gov (United States)

    Shoji, Yasuhiro; Onishi, Tomoya; Battazzo, Steve; Yoshimura, Atsushi; Sakamoto, Yuji; Yoshida, Kazuya; Takahashi, Yukihiro; Taguchi, Makoto

    A balloon borne telescope is one of the effective observation methods for planets under space environment. A telescope is carried up to the stratosphere at an altitude of higher than 32 km where the air density is as thin as 1/100 of that at the ground. The thin atmosphere gives a telescope better observation conditions: fine seeing, stable weather, and high transmittance especially in the infrared region. Moreover there is a chance that a planet can be continuously seen for a window longer than 24 hours from the polar stratosphere. The authors have been developing a balloon borne telescope system for years to take finer images of planets in the solar system., The first object is Venus, of which atmospheric motions are derived by tracking the changes of cloud patterns with bands of UV, visible and NIR. Highly precise pointing control within the error of sub-arcseconds is required so that the balloon borne telescope achieves its diffraction-limited spatial resolution. The flight system is equipped with a three-stage attitude and pointing control system in order to realize the desired pointing control precision. In 2009, the flight system was built and tested in various ground tests and an actual balloon flight. Although the balloon experiment failed due to trouble with an onboard computer, the ground tests before the flight operation have verified that the pointing control system can achieve pointing error of less than 0.2 arcseconds. The balloon borne telescope is being redesigned for a sequential observation of Venus, Mars and Jupiter in the summer of 2011. This flight will be a step for a long-duration observation in the polar stratosphere. Additionally, an observation of the sodium tail of Mercury with a small telescope and a wide field of view has been under consideration. Mercury has very thin atmosphere called a surface-bounded exosphere. Past observations by spacecraft and ground-based telescopes revealed that one of the atmospheric components, gaseous

  9. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  10. [Application of temporary balloon blocking technique in bone tumors surgery under the aid of CT angiography].

    Science.gov (United States)

    Fang, Cheng; Hu, Yongcheng; Huang, Hongchao; Xia, Qun; Chen, Xiaopeng; Yuan, Binbin; He, Xin; Wang, Peng

    2014-10-01

    To study the value of CT angiography (CTA) in the surgical treatment of bone tumors with the temporary balloon blocking technique. A retrospective analysis was made on the clinical data of 36 bone tumor patients between April 2008 and October 2013. There were 22 males and 14 females, aged from 25 to 83 years (mean, 46 years). The tumor located at the sacrococcygeal region in 17 cases, at the ilium in 12 cases, at the pubis in 5 cases, and at the proximal femur in 2 cases. Before surgery, CTA was performed to measure the external diameter of aortaventralis and arteria iliac communis, and the distance between the low renal artery and the abdominal aortic bifurcation as well as mark the anatomical relationship between the low renal artery, the abdominal aortic bifurcation and bony landmarks of vertebral body. According to these data, suitable balloon was chosen and the balloon positioning was guided in the surgery to completely excise tumor assisted by balloon blocking technique. The CTA results showed that the external diameter of aortaventralis and arteria iliaca communis was (1.545 ± 0.248) cm and (1.060 ± 0.205) cm respectively, and the distance between the low renal artery and the abdominal aortic bifurcation was (10.818 ± 1.165) cm. The three-dimensional reconstruction showed that the opening of the low renal artery was mainly located at L1 (16/36, 44.4%) and the abdominal aortic bifurcation mainly located at L4 (22/36, 61.1%). Effective block of abdomial aorta was performed; the blood pressure obviously increased in 3 cases after balloon inflation, and pulse of the left dorsal artery of the foot decreased in 1 case after removal of balloon, which were relieved after expectant treatment. The operation time was 118-311 minutes; the intraoperative blood loss was 200-1800 mL, 21 patients were given blood transfusion, and the amount of blood transfusion was 400-1200 mL; and the aortic clamping time was 40-136 minutes. All patients were followed up 5-44 months

  11. Double-Balloon Catheter for Isolated Liver Perfusion: An Experimental Study

    International Nuclear Information System (INIS)

    Cwikiel, Wojciech; Bergqvist, Lennart; Harnek, Jan

    2001-01-01

    Purpose: Further development of a previously described interventional method for isolated liver perfusion (ILP) with a new double-lumen balloon catheter, and evaluation of the side-effects of such isolation.Methods: In six pigs a double-balloon occlusion catheter was placed via the transjugular approach with its tip in the portal vein. One of the balloons was positioned in the inferior vena cava (IVC), cranial to the origin of the hepatic veins and the other balloon in the portal vein. By the transfemoral approach, a single-balloon occlusion catheter was placed in the IVC caudal to the origin of the hepatic veins. A third catheter was placed by the transfemoral route with the occlusion balloon in the proper hepatic artery. After inflation of all balloons 99 Tc m -labelled human serum albumin was recirculated through the liver. The isolation was evaluated by repeated measurement of radioactivity levels in peripheral blood. Laboratory tests of liver and pancreas function, and hemoglobin, were taken before, at the end of, and 3 days after the procedure. Blood gases were tested at the beginning and end of the procedure.Results: One pig died during the procedure due to technical failure and was excluded from the study. In the other pigs leakage from the isolated liver to the systemic circulation increased slowly, up to 9.7% (mean) during 30 min of recirculation of the perfusate through the liver. Laboratory tests were normal in all pigs except insignificant acidosis directly after the procedure and the slight elevation of s-ALAT after 3 days.Conclusions: Only minor leakage from the liver to the systemic circulation was noted during ILP performed with a new, double-balloon catheter. There were no serious side effects

  12. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  13. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  14. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  15. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Pretolesi, F.; Derchi, L.E. [Dept. of Radiology, University of Genoa (Italy); Redaelli, G.; Papagni, L. [IRCCS, Ist. Auxologico Italiano, Milan (Italy)

    2001-04-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  16. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    International Nuclear Information System (INIS)

    Pretolesi, F.; Derchi, L.E.; Redaelli, G.; Papagni, L.

    2001-01-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  17. Influence of Equilibrium Perpendicular Shear Flow on Peeling-ballooning Instabilities

    Science.gov (United States)

    Xi, P. W.; Xu, X. Q.

    2011-10-01

    The influence of perpendicular ExB shear flow on peeling-ballooning instabilities is investigated with BOUT++ code. In our simulation, a set of reduced MHD equations are solved for a very unstable equilibrium and a marginal unstable equilibrium in shifted-circular tokamak geometry. For ideal MHD cases without diamagnetic terms and resistivity, we find that flow shear shows dramatic stabilizing effect on peeling-ballooning modes and the stabilizing degree increases with mode number. When the flow shear is large enough, we find the curvature of growth rate verse mode number has the same shape like that for the case with only diamagnetic term, and this implies that diamagnetic term and the shear flow have the same mechanism acting on peeling-ballooning instabilities. The role of Kelvin-Helmholtz term is also investigated and we find it is destabilizing and the effect depends on both flow shear and mode number. For cases with both diamagnetic term and the applied shear flow, modes with intermediate mode number are strongest stabilized while high n and low n mode keep unstable. Based on these results, an ELM trigger sketch is proposed. Performed for USDoE by LLNL Contract DE-AC52-07NA27344.

  18. Destabilization of a peeling-ballooning mode by a toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Aiba, N.; Hirota, M.; Tokuda, S.; Furukawa, M.

    2009-01-01

    Full text: From the viewpoint of the heat load on the divertor, Type-I edge localized mode (ELM) needs to be suppressed or the amplitude of this ELM needs to be reduced. In JT-60U, some experimental results showed that the ELM frequency depends on the toroidal rotation, and the rapid rotation in the counter direction of the plasma current changes from Type-I ELM to Grassy ELM, whose frequency is high and the amplitude is small. Recent experimental and theoretical/numerical studies in a static system have identified that both Type-I and Grassy ELMs are considered ideal magnetohydrodynamic (MHD) modes destabilizing near the plasma surface, called peeling-ballooning modes. To investigate the mechanism of the change of ELM frequency by a toroidal rotation, theoretical and numerical analyses are important for understanding the toroidal rotation effects on the peeling-ballooning mode. Previous works about the toroidal rotation effect on the edge MHD stability have illustrated that the toroidal rotation with shear can destabilize low/intermediate-n (<50) modes but can stabilize high-n modes, where n is the toroidal mode number. The stabilization of the high-n mode can be understood qualitatively in analogy with the infinite-n ballooning mode case. However, the destabilizing mechanism of the low/intermediate-n mode is not still clarified, and to understand the stability property related to ELM suppression/mitigation, it is important to clarify this destabilizing mechanism. In this paper, we investigate numerically the destabilizing effect of a toroidal rotation on the peeling-ballooning mode with a newly developed code MINERVA, which solves the Frieman-Rotenberg equation. Particularly, we pay attention to the effect of the centrifuged force on not only equilibrium but also change of equation of motion. (author)

  19. Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK

    Science.gov (United States)

    Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.

    2015-12-01

    Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.

  20. Fluoroscopy-guided balloon dilation in patients with Eustachian tube dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Yung; Tsauo, Jiaywei; Song, Ho-Young [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Park, Hong Ju; Kang, Woo Seok [University of Ulsan College of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, Seoul (Korea, Republic of); Park, Jung-Hoon [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); University of Ulsan College of Medicine, Department of Biomedical Engineering Research Center, Asan Medical Center, Seoul (Korea, Republic of); Wang, Zhe [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Tianjin Medical University General Hospital, Department of Radiology (China)

    2018-03-15

    To prospectively evaluate the technical feasibility and safety of fluoroscopy-guided balloon dilation in patients with Eustachian tube (ET) dysfunction. Patients who could not do a Valsalva manoeuvre for more than 6 months and diagnosed with chronic otitis media or ET dysfunction were prospectively enrolled. A 0.035-in. guide wire and 6-mm long balloon catheter with a diameter of 2 mm were used to dilate the cartilaginous portion of the ET under fluoroscopic guidance. The balloon was inflated by manual injection twice for 1 min each time. Clinical outcomes were assessed by the patient's ability to perform a Valsalva manoeuvre, and symptoms were assessed using the 7-item Eustachian Tube Dysfunction Questionnaire (ETDQ-7) score. Balloon dilation was attempted in a total of ten adult patients from October 2016 to March 2017. Technical success was achieved in all procedures (10/10). Ninety percent (9/10) of the balloons were fully dilated without waist deformity. There were no major complications. All patients were able to perform a Valsalva manoeuvre at the time of their last visit and/or improvement of at least one ETDQ-7 score. Fluoroscopy-guided balloon dilation seems to be technically feasible and safe in the treatment of ET dysfunction. (orig.)

  1. The development of coastal diffusion observation method with a captive balloon

    International Nuclear Information System (INIS)

    Fukuda, Masaaki; Yamada, Masaharu

    1980-03-01

    Apparatus whereby the dye cloud in a coastal area in diffusion experiment can be photographed was developed. It consists of a vinyl balloon two meters in diameter, a photographic device with the camera shutter released by wireless signals from the ground, and a winch to raise or lower the balloon. A maximum height of the balloon for taking photographs is 1000 m. During the single balloon flight, thirty photographs can be taken. With the balloon at a certain height, dye as the tracer in diffusion experiment is released at sea surface or a certain sea depth by dye-throwing means or pump, and then taking the photographs is started. Movement and diffusion of the dye are analyzed by means of the photographs taken. The apparatus is simple in mechanism and easy to transport. Dye experiment is possible in the surfe zone where a boat cannot enter. It is impossible, however, to raise the balloon in strong wind or sea breeze. Typical results of the dye diffusion experiment with the apparatus are given. (author)

  2. Hot air balloons fill gap in atmospheric and sensing platforms

    Science.gov (United States)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  3. Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations

    Science.gov (United States)

    Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue

    2017-07-01

    In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17-18.5 km and latitudes of 60-85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5-1.4 K and a warm bias of 0.4-2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9-2.3 m s-1 and a bias below ±0.5 m s-1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15-60 % for temperature and 30-60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4-12 % and error growth rates of 60-170 km day-1 for 15-day trajectories. Dispersion

  4. Gamma-Ray Imaging Spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; Maccallum, C.J.; Stang, P.D.; Sandia Labs., Albuquerque, NM)

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

  5. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Science.gov (United States)

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  6. Influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode crash

    International Nuclear Information System (INIS)

    Xi, P. W.; Xu, X. Q.; Wang, X. G.; Xia, T. Y.

    2012-01-01

    The E × B shear flow plays a dual role on peeling-ballooning modes and their subsequently triggered edge localized mode (ELM) crashes. On one hand, the flow shear can stabilize high-n modes and twist the mode in the poloidal direction, constraining the mode's radial extent and reducing the size of the corresponding ELM. On the other hand, the shear flow also introduces the Kelvin-Helmholtz drive, which can destabilize peeling-ballooning modes. The overall effect of equilibrium shear flow on peeling-ballooning modes and ELM crashes depends on the competition between these two effects. When the flow shear is either small or very large, it can reduce ELM size. However, for moderate values of flow shear, the destabilizing effect from the Kelvin-Helmholtz term is dominant and leads to larger ELM crashes.

  7. Balloon-based adjuvant radiotherapy in breast cancer: comparison between {sup 99m}Tc and HDR {sup 192}Ir

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Tarcisio Passos Ribeiro de; Lima, Carla Flavia de; Cuperschmid, Ethel Mizrahy, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-03-15

    Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with {sup 99m}Tc and balloon brachytherapy with high-dose-rate (HDR) {sup 192}Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and methods: simulations of implants with {sup 99m}Tc-filled and HDR {sup 192}Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: the {sup 99m}Tc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h{sup -1}.mCi{sup -1} and 0.190 cGyh{sup -1} at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh{sup -1}.mCi{sup -1}, respectively, for the HDR {sup 192}Ir balloon. An exposure time of 24 hours was required for the {sup 99m}Tc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR {sup 192}Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: temporary {sup 99m}Tc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR {sup 192}Ir balloon implantation, which is the current standard in clinical practice. (author)

  8. Hard X-ray balloon observations of compact galactic and extragalactic X-ray sources

    International Nuclear Information System (INIS)

    Staubert, R.; Kendziorra, E.; Pietsch, W.; Proctor, R.J.; Reppin, C.; Steinle, H.; Truemper, J.; Voges, W.

    1981-01-01

    A balloon program in hard X-ray astronomy (20-200 keV) is jointly pursued by the Astronomisches Institut der Universitaet Tuebingen (AIT) and the Max Planck-Institut fuer Extraterrestrische Physik in Garching (MPE). Since 1973 nine succussful balloon flights have been performed from Texas and Australia. Here results on Centaurus A and on several galactic binary X-ray sources are summarized. In particular the high energy photon spectrum of Hercules X-1 and the evidence for the cyclotron line feature which was discovered by us in 1976 is reviewed. (orig.)

  9. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  10. Polar Balloon Experiment for Astrophysics Research (Polar BEAR)

    Science.gov (United States)

    Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.

  11. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  13. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  14. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  15. Trace gas measurements from tethered balloon platforms

    Science.gov (United States)

    Bandy, Alan R.; Bandy, Terese L.; Youngbluth, Otto; Owens, Thomas L.

    1987-01-01

    Instrumentation and chemical sampling and analysis procedures are described for making measurements of atmospheric carbon disulfide in the concentration range 1-1000 pptv from tethered balloon platforms. Results of a study on the CS2 composition of air downward of a saltwater marsh are reported. A method for obtaining the necessary data for solving the budget equations for surface fluxes, chemical formation rates and chemical destruction rates using data acquired from tethered balloon platforms is presented.

  16. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  17. Balloon catheter dilatation of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures.

  18. Balloon catheter dilatation of esophageal strictures

    International Nuclear Information System (INIS)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon

    1990-01-01

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures

  19. Performance of the EUSO-Balloon electronics

    International Nuclear Information System (INIS)

    Barrillon, P.; Dagoret, S.; Miyamoto, H.; Moretto, C.; Bacholle, S.; Blaksley, C; Gorodetzky, P.; Jung, A.; Prévôt, G.; Prat, P.; Bayer, J.; Blin, S.; Taille, C. De La; Cafagna, F.; Fornaro, C.; Karczmarczyk, J.; Tanco, G. Medina; Osteria, G.; Perfetto, F.; Park, I.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight

  20. JUBA (Joint UAS-Balloon Activities) Final Campaign Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Darielle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Apple, Monty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Callow, Diane Schafer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Longbottom, Casey Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Novick, David K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements from tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.

  1. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  2. External caps: An approach to stress reduction in balloons

    Science.gov (United States)

    Hazlewood, K. H.

    Recent findings of the catastrophic balloon failures investigation in the U.S.A. indicate that very large gross inflations, in balloons using present design philosophy, over-stress currently available materials. External caps are proposed as an economic approach to reducting those stresses to an acceptable level.

  3. OCT evaluation of directional atherectomy compared to balloon angioplasty

    International Nuclear Information System (INIS)

    Marmagkiolis, Konstantinos; Lendel, Vasili; Cilingiroglu, Mehmet

    2015-01-01

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  4. OCT evaluation of directional atherectomy compared to balloon angioplasty

    Energy Technology Data Exchange (ETDEWEB)

    Marmagkiolis, Konstantinos [Citizens Memorial Hospital Heart and Vascular Institute, Bolivar, MO (United States); Lendel, Vasili [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Cilingiroglu, Mehmet, E-mail: mcilingiroglu@yahoo.com [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Koc University, School of Medicine, Istanbul (Turkey)

    2015-09-15

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  5. Unique Programme of Indian Centre for Space Physics using large rubber Balloons

    Science.gov (United States)

    Chakrabarti, Sandip Kumar; Sarkar, Ritabrata; Bhowmick, Debashis; Chakraborty, Subhankar

    Indian Centre for Space Physics (ICSP) has developed a unique capability to pursue space based studies at a very low cost. Here, large rubber balloons are sent to near space (~ 40km) with payloads of less than 4kg weight. These payloads can be cosmic ray detectors, X-ray detectors, muon detectors apart from communication device, GPS, and nine degrees of freedom measuring capabilities. With two balloons in orbiter-launcher configuration, ICSP has been able to conduct long duration flights upto 12 hours. ICSP has so far sent 56 Dignity missions to near space and obtained Cosmic Ray and muon variation on a regular basis, dynamical spectrum of solar flares and gamma ray burst apart from other usual parameters such as wind velocity components, temperature and pressure variations etc. Since all the payloads are retrieved by parachutes, the cost per mission remains very low, typically around USD1000.00. The preparation time is low. Furthermore, no special launching area is required. In principle, such experiments can be conducted on a daily basis, if need be. Presently, we are also incorporating studies relating to earth system science such as Ozone, aerosols, micro-meteorites etc.

  6. Trajectory Optimization and Conceptual Study of Small Test Vehicles for Hypersonic Engine Using High-Altitude Balloon

    Science.gov (United States)

    Tsuchiya, Takeshi; Takenaka, Youichi; Taguchi, Hideyuki; Sawai, Shujiro

    Japan Aerospace Exploration Agency, JAXA announced a long-term vision recently. In the vision, JAXA aims to develop hypersonic aircrafts. A pre-cooled turbojet engine has great potential as one of newly developed hypersonic air-breathing engines. We also expect the engine to be installed in space transportation vehicles in future. For combustion test in real flight condition of the engines, JAXA has an experimental plan with a small test vehicle falling from a high-altitude balloon. This paper applies numerical analysis and optimization techniques to conceptual designs of the test vehicle in order to obtain the best configuration and trajectory that can achieve the flight test. The results show helpful knowledge when we design prototype vehicles.

  7. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  8. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  9. Double balloon esophageal catheter for diagnosis of tracheo-esophageal fistula

    International Nuclear Information System (INIS)

    Kiyan, Guersu; Dagli, Tolga E.; Tugtepe, Halil; Kodalli, Nihat

    2003-01-01

    Congenital H-type and recurrent tracheo-esophageal fistulas (TEF) are always difficult to diagnose. For a more accurate diagnosis we designed a new double balloon catheter, which is a modification of esophageal dilatation balloon. The catheter has two balloons to occlude the esophagus proximal and distal to the fistula. The fistula can be identified by passing of the contrast material to the tracheal tree, which was injected into the esophageal segment between the inflated balloons. To prove the efficiency of this catheter, a TEF was created surgically in a New Zealand rabbit. On the postoperative fourteenth day the catheter was tried and the fistula could be visualized easily by injecting the contrast material. We think this technique may be of use in the diagnosis of TEF in children. (orig.)

  10. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  11. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  12. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T. F. [Dalian University of Technology, Dalian 116024 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ma, C. H. [Fusion Simulation Center, School of Physics, Peking University, Beijing (China); Bass, E. M.; Candy, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holland, C. [University of California San Diego, La Jolla, California 92093-0429 (United States)

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.

  13. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  14. Scientific ballooning. Proceedings. PSB Meeting of the COSPAR Panel on Technical Problems Related to Scientific Ballooning which was held during the Thirtieth COSPAR Scientific Assembly, Hamburg (Germany), 11 - 21 Jul 1994.

    Science.gov (United States)

    Riedler, W.; Torkar, K.

    1996-05-01

    This issue is grouped into sections on materials, design, performance and analysis of balloons, reviews of major national and international balloon programmes, novel instrumentation and systems for scientific ballooning, and selected recent scientific observations.

  15. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  16. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  17. Analysis of current diffusive ballooning mode in tokamaks

    International Nuclear Information System (INIS)

    Uchida, M.; Fukuyama, A.; Itoh, S.-I.; Yagi, M.

    1999-12-01

    The effect of finite gyroradius on the current diffusive ballooning mode is examined. Starting from the reduced MHD equations including turbulent transports, coupling with drift motion and finite gyroradius effect of ions, we derive a ballooning mode equation with complex transport coefficients. The eigenfrequency, saturation level and thermal diffusivity are evaluated numerically from the marginal stability condition. Preliminary results of their parameter dependence is presented. (author)

  18. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  19. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  20. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  1. Robotic weather balloon launchers spread in Alaska

    Science.gov (United States)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  2. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  3. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  4. TU-AB-201-07: Image Guided Endorectal HDR Brachytherapy Using a Compliant Balloon Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, G; Goodman, K [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2015-06-15

    Purpose: High dose rate endorectal brachytherapy is an option to deliver a focal, high-dose radiotherapy to rectal tumors for patients undergoing non-operative management. We investigate a new multichannel, MR compatible applicator with a novel balloon-based design to provide improved treatment geometry. We report on the initial clinical experience using this applicator. Methods: Patients were enrolled on an IRB-approved, dose-escalation protocol evaluating the use of the anorectal (AR-1) applicator (Ancer Medical, Hialeah, FL), a multichannel applicator with two concentric balloons. The inner balloon supports 8 source lumens; the compliant outer balloon expands to separate the normal rectal wall and the source lumens, yet deforms around a firm, exophytic rectal mass, leading to dose escalation to tumor while sparing normal rectum. Under general anesthesia, gold fiducial markers were inserted above and below the tumor, and the AR applicator was placed in the rectum. MRI-based treatment plans were prepared to deliver 15 Gy in 3 weekly fractions to the target volume while sparing healthy rectal tissue, bladder, bowel and anal muscles. Prior to each treatment, CBCT/Fluoroscopy were used to place the applicator in the treatment position and confirm the treatment geometry using rigid registration of the CBCT and planning MRI. After registration of the applicator images, positioning was evaluated based on the match of the gold markers. Results: Highly conformal treatment plans were achieved. MR compatibility of the applicator enabled good tumor visualization. In spite of the non-rigid nature of the applicators and the fact that a new applicator was used at each treatment session, treatment geometry was reproducible to within 2.5 mm. Conclusions: This is the first report on using the AR applicator in patients. Highly conformal plans, confidence in MRI target delineation, in combination with reproducible treatment geometry provide encouraging feedback for continuation with

  5. [Early results with a monorail-stent-balloon device for endovascular treatment of renal artery stenosis].

    Science.gov (United States)

    Müller-Hülsbeck, S; Jahnke, T; Grimm, J; Behm, C; Hilbert, C; Frahm, C; Biederer, J; Brossmann, J; Heller, M

    2002-03-01

    To evaluate the technical feasibility of a new monorail-stent-balloon device for treatment of renal artery stenosis (RAS). During a study period of 18 months, 38 patients with proven RAS in 41 cases (hypertension n = 36, renal insufficiency n = 13) and indication for stenting (calicified ostial lesions n = 35, insufficient PTA n = 4, dissection n = 2) were enrolled into this prospective evaluation. Pre-mounted stents (Rx-Herculink(TM) 5 mm = 13, 6 mm = 34, 7 mm = 1) were implanted a transfemoral (n = 35) or transbrachial approach (n = 6). Mean grade and lengths of stenosis measured were 88 % plus minus 10 and 9 mm plus minus 5. Renal stent implantation was technically successful in all cases (100 %). In 7 cases a second stent had to be implanted to cover the entire lesion. The transstenotic pressure drop decreased from 88 mmHg plus minus 10 before to 1 mmHg plus minus 1.8 after the procedure. Remaining stenosis measured 0.7 % plus minus 4.2. Serum creatine levels decreased from 1.9 mm/dl to 1.5 mg/dl (n. s.), blood pressure decreased from 178/94 mmHg to 148/79 mmHg (p monorail-stend-balloon device a technically easy, secure and exact renal stent placement is guaranteed, patency rates are similar to those described in the current literature.

  6. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  7. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  8. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  9. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline.

    Science.gov (United States)

    Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet

    2015-11-01

    An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Atmospheric properties measurements and data collection from a hot-air balloon

    Science.gov (United States)

    Watson, Steven M.; Olson, N.; Dalley, R. P.; Bone, W. J.; Kroutil, Robert T.; Herr, Kenneth C.; Hall, Jeff L.; Schere, G. J.; Polak, M. L.; Wilkerson, Thomas D.; Bodrero, Dennis M.; Borys, R. O.; Lowenthal, D.

    1995-02-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various atmospheric measurements and remote sensing tasks. We have been performing experiments in these areas since the winter of 1993. These platforms are extremely inexpensive to operate, do not cause disturbances such as prop wash and high airspeeds, and have substantial payload lifting and altitude capabilities. The equipment operated and tested on the balloons included FTIR spectrometers, multi-spectral imaging spectrometer, PM10 Beta attenuation monitor, mid- and far-infrared cameras, a radiometer, video recording equipment, ozone meter, condensation nuclei counter, aerodynamic particle sizer with associated computer equipment, a tethersonde and a 2.9 kW portable generator providing power to the equipment. Carbon monoxide and ozone concentration data and particle concentrations and size distributions were collected as functions of altitude in a wintertime inversion layer at Logan, Utah and summertime conditions in Salt Lake City, Utah and surrounding areas. Various FTIR spectrometers have been flown to characterize chemical plumes emitted from a simulated industrial stack. We also flew the balloon into diesel and fog oil smokes generated by U.S. Army and U.S. Air Force turbine generators to obtain particle size distributions.

  11. SBARMO-79 a multi-balloon campaign in the auroral zone

    International Nuclear Information System (INIS)

    Tanskanen, P.; Kangas, J.; Bjordal, J.; Bronstad, K.; Block, L.P.; Holtet, T.

    1982-01-01

    A joint European International Magnetospheric Study (IMS) balloon campaign was conducted within the framework of the Scientific Ballooning and Radiation Monitoring Organization (SBARMO). The campaign was carried out during the time from May 30 to July 10, 1979. A total of 29 successful balloon launches were made from four launch sites located in Norway and in Finland. The campaign has the objective to provide information for a better understanding of temporal and spatial variations of magnetospheric processes, giving particular attention to the coupling between the magnetosphere and the ionosphere

  12. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  13. Optical properties of mixed phase boundary layer clouds observed from a tethered balloon platform in the Arctic

    International Nuclear Information System (INIS)

    Sikand, M.; Koskulics, J.; Stamnes, K.; Hamre, B.; Stamnes, J.J.; Lawson, R.P.

    2010-01-01

    A tethered balloon system was used to collect data on radiometric and cloud microphysical properties for mixed phase boundary layer clouds, consisting of ice crystals and liquid water droplets during a May-June 2008 experimental campaign in Ny-Alesund, Norway, located high in the Arctic at 78.9 o N, 11.9 o E. The balloon instrumentation was controlled and powered from the ground making it possible to fly for long durations and to profile clouds vertically in a systematic manner. We use a radiative transfer model to analyze the radiometric measurements and estimate the optical properties of mixed-phase clouds. The results demonstrate the ability of instruments deployed on a tethered balloon to provide information about optical properties of mixed-phase clouds in the Arctic. Our radiative transfer simulations show that cloud layering has little impact on the total downward irradiance measured at the ground as long as the total optical depth remains unchanged. In contrast, the mean intensity measured by an instrument deployed on a balloon depends on the vertical cloud structure and is thus sensitive to the altitude of the balloon. We use the total downward irradiance measured by a ground-based radiometer to estimate the total optical depth and the mean intensity measured at the balloon to estimate the vertical structure of the cloud optical depth.

  14. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    Science.gov (United States)

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-09-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with different convective boundary-layer conditions, based on turbulent measurements from instrumented towers and aircraft.

  15. Proceedings of the 3rd workshop on balloon-borne experiments with superconducting magnet spectrometers

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    1992-04-01

    The Third Work Shop on Balloon Borne Experiment with a Superconducting Magnet Spectrometer was held at National Laboratory for High Energy Physics (KEK), Tsukuba, Japan on February 24 - 25, 1992. The main effort for this workshop was focused on the progress of the BESS (Balloon Borne Experiment with a Superconducting Spectrometer) experiment and on the scope for scientific investigation with the BESS detector. The progress was reviewed and further investigation was discussed for the BESS further scientific collaboration among Univ. of Tokyo, Kobe University, KEK, ISAS and NMSU. (J.P.N.)

  16. High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-05-01

    The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems

  17. Plastic instability criteria for necking of bars and ballooning of tubes

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    Plastic instability criteria applicable to the necking of bars under tension and to the ballooning of thin-wall tubes under internal pressure were derived from basic geometrical considerations. In the case of bars under tension, plastic instability prevails if the percentage rate of decrease of the cross-sectional area in the (potential) necking region is greater than that in the bulk of the bar. When the loading characteristics and constitutive equation were taken into account, an instability criterion was deduced in terms of the stress, strain, strain rate, temperature and material properties. This criterion was shown to be reducible to the classical Considere condition for non-rate-sensitive materials. For rate-sensitive materials under isothermal conditions, a simple relationship among the strain, the strain-hardening and strain-rate-sensitivity parameters was also obtained. It was found that the uniform elongation decreases with increasing strainrate sensitivity, a conclusion which is in agreement with experimental measurements and some previous investigations. Finally, the relationship between the high strainrate sensitivity and the superplastic ductility of a material was explained without invoking any non-hardening arguments. (Auth.)

  18. Fiber-optic intra-aortic balloon therapy and its role within cardiac surgery.

    Science.gov (United States)

    Yarham, G; Clements, A; Morris, C; Cumberland, T; Bryan, M; Oliver, M; Burrows, H; Mulholland, J

    2013-03-01

    The patient population has changed and the cardiothoracic team are now operating on patients with more co-morbidity. One of the significant aspects of this increased co-morbidity, which affects both short- and long-term outcomes, is compromised left ventricular function. Intra-aortic balloon pump (IABP) technology offers these patients and the cardiac team an easily accessible, cost-effective, mechanical assist device. Arterial pressure monitoring for IABP therapy: Fluid-filled transducers used to measure the aortic waveform can be unreliable and inconsistent. Fiber-optic manometers located in the very tip of the IAB catheters provide accurate and fast, high quality measurements. This, in turn, presents the opportunity for the hardware and algorithm to measure key markers on the arterial waveform and optimise left ventricular support. It also provides the potential for automatic in vivo calibration, further increasing the accuracy and quality of the IAB support. The effect of fiber-optic IABP therapy on clinical management: A dual centre prospective audit comparing fluid-filled versus fiber-optic arterial pressure monitoring showed a 96% reduction in IAB-related perfusion on-site call-outs (17 vs. 1, respectively) and a 94% reduction in sub-optimal timing (55/98 vs. 2/94, respectively). The improved timing algorithms utilise the pressure information received 50 msecs faster than with fluid-filled transducers, measuring key markers on the pressure waveform and adjusting inflation and deflation accurately on a beat per beat basis. Fiber-optic IAB technology and, specifically, these improved algorithms provide better beat per beat mechanical support. Given our evolving patient population, this technology will not only play an increased role, but will have a significant impact on cardiac surgery.

  19. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  20. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...