WorldWideScience

Sample records for high predation risk

  1. Learned predation risk management by spider mites

    Directory of Open Access Journals (Sweden)

    Thomas eHackl

    2014-09-01

    Full Text Available Predation is a prime selective force shaping prey behavior. Investment in anti-predator behavior is traded-off against time and energy for other fitness-enhancing activities such as foraging or reproduction. To optimize this benefit/cost trade-off, prey should be able to innately and/or by experience modulate their behavior to the level of predation risk. Here, we assessed learned predation risk management in the herbivorous two-spotted spider mite Tetranychus urticae. We exposed spider mites coming from benign (naïve or high immediate predation risk (experienced environments to latent and/or no risk and assessed their site choice, activity and oviposition. Benign environments were characterized by the absence of any predator cues, high immediate risk environments by killed spider mites, physical presence of the predatory mite Phytoseiulus persimilis and associated chemosensory traces left on the surface, and latent risk environments by only predator traces. In the no-choice experiment both naïve and experienced spider mites laid their first egg later on leaves with than without predator traces. Irrespective of predator traces presence/absence, experienced mites laid their first egg earlier than naïve ones did. Naïve spider mites were more active, indicating higher restlessness, and laid fewer eggs on leaves with predator traces, whereas experienced mites were less active and laid similar numbers of eggs on leaves with and without predator traces. In the choice experiment both naïve and experienced spider mites preferentially resided and oviposited on leaves without predator traces but experienced mites were less active than naïve ones. Overall, our study suggests that spider mites experienced with high predation risk behave bolder under latent risk than naïve spider mites. Since predator traces alone do not indicate immediate risk, we argue that the attenuated anti-predator response of experienced spider mites represents adaptive learned

  2. The increased risk of predation enhances cooperation

    Science.gov (United States)

    Krams, Indrikis; Bērziņš, Arnis; Krama, Tatjana; Wheatcroft, David; Igaune, Kristīne; Rantala, Markus J.

    2010-01-01

    Theory predicts that animals in adverse conditions can decrease individual risks and increase long-term benefits by cooperating with neighbours. However, some empirical studies suggest that animals often focus on short-term benefits, which can reduce the likelihood that they will cooperate with others. In this experimental study, we tested between these two alternatives by evaluating whether increased predation risk (as a correlate of environmental adversity) enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behaviour, among breeding pied flycatchers Ficedula hypoleuca. We tested whether birds would join their mobbing neighbours more often and harass a stuffed predator placed near their neighbours' nests more intensely in areas with a higher perceived risk of predation. Our results show that birds attended mobs initiated by their neighbours more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. In such high-risk areas, birds also were more often involved in between-pair cooperation. This study demonstrates the positive impact of predation risk on cooperation in breeding songbirds, which might help in explaining the emergence and evolution of cooperation. PMID:19846454

  3. Parental investment decisions in response to ambient nest-predation risk versus actual predation on the prior nest

    Science.gov (United States)

    Chalfoun, A.D.; Martin, T.E.

    2010-01-01

    Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.

  4. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  5. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  6. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  7. Predation risk of artificial ground nests in managed floodplain meadows

    Science.gov (United States)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  8. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites

    Science.gov (United States)

    Seiter, Michael; Schausberger, Peter

    2015-01-01

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments. PMID:26449645

  9. Informed renesting decisions: the effect of nest predation risk.

    Science.gov (United States)

    Pakanen, Veli-Matti; Rönkä, Nelli; Thomson, Robert L; Koivula, Kari

    2014-04-01

    Animals should cue on information that predicts reproductive success. After failure of an initial reproductive attempt, decisions on whether or not to initiate a second reproductive attempt may be affected by individual experience and social information. If the prospects of breeding success are poor, long-lived animals in particular should not invest in current reproductive success (CRS) in case it generates costs to future reproductive success (FRS). In birds, predation risk experienced during breeding may provide a cue for renesting success. Species having a high FRS potential should be flexible and take predation risk into account in their renesting decisions. We tested this prediction using breeding data of a long-lived wader, the southern dunlin Calidris alpina schinzii. As predicted, dunlin cued on predation risk information acquired from direct experience of nest failure due to predation and ambient nest predation risk. While the overall renesting rate was low (34.5%), the early season renesting rate was high but declined with season, indicating probable temporal changes in the costs and benefits of renesting. We develop a conceptual cost-benefit model to describe the effects of the phase and the length of breeding season on predation risk responses in renesting. We suggest that species investing in FRS should not continue breeding in short breeding seasons in response to predation risk but without time constraints, their response should be similar to species investing in CRS, e.g. within-season dispersal and increased nest concealment.

  10. Nest predation risk explains variation in avian clutch size

    Science.gov (United States)

    Dillon, Kristen G.; Conway, Courtney J.

    2018-01-01

    Questions about the ecological drivers of, and mechanistic constraints on, productivity have driven research on life-history evolution for decades. Resource availability and offspring mortality are considered among the 2 most important influences on the number of offspring per reproductive attempt. We used a factorial experimental design to manipulate food abundance and perceived offspring predation risk in a wild avian population (red-faced warblers; Cardellina rubrifrons) to identify the mechanistic cause of variation in avian clutch size. Additionally, we tested whether female quality helped explain the extant variation in clutch size. We found no support for the Food Limitation or Female Quality Hypotheses, but we did find support for both predictions of the Nest Predation Risk Hypothesis. Females that experienced an experimentally heightened perception of offspring predation risk responded by laying a smaller clutch than females in the control group. Additionally, predation rates at artificial nests were highest where red-faced warbler clutch size was smallest (at high elevations). Life-history theory predicts that an individual should invest less in reproduction when high nest predation risk reduces the likely benefit from that nesting attempt and, indeed, we found that birds exhibit phenotypic plasticity in clutch size by laying fewer eggs in response to increasing nest predation risk.

  11. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.

  12. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff.

    Directory of Open Access Journals (Sweden)

    Ulrich K Steiner

    2009-07-01

    Full Text Available Defence against predators is usually accompanied by declining rates of growth or development. The classical growth/predation risk tradeoff assumes reduced activity as the cause of these declines. However, in many cases these costs cannot be explained by reduced foraging effort or enhanced allocation to defensive structures under predation risk. Here, we tested for a physiological origin of defence costs by measuring oxygen consumption in tadpoles (Rana temporaria exposed to predation risk over short and long periods of time. The short term reaction was an increase in oxygen consumption, consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes.

  13. Escaping peril: perceived predation risk affects migratory propensity

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders

    2015-01-01

    Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic ta......) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics.......Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags...... in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density...

  14. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    Science.gov (United States)

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of

  15. Compensatory growth following transient intraguild predation risk in predatory mites.

    Science.gov (United States)

    Walzer, Andreas; Lepp, Natalia; Schausberger, Peter

    2015-05-01

    Compensatory or catch-up growth following growth impairment caused by transient environmental stress, due to adverse abiotic factors or food, is widespread in animals. Such growth strategies commonly balance retarded development and reduced growth. They depend on the type of stressor but are unknown for predation risk, a prime selective force shaping life history. Anti-predator behaviours by immature prey typically come at the cost of reduced growth rates with potential negative consequences on age and size at maturity. Here, we investigated the hypothesis that transient intraguild predation (IGP) risk induces compensatory or catch-up growth in the plant-inhabiting predatory mite Phytoseiulus persimilis . Immature P. persimilis were exposed in the larval stage to no, low or high IGP risk, and kept under benign conditions in the next developmental stage, the protonymph. High but not low IGP risk prolonged development of P. persimilis larvae, which was compensated in the protonymphal stage by increased foraging activity and accelerated development, resulting in optimal age and size at maturity. Our study provides the first experimental evidence that prey may balance developmental costs accruing from anti-predator behaviour by compensatory growth.

  16. Does predation risk affect mating behavior? An experimental test in dumpling squid (Euprymna tasmanica.

    Directory of Open Access Journals (Sweden)

    Amanda M Franklin

    Full Text Available One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness. The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica.Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis. However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time.Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high.

  17. Plasticity of parental care under the risk of predation: how much should parents reduce care?

    Science.gov (United States)

    Martin, Thomas E.

    2013-01-01

    Predation can be an important agent of natural selection shaping parental care behaviours, and can also favour behavioural plasticity. Parent birds often decrease the rate that they visit the nest to provision offspring when perceived risk is high. Yet, the plasticity of such responses may differ among species as a function of either their relative risk of predation, or the mean rate of provisioning. Here, we report parental provisioning responses to experimental increases in the perceived risk of predation. We tested responses of 10 species of bird in north temperate Arizona and subtropical Argentina that differed in their ambient risk of predation. All species decreased provisioning rates in response to the nest predator but not to a control. However, provisioning rates decreased more in species that had greater ambient risk of predation on natural nests. These results support theoretical predictions that the extent of plasticity of a trait that is sensitive to nest predation risk should vary among species in accordance with predation risk.

  18. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff

    DEFF Research Database (Denmark)

    Steiner, Uli; Van Buskirk, Josh

    2009-01-01

    , consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous...... and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes....

  19. Cooperation under Predation Risk: Experiments on Costs and Benefits

    Science.gov (United States)

    Milinski, Manfred; Luthi, Jean H.; Eggler, Rolf; Parker, Geoffrey A.

    1997-06-01

    Two fish that cooperatively inspect a predator may have negotiated the share of the risk that each takes. A test of both the costs of predator inspection dependent on the distance from which the predator is approached and the potential benefits of cooperation was carried out strictly experimentally. We made either singletons or pairs of dead sticklebacks, Gasterosteus aculeatus, approach hungry pike, Esox lucius, by remote control according to an algorithm that mimicked natural inspection. The predation risk of both single inspectors and parallel inspecting pairs increased with closer inspection distances. A member of an inspecting pair had only about half the risk of that of a single inspector. In pairs, a companion diluted the lead fish's risk of being caught, depending on its distance behind the leader. The absolute risk difference between leader and follower was greatest for close inspection distances and decreased further away from the predator. The leader's relative risk increased with its distance ahead of the laggard. However, for a given distance between leader and laggard, the relative risks to the two fish remained similar with distance from the predator. The cost side of the inequalities that define a 'Prisoner's Dilemma' has thus been measured for this system. In a second experiment the 'attack deterrence hypothesis' of predator inspection (i.e. inspection decreases attack probability) was tested. The pike was offered a choice between two sticklebacks, one of which had carried out a predator inspection visit. There was no indication of attack deterrence through predator inspection.

  20. The risk of predation favors cooperation among breeding prey

    Science.gov (United States)

    Krama, Tatjana; Berzins, Arnis; Rantala, Markus J

    2010-01-01

    Empirical studies have shown that animals often focus on short-term benefits under conditions of predation risk, which reduces the likelihood that they will cooperate with others. However, some theoretical studies predict that animals in adverse conditions should not avoid cooperation with their neighbors since it may decrease individual risks and increase long-term benefits of reciprocal help. We experimentally tested these two alternatives to find out whether increased predation risk enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behavior, among breeding pied flycatchers, Ficedula hypoleuca. Our results show that birds attended mobs initiated by their neighbors more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. This study demonstrates a positive impact of predation risk on cooperation in breeding songbirds, which might help to explain the emergence and evolution of cooperation. PMID:20714404

  1. Optimal diving under the risk of predation.

    Science.gov (United States)

    Heithaus, Michael R; Frid, Alejandro

    2003-07-07

    Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.

  2. Assessing predation risk: optimal behaviour and rules of thumb.

    Science.gov (United States)

    Welton, Nicky J; McNamara, John M; Houston, Alasdair I

    2003-12-01

    We look at a simple model in which an animal makes behavioural decisions over time in an environment in which all parameters are known to the animal except predation risk. In the model there is a trade-off between gaining information about predation risk and anti-predator behaviour. All predator attacks lead to death for the prey, so that the prey learns about predation risk by virtue of the fact that it is still alive. We show that it is not usually optimal to behave as if the current unbiased estimate of the predation risk is its true value. We consider two different ways to model reproduction; in the first scenario the animal reproduces throughout its life until it dies, and in the second scenario expected reproductive success depends on the level of energy reserves the animal has gained by some point in time. For both of these scenarios we find results on the form of the optimal strategy and give numerical examples which compare optimal behaviour with behaviour under simple rules of thumb. The numerical examples suggest that the value of the optimal strategy over the rules of thumb is greatest when there is little current information about predation risk, learning is not too costly in terms of predation, and it is energetically advantageous to learn about predation. We find that for the model and parameters investigated, a very simple rule of thumb such as 'use the best constant control' performs well.

  3. Predation as a landscape effect: the trading off by prey species between predation risks and protection benefits.

    Science.gov (United States)

    Mönkkönen, M; Husby, M; Tornberg, R; Helle, P; Thomson, R L

    2007-05-01

    1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure

  4. A meta-analysis of predation risk effects on pollinator behaviour.

    Directory of Open Access Journals (Sweden)

    Gustavo Q Romero

    Full Text Available Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36% and time spent on flowers (by 51% by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters nor on pollinator lifestyle (social vs. solitary. However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres, suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  5. A meta-analysis of predation risk effects on pollinator behaviour.

    Science.gov (United States)

    Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia

    2011-01-01

    Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  6. Habitat selection responses of parents to offspring predation risk: An experimental test

    Science.gov (United States)

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  7. Escape Behavior and Predation Risk of Mainland and Island Spiny-tailed Iguanas (Ctenosaura hemilopha)

    OpenAIRE

    Blázquez, M.C.; Rodríguez-Estrella, Ricardo; Delibes, M.

    1997-01-01

    We investigated the relationships between predator avoidance behavior and predation risk by comparing the wariness of iguanas (Ctenosaura hemilopha) belonging to an island population with few predators with that of iguanas belonging to a mainland population under high predation pressure. We predicted that island iguanas would be less wary than mainland ones. Island iguanas allowed the closer approach of potential predators before their first reaction and fleeing. The responses of both sexes d...

  8. Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries

    Science.gov (United States)

    Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana

    2015-01-01

    Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery. PMID:26489035

  9. Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries.

    Directory of Open Access Journals (Sweden)

    Felipe Briceño

    Full Text Available Depredation of southern rock lobster (Jasus edwardsii within fishing gear by the Maori octopus (Pinnoctopus cordiformis has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery.

  10. Alcohol impairs predation risk response and communication in zebrafish.

    Directory of Open Access Journals (Sweden)

    Thiago Acosta Oliveira

    Full Text Available The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.

  11. Lévy Walks Suboptimal under Predation Risk.

    Directory of Open Access Journals (Sweden)

    Masato S Abe

    2015-11-01

    Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.

  12. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size

    Science.gov (United States)

    Guo, Jing; Martín, Pablo R.; Zhang, Chunxia

    2017-01-01

    The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans). P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk), although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey. PMID:29136660

  13. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size.

    Directory of Open Access Journals (Sweden)

    Jing Guo

    Full Text Available The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans. P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk, although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey.

  14. Immune-related effects from predation risk in Neotropical blue-black grassquits (Volatinia jacarina).

    Science.gov (United States)

    Caetano, João V O; Maia, Maya R; Manica, Lilian T; Macedo, Regina H

    2014-11-01

    Predation is a major force shaping natural history traits of birds because of their vulnerability during nesting and higher visibility during diurnal activities. For most birds in the Neotropics, predation is the major cause of nest failure due to the region's high diversity and abundance of predators. The blue-black grassquit (Volatinia jacarina), similarly to other small passerines in the savanna region of central Brazil, suffers extremely high rates of nest predation. Additionally, males may be particularly vulnerable to predators since they are very conspicuous when executing courtship displays. We assessed some of the non-lethal costs of predation risk on this species by comparing physiological and morphological parameters of birds exposed to predator vocalizations with that of control subjects exposed to non-predator vocalizations. Birds exposed to the predator vocalizations exhibited an immune-related reaction (changes in their H/L ratio), but no changes were observed in other biological parameters measured. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Assessing predation risks for small fish in a large river ecosystem between contrasting habitats and turbidity conditions

    Science.gov (United States)

    Dodrill, Michael J.; Yard, Mike; Pine, William E.

    2016-01-01

    This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.

  16. Costs and limits of dosage response to predation risk: to what extent can tadpoles invest in anti-predator morphology?

    Science.gov (United States)

    Teplitsky, Céline; Plénet, Sandrine; Joly, Pierre

    2005-09-01

    Inducible defences have long been considered as a polyphenism opposing defended and undefended morphs. However, in nature, preys are exposed to various levels of predation risk and scale their investment in defence to actual predation risk. Still, among the traits that are involved in the defence, some are specific to one predator type while others act as a more generalised defence. The existence of defence costs could prevent an individual investing in all these traits simultaneously. In this study, we investigate the impact of an increasing level of predator density (stickleback, Gasterosteus aculeatus) on the expression of morphological inducible defences in tadpoles of Rana dalmatina. In this species, investment in tail length and tail muscle is a stickleback-specific response while increased tail fin depth is a more general defence. As expected, we found a relationship between investment in defence and level of risk through the responses of tail fin depth and tail length. We also found an exponential increase of defence cost, notably expressed by convex decrease of growth and developmental rates. We found a relative independence of investment in the different traits that compose the defence, revealing a high potential for fine tuning the expression of defended phenotypes with respect to local ecological conditions.

  17. Assessment of predation risk through conspecific alarm odors by spiny lobsters

    Science.gov (United States)

    2009-01-01

    Strong “alarm odors” emanating from lethally injured conspecifics may indicate an imminent risk of predation to spiny lobsters. In laboratory trials,1 strong conspecific alarm odors elicited avoidance in Panulirus argus, a highly gregarious species that displays collective defense behavior, but not in Panulirus guttatus, a species that tends to aggregate when reproductive activity is high (spring) but not when it is low (late summer) and does not display collective defensive behavior. To reduce predation risk, however, lobsters may autotomize limbs, thus sustaining nonlethal injuries. I tested the response of these lobsters to scents emanating from intact, lethally-injured and non-lethally injured conspecifics. In P. argus, these scents elicited, respectively, attraction, avoidance and a random response, suggesting that, in P. argus, avoidance of conspecific alarm odors depends on their strength. In contrast, P. guttatus lobsters responded at random to scents of lethally injured conspecifics and showed a similar response to scents of intact and non-lethally injured conspecifics in the spring (attraction) and in the summer (random), reflecting the more cryptic defensive behavior of this species. Therefore, both species use conspecific alarm odors for risk-assessment, but each responds to these cues in the most effective way to reduce its risk of predation. PMID:19721871

  18. Behavior is a major determinant of predation risk in zooplankton

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; van Someren Gréve, Hans; Kiørboe, Thomas

    2017-01-01

    as prey for different predatory copepods. Copepods with “active” feeding behaviors (feeding-current and cruising feeders) showed significantly higher mortality from predation (~2–8 times) than similarly sized copepods with low motility feeding behavior (ambush feeders). Copepod males, which have a more...... active motile behavior than females (mate-seeking behavior), suffered a higher predation mortality than females in most of the experiments. However, the predation risk for mate-searching behavior in copepods varied depending on feeding behavior with ambush feeders consistently having the greatest......Zooplankton exhibit different small-scale motile behaviors related to feeding and mating activities. These different motile behaviors may result in different levels of predation risk, which may partially determine the structure of planktonic communities. Here, we experimentally determined predation...

  19. Intraguild predation reduces redundancy of predator species in multiple predator assemblage.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-07-01

    1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.

  20. The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates.

    Science.gov (United States)

    Kittle, Andrew M; Fryxell, John M; Desy, Glenn E; Hamr, Joe

    2008-08-01

    Resource selection is a fundamental ecological process impacting population dynamics and ecosystem structure. Understanding which factors drive selection is vital for effective species- and landscape-level management. We used resource selection probability functions (RSPFs) to study the influence of two forms of wolf (Canis lupus) predation risk, snow conditions and habitat variables on white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus) and moose (Alces alces) resource selection in central Ontario's mixed forest French River-Burwash ecosystem. Direct predation risk was defined as the frequency of a predator's occurrence across the landscape and indirect predation risk as landscape features associated with a higher risk of predation. Models were developed for two winters, each at two spatial scales, using a combination of GIS-derived and ground-measured data. Ungulate presence was determined from snow track transects in 64 16- and 128 1-km(2) resource units, and direct predation risk from GPS radio collar locations of four adjacent wolf packs. Ungulates did not select resources based on the avoidance of areas of direct predation risk at any scale, and instead exhibited selection patterns that tradeoff predation risk minimization with forage and/or mobility requirements. Elk did not avoid indirect predation risk, while both deer and moose exhibited inconsistent responses to this risk. Direct predation risk was more important to models than indirect predation risk but overall, abiotic topographical factors were most influential. These results indicate that wolf predation risk does not limit ungulate habitat use at the scales investigated and that responses to spatial sources of predation risk are complex, incorporating a variety of anti-predator behaviours. Moose resource selection was influenced less by snow conditions than cover type, particularly selection for dense forest, whereas deer showed the opposite pattern. Temporal and spatial scale

  1. Assessment of predation risk through referential communication in incubating birds

    Science.gov (United States)

    Suzuki, Toshitaka N.

    2015-05-01

    Parents of many bird species produce alarm calls when they approach and deter a nest predator in order to defend their offspring. Alarm calls have been shown to warn nestlings about predatory threats, but parents also face a similar risk of predation when incubating eggs in their nests. Here, I show that incubating female Japanese great tits, Parus minor, assess predation risk by conspecific alarm calls given outside the nest cavity. Tits produce acoustically discrete alarm calls for different nest predators: “jar” calls for snakes and “chicka” calls for other predators such as crows and martens. Playback experiments revealed that incubating females responded to “jar” calls by leaving their nest, whereas they responded to “chicka” calls by looking out of the nest entrance. Since snakes invade the nest cavity, escaping from the nest helps females avoid snake predation. In contrast, “chicka” calls are used for a variety of predator types, and therefore, looking out of the nest entrance helps females gather information about the type and location of approaching predators. These results show that incubating females derive information about predator type from different types of alarm calls, providing a novel example of functionally referential communication.

  2. Lévy Walks Suboptimal under Predation Risk

    Science.gov (United States)

    Abe, Masato S.; Shimada, Masakazu

    2015-01-01

    A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator’s movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field. PMID:26544687

  3. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    Directory of Open Access Journals (Sweden)

    Kathi L Borgmann

    Full Text Available Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  4. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    Science.gov (United States)

    Borgmann, Kathi L; Conway, Courtney J; Morrison, Michael L

    2013-01-01

    Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  5. Nest predation risk and growth strategies of passerine species: grow fast or develop traits to escape risk?

    Science.gov (United States)

    Cheng, Yi-Ru; Martin, Thomas E.

    2012-01-01

    Different body components are thought to trade off in their growth and development rates, but the causes for relative prioritization of any trait remains a critical question. Offspring of species at higher risk of predation might prioritize development of locomotor traits that facilitate escaping risky environments over growth of mass. We tested this possibility in 12 altricial passerine species that differed in their risk of nest predation. We found that rates of growth and development of mass, wings, and endothermy increased with nest predation risk across species. In particular, species with higher nest predation risk exhibited relatively faster growth of wings than of mass, fledged with relatively larger wing sizes and smaller mass, and developed endothermy earlier at relatively smaller mass. This differential development can facilitate both escape from predators and survival outside of the nest environment. Tarsus growth was not differentially prioritized with respect to nest predation risk, and instead all species achieved adult tarsus size by age of fledging. We also tested whether different foraging modes (aerial, arboreal, and ground foragers) might explain the variation of differential growth of locomotor modules, but we found that little residual variation was explained. Our results suggest that differences in nest predation risk among species are associated with relative prioritization of body components to facilitate escape from the risky nest environment.

  6. Human-caused Disturbance Stimuli as a Form of Predation Risk

    Directory of Open Access Journals (Sweden)

    Alejandro Frid

    2002-06-01

    Full Text Available A growing number of studies quantify the impact of nonlethal human disturbance on the behavior and reproductive success of animals. Athough many are well designed and analytically sophisticated, most lack a theoretical framework for making predictions and for understanding why particular responses occur. Behavioral ecologists have recently begun to fill this theoretical vacuum by applying economic models of antipredator behavior to disturbance studies. In this emerging paradigm, predation and nonlethal disturbance stimuli create similar trade-offs between avoiding perceived risk and other fitness-enhancing activities, such as feeding, parental care, or mating. A vast literature supports the hypothesis that antipredator behavior has a cost to other activities, and that this trade-off is optimized when investment in antipredator behavior tracks short-term changes in predation risk. Prey have evolved antipredator responses to generalized threatening stimuli, such as loud noises and rapidly approaching objects. Thus, when encountering disturbance stimuli ranging from the dramatic, low-flying helicopter to the quiet wildlife photographer, animal responses are likely to follow the same economic principles used by prey encountering predators. Some authors have argued that, similar to predation risk, disturbance stimuli can indirectly affect fitness and population dynamics via the energetic and lost opportunity costs of risk avoidance. We elaborate on this argument by discussing why, from an evolutionary perspective, disturbance stimuli should be analogous to predation risk. We then consider disturbance effects on the behavior of individuals - vigilance, fleeing, habitat selection, mating displays, and parental investment - as well as indirect effects on populations and communities. A wider application of predation risk theory to disturbance studies should increase the generality of predictions and make mitigation more effective without over

  7. Predicting population level risk effects of predation from the responses of individuals

    OpenAIRE

    Macleod, Colin D.; Macleod, Ross; Learmonth, Jennifer A.; Cresswell, Will; Pierce, G.J.

    2014-01-01

    Fear of predation produces large effects on prey population dynamics through indirect risk effects that can cause even greater impacts than direct predation mortality. As yet, there is no general theoretical framework for predicting when and how these population risk effects will arise in specific prey populations, meaning there is often little consideration given to the key role predator risk effects can play in understanding conservation and wildlife management challenges. Here, we propose ...

  8. Reliability of risk assessment measures used in sexually violent predator proceedings.

    Science.gov (United States)

    Miller, Cailey S; Kimonis, Eva R; Otto, Randy K; Kline, Suzonne M; Wasserman, Adam L

    2012-12-01

    The field interrater reliability of three assessment tools frequently used by mental health professionals when evaluating sex offenders' risk for reoffending--the Psychopathy Checklist-Revised (PCL-R), the Minnesota Sex Offender Screening Tool-Revised (MnSOST-R) and the Static-99-was examined within the context of sexually violent predator program proceedings. Rater agreement was highest for the Static--99 (intraclass correlation coefficient [ICC₁] = .78) and lowest for the PCL-R (ICC₁ = .60; MnSOST-R ICC₁ = .74), although all instruments demonstrated lower field reliability than that reported in their test manuals. Findings raise concerns about the reliability of risk assessment tools that are used to inform judgments of risk in high-stake sexually violent predator proceedings. Implications for future research and suggestions for improving evaluator training to increase accuracy when informing legal decision making are discussed.

  9. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks.

    Science.gov (United States)

    Mommer, Brett C; Bell, Alison M

    2013-10-02

    Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Rodent foraging is affected by indirect, but not by direct, cues of predation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Orrock, John, L.; Danielson, Brent, J.; Brinkerhoff, R., Jory

    2004-01-01

    Behavioral Ecology Vol. 15 No. 3: 433 - 437 We used foraging trays to determine whether old field mice, Peromyscus polionotus , altered foraging in response to direct cues of predation risk (urine of native and nonnative predators) and indirect cues of predation risk (foraging microhabitat, precipitation, and moon illumination). The proportion of seeds remaining in each tray (a measure of the giving-up density [GUD]) was used to measure risk perceived by mice. Mice did not alter their GUD when presented with cues of native predators (bobcats, Lynx r ufus , and red foxes, Vulpes vulpes), recently introduced predators (coyotes, Canis latrans ), nonnative predators (ocelots, Leopardus pardalis ), a native herbivore (white-tailed deer, Odocoileus virginianus), or a water control. Rather, GUD was related to microhabitat: rodents removed more seeds from foraging trays sheltered beneath vegetative cover compared with exposed trays outside of cover. Rodents also removed more seeds during nights with precipitation and when moon illumination was low. Our results suggest that P. polionotus used indirect cues rather than direct cues to assess risk of vertebrate predation. Indirect cues may be more reliable than are direct scent cues for estimating risk from multiple vertebrate predators that present the most risk in open environments.

  11. Personality differences in two minnow populations that differ in their parasitism and predation risk

    Directory of Open Access Journals (Sweden)

    Raine eKortet

    2015-02-01

    Full Text Available Animals are often individually consistent in their behavior, not only over time, but also across different functional contexts. Recent research has focused on phenotypic and evolutionary mechanisms explaining such personality differences through selection. Parasitism and predation induce important mortality and fitness costs, and are thus the main candidates to create and maintain personality differences in the wild. Here, we present data on the behavioral consistency of the Eurasian minnow (Phoxinus phoxinus from two populations that live in different tributaries of the same river, but whose ecological environment differs fundamentally with regard to predation and parasitism. We experimentally demonstrate that minnow in both study populations are consistent in their boldness and activity. However, the two study populations differ notably: in the high predation and parasitism risk population fish show higher mean boldness, but tend to be less active than fish in low predation and parasitism risk population. Parasite (Diplostomum phoxini load was negatively, but not statistically significantly, associated with fish activity level. Our study suggests that parasitism and predation are likely important agents in the ecology and evolution of animal personalities.

  12. Can variation in risk of nest predation explain altitudinal migration in tropical birds?

    Science.gov (United States)

    Boyle, W Alice

    2008-03-01

    Migration is among the best studied of animal behaviors, yet few empirical studies have tested hypotheses explaining the ultimate causes of these cyclical annual movements. Fretwell's (1980) hypothesis predicts that if nest predation explains why many tropical birds migrate uphill to breed, then predation risk must be negatively associated with elevation. Data from 385 artificial nests spanning 2,740 m of elevation on the Atlantic slope of Costa Rica show an overall decline in predation with increasing elevation. However, nest predation risk was highest at intermediate elevations (500-650 m), not at lowest elevations. The proportion of nests depredated by different types of predators differed among elevations. These results imply that over half of the altitudinal migrant bird species in this region migrate to safer breeding areas than their non-breeding areas, suggesting that variation in nest predation risk could be an important benefit of uphill migrations of many species.

  13. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  14. Behavioural adjustment in response to increased predation risk: a study in three duck species.

    Directory of Open Access Journals (Sweden)

    Cédric Zimmer

    Full Text Available Predation directly triggers behavioural decisions designed to increase immediate survival. However, these behavioural modifications can have long term costs. There is therefore a trade-off between antipredator behaviours and other activities. This trade-off is generally considered between vigilance and only one other behaviour, thus neglecting potential compensations. In this study, we considered the effect of an increase in predation risk on the diurnal time-budget of three captive duck species during the wintering period. We artificially increased predation risk by disturbing two groups of 14 mallard and teals at different frequencies, and one group of 14 tufted ducks with a radio-controlled stressor. We recorded foraging, vigilance, preening and sleeping durations the week before, during and after disturbance sessions. Disturbed groups were compared to an undisturbed control group. We showed that in all three species, the increase in predation risk resulted in a decrease in foraging and preening and led to an increase in sleeping. It is worth noting that contrary to common observations, vigilance did not increase. However, ducks are known to be vigilant while sleeping. This complex behavioural adjustment therefore seems to be optimal as it may allow ducks to reduce their predation risk. Our results highlight the fact that it is necessary to encompass the whole individual time-budget when studying behavioural modifications under predation risk. Finally, we propose that studies of behavioural time-budget changes under predation risk should be included in the more general framework of the starvation-predation risk trade-off.

  15. Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history.

    Science.gov (United States)

    Janssens, Lizanne; Stoks, Robby

    2014-10-01

    The important ecological role of predation risk in shaping populations, communities and ecosystems is becoming increasingly clear. In this context, synergistic effects between predation risk and other natural stressors on prey organisms are gaining attention. Although non-pathogenic bacteria can be widespread in aquatic ecosystems, their role in mediating effects of predation risk has been ignored. We here address the hypothesis that non-pathogenic bacteria may reinforce the negative effects of predation risk in larvae of the damselfly Coenagrion puella. We found synergistic effects for all three life history variables studied: mortality increased, growth reductions were magnified and bacterial load was higher when both non-lethal stressors were combined. The combined exposure to the bacterium and predation risk considerably impaired the two key antipredator mechanisms of the damselfly larvae: they no longer reduced their food intake under predation risk and showed a synergistic reduction in escape swimming speed. The reinforcing negative effects on the fitness-related traits could be explained by the observed synergistic effects on food intake, swimming muscle mass, immune function and oxidative damage. These are likely widespread consequences of energetic constraints and increased metabolic rates associated with the fight-or-flight response. We therefore hypothesize that the here documented synergistic interactions with non-pathogenic bacteria may be widespread. Our results highlight the ignored ecological role of non-pathogenic bacteria in reinforcing the negative effects of predation risk on prey organisms.

  16. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    Science.gov (United States)

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators

  17. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    Science.gov (United States)

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  18. Group dynamics of zebra and wildebeest in a woodland savanna: effects of predation risk and habitat density.

    Directory of Open Access Journals (Sweden)

    Maria Thaker

    Full Text Available BACKGROUND: Group dynamics of gregarious ungulates in the grasslands of the African savanna have been well studied, but the trade-offs that affect grouping of these ungulates in woodland habitats or dense vegetation are less well understood. We examined the landscape-level distribution of groups of blue wildebeest, Connochaetes taurinus, and Burchell's zebra, Equus burchelli, in a predominantly woodland area (Karongwe Game Reserve, South Africa; KGR to test the hypothesis that group dynamics are a function of minimizing predation risk from their primary predator, lion, Panthera leo. METHODOLOGY/PRINCIPAL FINDINGS: Using generalized linear models, we examined the relative importance of habitat type (differing in vegetation density, probability of encountering lion (based on utilization distribution of all individual lions in the reserve, and season in predicting group size and composition. We found that only in open scrub habitat, group size for both ungulate species increased with the probability of encountering lion. Group composition differed between the two species and was driven by habitat selection as well as predation risk. For both species, composition of groups was, however, dominated by males in open scrub habitats, irrespective of the probability of encountering lion. CONCLUSIONS/SIGNIFICANCE: Distribution patterns of wildebeest and zebra groups at the landscape level directly support the theoretical and empirical evidence from a range of taxa predicting that grouping is favored in open habitats and when predation risk is high. Group composition reflected species-specific social, physiological and foraging constraints, as well as the importance of predation risk. Avoidance of high resource open scrub habitat by females can lead to loss of foraging opportunities, which can be particularly costly in areas such as KGR, where this resource is limited. Thus, landscape-level grouping dynamics are species specific and particular to the

  19. Parental and embryonic experiences with predation risk affect prey offspring behaviour and performance.

    Science.gov (United States)

    Donelan, Sarah C; Trussell, Geoffrey C

    2018-03-14

    Because phenotypic plasticity can operate both within and between generations, phenotypic outcomes are often shaped by a complex history of environmental signals. For example, parental and embryonic experiences with predation risk can both independently and interactively influence prey offspring traits early in their life. Parental and embryonic risk experiences can also independently shape offspring phenotypes throughout an offspring's ontogeny, but the persistence of their interactive effects throughout offspring ontogeny is unknown. We examined the effects of parental and embryonic experiences with predation risk on the response of 1-year-old prey (the carnivorous snail, Nucella lapillus ) offspring to current predation risk. We found that parental and embryonic risk experiences had largely independent effects on offspring performance and that these effects were context dependent. Parental experience with risk had strong impacts on multiple offspring traits in the presence of current risk that generally improved offspring performance under risk, but embryonic risk experience had relatively weaker effects and only operated in the absence of current risk to reduce offspring growth. These results illustrate that past environmental experiences can dynamically shape organism phenotypes across ontogeny and that attention to these effects is key to a better understanding of predator/prey dynamics in natural systems. © 2018 The Author(s).

  20. Optimal predator risk assessment by the sonar-jamming arctiine moth Bertholdia trigona.

    Directory of Open Access Journals (Sweden)

    Aaron J Corcoran

    Full Text Available Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival outweigh the costs (energetic costs, lost foraging time, etc.. We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator--the echolocating bat--whose active biosonar reveals its stage of attack. We used a prey defense--clicking used for sonar jamming by the tiger moth Bertholdia trigona--that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation--the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack.

  1. Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona

    Science.gov (United States)

    Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686

  2. Fear of predation drives stable and differentiated social relationships in guppies.

    Science.gov (United States)

    Heathcote, Robert J P; Darden, Safi K; Franks, Daniel W; Ramnarine, Indar W; Croft, Darren P

    2017-02-02

    Social relationships can have important consequences for fitness in animals. Whilst numerous studies have shown that individuals often join larger groups in response to perceived predation risk (i.e. fear of predation), the importance of predation risk in driving the formation and stability of social relationships within groups has been relatively ignored. We experimentally tested how predation threat influenced fine-scale social network structure using Trinidadian guppies (Poecilia reticulata). When perceived predation risk was high, individuals developed stable and more differentiated social ties compared to when perceived risk was low. Intriguingly, social differentiation coincided with shoals being somewhat smaller under high-perceived risk, suggesting a possible conflict between forming stable social relationships and larger social groups. Individuals most at risk of predation (large and bold individuals) showed the most exaggerated responses in several social measures. Taken together, we provide the first experimental evidence that proximate risk of predation can increase the intensity of social relationships and fine-scale social structure in animal populations.

  3. Carryover effects of predation risk on postembryonic life-history stages in a freshwater shrimp.

    Science.gov (United States)

    Ituarte, Romina Belén; Vázquez, María Guadalupe; González-Sagrario, María de los Ángeles; Spivak, Eduardo Daniel

    2014-04-01

    For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. What cues do ungulates use to assess predation risk in dense temperate forests?

    NARCIS (Netherlands)

    Kuijper, Dries P.J.; Verwijmeren, Mart; Churski, Marcin; Zbyryt, Adam; Schmidt, Krzysztof; Jędrzejewska, Bogumiła; Smit, Chris

    2014-01-01

    Anti-predator responses by ungulates can be based on habitat features or on the near-imminent threat of predators. In dense forest, cues that ungulates use to assess predation risk likely differ from half-open landscapes, as scent relative to sight is predicted to be more important. We studied, in

  5. Predation risk determines breeding territory choice in a Mediterranean cavity-nesting bird community.

    Science.gov (United States)

    Parejo, Deseada; Avilés, Jesús M

    2011-01-01

    Non-direct effects of predation can be an important component of the total effect of predation, modulating animal population and community dynamics. The isolated effects of predation risk on the spatial organisation of the breeding bird community, however, remains poorly studied. We investigated whether an experimentally increased predation risk prior to reproduction affected breeding territory selection and subsequent reproductive strategies in three Mediterranean cavity-nesting birds, i.e., the little owl Athene noctua, European roller Coracias garrulus and scops owl Otus scops. We found that territories used the previous year were more likely to be re-occupied when they belonged to the safe treatment rather than to the risky treatment. The first choice of breeders of all three species was for safe territories over risky ones. When all breeding attempts in the season (i.e., final occupation) were considered, breeders also preferred safe to risky sites. In addition, little owls laid larger eggs in risky territories than in safe territories. Our study provides experimental evidence of a rapid preventive response of the three most abundant species in a cavity-nesting bird community to a short-term manipulation of predation risk. This response highlights the key role of the non-direct effects of predation in modulating avian community organisation.

  6. A 'dynamic' landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle.

    Science.gov (United States)

    Palmer, M S; Fieberg, J; Swanson, A; Kosmala, M; Packer, C

    2017-11-01

    Ambiguous empirical support for 'landscapes of fear' in natural systems may stem from failure to consider dynamic temporal changes in predation risk. The lunar cycle dramatically alters night-time visibility, with low luminosity increasing hunting success of African lions. We used camera-trap data from Serengeti National Park to examine nocturnal anti-predator behaviours of four herbivore species. Interactions between predictable fluctuations in night-time luminosity and the underlying risk-resource landscape shaped herbivore distribution, herding propensity and the incidence of 'relaxed' behaviours. Buffalo responded least to temporal risk cues and minimised risk primarily through spatial redistribution. Gazelle and zebra made decisions based on current light levels and lunar phase, and wildebeest responded to lunar phase alone. These three species avoided areas where likelihood of encountering lions was high and changed their behaviours in risky areas to minimise predation threat. These patterns support the hypothesis that fear landscapes vary heterogeneously in both space and time. © 2017 John Wiley & Sons Ltd/CNRS.

  7. Assessment of predation risk through conspecific alarm odors by spiny lobsters: How much is too much?

    Science.gov (United States)

    Briones-Fourzán, Patricia

    2009-07-01

    Strong "alarm odors" emanating from lethally injured conspecifics may indicate an imminent risk of predation to spiny lobsters. In laboratory trials,1 strong conspecific alarm odors elicited avoidance in Panulirus argus, a highly gregarious species that displays collective defense behavior, but not in Panulirus guttatus, a species that tends to aggregate when reproductive activity is high (spring) but not when it is low (late summer) and does not display collective defensive behavior. To reduce predation risk, however, lobsters may autotomize limbs, thus sustaining nonlethal injuries. I tested the response of these lobsters to scents emanating from intact, lethally-injured and non-lethally injured conspecifics. In P. argus, these scents elicited, respectively, attraction, avoidance and a random response, suggesting that, in P. argus, avoidance of conspecific alarm odors depends on their strength. In contrast, P. guttatus lobsters responded at random to scents of lethally injured conspecifics and showed a similar response to scents of intact and non-lethally injured conspecifics in the spring (attraction) and in the summer (random), reflecting the more cryptic defensive behavior of this species. Therefore, both species use conspecific alarm odors for risk-assessment, but each responds to these cues in the most effective way to reduce its risk of predation.

  8. The several faces of fear: ecological consequences of predation risk in a lagoon model system

    Directory of Open Access Journals (Sweden)

    Rafael Dettogni Guariento

    Full Text Available AIM: The aim of this study was to evaluate the role of predation risk on the occurrence of trophic cascades in a benthic food chain, and detect if the ecological consequences of predation risk can reverberate in patterns observed across different hierarchical scales, such as prey size, prey growth efficiency and nutrient recycling patterns. METHODS: The model system used in the present experiment consisted of a simple linear food chain comprising a predator, a consumer and periphyton as basal resources. For 2 weeks, we manipulated predation risk using caged predators, incapable of killing their prey, across twelve outdoor mesocosms, simulating natural lagoon conditions. RESULTS: Our results showed that predation risk can be responsible for the occurrence of a trophic cascade and the strength of the cascade is proportional to the intensity of risk. Predation risk can also negatively influence prey biomass and growth efficiency as well as affect nutrient recycling patterns by altering prey nutrient excretion rates. Through a simple mathematical formulation, we attempted to show that individual-level experimental results can be generalized to natural populations if evolutionary constraints to prey fitness can be reproduced in experimental conditions. CONCLUSIONS: Our results corroborate to integrate ecosystem dynamics with animal behavior, highlighting that not only bottom-up but also top-down mechanisms are responsible for determining ecosystem properties. We ultimately claim that prey adaptive foraging may serve to integrate ecosystem and evolutionary ecology, resulting in the development of a more robust and predictive theory of the functioning of aquatic ecosystems.

  9. High-predation habitats affect the social dynamics of collective exploration in a shoaling fish.

    Science.gov (United States)

    Ioannou, Christos C; Ramnarine, Indar W; Torney, Colin J

    2017-05-01

    Collective decisions play a major role in the benefits that animals gain from living in groups. Although the mechanisms of how groups collectively make decisions have been extensively researched, the response of within-group dynamics to ecological conditions is virtually unknown, despite adaptation to the environment being a cornerstone in biology. We investigate how within-group interactions during exploration of a novel environment are shaped by predation, a major influence on the behavior of prey species. We tested guppies ( Poecilia reticulata ) from rivers varying in predation risk under controlled laboratory conditions and find the first evidence of differences in group interactions between animals adapted to different levels of predation. Fish from high-predation habitats showed the strongest negative relationship between initiating movements and following others, which resulted in less variability in the total number of movements made between individuals. This relationship between initiating movements and following others was associated with differentiation into initiators and followers, which was only observed in fish from high-predation rivers. The differentiation occurred rapidly, as trials lasted 5 min, and was related to shoal cohesion, where more diverse groups from high-predation habitats were more cohesive. Our results show that even within a single species over a small geographical range, decision-making in a social context can vary with local ecological factors.

  10. Maternal experience with predation risk influences genome-wide embryonic gene expression in threespined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Mommer, Brett C; Bell, Alison M

    2014-01-01

    There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.

  11. Maternal experience with predation risk influences genome-wide embryonic gene expression in threespined sticklebacks (Gasterosteus aculeatus.

    Directory of Open Access Journals (Sweden)

    Brett C Mommer

    Full Text Available There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.

  12. Crying tapir: the functionality of errors and accuracy in predator recognition in two neotropical high-canopy primates.

    Science.gov (United States)

    Mourthé, Ítalo; Barnett, Adrian A

    2014-01-01

    Predation is often considered to be a prime driver in primate evolution, but, as predation is rarely observed in nature, little is known of primate antipredator responses. Time-limited primates should be highly discerning when responding to predators, since time spent in vigilance and avoidance behaviour may supplant other activities. We present data from two independent studies describing and quantifying the frequency, nature and duration of predator-linked behaviours in 2 high-canopy primates, Ateles belzebuth and Cacajao ouakary. We introduce the concept of 'pseudopredators' (harmless species whose appearance is sufficiently similar to that of predators to elicit antipredator responses) and predict that changes in behaviour should increase with risk posed by a perceived predator. We studied primate group encounters with non-primate vertebrates across 14 (Ateles) and 19 (Cacajao) months in 2 undisturbed Amazonian forests. Although preliminary, data on both primates revealed that they distinguished the potential predation capacities of other species, as predicted. They appeared to differentiate predators from non-predators and distinguished when potential predators were not an immediate threat, although they reacted erroneously to pseudopredators, on average in about 20% of the responses given toward other vertebrates. Reacting to pseudopredators would be interesting since, in predation, one error can be fatal to the prey. © 2015 S. Karger AG, Basel.

  13. Predation risk drives social complexity in cooperative breeders

    NARCIS (Netherlands)

    Groenewoud, Frank; Frommen, Joachim Gerhard; Josi, Dario; Tanaka, Hirokazu; Jungwirth, Arne; Taborsky, Michael

    2016-01-01

    Predation risk is a major ecological factor selecting for group living. It is largely ignored, however, as an evolutionary driver of social complexity and cooperative breeding, which is attributed mainly to a combination of habitat saturation and enhanced relatedness levels. Social cichlids neither

  14. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  15. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  16. Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles

    OpenAIRE

    Ferrari, Maud C. O.; Brown, Grant E.; Bortolotti, Gary R.; Chivers, Douglas P.

    2010-01-01

    Hundreds of studies have examined how prey animals assess their risk of predation. These studies work from the basic tennet that prey need to continually balance the conflicting demands of predator avoidance with activities such as foraging and reproduction. The information that animals gain regarding local predation risk is most often learned. Yet, the concept of ‘memory’ in the context of predation remains virtually unexplored. Here, our goal was (i) to determine if the memory window associ...

  17. To dare or not to dare? Risk management by owls in a predator-prey foraging game.

    Science.gov (United States)

    Embar, Keren; Raveh, Ashael; Burns, Darren; Kotler, Burt P

    2014-07-01

    In a foraging game, predators must catch elusive prey while avoiding injury. Predators manage their hunting success with behavioral tools such as habitat selection, time allocation, and perhaps daring-the willingness to risk injury to increase hunting success. A predator's level of daring should be state dependent: the hungrier it is, the more it should be willing to risk injury to better capture prey. We ask, in a foraging game, will a hungry predator be more willing to risk injury while hunting? We performed an experiment in an outdoor vivarium in which barn owls (Tyto alba) were allowed to hunt Allenby's gerbils (Gerbillus andersoni allenbyi) from a choice of safe and risky patches. Owls were either well fed or hungry, representing the high and low state, respectively. We quantified the owls' patch use behavior. We predicted that hungry owls would be more daring and allocate more time to the risky patches. Owls preferred to hunt in the safe patches. This indicates that owls manage risk of injury by avoiding the risky patches. Hungry owls doubled their attacks on gerbils, but directed the added effort mostly toward the safe patch and the safer, open areas in the risky patch. Thus, owls dared by performing a risky action-the attack maneuver-more times, but only in the safest places-the open areas. We conclude that daring can be used to manage risk of injury and owls implement it strategically, in ways we did not foresee, to minimize risk of injury while maximizing hunting success.

  18. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  19. Foraging patch selection in winter: a balance between predation risk and thermoregulation benefit.

    Directory of Open Access Journals (Sweden)

    Sara Villén-Pérez

    Full Text Available In winter, foraging activity is intended to optimize food search while minimizing both thermoregulation costs and predation risk. Here we quantify the relative importance of thermoregulation and predation in foraging patch selection of woodland birds wintering in a Mediterranean montane forest. Specifically, we account for thermoregulation benefits related to temperature, and predation risk associated with both illumination of the feeding patch and distance to the nearest refuge provided by vegetation. We measured the amount of time that 38 marked individual birds belonging to five small passerine species spent foraging at artificial feeders. Feeders were located in forest patches that vary in distance to protective cover and exposure to sun radiation; temperature and illumination were registered locally by data loggers. Our results support the influence of both thermoregulation benefits and predation costs on feeding patch choice. The influence of distance to refuge (negative relationship was nearly three times higher than that of temperature (positive relationship in determining total foraging time spent at a patch. Light intensity had a negligible and no significant effect. This pattern was generalizable among species and individuals within species, and highlights the preponderance of latent predation risk over thermoregulation benefits on foraging decisions of birds wintering in temperate Mediterranean forests.

  20. Linking anti-predator behaviour to prey demography reveals limited risk effects of an actively hunting large carnivore.

    Science.gov (United States)

    Middleton, Arthur D; Kauffman, Matthew J; McWhirter, Douglas E; Jimenez, Michael D; Cook, Rachel C; Cook, John G; Albeke, Shannon E; Sawyer, Hall; White, P J

    2013-08-01

    Ecological theory predicts that the diffuse risk cues generated by wide-ranging, active predators should induce prey behavioural responses but not major, population- or community-level consequences. We evaluated the non-consumptive effects (NCEs) of an active predator, the grey wolf (Canis lupus), by simultaneously tracking wolves and the behaviour, body fat, and pregnancy of elk (Cervus elaphus), their primary prey in the Greater Yellowstone Ecosystem. When wolves approached within 1 km, elk increased their rates of movement, displacement and vigilance. Even in high-risk areas, however, these encounters occurred only once every 9 days. Ultimately, despite 20-fold variation in the frequency of encounters between wolves and individual elk, the risk of predation was not associated with elk body fat or pregnancy. Our findings suggest that the ecological consequences of actively hunting large carnivores, such as the wolf, are more likely transmitted by consumptive effects on prey survival than NCEs on prey behaviour. © 2013 John Wiley & Sons Ltd/CNRS.

  1. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird.

    Directory of Open Access Journals (Sweden)

    Melanie Massaro

    Full Text Available The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura. We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1 a mainland site with exotic predators present (high predation risk, 2 a mainland site with exotic predators experimentally removed (low risk recently and, 3 an off-shore island where exotic predators were never introduced (low risk always. We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp. that evolved with native nest predators (high risk always. Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  2. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird

    Science.gov (United States)

    Massaro, M.; Starling-Windhof, A.; Briskie, J.V.; Martin, T.E.

    2008-01-01

    The introduction of predatory mammals to oceanic islands has led to the extension of many birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthomis melanura). We examined parental behaviour of billbnirds at three woodlands sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behavior of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrates that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  3. How avian nest site selection responds to predation risk: Testing an 'adaptive peak hypothesis'

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    1. Nest predation limits avian fitness, so birds should favour nest sites that minimize predation risk. Nevertheless, preferred nest microhabitat features are often uncorrelated with apparent variation in predation rates. 2. This lack of congruence between theory-based expectation and empirical data may arise when birds already occupy ‘adaptive peaks’. If birds nest...

  4. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring

    Science.gov (United States)

    Hua, Fangyuan; Fletcher, Robert J.; Sieving, Kathryn E.; Dorazio, Robert M.

    2013-01-01

    Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk.

  5. Deep-ocean predation by a high Arctic cetacean

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Jørgensen, Ole A

    2004-01-01

    were correlated with predicted whale predation levels based on diving behavior. The difference in Greenland halibut biomass between an area with high predation and a comparable area without whales, approximately 19000 tonnes, corresponded well with the predicted biomass removed by the narwhal sub...

  6. The many faces of fear: a synthesis of the methodological variation in characterizing predation risk.

    Science.gov (United States)

    Moll, Remington J; Redilla, Kyle M; Mudumba, Tutilo; Muneza, Arthur B; Gray, Steven M; Abade, Leandro; Hayward, Matt W; Millspaugh, Joshua J; Montgomery, Robert A

    2017-07-01

    Predators affect prey by killing them directly (lethal effects) and by inducing costly antipredator behaviours in living prey (risk effects). Risk effects can strongly influence prey populations and cascade through trophic systems. A prerequisite for assessing risk effects is characterizing the spatiotemporal variation in predation risk. Risk effects research has experienced rapid growth in the last several decades. However, preliminary assessments of the resultant literature suggest that researchers characterize predation risk using a variety of techniques. The implications of this methodological variation for inference and comparability among studies have not been well recognized or formally synthesized. We couple a literature survey with a hierarchical framework, developed from established theory, to quantify the methodological variation in characterizing risk using carnivore-ungulate systems as a case study. Via this process, we documented 244 metrics of risk from 141 studies falling into at least 13 distinct subcategories within three broader categories. Both empirical and theoretical work suggest risk and its effects on prey constitute a complex, multi-dimensional process with expressions varying by spatiotemporal scale. Our survey suggests this multi-scale complexity is reflected in the literature as a whole but often underappreciated in any given study, which complicates comparability among studies and leads to an overemphasis on documenting the presence of risk effects rather than their mechanisms or scale of influence. We suggest risk metrics be placed in a more concrete conceptual framework to clarify inference surrounding risk effects and their cascading effects throughout ecosystems. We recommend studies (i) take a multi-scale approach to characterizing risk; (ii) explicitly consider 'true' predation risk (probability of predation per unit time); and (iii) use risk metrics that facilitate comparison among studies and the evaluation of multiple

  7. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Science.gov (United States)

    Latif, Quresh S; Heath, Sacha K; Rotenberry, John T

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of

  8. Escape by the Balearic Lizard (Podarcis lilfordi is affected by elevation of an approaching predator, but not by some other potential predation risk factors

    Directory of Open Access Journals (Sweden)

    William E. Cooper

    2011-12-01

    Full Text Available Many predation risk factors to affect escape behavior by lizards, but effects of some potential risk factors are unknown or are variable among species. We studied effects of several risk factors on escape responses by the Balearic lizard (Podarcis lilfordi, Lacertidae on escape responses. Escape was elicited by an approaching experimenter who recorded flight initiation distance (predator-prey distance when escape begins and distance fled. When an experimenter approached from above (upslope, flight initiation distance and distance fled were longer than when the experimenter approached from below. This novel effect suggests that lizards exposed to aerial predation might have been naturally selected to respond rapidly to predators approaching from above or that effects of path inclination of escape ability may differ between predators and prey in a manner requiring a larger margin of safety during approaches from above than below. Although sex differences in aspects of escape occur in some lizards, including lacertids, no sex difference was observed in P. lilfordi. Because vigilance and some other aspects of antipredatory behavior exhibit cortical lateralization, we tested effects of approach from the left and right sides of lizards. As predicted by optimal escape theory, side of approach did not affect flight initiation distance. Because many lizards have color vision and respond to pigmentation of conspecifics in social settings, researchers have often worn only drably colored clothing when simulating predators. This precaution may be unnecessary because flight initiation distance did not differ among investigator shirt colors (red, orange, olive.

  9. The concentration of fear: mice's behavioural and physiological stress responses to different degrees of predation risk

    Science.gov (United States)

    Sánchez-González, Beatriz; Planillo, Aimara; Navarro-Castilla, Álvaro; Barja, Isabel

    2018-02-01

    Predation is an unavoidable and dangerous fact in the lifetime of prey animals and some sign of the proximity of a predator may be enough to trigger a response in the prey. We investigated whether different degrees of predation risk by red foxes ( Vulpes vulpes) evoke behavioural and physiological stress responses in wood mice ( Apodemus sylvaticus) . We examined the variation in mice responses due to individual factors (sex and reproductive status) and related them to the concentration of the volatile compounds from fox faeces over time. In our experiment, we introduced predation cues into four plots, each subjected to a different concentration treatment (0, 10, 50 and 100% concentration of fresh faeces of red fox), based on the following outline: initial odourless phase 0, phase1 in which predation treatment was renewed daily, and phase 2 in which we renewed the treatment only on the first day. Wood mice were live trapped during all three phases and the physiological response was measured non-invasively by analysing faecal corticosterone metabolites (FCM) in freshly collected faeces. Data were analysed by Generalized Linear Mixed Models. Overall, males were trapped less often than females, and reproductively active individuals from both sexes avoided traps more than non-reproductively active individuals, especially in medium- and high- concentration plots. Variations in FCM concentrations were explained by plot, the interaction between plot and treatment phase, and the interaction between the treatment phase and the reproductive status. During phase 1, we detected a significant rise in FCM levels that increased with predator faecal odour concentration. Additionally, reproductively active individuals showed a strong physiological response during both phases 1 and 2 in all plots, except the control plot. Our results indicated that wood mice are able to discriminate different degrees of predation risk, which allows them to trigger gradual changes in their

  10. Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus)

    NARCIS (Netherlands)

    Frommen, Joachim G.; Herder, Fabian; Engqvist, Leif; Mehlis, Marion; Bakker, Theo C. M.; Schwarzer, Julia; Thuenken, Timo

    Predation risk is one of the major forces affecting phenotypic variation among and within animal populations. While fixed anti-predator morphologies are favoured when predation level is consistently high, plastic morphological responses are advantageous when predation risk is changing temporarily,

  11. Ultraviolet reflection enhances the risk of predation in a vertebrate

    Directory of Open Access Journals (Sweden)

    Ricarda MODARRESSIE, Ingolf P. RICK, Theo C. M. BAKKER

    2013-04-01

    Full Text Available Many animals are sensitive to ultraviolet light and also possess UV-reflective regions on their body surface. Individuals reflecting UV have been shown to be preferred during social interactions such as mate choice or shoaling decisions. However, whether those body UV-reflections enhance also the conspicuousness to UV-sensitive predators and therefore entail costs for its bearer is less well documented. Two size-matched three-spined sticklebacks Gasterosteus aculeatus, one enclosed in a UV-transmitting (UV+ and another in a UV-blocking (UV- chamber, were simultaneously presented to individual brown trout Salmo trutta. “yearlings”. Brown trout of this age are sensitive to the UV part of the electromagnetic spectrum and are natural predators of three-spined sticklebacks. The stickleback that was attacked first as well as the subsequent number of attacks was recorded. Sticklebacks enclosed in the UV-transmitting chamber were attacked first significantly more often compared to sticklebacks enclosed in the UV-blocking chamber. Control experiments using neutral density filters revealed that this was more likely due to UV having an influence on hue perception rather than brightness discrimination. The difference in attack probability corresponded to the difference in chromatic contrasts between sticklebacks and the experimental background calculated for both the UV+ and UV- conditions in a physiological model of trout colour vision. UV reflections seem to be costly by enhancing the risk of predation due to an increased conspicuousness of prey. This is the first study in a vertebrate, to our knowledge, demonstrating direct predation risk due to UV wavelengths [Current Zoology 59 (2: 151-159, 2013].

  12. High trees increase sunflower seed predation by birds in an agricultural landscape of Israel

    Directory of Open Access Journals (Sweden)

    Jessica eSchäckermann

    2014-07-01

    Full Text Available Natural habitats in agricultural landscapes promote agro-ecosystem services but little is known about negative effects (dis-services derived by natural habitats such as crop seed predation. Birds are important seed predators and use high landscape structures to perch and hide. High trees in agricultural landscapes may therefore drive seed predation. We examined if the presence, the distance and the percentages of high trees (tree height >5 m and the percentages of natural habitat surrounding sunflower fields, increased seed predation by birds in Israel. At the field scale, we assessed seed predation across a sample grid of an entire field. At the landscape scale, we assessed seed predation at the field margins and interiors of 20 sunflower fields. Seed predation was estimated as the percentage of removed seeds from sunflower heads. Distances of sample points to the closest high tree and percentage of natural habitat and of high trees in a 1km radius surrounding the fields were measured.We found that seed predation increased with decreasing distance to the closest high tree at the field and landscape scale. At the landscape scale, the percentage of high trees and natural habitat did not increase seed predation. Seed predation in the fields increased by 37 %, with a maximum seed predation of 92 %, when a high tree was available within zero to 50 m to the sunflower fields. If the closest high tree was further away, seed predation was less than 5 %. Sunflower seed predation by birds can be reduced, when avoiding sowing sunflowers within a radius of 50 m to high trees. Farmers should plan to grow crops, not sensitive to bird seed predation, closer to trees to eventually benefit from ecosystem services provided by birds, such as predation of pest insects, while avoiding these locations for growing crops sensitive to bird seed predation. Such management recommendations are directing towards sustainable agricultural landscapes.

  13. Nest site selection in a hot desert : Trade-off between microclimate and predation risk?

    NARCIS (Netherlands)

    Tieleman, B. Irene; van Noordwijk, Hendrika J.; Williams, Joseph B.

    Nest placement affects the risk of predation on both eggs and incubating parents and determines the microclimate for incubation, two functions that may be in conflict, especially in hot deserts. We studied the roles of microclimate and nest predation on nest site selection by Hoopoe Larks (Alaemon

  14. Strong reactive movement response of the medium-sized European hare to elevated predation risk in short vegetation

    NARCIS (Netherlands)

    Weterings, Martijn J.A.; Zaccaroni, Marco; Koore, van der Nikki; Zijlstra, Linda M.; Kuipers, Henry J.; Langevelde, van Frank; Wieren, van Sipke E.

    2016-01-01

    Reactive movement responses of prey are affected by habitat characteristics, such as cover, which determine predation risk. Open habitats with low cover facilitate predator detection, movement and escape, while closed habitats reduce the ability to detect predators and hinder movement. We

  15. Selective Predation of a Stalking Predator on Ungulate Prey.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1 data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2 data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  16. Is it safe to nest near conspicuous neighbours? Spatial patterns in predation risk associated with the density of American Golden-Plover nests.

    Science.gov (United States)

    Giroux, Marie-Andrée; Trottier-Paquet, Myriam; Bêty, Joël; Lamarre, Vincent; Lecomte, Nicolas

    2016-01-01

    Predation is one of the main factors explaining nesting mortality in most bird species. Birds can avoid nest predation or reduce predation pressure by breeding at higher latitude, showing anti-predator behaviour, selecting nest sites protected from predators, and nesting in association with protective species. American Golden-Plovers (Pluvialis dominica) defend their territory by using various warning and distraction behaviours displayed at varying levels of intensity (hereafter "conspicuous behaviour"), as well as more aggressive behaviours such as aerial attacks, but only in some populations. Such antipredator behaviour has the potential to repel predators and thus benefit the neighbouring nests by decreasing their predation risk. Yet, conspicuous behaviour could also attract predators by signalling the presence of a nest. To test for the existence of a protective effect associated with the conspicuous antipredator behaviour of American Golden-Plovers, we studied the influence of proximity to plover nests on predation risk of artificial nests on Igloolik Island (Nunavut, Canada) in July 2014. We predicted that the predation risk of artificial nests would decrease with proximity to and density of plover nests. We monitored 18 plover nests and set 35 artificial nests at 30, 50, 100, 200, and 500 m from seven of those plover nests. We found that the predation risk of artificial nests increases with the density of active plover nests. We also found a significant negative effect of the distance to the nearest active protector nest on predation risk of artificial nests. Understanding how the composition and structure of shorebird communities generate spatial patterns in predation risks represents a key step to better understand the importance of these species of conservation concern in tundra food webs.

  17. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  18. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators.

    Science.gov (United States)

    Kojima, Wataru; Sugiura, Shinji; Makihara, Hiroshi; Ishikawa, Yukio; Takanashi, Takuma

    2014-03-01

    Male sexually-selected traits often impose an increased risk of predation on their bearers, causing male-biased predation. We investigated whether males of the sap-feeding Japanese rhinoceros beetle Trypoxylus dichotomus were more susceptible to predation than females by comparing the morphology of beetles caught in bait traps with the remains of beetles found on the ground. The males of this species are larger than the females and have a horn on the head. We found that predation pressure was greater for males than for females, and that larger individuals of both sexes were more vulnerable to predation. We identified two predators, the raccoon dog Nyctereutes procyonoides and jungle crow Corvus macrorhynchos, by monitoring sap-site trees with infrared video cameras. Raccoon dogs visited sap-site trees at night, while crows came after daybreak. The highest frequency of visits by both predators was observed in the first half of August, which matches the peak season of T. dichotomus. Raccoon dogs often left bite marks on the remains of prey, whereas crows did not. Bite marks were found on most of the remains collected at two distant localities, which suggested that predation by raccoon dogs is common. Size- and sex-dependent differences in the conspicuousness and active period of T. dichotomus probably explain these biased predation patterns. Our results suggest that having a large horn/body is costly in terms of the increased risk of predation. Predation cost may act as a stabilizing selection pressure against the further exaggeration of male sexual traits.

  19. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea

    Science.gov (United States)

    Hill, Simeon L.; Hinke, Jefferson T.; Phillips, Tony; Watters, George M.

    2018-01-01

    Climate change is a threat to marine ecosystems and the services they provide, and reducing fishing pressure is one option for mitigating the overall consequences for marine biota. We used a minimally realistic ecosystem model to examine how projected effects of ocean warming on the growth of Antarctic krill, Euphausia superba, might affect populations of krill and dependent predators (whales, penguins, seals, and fish) in the Scotia Sea. We also investigated the potential to mitigate depletion risk for predators by curtailing krill fishing at different points in the 21st century. The projected effects of ocean warming on krill biomass were strongest in the northern Scotia Sea, with a ≥40% decline in the mass of individual krill. Projections also suggest a 25% chance that krill biomass will fall below an established depletion threshold (75% of its unimpacted level), with consequent risks for some predator populations, especially penguins. Average penguin abundance declined by up to 30% of its unimpacted level, with up to a 50% chance of falling below the depletion threshold. Simulated krill fishing at currently permitted harvest rates further increased risks for depletion, and stopping fishing offset the increased risks associated with ocean warming in our model to some extent. These results varied by location and species group. Risk reductions at smaller spatial scales also differed from those at the regional level, which suggests that some predator populations may be more vulnerable than others to future changes in krill biomass. However, impacts on predators did not always map directly to those for krill. Our findings indicate the importance of identifying vulnerable marine populations and targeting protection measures at appropriate spatial scales, and the potential for spatially-structured management to avoid aggravating risks associated with rising ocean temperatures. This may help balance tradeoffs among marine ecosystem services in an uncertain future

  20. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  1. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  2. Is it safe to nest near conspicuous neighbours? Spatial patterns in predation risk associated with the density of American Golden-Plover nests

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    2016-08-01

    Full Text Available Predation is one of the main factors explaining nesting mortality in most bird species. Birds can avoid nest predation or reduce predation pressure by breeding at higher latitude, showing anti-predator behaviour, selecting nest sites protected from predators, and nesting in association with protective species. American Golden-Plovers (Pluvialis dominica defend their territory by using various warning and distraction behaviours displayed at varying levels of intensity (hereafter “conspicuous behaviour”, as well as more aggressive behaviours such as aerial attacks, but only in some populations. Such antipredator behaviour has the potential to repel predators and thus benefit the neighbouring nests by decreasing their predation risk. Yet, conspicuous behaviour could also attract predators by signalling the presence of a nest. To test for the existence of a protective effect associated with the conspicuous antipredator behaviour of American Golden-Plovers, we studied the influence of proximity to plover nests on predation risk of artificial nests on Igloolik Island (Nunavut, Canada in July 2014. We predicted that the predation risk of artificial nests would decrease with proximity to and density of plover nests. We monitored 18 plover nests and set 35 artificial nests at 30, 50, 100, 200, and 500 m from seven of those plover nests. We found that the predation risk of artificial nests increases with the density of active plover nests. We also found a significant negative effect of the distance to the nearest active protector nest on predation risk of artificial nests. Understanding how the composition and structure of shorebird communities generate spatial patterns in predation risks represents a key step to better understand the importance of these species of conservation concern in tundra food webs.

  3. Predators control post-fledging mortality in tawny owls, Strix aluco

    DEFF Research Database (Denmark)

    Sunde, Peter

    2005-01-01

    , primarily due to predation from raptors and mammals (predominantly foxes Vulpes vulpes). Predation by mammals occurred within the first few days after fledging, with young leaving the nest at an early age being at particularly high risk. Young that had received extra food as nestlings were also at higher...... risk of being preyed upon by mammals, possibly because they were easier to locate on their smell. Total mortality risk (control broods) increased with fledging date from 14% in April to >58% in June due to an increasing raptor predation risk. Individual attributes such as sex, condition......, immunocompetence or prevalence of blood parasites did not predict total or cause-specific mortality risk. Survival during the post-fledging dependency period was therefore primarily a function of variation in predation pressures, particularly from raptors. Increasing raptor predation of late broods appears...

  4. Vigilance and foraging behaviour of female caribou in relation to predation risk

    Directory of Open Access Journals (Sweden)

    Pernille S. Bøving

    1997-02-01

    Full Text Available Behaviour of female caribou (Rangifer tarandus was investigated during the calving season on ranges in Alaska and West Greenland with the purpose of determining whether investment in vigilance behaviour differed between areas with and without natural predators of caribou. Female caribou in Alaska foraged in larger groups, displayed a higher rate of vigilance during feeding, spent less time feeding and, when lying, more often adopted a vigilant posture (with head up than did female caribou in West Greenland. Moreover, a predation-vulnerable posture of lying down flat was observed in West Greenland but not in Alaska. Within Alaska, females with calves spent more time searching the environment than did those without calves. Finally, the amount of time individuals spent searching declined more gradually with group size in Alaska than in West Greenland, suggesting that what caribou perceive as a predator-safe threshold differs in the two areas. These results indicate that caribou, like several other species of ungulates, show behavioural adaptations to the risk of prédation which are relaxed when this risk is reduced.

  5. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival.

    Directory of Open Access Journals (Sweden)

    Jared F Duquette

    Full Text Available Growth of ungulate populations is typically most sensitive to survival of neonates, which in turn is influenced by maternal nutritional condition and trade-offs in resource selection and avoidance of predators. We assessed whether resource use, multi-predator risk, maternal nutritional effects, hiding cover, or interactions among these variables best explained variation in daily survival of free-ranging neonatal white-tailed deer (Odocoileus virginianus during their post-partum period (14 May-31 Aug in Michigan, USA. We used Cox proportional hazards mixed-effects models to assess survival related to covariates of resource use, composite predation risk of 4 mammalian predators, fawn body mass at birth, winter weather, and vegetation growth phenology. Predation, particularly from coyotes (Canis latrans, was the leading cause of mortality; however, an additive model of non-ideal resource use and maternal nutritional effects explained 71% of the variation in survival. This relationship suggested that dams selected areas where fawns had poor resources, while greater predation in these areas led to additive mortalities beyond those related to resource use alone. Also, maternal nutritional effects suggested that severe winters resulted in dams producing smaller fawns, which decreased their likelihood of survival. Fawn resource use appeared to reflect dam avoidance of lowland forests with poor forage and greater use by wolves (C. lupus, their primary predator. While this strategy led to greater fawn mortality, particularly by coyotes, it likely promoted the life-long reproductive success of dams because many reached late-age (>10 years old and could have produced multiple generations of fawns. Studies often link resource selection and survival of ungulates, but our results suggested that multiple factors can mediate that relationship, including multi-predator risk. We emphasize the importance of identifying interactions among biological and

  6. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  7. Death and danger at migratory stopovers: Problems with "predation risk"

    NARCIS (Netherlands)

    Lank, D.B.; Ydenberg, R.C.

    2003-01-01

    Dierschke (2003) recently published a paper entitled, ``Predation hazard during migratory stopover: are light or heavy birds under risk?¿¿ He measured the body condition of 11 species of passerine migrants depredated by feral cats and raptors at an offshore stopover site, and used these data to

  8. Maternal steroids in egg yolk as a pathway to translate predation risk to offspring : Experiments with great tits

    NARCIS (Netherlands)

    Coslovsky, Michael; Groothuis, Ton; de Vries, Bonnie; Richner, Heinz

    2012-01-01

    Exposure of mothers to risk of predation can induce phenotypic changes in offspring as shown in several species. We previously found that cross-fostered great tit (Parus major) chicks of females exposed to increased predation risk were smaller and lighter, but had faster wing growth than control

  9. Predators

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.; Ambrose, Robert E.; Garner, Gerald W.; Weiler, Greg J.; Reynolds, Harry V.; Udevitz, Mark S.; Reed, Dan J.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Calving caribou (Rangifer tarandus) of the Central Arctic herd, Alaska, have avoided the infrastructure associated with the complex of petroleum development areas from Prudhoe Bay to Kuparuk (Cameron et al. 1992, Nellemann and Cameron 1998, and Section 4 of this document). Calving females of the Porcupine caribou herd may similarly avoid any oil field roads and pipelines developed in areas traditionally used during the calving and post-calving periods. This may displace the caribou females and calves to areas east and south of the 1002 Area of the Arctic National Wildlife Refuge.Increased calf mortality could occur if calving caribou are displaced into areas that have a higher density of predators, higher rates of predation, or where a higher proportion of the predators regularly use caribou as a food source (Whitten et al. 1992).Our study assessed predation risks to caribou calving in the 1002 Area versus calving in potential displacement areas. Due to funding constraints, our research focused on grizzly bears (Ursus arctos), with wolves (Camus lupus) and golden eagles (Aquila chrysaetos) receiving only cursory attention. Our research objectives were 1) to compare relative abundance of predators within the 1002 Area with that in adjacent peripheral areas, 2) to determine factors affecting predator abundance on the calving grounds, and 3) to quantify the use of caribou as a food source for predators and the importance of caribou to the productivity of predator populations using the coastal plain of the Arctic National Wildlife Refuge.

  10. Functional Traits, Flocking Propensity, and Perceived Predation Risk in an Amazonian Understory Bird Community.

    Science.gov (United States)

    Martínez, Ari E; Gomez, Juan P; Ponciano, José Miguel; Robinson, Scott K

    2016-05-01

    Within a community, different species might share similar predation risks, and, thus, the ability of species to signal and interpret heterospecific threat information may determine species' associations. We combined observational, experimental, and phylogenetic approaches to determine the extent to which evolutionary history and functional traits determined flocking propensity and perceived predation risk (response to heterospecific alarm calls) in a lowland Amazonian bird community. We predicted that small birds that feed myopically and out in the open would have higher flocking propensities and account for a higher proportion of positive responses to alarms. Using generalized linear models and the incorporation of phylogeny on data from 56 species, our results suggest that phylogenetic relationships alongside body size, foraging height, vegetation density, and response to alarm calls influence flocking propensity. Conversely, phylogenetic relationships did not influence response to heterospecific alarm calls. Among functional traits, however, foraging strategy, foraging density, and flocking propensity partially explained responses to alarm calls. Our results suggest that flocking propensity and perceived predation risk are positively related and that functional ecological traits and evolutionary history may explain certain species' associations.

  11. Influence of predator density on nonindependent effects of multiple predator species.

    Science.gov (United States)

    Griffen, Blaine D; Williamson, Tucker

    2008-02-01

    Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.

  12. Anti-predator behaviour of Sahamalaza sportive lemurs, Lepilemur sahamalazensis, at diurnal sleeping sites

    NARCIS (Netherlands)

    Seiler, M.; Schwitzer, C.; Holderied, M.

    2013-01-01

    In response to predation pressure by raptors, snakes, and carnivores, primates employ anti-predator behaviours such as avoiding areas of high predation risk, cryptic behaviour and camouflage, vigilance and group formation (including mixedspecies associations), and eavesdropping on other species’

  13. Oviposition site selection in Aedes albopictus (Diptera: Culicidae): are the effects of predation risk and food level independent?

    Science.gov (United States)

    Wasserberg, Gideon; White, L; Bullard, A; King, J; Maxwell, R

    2013-09-01

    For organisms lacking parental care and where larval dispersal is limited, oviposition site selection decisions are critical fitness-enhancing choices. However, studies usually do not consider the interdependence of the two. In this study, we evaluated the effect of food level on the oviposition behavior of Aedes albopictus (Skuse) in the presence or the absence of a nonlethal predator (caged dragonfly nymph). We also attempted to quantify the perceived cost of predation to ovipositioning mosquitoes. Mosquitoes were presented with oviposition cups containing four levels of larval food (fermented leaf infusion) with or without a caged libellulid nymph. By titrating larval food, we estimated the amount of food needed to attract the female mosquito to oviposit in the riskier habitat. As expected, oviposition rate increased with food level and decreased in the presence of a predator. However, the effect of food level did not differ between predator treatments. By calculating the difference in the amount of food for points of equal oviposition rate in the predator-present and predator-absent regression lines, we estimated the cost of predation risk to be 1950 colony-forming-units per milliliter. Our study demonstrated the importance of considering the possible interdependence of predation risk and food abundance for oviposition-site-seeking insects. This study also quantified the perceived cost of predation and found it to be relatively low, a fact with positive implications for biological control.

  14. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    Science.gov (United States)

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  15. Advanced autumn migration of sparrowhawk has increased the predation risk of long-distance migrants in Finland.

    Directory of Open Access Journals (Sweden)

    Aleksi Lehikoinen

    Full Text Available Predation affects life history traits of nearly all organisms and the population consequences of predator avoidance are often larger than predation itself. Climate change has been shown to cause phenological changes. These changes are not necessarily similar between species and may cause mismatches between prey and predator. Eurasian sparrowhawk Accipiter nisus, the main predator of passerines, has advanced its autumn phenology by about ten days in 30 years due to climate change. However, we do not know if sparrowhawk migrate earlier in response to earlier migration by its prey or if earlier sparrowhawk migration results in changes to predation risk on its prey. By using the median departure date of 41 passerine species I was able to show that early migrating passerines tend to advance, and late migrating species delay their departure, but none of the species have advanced their departure times as much as the sparrowhawk. This has lead to a situation of increased predation risk on early migrating long-distance migrants (LDM and decreased the overlap of migration season with later departing short-distance migrants (SDM. Findings highlight the growing list of problems of declining LDM populations caused by climate change. On the other hand it seems that the autumn migration may become safer for SDM whose populations are growing. Results demonstrate that passerines show very conservative response in autumn phenology to climate change, and thus phenological mismatches caused by global warming are not necessarily increasing towards the higher trophic levels.

  16. Predation risk and optimal foraging trade-off in the demography and spacing of the George River Herd, 1958 to 1993

    Directory of Open Access Journals (Sweden)

    Arthur T. Bergerud

    2003-04-01

    Full Text Available The behavior options of feeding animals lie on a continuum between energy maximization and minimization of predation risk. We studied the distribution, mobility, and energy budgets of the George River herd, Ungava from 1974 to 1993. We arranged the annual cycle into 6 phases where we argue that the importance between the priorities of optimal foraging and predation risk change between periods. At calving, risk is more important than foraging for females but males take more risk to optimally forage. During the mosquito season, insect avoidance takes priority over risk and for¬aging. Optimal foraging takes precedent over risk in the late summer and fall and it is at this time that the herd expanded its range relative to numbers and forage abundance. In the winter (December to mid-March animals sought restricted localized ranges with low snow cover to reduce predation risk. The spring migration of females may have increased risk during the interval the females were moving back to the tundra to give birth to their neonates on the low risk calv¬ing ground. In May, females sought early greens near treeline, which may have increased risk in order to provide maximum nutrition to their fetuses in the last weeks of pregnancy. The ancestors of the George River Herd during the Pleistocene, 18 000 yr. BP may have reduced predation risk by spacing-out in the Appalachian Mountains, removed from the major specie of the megafauna in the lowlands. With global warming, it is argued the major problem for caribou will be increased wolf predation rather than changing forage and nutritional regimes. It is essential that First Nation residents of the North maintain their option to manage wolf numbers if excessive predation in the future adversely affects the migratory herds of the Northwest Territories and Ungava.

  17. Foraging and predation risk for larval cisco (Coregonus artedi) in Lake Superior: a modelling synthesis of empirical survey data

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Quinlan, Henry R.; Berglund, Eric K.

    2014-01-01

    The relative importance of predation and food availability as contributors to larval cisco (Coregonus artedi) mortality in Lake Superior were investigated using a visual foraging model to evaluate potential predation pressure by rainbow smelt (Osmerus mordax) and a bioenergetic model to evaluate potential starvation risk. The models were informed by observations of rainbow smelt, larval cisco, and zooplankton abundance at three Lake Superior locations during the period of spring larval cisco emergence and surface-oriented foraging. Predation risk was highest at Black Bay, ON, where average rainbow smelt densities in the uppermost 10 m of the water column were >1000 ha−1. Turbid conditions at the Twin Ports, WI-MN, affected larval cisco predation risk because rainbow smelt remained suspended in the upper water column during daylight, placing them alongside larval cisco during both day and night hours. Predation risk was low at Cornucopia, WI, owing to low smelt densities (cisco survival at Black Bay and to a lesser extent at Twin Ports, and that starvation may be a major source of mortality at all three locations. The framework we describe has the potential to further our understanding of the relative importance of starvation and predation on larval fish survivorship, provided information on prey resources available to larvae are measured at sufficiently fine spatial scales and the models provide a realistic depiction of the dynamic processes that the larvae experience.

  18. Linking snake habitat use to nest predation risk in grassland birds: the dangers of shrub cover.

    Science.gov (United States)

    Klug, Page E; Jackrel, Sara L; With, Kimberly A

    2010-03-01

    Extremes in rangeland management, varying from too-frequent fire and intensive grazing to the suppression of both, threaten rangeland ecosystems worldwide. Intensive fire and grazing denude and homogenize vegetation whereas their suppression increases woody cover. Although habitat loss is implicated in grassland bird declines, degradation through intensive management or neglect also decreases breeding habitat and may reduce nesting success through increased rates of nest predation. Snakes are important nest predators, but little is known about how habitat use in snakes relates to predation risk for grassland birds nesting within tallgrass prairie subjected to different grazing and fire frequencies. We evaluated nest survival in the context of habitat used by nesting songbirds and two bird-eating snakes, the eastern yellowbelly racer Coluber constrictor flaviventris and Great Plains ratsnake Pantherophis emoryi. Daily nest survival rates decreased with increasing shrub cover and decreasing vegetation height, which characterize grasslands that have been neglected or intensively managed, respectively. Discriminant function analysis revealed that snake habitats were characterized by higher shrub cover, whereas successful nests were more likely to occur in areas with tall grass and forbs but reduced shrub cover. Because snakes often use shrub habitat, birds nesting in areas with increased shrub cover may be at higher risk of nest predation by snakes in addition to other predators known to use shrub habitat (e.g., mid-sized carnivores and avian predators). Depredated nests also occurred outside the discriminant space of the snakes, indicating that other predators (e.g., ground squirrels Spermophilus spp. and bullsnakes Pituophis catenifer) may be important in areas with denuded cover. Targeted removal of shrubs may increase nest success by minimizing the activity of nest predators attracted to shrub cover.

  19. Ultimate predators: lionfish have evolved to circumvent prey risk assessment abilities.

    Science.gov (United States)

    Lönnstedt, Oona M; McCormick, Mark I

    2013-01-01

    Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within ecosystems. Ever since their introduction in the mid 1980's common red lionfish, Pterois volitans, are having dramatic impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator behaviours when exposed to a common predatory rock cod (Cephalopholis microprion) they fail to visibly react to either the scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue) of a lionfish of a different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a highly successful invasive species.

  20. Ultimate predators: lionfish have evolved to circumvent prey risk assessment abilities.

    Directory of Open Access Journals (Sweden)

    Oona M Lönnstedt

    Full Text Available Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within ecosystems. Ever since their introduction in the mid 1980's common red lionfish, Pterois volitans, are having dramatic impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator behaviours when exposed to a common predatory rock cod (Cephalopholis microprion they fail to visibly react to either the scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue of a lionfish of a different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a highly successful invasive species.

  1. Emergence behaviour of the serotine bat (Eptesicus serotinus) under predation risk

    Czech Academy of Sciences Publication Activity Database

    Petrželková, Klára Judita; Zukal, Jan

    Roc. 51, č. 4 (2001), s. 395-414 ISSN 0028-2960 R&D Projects: GA AV ČR IAC6087502; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : Eptesicus serotinus * emergence * predation risk Subject RIV: EG - Zoology Impact factor: 0.509, year: 2001

  2. Sexual Selection and Predator Avoidance in the Acoustic Lepidoptera: Discriminating Females Take Fewer Risks

    National Research Council Canada - National Science Library

    Greenfield, Michael D; Greig, Emma

    2003-01-01

    .... Normally, these risks are considered from the perspective of male advertisement signaling, and studies in various animal species have documented increased predation associated with broadcasting...

  3. Prozac in the water: Chronic fluoxetine exposure and predation risk interact to shape behaviors in an estuarine crab.

    Science.gov (United States)

    Peters, Joseph R; Granek, Elise F; de Rivera, Catherine E; Rollins, Matthew

    2017-11-01

    Predators exert considerable top-down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes. Yet, limited attention has been paid to the effects of chronic pharmaceutical exposure on risk behavior or as an ecological stressor, despite widespread detection and persistence of these contaminants in aquatic environments. In the laboratory, we simulated estuarine conditions of the shore crab, Hemigrapsus oregonensis, and investigated whether chronic exposure (60 days) to field-detected concentrations (0, 3, and 30 ng/L) of the antidepressant fluoxetine affected diurnal and nocturnal risk behaviors in the presence of a predator, Cancer productus . We found that exposure to fluoxetine influenced both diurnal and nocturnal prey risk behaviors by increasing foraging and locomotor activity in the presence of predators, particularly during the day when these crabs normally stay hidden. Crabs exposed to fluoxetine were also more aggressive, with a higher frequency of agonistic interactions and increased mortality due to conflicts with conspecifics. These results suggest that exposure to field-detected concentrations of fluoxetine may alter the trade-off between resource acquisition and predation risk among crabs in estuaries. This fills an important data gap, highlighting how intra- and interspecific behaviors are altered by exposure to field concentrations of pharmaceuticals; such data more explicitly identify potential ecological impacts of emerging contaminants on aquatic ecosystems and can aid water quality management.

  4. Risky business: do native rodents use habitat and odor cues to manage predation risk in Australian deserts?

    Directory of Open Access Journals (Sweden)

    Emma E Spencer

    Full Text Available In open, arid environments with limited shelter there may be strong selection on small prey species to develop behaviors that facilitate predator avoidance. Here, we predicted that rodents should avoid predator odor and open habitats to reduce their probability of encounter with potential predators, and tested our predictions using a native Australian desert rodent, the spinifex hopping-mouse (Notomys alexis. We tested the foraging and movement responses of N. alexis to non-native predator (fox and cat odor, in sheltered and open macro- and microhabitats. Rodents did not respond to predator odor, perhaps reflecting the inconsistent selection pressure that is imposed on prey species in the desert environment due to the transience of predator-presence. However, they foraged primarily in the open and moved preferentially across open sand. The results suggest that N. alexis relies on escape rather than avoidance behavior when managing predation risk, with its bipedal movement probably allowing it to exploit open environments most effectively.

  5. Temporal effects of hunting on foraging behavior of an apex predator: Do bears forego foraging when risk is high?

    Science.gov (United States)

    Hertel, Anne G; Zedrosser, Andreas; Mysterud, Atle; Støen, Ole-Gunnar; Steyaert, Sam M J G; Swenson, Jon E

    2016-12-01

    Avoiding predators most often entails a food cost. For the Scandinavian brown bear (Ursus arctos), the hunting season coincides with the period of hyperphagia. Hunting mortality risk is not uniformly distributed throughout the day, but peaks in the early morning hours. As bears must increase mass for winter survival, they should be sensitive to temporal allocation of antipredator responses to periods of highest risk. We expected bears to reduce foraging activity at the expense of food intake in the morning hours when risk was high, but not in the afternoon, when risk was low. We used fine-scale GPS-derived activity patterns during the 2 weeks before and after the onset of the annual bear hunting season. At locations of probable foraging, we assessed abundance and sugar content, of bilberry (Vaccinium myrtillus), the most important autumn food resource for bears in this area. Bears decreased their foraging activity in the morning hours of the hunting season. Likewise, they foraged less efficiently and on poorer quality berries in the morning. Neither of our foraging measures were affected by hunting in the afternoon foraging bout, indicating that bears did not allocate antipredator behavior to times of comparably lower risk. Bears effectively responded to variation in risk on the scale of hours. This entailed a measurable foraging cost. The additive effect of reduced foraging activity, reduced forage intake, and lower quality food may result in poorer body condition upon den entry and may ultimately reduce reproductive success.

  6. Social learning in a high-risk environment: incomplete disregard for the 'minnow that cried pike' results in culturally transmitted neophobia.

    Science.gov (United States)

    Crane, Adam L; Mathiron, Anthony G E; Ferrari, Maud C O

    2015-08-07

    Many prey species rely on conspecifics to gather information about unknown predation threats, but little is known about the role of varying environmental conditions on the efficacy of social learning. We examined predator-naive minnows that had the opportunity to learn about predators from experienced models that were raised in either a low- or high-risk environment. There were striking differences in behaviour among models; high-risk models showed a weaker response to the predator cue and became neophobic in response to the control cue (a novel odour, NO). Observers that were previously paired with low-risk models acquired a strong antipredator response only to the predator cue. However, observers that interacted with high-risk models, displayed a much weaker response to the predator odour and a weak neophobic response to the NO. This is the first study reporting such different outcomes of social learning under different environmental conditions, and suggests high-risk environments promote the cultural transmission of neophobia more so than social learning. If such a transfer can be considered similar to secondary traumatization in humans, culturally transmitted neophobia in minnows may provide a good model system for understanding more about the social ecology of fear disorders. © 2015 The Author(s).

  7. Wolf predation risk associated with white-tailed deer movements

    Science.gov (United States)

    Nelson, M.E.; Mech, L.D.

    1991-01-01

    The survival of 159 yearling and adult deer (Odocoileus virginianus) was monitored by telemetry during 282 spring and 219 fall individual migrations to winter deeryards in northeastern Minnesota. A disproportionate number of deer were killed by wolves (Canis lupus) during fall migration relative to the short time they spent migrating, but not during spring migration. Predation was also significantly greater for male and female yearlings and adult females outside deeryards during winter. Survival of 79 yearlings dispersing from natal ranges was high (1.00). It appears that changing climatic conditions combined with unfamiliar terrain and undetermined factors predispose migratory deer to wolf predation during fall. These findings support an earlier hypothesis that winter yarding is an antipredator strategy.

  8. Predators or prey? Spatio-temporal discrimination of human-derived risk by brown bears.

    Science.gov (United States)

    Ordiz, Andrés; Støen, Ole-Gunnar; Delibes, Miguel; Swenson, Jon E

    2011-05-01

    Prey usually adjust anti-predator behavior to subtle variations in perceived risk. However, it is not clear whether adult large carnivores that are virtually free of natural predation adjust their behavior to subtle variations in human-derived risk, even when living in human-dominated landscapes. As a model, we studied resting-site selection by a large carnivore, the brown bear (Ursus arctos), under different spatial and temporal levels of human activity. We quantified horizontal and canopy cover at 440 bear beds and 439 random sites at different distances from human settlements, seasons, and times of the day. We hypothesized that beds would be more concealed than random sites and that beds would be more concealed in relation to human-derived risk. Although human densities in Scandinavia are the lowest within bear ranges in Western Europe, we found an effect of human activity; bears chose beds with higher horizontal and canopy cover during the day (0700-1900 hours), especially when resting closer to human settlements, than at night (2200-0600 hours). In summer/fall (the berry season), with more intensive and dispersed human activity, including hunting, bears rested further from human settlements during the day than in spring (pre-berry season). Additionally, day beds in the summer/fall were the most concealed. Large carnivores often avoid humans at a landscape scale, but total avoidance in human-dominated areas is not possible. Apparently, bears adjust their behavior to avoid human encounters, which resembles the way prey avoid their predators. Bears responded to fine-scale variations in human-derived risk, both on a seasonal and a daily basis.

  9. Hypoxia increases the risk of egg predation in a nest-guarding fish

    DEFF Research Database (Denmark)

    Olsson, Karin; Kvarnemo, Charlotta; Andrén, Maria Norevik

    2016-01-01

    For fish with parental care, a nest should meet both the oxygenation needs of the eggs and help protect them against predators. While a small nest opening facilitates the latter, it impedes the former and vice versa. We investigated how the presence of potential egg predators in the form of shore...... in high oxygen reduced fanning, males in low oxygen did not. Filial cannibalism was unaffected by treatment. Sand gobies thus prioritize egg ventilation over the protection afforded by small nest openings under hypoxia and adopt defensive behaviour to avert predator attention, even though this does...... crabs Carcinus maenas affects nest building, egg fanning, defensive displays and filial cannibalism of egg-guarding male sand gobies Pomatoschistus minutus under two levels of dissolved oxygen. In the high oxygen treatment, males retained their nest opening size in the presence of crabs, while males...

  10. The influence of herd size, conspecific risk, and predation risk on the vigilance of elk (Cervus elaphus) in Yellowstone National Park, and, Interest, learning, and a thematic biology course

    Science.gov (United States)

    Lung, Mark A.

    This dissertation is a composite of biological and educational research. The biological research concerns Rocky Mountain elk (Cervus elaphus ) behavior. The educational research presents ideas and findings on the influence of a thematic general biology course on student interest and perception of learning. The dissertation begins with a Preface that attempts to bring the ideas presented in later chapters together. Chapter One is a review of the literature concerning sociality, social behaviors, and elk biology. It summarizes current research literature as a means of introduction to Chapter Two. Chapter Two presents findings concerning the effects of herd size, predation risk, and the risk of being near conspecifics on two behaviors commonly associated with social animals---vigilance and aggression. Vigilance and aggression were measured in elk in Yellowstone National Park in two regions that varied in their presence of elk predators (wolves---Canis lupus, and grizzly bears---Ursus arctos) and in two seasons (spring and fall) that varied in the risks of being near conspecifics. Overall, male and female elk responded very differently. Male elk adjust their vigilance and aggression in response to changes in conspecific risk, but not to changes in predation risk. Female elk adjust their vigilance in response to changes in predation risk, but not to changes in conspecific risk. Males show no response in vigilance to changes in herd size. Non-reproductive females, however, adjust their levels of vigilance with changes in herd size in high risk regions. Interestingly, in the spring, vigilance decreases with increasing herd size, but in the fall, vigilance increases with increasing herd size. Chapter Three presents findings concerning the influence of a thematic course design on student perceptions of interest and teaming in a non-major's biology course (Bins 100: Concepts of Biology). I compared responses on student evaluations from two sections of Bios 100 taught in a

  11. High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation.

    Science.gov (United States)

    Rogers, Alice; Blanchard, Julia L; Newman, Steven P; Dryden, Charlie S; Mumby, Peter J

    2018-02-01

    Refuge availability and fishing alter predator-prey interactions on coral reefs, but our understanding of how they interact to drive food web dynamics, community structure and vulnerability of different trophic groups is unclear. Here, we apply a size-based ecosystem model of coral reefs, parameterized with empirical measures of structural complexity, to predict fish biomass, productivity and community structure in reef ecosystems under a broad range of refuge availability and fishing regimes. In unfished ecosystems, the expected positive correlation between reef structural complexity and biomass emerges, but a non-linear effect of predation refuges is observed for the productivity of predatory fish. Reefs with intermediate complexity have the highest predator productivity, but when refuge availability is high and prey are less available, predator growth rates decrease, with significant implications for fisheries. Specifically, as fishing intensity increases, predators in habitats with high refuge availability exhibit vulnerability to over-exploitation, resulting in communities dominated by herbivores. Our study reveals mechanisms for threshold dynamics in predators living in complex habitats and elucidates how predators can be food-limited when most of their prey are able to hide. We also highlight the importance of nutrient recycling via the detrital pathway, to support high predator biomasses on coral reefs. © 2018 by the Ecological Society of America.

  12. Effect of downed woody debris on small mammal anti-predator behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.

  13. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  14. Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Winnie, John A

    2012-12-01

    Aspen in the Greater Yellowstone Ecosystem are hypothesized to be recovering from decades of heavy browsing by elk due to a behaviorally mediated trophic cascade (BMTC). Several authors have suggested that wolves interact with certain terrain features, creating places of high predation risk at fine spatial scales, and that elk avoid these places, which creates refugia for plants. This hypothesized BMTC could release aspen from elk browsing pressure, leading to a patchy recovery in places of high risk. I tested whether four specific, hypothesized fine-scale risk factors are correlated with changes in current elk browsing pressure on aspen, or with aspen recruitment since wolf reintroduction, in the Daly Creek drainage in Yellowstone National Park, and near two aspen enclosures outside of the park boundary. Aspen were not responding to hypothesized fine-scale risk factors in ways consistent with the current BMTC hypothesis.

  15. Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger

    Science.gov (United States)

    Bridges, C.M.

    2002-01-01

    Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.

  16. Effects of predation on diel activity and habitat use of the coral-reef shrimp Cinetorhynchus hendersoni (Rhynchocinetidae)

    Science.gov (United States)

    Ory, Nicolas C.; Dudgeon, David; Duprey, Nicolas; Thiel, Martin

    2014-09-01

    Nonlethal effects of predators on prey behaviour are still poorly understood, although they may have cascading effects through food webs. Underwater observations and experiments were conducted on a shallow fringing coral reef in Malaysia to examine whether predation risks affect diel activity, habitat use, and survival of the rhynchocinetid shrimp Cinetorhynchus hendersoni. The study site was within a protected area where predatory fish were abundant. Visual surveys and tethering experiments were conducted in April-May 2010 to compare the abundance of shrimps and predatory fishes and the relative predation intensity on shrimps during day and night. Shrimps were not seen during the day but came out of refuges at night, when the risk of being eaten was reduced. Shrimp preferences for substrata of different complexities and types were examined at night when they could be seen on the reef; complex substrata were preferred, while simple substrata were avoided. Shrimps were abundant on high-complexity columnar-foliate Porites rus, but tended to make little use of branching Acropora spp. Subsequent tethering experiments, conducted during daytime in June 2013, compared the relative mortality of shrimps on simple (sand-rubble, massive Porites spp.) and complex ( P. rus, branching Acropora spp.) substrata under different predation risk scenarios (i.e., different tether lengths and exposure durations). The mortality of shrimps with short tethers (high risk) was high on all substrata while, under low and intermediate predation risks (long tethers), shrimp mortality was reduced on complex corals relative to that on sand-rubble or massive Porites spp. Overall, mortality was lowest on P. rus. Our study indicates that predation risks constrain shrimp activity and habitat choice, forcing them to hide deep inside complex substrata during the day. Such behavioural responses to predation risks and their consequences for the trophic role of invertebrate mesoconsumers warrant further

  17. Landscape features influence postrelease predation on endangered black-footed ferrets

    Science.gov (United States)

    Poessel, S.A.; Breck, S.W.; Biggins, D.E.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Predation can be a critical factor influencing recovery of endangered species. In most recovery efforts lethal and nonlethal influences of predators are not sufficiently understood to allow prediction of predation risk, despite its importance. We investigated whether landscape features could be used to model predation risk from coyotes (Canis latrans) and great horned owls (Bubo virginianus) on the endangered black-footed ferret (Mustela nigripes). We used location data of reintroduced ferrets from 3 sites in South Dakota to determine whether exposure to landscape features typically associated with predators affected survival of ferrets, and whether ferrets considered predation risk when choosing habitat near perches potentially used by owls or near linear features predicted to be used by coyotes. Exposure to areas near likely owl perches reduced ferret survival, but landscape features potentially associated with coyote movements had no appreciable effect on survival. Ferrets were located within 90 m of perches more than expected in 2 study sites that also had higher ferret mortality due to owl predation. Densities of potential coyote travel routes near ferret locations were no different than expected in all 3 sites. Repatriated ferrets might have selected resources based on factors other than predator avoidance. Considering an easily quantified landscape feature (i.e., owl perches) can enhance success of reintroduction efforts for ferrets. Nonetheless, development of predictive models of predation risk and management strategies to mitigate that risk is not necessarily straightforward for more generalist predators such as coyotes. ?? 2011 American Society of Mammalogists.

  18. Generalization of predator recognition: Velvet geckos display anti-predator behaviours in response to chemicals from non-dangerous elapid snakes

    Directory of Open Access Journals (Sweden)

    Jonathan K. WEBB, Weiguo DU, David PIKE, Richard SHINE

    2010-06-01

    Full Text Available Many prey species detect chemical cues from predators and modify their behaviours in ways that reduce their risk of predation. Theory predicts that prey should modify their anti-predator responses according to the degree of threat posed by the predator. That is, prey should show the strongest responses to chemicals of highly dangerous prey, but should ignore or respond weakly to chemicals from non-dangerous predators. However, if anti-predator behaviours are not costly, and predators are rarely encountered, prey may exhibit generalised antipredator behaviours to dangerous and non-dangerous predators. In Australia, most elapid snakes eat lizards, and are therefore potentially dangerous to lizard prey. Recently, we found that the nocturnal velvet gecko Oedura lesueurii responds to chemicals from dangerous and non-dangerous elapid snakes, suggesting that it displays generalised anti-predator behaviours to chemicals from elapid snakes. To explore the generality of this result, we videotaped the behaviour of velvet geckos in the presence of chemical cues from two small elapid snakes that rarely consume geckos: the nocturnal golden-crowned snake Cacophis squamulosus and the diurnal marsh snake Hemiaspis signata. We also videotaped geckos in trials involving unscented cards (controls and cologne-scented cards (pungency controls. In trials involving Cacophis and Hemiaspis chemicals, 50% and 63% of geckos spent long time periods (> 3 min freezing whilst pressed flat against the substrate, respectively. Over half the geckos tested exhibited anti-predator behaviours (tail waving, tail vibration, running in response to Cacophis (67% or Hemiaspis (63% chemicals. These behaviours were not observed in control or pungency control trials. Our results support the idea that the velvet gecko displays generalised anti-predator responses to chemical cues from elapid snakes. Generalised responses to predator chemicals may be common in prey species that co-occur with

  19. Smelling out predators is innate in birds

    NARCIS (Netherlands)

    Amo, L.; Visser, M.E.; Van Oers, K.

    2011-01-01

    The role of olfaction for predation risk assessment remains barely explored in birds, although predator chemical cues could be useful in predator detection under low visibility conditions for many bird species. We examine whether Great Tits Parus major are able to use the odour of mustelids to

  20. Mobbing calls signal predator category in a kin group-living bird species

    Science.gov (United States)

    Griesser, Michael

    2009-01-01

    Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls. PMID:19474047

  1. Mobbing calls signal predator category in a kin group-living bird species.

    Science.gov (United States)

    Griesser, Michael

    2009-08-22

    Many prey species gather together to approach and harass their predators despite the associated risks. While mobbing, prey usually utter calls and previous experiments have demonstrated that mobbing calls can convey information about risk to conspecifics. However, the risk posed by predators also differs between predator categories. The ability to communicate predator category would be adaptive because it would allow other mobbers to adjust their risk taking. I tested this idea in Siberian jays Perisoreus infaustus, a group-living bird species, by exposing jay groups to mounts of three hawk and three owl species of varying risks. Groups immediately approached to mob the mount and uttered up to 14 different call types. Jays gave more calls when mobbing a more dangerous predator and when in the presence of kin. Five call types were predator-category-specific and jays uttered two hawk-specific and three owl-specific call types. Thus, this is one of the first studies to demonstrate that mobbing calls can simultaneously encode information about both predator category and the risk posed by a predator. Since antipredator calls of Siberian jays are known to specifically aim at reducing the risk to relatives, kin-based sociality could be an important factor in facilitating the evolution of predator-category-specific mobbing calls.

  2. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    Directory of Open Access Journals (Sweden)

    Tyler E Schartel

    Full Text Available Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable and maple seeds (Acer saccharum; less profitable. We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1 mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2 consumption of both incidental prey would be high near feeders providing less-preferred food and, 3 consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty feeder. Feeders with highly preferred food (sunflower seeds created localized refuges for incidental prey at intermediate distances (15 to 25m from the feeder. Feeders with less-preferred food (corn generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  3. Predation risk affects reproductive physiology and demography of elk.

    Science.gov (United States)

    Creel, Scott; Christianson, David; Liley, Stewart; Winnie, John A

    2007-02-16

    Elk (Cervus elaphus) in the Greater Yellowstone Ecosystem alter patterns of aggregation, habitat selection, vigilance, and foraging in the presence of wolves (Canis lupus). Antipredator behaviors like these can reduce predation risk but are also likely to carry costs. Data from five elk populations studied for 16 site years showed that progesterone concentrations (from 1489 fecal samples) declined with the ratio of elk to wolves. In turn, progesterone concentrations were a good predictor of calf recruitment in the subsequent year. Together, these data suggest that wolves indirectly affect the reproductive physiology and the demography of elk through the costs of antipredator behavior.

  4. Effects of kinship or familiarity? Small thrips larvae experience lower predation risk only in groups of mixed-size siblings

    NARCIS (Netherlands)

    de Bruijn, P.J.A.; Sabelis, M.W.; Egas, M.

    2014-01-01

    In many species of insects, larvae are distributed in an aggregated fashion. As they may differ in size and size matters to predation risk, small larvae may be less likely to fall prey to predators when near large and therefore better-defended larvae. We hypothesize that the small larvae may profit

  5. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio

    Directory of Open Access Journals (Sweden)

    Julia Johnke

    2017-10-01

    Full Text Available Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists, predatory bacteria (semi-specialists, and phages (specialists—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.

  6. Injury-mediated decrease in locomotor performance increases predation risk in schooling fish

    DEFF Research Database (Denmark)

    Krause, J.; Herbert-Read, J. E.; Seebacher, F.

    2017-01-01

    The costs and benefits of group living often depend on the spatial position of individuals within groups and the ability of individuals to occupy preferred positions. For example, models of predation events for moving prey groups predict higher mortality risk for individuals at the periphery and .......This article is part of the themed issue 'Physiological determinants of social behaviour in animals'....

  7. Diel predator activity drives a dynamic landscape of fear

    Science.gov (United States)

    Kohl, Michel T.; Stahler, Daniel R.; Metz, Matthew C.; Forester, James D.; Kauffman, Matthew J.; Varley, Nathan; White, P.J.; Smith, Douglas W.; MacNulty, Daniel R.

    2017-01-01

    A "landscape of fear" (LOF) is a map that describes continuous spatial variation in an animal's perception of predation risk. The relief on this map reflects, for example, places that an animal avoids to minimize risk. Although the LOF concept is a potential unifying theme in ecology that is often invoked to explain the ecological and conservation significance of fear, quantified examples of a LOF over large spatial scales are lacking as is knowledge about the daily dynamics of a LOF. Despite theory and data to the contrary, investigators often assume, implicitly or explicitly, that a LOF is a static consequence of a predator's mere presence. We tested the prediction that a LOF in a large-scale, free-living system is a highly-dynamic map with "peaks" and "valleys" that alternate across the diel (24-hour) cycle in response to daily lulls in predator activity. We did so with extensive data from the case study of Yellowstone elk (Cervus elaphus) and wolves (Canis lupus) that was the original basis for the LOF concept. We quantified the elk LOF, defined here as spatial allocation of time away from risky places and times, across nearly 1000-km2 of northern Yellowstone National Park and found that it fluctuated with the crepuscular activity pattern of wolves, enabling elk to use risky places during wolf downtimes. This may help explain evidence that wolf predation risk has no effect on elk stress levels, body condition, pregnancy, or herbivory. The ability of free-living animals to adaptively allocate habitat use across periods of high and low predator activity within the diel cycle is an underappreciated aspect of animal behavior that helps explain why strong antipredator responses may trigger weak ecological effects, and why a LOF may have less conceptual and practical importance than direct killing.

  8. Costs of Reproduction in Breeding Female Mallards: Predation Risk during Incubation Drives Annual Mortality

    Directory of Open Access Journals (Sweden)

    Todd W. Arnold

    2012-06-01

    Full Text Available The effort expended on reproduction may entail future costs, such as reduced survival or fecundity, and these costs can have an important influence on life-history optimization. For birds with precocial offspring, hypothesized costs of reproduction have typically emphasized nutritional and energetic investments in egg formation and incubation. We measured seasonal survival of 3856 radio-marked female Mallards (Anas platyrhynchos from arrival on the breeding grounds through brood-rearing or cessation of breeding. There was a 2.5-fold direct increase in mortality risk associated with incubating nests in terrestrial habitats, whereas during brood-rearing when breeding females occupy aquatic habitats, mortality risk reached seasonal lows. Mortality risk also varied with calendar date and was highest during periods when large numbers of Mallards were nesting, suggesting that prey-switching behaviors by common predators may exacerbate risks to adults in all breeding stages. Although prior investments in egg laying and incubation affected mortality risk, most relationships were not consistent with the cost of reproduction hypothesis; birds with extensive prior investments in egg production or incubation typically survived better, suggesting that variation in individual quality drove both relationships. We conclude that for breeding female Mallards, the primary cost of reproduction is a fixed cost associated with placing oneself at risk to predators while incubating nests in terrestrial habitats.

  9. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  10. Sleeping birds do not respond to predator odour

    NARCIS (Netherlands)

    Amo, L.; Caro, S.P.; Visser, M.E.

    2011-01-01

    Background: During sleep animals are relatively unresponsive and unaware of their environment, and therefore, more exposed to predation risk than alert and awake animals. This vulnerability might influence when, where and how animals sleep depending on the risk of predation perceived before going to

  11. Predation by Red Foxes (Vulpes vulpes at an Outdoor Piggery

    Directory of Open Access Journals (Sweden)

    Patricia A. Fleming

    2016-10-01

    Full Text Available Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets. We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are “chewed”, it is likely that foxes were contributing substantially to the 20% of piglets that were reported “missing”. Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows, and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant ( p = 0.001 effect of individual sow identification on the weaning rate, but no effect of sow age (parity, suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels

  12. Linking snake behavior to nest predation in a Midwestern bird community.

    Science.gov (United States)

    Weatherhead, Patrick J; Carfagno, Gerardo L F; Sperry, Jinelle H; Brawn, Jeffrey D; Robinson, Scott K

    2010-01-01

    Nest predators can adversely affect the viability of songbird populations, and their impact is exacerbated in fragmented habitats. Despite substantial research on this predator-prey interaction, however, almost all of the focus has been on the birds rather than their nest predators, thereby limiting our understanding of the factors that bring predators and nests into contact. We used radiotelemetry to document the activity of two snake species (rat snakes, Elaphe obsoleta; racers, Coluber constrictor) known to prey on nests in Midwestern bird communities and simultaneously monitored 300 songbird nests and tested the hypothesis that predation risk should increase for nests when snakes were more active and in edge habitat preferred by both snake species. Predation risk increased when rat snakes were more active, for all nests combined and for two of the six bird species for which we had sufficient nests to allow separate analyses. This result is consistent with rat snakes being more important nest predators than racers. We found no evidence, however, that nests closer to forest edges were at greater risk. These results are generally consistent with the one previous study that investigated rat snakes and nest predation simultaneously. The seemingly paradoxical failure to find higher predation risk in the snakes' preferred habitat (i.e., edge) might be explained by the snakes using edges at least in part for non-foraging activities. We propose that higher nest predation in fragmented habitats (at least that attributable to snakes) results indirectly from edges promoting larger snake populations, rather than from edges directly increasing the risk of nest predation by snakes. If so, the notion of edges per se functioning as ecological "traps" merits further study.

  13. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  14. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Science.gov (United States)

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  15. On multi-team predator-prey models

    International Nuclear Information System (INIS)

    Elettreby, M.F.; Saker, S.H.; Ahmed, E.

    2005-05-01

    Many creatures form teams. This has, at least, two main advantages: the first is the improvement in foraging, since looking for food in a team is more efficient than doing it alone. The second is that living in a team reduces predation risk due to early spotting of predators and that existing in a team gives a higher probability that the predator will attack another member of the team. In this paper models are given where two teams of predators interact with two teams of preys. The teams of each group (predators or preys) help each other. In this paper we propose three different versions of the multi-team predator prey model. We study the equilibrium solutions, the conditions of their local asymptotic stability, persistence and the global stability of the solution of one of the models. Some numerical simulations are done. (author)

  16. Invasive Egg Predators and Food Availability Interactively Affect Maternal Investment in Egg Chemical Defense

    Directory of Open Access Journals (Sweden)

    Sarah C. Paul

    2018-01-01

    Full Text Available Invasive species commonly predate the offspring of native species and eggs are the life stage most vulnerable to this predation. In many species with no maternal care, females can alter the phenotype of eggs to protect them, for instance through chemical defense. In ladybirds egg alkaloids deter predators, including invasive predatory species of ladybirds, but conversely may attract cannibals who benefit from the consumption of eggs with higher alkaloid levels. Invasive predators tend to be more abundant where resources are also abundant, but in high resource environments the maternal fitness benefits of sibling cannibalism are low. Consequently this presents a conflict for female ladybirds between the different factors that influence egg alkaloid level, as protecting her eggs from predators might come with the cost of inadvertently encouraging within-clutch cannibalism under circumstances where it is not beneficial. We investigated how the ladybird Adalia bipunctata addresses this trade-off experimentally, by measuring the quantity of alkaloids in eggs laid by ladybirds in environments that differed in levels of resource availability and perceived predation risk from an invasive predator Harmonia axyridis. Females did lay eggs with higher egg alkaloid levels under poor resource conditions, but only when predator cues were absent. The resulting negative correlation between egg number and egg alkaloid level under poor resource conditions indicates a trade-off between these two attributes of maternal investment, mediated by female response to offspring predation risk. This implies that selection pressures on mothers to adaptively adjust the risk of siblicide may outweigh the need to protect offspring from interspecific predation. Our results demonstrate that maternal effects are an important aspect of species' responses to invasive predators, and highlight the value of studying maternal effects in the context of the multifaceted environments in

  17. Food acquisition and predator avoidance in a Neotropical rodent

    NARCIS (Netherlands)

    Suselbeek, Lennart; Emsens, Willem-Jan; Hirsch, Ben T.; Kays, Roland; Rowcliffe, J. Marcus; Zamora-Gutierrez, Veronica; Jansen, Patrick A.

    Foraging activity in animals reflects a compromise between acquiring food and avoiding predation. The risk allocation hypothesis predicts that prey animals optimize this balance by concentrating their foraging activity at times of relatively low predation risk, as much as their energy status

  18. Food aquisition and predator avoidance in a Neotropical rodent

    NARCIS (Netherlands)

    Suselbeek, L.; Emsens, W.J.; Hirsch, B.T.; Kays, R.; Rowcliffe, J.M.; Zamore-Gutierrez, V.; Jansen, P.A.

    2014-01-01

    Foraging activity in animals reflects a compromise between acquiring food and avoiding predation. The Risk Allocation Hypothesis predicts that prey animals optimize this balance by concentrating their foraging activity at times of relatively low predation risk, as much as their energy status

  19. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Directory of Open Access Journals (Sweden)

    Franck A Hollander

    Full Text Available In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  20. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  1. Predator-prey interaction reveals local effects of high-altitude insect migration

    Science.gov (United States)

    High-altitude nocturnal insect migrations represent significant pulses of resources, yet are difficult to study and poorly understood. Predator-prey interactions, specifically migratory moth consumption by high-flying bats, potentially reveal flows of migratory insects across a landscape. In North...

  2. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    Science.gov (United States)

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  3. Predation and caribou populations

    Directory of Open Access Journals (Sweden)

    Dale R. Seip

    1991-10-01

    Full Text Available Predation, especially wolf (Canis lupus predation, limits many North American caribou (Rangifer tarandus populations below the density that food resources could sustain. The impact of predation depends on the parameters for the functional and numerical response of the wolves, relative to the potential annual increment of the caribou population. Differences in predator-avoidance strategies largely explain the major differences in caribou densities that occur naturally in North America. Caribou migrations that spatially separate caribou from wolves allow relatively high densities of caribou to survive. Non-migratory caribou that live in areas where wolf populations are sustained by alternate prey can be eliminated by wolf predation.

  4. Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds.

    Science.gov (United States)

    Webb, Sara L; Willson, Mary F

    1985-08-01

    We investigated effects of seed density, distance from parent, and habitat (woods, open field) on post-dispersal predation risk (chiefly by rodents) for seeds of Prunus virginiana (Rosaceae). Additional study of the habitat effect (woods, open field, treefall gap) was made with seeds of Prunus avium (Rosaceae) and Uvularia grandiflora (Liliaceae). Density of Prunus seeds (range 2-40 seeds/group) did not affect predation risk for individual seeds. Distance from parent plants did influence predation risk, which was greatest directly beneath parents. This distance effect primarily comprised a sharp drop in risk within 2 m of parents, a distance too small to generate a "spacing rule" for conspecifics.We found that habitat strongly influenced predation intensity. Rates of removal of Prunus seeds were higher in woods than in open fields, except when overall predation intensity was very low and no pattern could be discerned. Prunus seed removal rates were higher in closed woods than in treefall gaps. Consequently, a Prunus seed will more likely escape predation if dispersed to an open site. In contrast, Uvularia seed removal rates were higher in open fields than in woods but did not differ between closed woods and tree-fall gaps.Predation intensity was spatially patchy between and within experimental arrays, but was consistent over time at some specific points in space, possibly reflecting home ranges of seed predators.

  5. Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect.

    Directory of Open Access Journals (Sweden)

    Sarah Polin

    Full Text Available Symbionts are widespread among eukaryotes and their impacts on the ecology and evolution of their hosts are meaningful. Most insects harbour obligate and facultative symbiotic bacteria that can influence their phenotype. In the pea aphid Acyrthosiphon pisum, an astounding symbiotic-mediated phenotype has been recently observed: when infected with the symbiotic bacteria Rickettsiella viridis, young red aphid larvae become greener at adulthood and even darker green when co-infected with Rickettsiella viridis and Hamiltonella defensa. As body colour affects the susceptibility towards natural enemies in aphids, the influence of the colour change due to these facultative symbionts on the host survival in presence of predators was tested. Our results suggested that the Rickettsiella viridis infection may impact positively host survival by reducing predation risk. Due to results from uninfected aphids (i.e., more green ones attacked, the main assumption is that this symbiotic infection would deter the predatory ladybird feeding by reducing the profitability of their hosts rather than decreasing host detection through body colour change. Aphids co-infected with Rickettsiella viridis and Hamiltonella defensa were, however, more exposed to predation suggesting an ecological cost associated with multiple infections. The underlying mechanisms and ecological consequences of these symbiotic effects are discussed.

  6. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    Science.gov (United States)

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  7. Temporal constraints on predation risk assessment in a changing world

    International Nuclear Information System (INIS)

    Chivers, Douglas P.; Ramasamy, Ryan A.; McCormick, Mark I.; Watson, Sue-Ann; Siebeck, Ulrike E.; Ferrari, Maud C.O.

    2014-01-01

    Habitat degradation takes various forms and likely represents the most significant threat to our global biodiversity. Recently, we have seen considerable attention paid to increasing global CO 2 emissions which lead to ocean acidification (OA). Other stressors, such as changing levels of ultraviolet radiation (UVR), also impact biodiversity but have received much less attention in the recent past. Here we examine fundamental questions about temporal aspects of risk assessment by coral reef damselfish and provide critical insights into how OA and UVR influence this assessment. Chemical cues released during a predator attack provide a rich source of information that other prey animals use to mediate their risk of predation and are the basis of the majority of trait-mediated indirect interactions in aquatic communities. However, we have surprisingly limited information about temporal aspects of risk assessment because we lack knowledge about how long chemical cues persist after they are released into the environment. Here, we showed that under ambient CO 2 conditions (∼ 385 μatm), alarm cues of ambon damselfish (Pomacentrus amboinensis) did not degrade within 30 min in the absence of ultraviolet radiation (UVR), but were degraded within 15 min when the CO 2 was increased to ∼ 905 μatm. In experiments that used filters to eliminate UVR, we found minimal degradation of alarm cues within 30 min, whereas under ambient UVR conditions, alarm cues were completely degraded within 15 min. Moreover, in the presence of both UVR and elevated CO 2 , alarm cues were broken down within 5 min. Our results highlight that alarm cues degrade surprisingly quickly under natural conditions and that anthropogenic changes have the potential to dramatically change rates of cue degradation in the wild. This has considerable implications for risk assessment and consequently the importance of trait-mediated indirect interactions in coral-reef communities. - Highlights: • We have limited

  8. Effects of intraguild predators on nest-site selection by prey.

    Science.gov (United States)

    Huang, Wen-San; Pike, David A

    2012-01-01

    Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.

  9. Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides?

    International Nuclear Information System (INIS)

    Tosh, D.G.; McDonald, R.A.; Bearhop, S.; Lllewellyn, N.R.; Fee, S.; Sharp, E.A.; Barnett, E.A.; Shore, R.F.

    2011-01-01

    Ireland has a restricted small mammal prey guild but still includes species most likely to consume anticoagulant rodenticide (AR) baits. This may enhance secondary exposure of predators to ARs. We compared liver AR residues in foxes (Vulpes vulpes) in Northern Ireland (NI) with those in foxes from Great Britain which has a more diverse prey guild but similar agricultural use of ARs. Liver ARs were detected in 84% of NI foxes, more than in a comparable sample of foxes from Scotland and similar to that of suspected AR poisoned animals from England and Wales. High exposure in NI foxes is probably due to greater predation of commensal rodents and non-target species most likely to take AR baits, and may also partly reflect greater exposure to highly persistent brodifacoum and flocoumafen. High exposure is likely to enhance risk and Ireland may be a sentinel for potential effects on predator populations. - Highlights: → Exposure of a predator to anticoagulant rodenticides was compared in Britain and Ireland. → Exposure was higher in Ireland. → Differences driven by small mammal prey guilds. → Ireland a potential sentinel for predator exposure to anticoagulants. - Restriction of the small mammal prey guild is associated with enhanced exposure of predators to anticoagulant rodenticides.

  10. Not So Fast: Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry.

    Science.gov (United States)

    Marras, Stefano; Noda, Takuji; Steffensen, John F; Svendsen, Morten B S; Krause, Jens; Wilson, Alexander D M; Kurvers, Ralf H J M; Herbert-Read, James; Boswell, Kevin M; Domenici, Paolo

    2015-10-01

    Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting

  11. Risky business for a juvenile marine predator? Testing the influence of foraging strategies on size and growth rate under natural conditions.

    Science.gov (United States)

    Hussey, Nigel E; DiBattista, Joseph D; Moore, Jonathan W; Ward, Eric J; Fisk, Aaron T; Kessel, Steven; Guttridge, Tristan L; Feldheim, Kevin A; Franks, Bryan R; Gruber, Samuel H; Weideli, Ornella C; Chapman, Demian D

    2017-04-12

    Mechanisms driving selection of body size and growth rate in wild marine vertebrates are poorly understood, thus limiting knowledge of their fitness costs at ecological, physiological and genetic scales. Here, we indirectly tested whether selection for size-related traits of juvenile sharks that inhabit a nursery hosting two dichotomous habitats, protected mangroves (low predation risk) and exposed seagrass beds (high predation risk), is influenced by their foraging behaviour. Juvenile sharks displayed a continuum of foraging strategies between mangrove and seagrass areas, with some individuals preferentially feeding in one habitat over another. Foraging habitat was correlated with growth rate, whereby slower growing, smaller individuals fed predominantly in sheltered mangroves, whereas larger, faster growing animals fed over exposed seagrass. Concomitantly, tracked juveniles undertook variable movement behaviours across both the low and high predation risk habitat. These data provide supporting evidence for the hypothesis that directional selection favouring smaller size and slower growth rate, both heritable traits in this shark population, may be driven by variability in foraging behaviour and predation risk. Such evolutionary pathways may be critical to adaptation within predator-driven marine ecosystems. © 2017 The Author(s).

  12. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    OpenAIRE

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius ...

  13. Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish

    Science.gov (United States)

    Flinders, C.A.; Magoulick, D.D.

    2007-01-01

    crayfish grew faster in shallow habitats where they might have had a fitness advantage caused by high prey availability and reduced predation risk. Size-dependent reduction of silt by crayfish might influence benthic habitats where large crayfish are abundant. ?? 2007 by The North American Benthological Society.

  14. Egg Predation Risk Trigger Adult Hoverfly (Diptera: Syrphidae to Avoid Laying Eggs in Patches Attended by Ladybird Larvae (Coleoptera: Coccinellidae

    Directory of Open Access Journals (Sweden)

    Nugroho Susetya Putra

    2005-12-01

    Full Text Available Oviposition preference of a predatory hoverfly, Episyrphus balteatus on the presence of its potential predators, the ladybird larvae which are inflicted serious impacts on its eggs was examined in a non-choice test. Our results revealed that the biggest and the most aggressive species of ladybird, Harmonia axyridis caused the worst impact on hoverfly eggs by attacking and feeding on. The species and developmental stages of ladybird were attributed to the level of predation risk. We correlated the oviposition site selection by hoverfly females to the egg predation risk level inflicted by ladybird larvae. Hoverfly females laid the least number of eggs on the patches attended by the strongest competitor, the larva of H. axyridis, and tended to lay the highest number of eggs on colonies attended by the weakest competitor, the larva of Scymnus posticalis. In addition, the impact of the fourth instar larva of ladybirds was stronger than of the first instar larva.

  15. Landscape-scale accessibility of livestock to tigers: implications of spatial grain for modeling predation risk to mitigate human-carnivore conflict.

    Science.gov (United States)

    Miller, Jennifer R B; Jhala, Yadvendradev V; Jena, Jyotirmay; Schmitz, Oswald J

    2015-03-01

    Innovative conservation tools are greatly needed to reduce livelihood losses and wildlife declines resulting from human-carnivore conflict. Spatial risk modeling is an emerging method for assessing the spatial patterns of predator-prey interactions, with applications for mitigating carnivore attacks on livestock. Large carnivores that ambush prey attack and kill over small areas, requiring models at fine spatial grains to predict livestock depredation hot spots. To detect the best resolution for predicting where carnivores access livestock, we examined the spatial attributes associated with livestock killed by tigers in Kanha Tiger Reserve, India, using risk models generated at 20, 100, and 200-m spatial grains. We analyzed land-use, human presence, and vegetation structure variables at 138 kill sites and 439 random sites to identify key landscape attributes where livestock were vulnerable to tigers. Land-use and human presence variables contributed strongly to predation risk models, with most variables showing high relative importance (≥0.85) at all spatial grains. The risk of a tiger killing livestock increased near dense forests and near the boundary of the park core zone where human presence is restricted. Risk was nonlinearly related to human infrastructure and open vegetation, with the greatest risk occurring 1.2 km from roads, 1.1 km from villages, and 8.0 km from scrubland. Kill sites were characterized by denser, patchier, and more complex vegetation with lower visibility than random sites. Risk maps revealed high-risk hot spots inside of the core zone boundary and in several patches in the human-dominated buffer zone. Validation against known kills revealed predictive accuracy for only the 20 m model, the resolution best representing the kill stage of hunting for large carnivores that ambush prey, like the tiger. Results demonstrate that risk models developed at fine spatial grains can offer accurate guidance on landscape attributes livestock should

  16. Migration confers survival benefits against avian predators for partially migratory freshwater fish

    DEFF Research Database (Denmark)

    Skov, Christian; Chapman, Ben B.; Baktoft, Henrik

    2013-01-01

    The importance of predation risk in shaping patterns of animal migration is not well studied, mostly owing to difficulties in accurately quantifying predation risk for migratory versus resident individuals. Here, we present data from an extensive field study, which shows that migration...... in a freshwater fish (roach, Rutilus rutilus) that commonly migrates from lakes to streams during winter confers a significant survival benefit with respect to bird (cormorant, Phalacrocorax carbo spp.) predation. We tagged over 2000 individual fish in two Scandinavian lakes over 4 years and monitored migratory...... behaviour using passive telemetry. Next, we calculated the predation vulnerability of fish with differing migration strategies, by recovering data from passive integrated transponder tags of fish eaten by cormorants at communal roosts close to the lakes. We show that fish can reduce their predation risk...

  17. Vertebrate predator-prey interactions in a seasonal environment

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Berg, Thomas B; Forchhammer, Mads

    2008-01-01

    erminea predation and stabilising predation from the generalist predators, in Zackenbergdalen mainly the arctic fox Alopex lagopus. In Zackenbergdalen, however, the coupling between the specialist stoat and the lemming population is relatively weak. During summer, the predation pressure is high......The High Arctic, with its low number of species, is characterised by a relatively simple ecosystem, and the vertebrate predator-prey interactions in the valley Zackenbergdalen in Northeast Greenland are centred around the collared lemming Dicrostonyx groenlandicus and its multiple predators...

  18. Interactions of bullfrog tadpole predators and an insecticide: Predation release and facilitation

    Science.gov (United States)

    Boone, M.D.; Semlitsch, R.D.

    2003-01-01

    The effect of a contaminant on a community may not be easily predicted, given that complex changes in food resources and predator-prey dynamics may result. The objectives of our study were to determine the interactive effects of the insecticide carbaryl and predators on body size, development, survival, and activity of tadpoles of the bullfrog (Rana catesbeiana). We conducted the study in cattle tank mesocosm ponds exposed to 0, 3.5, or 7.0 mg/l carbaryl, and no predators or two red-spotted newts (Notophthalmus viridescens), bluegill sunfish (Lepomis macrochirus), or crayfish (Orconectes sp.). Carbaryl negatively affected predator survival by eliminating crayfish from all ponds, and by eliminating bluegill sunfish from ponds exposed to the highest concentration of carbaryl; carbaryl exposure did not effect survival of red-spotted newts. Because crayfish were eliminated by carbaryl, bullfrogs were released from predation and survival was near that of predator controls at low concentrations of carbaryl exposure. High concentrations of carbaryl reduced tadpole survival regardless of whether predators survived carbaryl exposure or not. Presence of crayfish and newts reduced tadpole survival, while bluegill sunfish appeared to facilitate bullfrog tadpole survival. Presence of carbaryl stimulated bullfrog tadpole mass and development. Our study demonstrates that the presence of a contaminant stress can alter community regulation by releasing prey from predators that are vulnerable to contaminants in some exposure scenarios.

  19. Temperature-mediated changes in rates of predator forgetting in woodfrog tadpoles.

    Directory of Open Access Journals (Sweden)

    Maud C O Ferrari

    Full Text Available Hundreds of studies have investigated the sources and nature of information that prey gather about their predators and the ways in which prey use this information to mediate their risk of predation. However, relatively little theoretical or empirical work has considered the question of how long information should be maintained and used by prey animals in making behavioural decisions. Here, we tested whether the size of the memory window associated with predator recognition could be affected by an intrinsic factor, such as size and growth rate of the prey. We maintained groups of predator-naive woodfrog, Lithobates sylvaticus, tadpoles at different temperatures for 8 days to induce differences in tadpole size. We then conditioned small and large tadpoles to recognize the odour of a predatory tiger salamander, Ambystoma tigrinum. Tadpoles were then maintained either on a high or low growth trajectory for another 8 days, after which they were tested for their response to the predator. Our results suggest that the memory window related to predator recognition of tadpoles is determined by both their size and/or growth rate at the time of learning and their subsequent growth rate post-learning.

  20. Juvenile exposure to predator cues induces a larger egg size in fish

    Science.gov (United States)

    Segers, Francisca H. I. D.; Taborsky, Barbara

    2012-01-01

    When females anticipate a hazardous environment for their offspring, they can increase offspring survival by producing larger young. Early environmental experience determines egg size in different animal taxa. We predicted that a higher perceived predation risk by juveniles would cause an increase in the sizes of eggs that they produce as adults. To test this, we exposed juveniles of the mouthbrooding cichlid Eretmodus cyanostictus in a split-brood experiment either to cues of a natural predator or to a control situation. After maturation, females that had been confronted with predators produced heavier eggs, whereas clutch size itself was not affected by the treatment. This effect cannot be explained by a differential female body size because the predator treatment did not influence growth trajectories. The observed increase of egg mass is likely to be adaptive, as heavier eggs gave rise to larger young and in fish, juvenile predation risk drops sharply with increasing body size. This study provides the first evidence that predator cues perceived by females early in life positively affect egg mass, suggesting that these cues allow her to predict the predation risk for her offspring. PMID:21976689

  1. Temporal constraints on predation risk assessment in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Chivers, Douglas P., E-mail: doug.chivers@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Ramasamy, Ryan A.; McCormick, Mark I.; Watson, Sue-Ann [ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville Qld4811 (Australia); School of Marine and Tropical Biology, James Cook University, Townsville Qld4811 (Australia); Siebeck, Ulrike E. [School of Biomedical Sciences, University of Queensland, Brisbane Qld4072 (Australia); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7W 5B4 (Canada)

    2014-12-01

    Habitat degradation takes various forms and likely represents the most significant threat to our global biodiversity. Recently, we have seen considerable attention paid to increasing global CO{sub 2} emissions which lead to ocean acidification (OA). Other stressors, such as changing levels of ultraviolet radiation (UVR), also impact biodiversity but have received much less attention in the recent past. Here we examine fundamental questions about temporal aspects of risk assessment by coral reef damselfish and provide critical insights into how OA and UVR influence this assessment. Chemical cues released during a predator attack provide a rich source of information that other prey animals use to mediate their risk of predation and are the basis of the majority of trait-mediated indirect interactions in aquatic communities. However, we have surprisingly limited information about temporal aspects of risk assessment because we lack knowledge about how long chemical cues persist after they are released into the environment. Here, we showed that under ambient CO{sub 2} conditions (∼ 385 μatm), alarm cues of ambon damselfish (Pomacentrus amboinensis) did not degrade within 30 min in the absence of ultraviolet radiation (UVR), but were degraded within 15 min when the CO{sub 2} was increased to ∼ 905 μatm. In experiments that used filters to eliminate UVR, we found minimal degradation of alarm cues within 30 min, whereas under ambient UVR conditions, alarm cues were completely degraded within 15 min. Moreover, in the presence of both UVR and elevated CO{sub 2}, alarm cues were broken down within 5 min. Our results highlight that alarm cues degrade surprisingly quickly under natural conditions and that anthropogenic changes have the potential to dramatically change rates of cue degradation in the wild. This has considerable implications for risk assessment and consequently the importance of trait-mediated indirect interactions in coral-reef communities. - Highlights:

  2. Patch time allocation and oviposition behavior in response to patch quality and the presence of a generalist predator in Meteorus pulchricornis (Hymenoptera: Braconidae).

    Science.gov (United States)

    Sheng, Sheng; Ling, Meng; Fu-An, Wu; Baoping, Li

    2015-01-01

    Foraging parasitoids often must estimate local risk of predation just as they must estimate local patch value. Here, we investigate the effects a generalist predator Chlaenius bioculatus (Coleoptera: Carabidae), has on the oviposition behavior and the patch residence decisions of a solitary parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) in response to the varying host quality of Spodoptera litura (Lepidoptera: Noctuidae) larvae (L2 and L4). M. pulchricornis attacked more L4 than on L2 hosts, with the difference in attack rate varying depending on predation treatments, greater in the presence (either actively feeding or not) of the predator than in the absence of it. The parasitoid attacked fewer L2 and L4 hosts when the predator was actively feeding than when it was not feeding or not present in the patch. M. pulchricornis decreased the patch leaving tendency with increasing rejections of hosts, but increased the tendency in response to the presence of the predator as compared with the absence of it, and furthermore, increased the patch leaving tendency when the predator was actively feeding as compared with when it was not. Our study suggests that M. pulchricornis can exploit high quality patches while minimizing predation risk, by attacking more hosts in high quality patches while reducing total patch time in response to risk of predation. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. Effects of Paternal Predation Risk and Rearing Environment on Maternal Investment and Development of Defensive Responses in the Offspring

    Science.gov (United States)

    Bauer, Jessica

    2016-01-01

    Abstract Detecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother–infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor. Mothers that reared young in larger, seminaturalistic housing provided more licking and grooming and active arched back-nursing behavior toward their offspring compared with dams housed in standard housing, although some effects interacted with paternal experience. Paternal predation risk and maternal rearing environment revealed sex-dependent differences in offspring wean weight, juvenile social interactions, and anxiety-like behavior in adolescence. Additionally, paternal predator experience and maternal housing independently affected variations in crf gene promoter acetylation and crf gene expression in response to an acute stressor in offspring. Our results show for the first time in mammals that variation among males in their predator encounters may contribute to stable behavioral variation among females in preference for mates and maternal care, even when the females are not directly exposed to predator threat. Furthermore, when offspring were exposed to the same threat experienced by the father, hypothalamic crf gene regulation was influenced by paternal olfactory experience and early housing. These results, together with our previous findings, suggest that paternal stress exposure and maternal rearing conditions can influence maternal behavior and the development of defensive responses in offspring. PMID:27896313

  4. Food availability and predation risk drive the distributional patterns of two pulmonate gastropods in a mangrove-saltmarsh transitional habitat.

    Science.gov (United States)

    Peng, Yisheng; Zhang, Min; Lee, Shing Yip

    2017-09-01

    The pulmonate gastropods, Phallomedusa solida (Martens, 1878) and Ophicardelus ornatus (Férussac, 1821), exhibit characteristic distributional patterns at the upper intertidal zones in estuarine mangrove and saltmarsh habitats on the eastern Australian coast. Past studies suggested inundation condition, soil salinity, and percent of vegetation cover were responsible for these patterns. In this study, the role of environmental parameters, food availability, physical stress, and predation pressure in determining the distributional patterns of these gastropods was evaluated along transects spanning saltmarsh, mangrove, and the ecotone habitats. For both species, the maximum population abundance occurred in the upper saltmarsh and the ecotone between mangrove and saltmarsh at 361.0 and 358.0 ind.m -2 , respectively, which was four times that of the lower saltmarsh. Mangroves were evaluated as the optimal habitat for the pulmonates in terms of the environmental parameters moisture content and food availability. However, due to its longer inundation duration within each tidal cycle, use of the mangrove habitat by the pulmonates was impeded because of difficulties in oxygen acquisition under submerged conditions. Laboratory experiments revealed the oxygen intake of the pulmonates dropped abruptly to 4.3-9.0% of aerial rates when submerged. This result indicated that mangroves were not the optimal habitat for the pulmonates. Furthermore, the visiting frequency of predators (yellowfin bream Acanthopagrus australis and toadfishes, Tetraodontidae) was 1.3 times higher in the mangrove compared to those in the ecotone and upper saltmarsh habitats. Underwater video recording also suggested high mortality of these gastropods at 31.7-88.9% in mangrove and 0.80-0.98 times higher than that in saltmarsh, resulting from the predators preying in the mangrove habitat during high tides. Despite the abiotic factors facilitating the distribution of the pulmonates in the mangrove, the

  5. Behavioral responses associated with a human-mediated predator shelter.

    Directory of Open Access Journals (Sweden)

    Graeme Shannon

    Full Text Available Human activities in protected areas can affect wildlife populations in a similar manner to predation risk, causing increases in movement and vigilance, shifts in habitat use and changes in group size. Nevertheless, recent evidence indicates that in certain situations ungulate species may actually utilize areas associated with higher levels of human presence as a potential refuge from disturbance-sensitive predators. We now use four-years of behavioral activity budget data collected from pronghorn (Antilocapra americana and elk (Cervus elephus in Grand Teton National Park, USA to test whether predictable patterns of human presence can provide a shelter from predatory risk. Daily behavioral scans were conducted along two parallel sections of road that differed in traffic volume--with the main Teton Park Road experiencing vehicle use that was approximately thirty-fold greater than the River Road. At the busier Teton Park Road, both species of ungulate engaged in higher levels of feeding (27% increase in the proportion of pronghorn feeding and 21% increase for elk, lower levels of alert behavior (18% decrease for pronghorn and 9% decrease for elk and formed smaller groups. These responses are commonly associated with reduced predatory threat. Pronghorn also exhibited a 30% increase in the proportion of individuals moving at the River Road as would be expected under greater exposure to predation risk. Our findings concur with the 'predator shelter hypothesis', suggesting that ungulates in GTNP use human presence as a potential refuge from predation risk, adjusting their behavior accordingly. Human activity has the potential to alter predator-prey interactions and drive trophic-mediated effects that could ultimately impact ecosystem function and biodiversity.

  6. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  7. Patch use in time and space for a meso-predator in a risky world.

    Science.gov (United States)

    Mukherjee, Shomen; Zelcer, Michal; Kotler, Burt P

    2009-03-01

    Predator-prey studies often assume a three trophic level system where predators forage free from any risk of predation. Since meso-predators themselves are also prospective prey, they too need to trade-off between food and safety. We applied foraging theory to study patch use and habitat selection by a meso-predator, the red fox. We present evidence that foxes use a quitting harvest rate rule when deciding whether or not to abandon a foraging patch, and experience diminishing returns when foraging from a depletable food patch. Furthermore, our data suggest that patch use decisions of red foxes are influenced not just by the availability of food, but also by their perceived risk of predation. Fox behavior was affected by moonlight, with foxes depleting food resources more thoroughly (lower giving-up density) on darker nights compared to moonlit nights. Foxes reduced risk from hyenas by being more active where and when hyena activity was low. While hyenas were least active during moon, and most active during full moon nights, the reverse was true for foxes. Foxes showed twice as much activity during new moon compared to full moon nights, suggesting different costs of predation. Interestingly, resources in patches with cues of another predator (scat of wolf) were depleted to significantly lower levels compared to patches without. Our results emphasize the need for considering risk of predation for intermediate predators, and also shows how patch use theory and experimental food patches can be used for a predator. Taken together, these results may help us better understand trophic interactions.

  8. Understanding the role of uncertainty on learning and retention of predator information.

    Science.gov (United States)

    Ferrari, Maud C O; Vrtělová, Jana; Brown, Grant E; Chivers, Douglas P

    2012-09-01

    Due to the highly variable nature of predation risk, prey animals need to continuously collect information regarding the risk posed by predators. One question that ensues is how long to use this information for? An adaptive framework of predator-related information use predicted that certainty should influence the duration for which information regarding the threatening nature of a species is used in decision-making. It predicts that uncertainty contributes to the reduction in the duration of information use, due to the cost of displaying antipredator behaviours towards non-threatening species. Here, we test this prediction using repetition of conditioning events as a way to increase the certainty associated with the predatory nature of a novel salamander for woodfrog tadpoles. Tadpoles were conditioned 1, 2 or 4 times to recognize a novel salamander as a predator and subsequently tested for their response to the salamander 1 day or 11 days post-conditioning. We found that conditioning repetition did not affect the intensity with which tadpoles learned to respond to the salamander after 1 day. However, after 11 days, tadpoles with fewer conditionings responded to the salamander with a weaker intensity than those that received more conditionings. Our results provide support for the model prediction that an increase in the certainty associated with correctly identifying a predator leads to longer retention of the threat.

  9. Predator-induced changes of female mating preferences: innate and experiential effects

    Directory of Open Access Journals (Sweden)

    Indy Jeane

    2011-07-01

    Full Text Available Abstract Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana. Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus. In contrast, predator experienced (wild-caught females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection, and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators.

  10. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems.

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-02-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.

  11. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change. PMID:23467451

  12. Behavioral response races, predator-prey shell games, ecology of fear, and patch use of pumas and their ungulate prey.

    Science.gov (United States)

    Laundré, John W

    2010-10-01

    The predator-prey shell game predicts random movement of prey across the landscape, whereas the behavioral response race and landscape of fear models predict that there should be a negative relationship between the spatial distribution of a predator and its behaviorally active prey. Additionally, prey have imperfect information on the whereabouts of their predator, which the predator should incorporate in its patch use strategy. I used a one-predator-one-prey system, puma (Puma concolor)-mule deer (Odocoileus hemionus) to test the following predictions regarding predator-prey distribution and patch use by the predator. (1) Pumas will spend more time in high prey risk/low prey use habitat types, while deer will spend their time in low-risk habitats. Pumas should (2) select large forage patches more often, (3) remain in large patches longer, and (4) revisit individual large patches more often than individual smaller ones. I tested these predictions with an extensive telemetry data set collected over 16 years in a study area of patchy forested habitat. When active, pumas spent significantly less time in open areas of low intrinsic predation risk than did deer. Pumas used large patches more than expected, revisited individual large patches significantly more often than smaller ones, and stayed significantly longer in larger patches than in smaller ones. The results supported the prediction of a negative relationship in the spatial distribution of a predator and its prey and indicated that the predator is incorporating the prey's imperfect information about its presence. These results indicate a behavioral complexity on the landscape scale that can have far-reaching impacts on predator-prey interactions.

  13. THE ABILITY OF FAST-GROWING TRANSGENIC AFRICAN CATFISH (Clarias gariepinus ON PREDATOR AVOIDANCE

    Directory of Open Access Journals (Sweden)

    Huria Marnis

    2016-12-01

    Full Text Available Research Institute for Fish Breeding has produced transgenic African catfish (Clarias gariepinus containing stripped catfish growth hormone gene (PccBA-PhGH with growth 19.86% faster than that of non-transgenic fish. This fish has high potential to be released and utilized for fish farming sector to increase national production. However, there is not yet information about environmental risk of this fish. One of the major fitness traits determining potential environmental risk is predator avoidance. This study aimed to determine the predator avoidance ability of transgenic African catfish in an experimental laboratory condition. In this study, thirty five individuals each of transgenic and non-transgenic with body weight of about 0.1 ± 0.019 g were communally stocked in 60 cm x 40 cm x 40 cm aquarium with limited feeding frequency (ad libitum twice a day. One day after the fish were stocked, the predators were added to each aquarium. The non-transgenic and transgenic with body weight of 1.0 ± 0.024 g were stocked as predators as many as five individual in each aquarium. After approximately two weeks of predation, all remaining fish were collected for transgenic verification by PCR method. Genomic DNA was isolated from fin tissue of individually survivors. The results of this study showed that the transgenic fish had worse predator avoidance and lower cannibal than non-transgenic (P0.05 in limited food. The transgenic fish may have lower fitness than non-transgenic.

  14. A predation cost to bold fish in the wild

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben; Nilsson, Anders P.

    2017-01-01

    in the animal kingdom. Theory predicts that individual behavioural types differ in a cost-benefit trade-off where bolder individuals benefit from greater access to resources while paying higher predation-risk costs. However, explicitly linking predation events to individual behaviour under natural conditions...

  15. Rats and seabirds: effects of egg size on predation risk and the potential of conditioned taste aversion as a mitigation method.

    Science.gov (United States)

    Latorre, Lucía; Larrinaga, Asier R; Santamaría, Luis

    2013-01-01

    Seabirds nesting on islands are threatened by invasive rodents, such as mice and rats, which may attack eggs, chicks and even adults. The low feasibility of rat eradications on many islands makes the development of alternate control plans necessary. We used a combination of field experiments on a Mediterranean island invaded by black rats (Rattusrattus) to evaluate (1) the predation risk posed to different-sized seabird eggs and (2), the potential of two deterrent methods (electronic and chemical) to reduce its impact. Rats were able to consume eggs of all sizes (12 to 68 g), but survival increased 13 times from the smallest to the largest eggs (which also had more resistant eggshells). Extrapolation to seabird eggs suggests that the smallest species (Hydrobatespelagicus) suffer the most severe predation risk, but even the largest (Larusmichahellis) could suffer >60% mortality. Nest attack was not reduced by the deterrents. However, chemical deterrence (conditioned taste aversion by lithium chloride) slowed the increase in predation rate over time, which resulted in a three-fold increase in egg survival to predation as compared to both control and electronic deterrence. At the end of the experimental period, this effect was confirmed by a treatment swap, which showed that conferred protection remains at least 15 days after cessation of the treatment. Results indicate that small seabird species are likely to suffer severe rates of nest predation by rats and that conditioned taste aversion, but not electronic repellents, may represent a suitable method to protect colonies when eradication or control is not feasible or cost-effective.

  16. Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.

    Science.gov (United States)

    Pestana, João L T; Loureiro, Susana; Baird, Donald J; Soares, Amadeu M V M

    2009-06-28

    The influence of interactions between pesticide exposure and perceived predation risk on the lethal and sub-lethal responses of two aquatic insects was investigated using the pesticide imidacloprid, and a combination of predator-release kairomones from trout and alarm substances from conspecifics. Laboratory experiments examined feeding and respiration rates of the caddisfly Sericostoma vittatum as well as the growth, emergence and respiration rates of the midge Chironomus riparius, exposed to sub-lethal concentrations of imidacloprid. The effects of the two stressors on burrowing behaviour of both species were also assessed. The results show significant effects of environmentally relevant concentrations of imidacloprid on all endpoints studied. Perceived predation risk also elicited sub-lethal effects in C. riparius and S. vittatum, the latter species being less responsive to predation cues. The effects of simultaneous exposure to both types of stressors were assessed using two different approaches: analysis of variance and conceptual models [concentration addition (CA) and independent action (IA)] normally used for the evaluation of contaminant mixture exposure. Both statistical approaches showed no significant interactions on responses in simultaneous exposures in the majority of parameters assessed with only a signification deviation from the reference CA and IA models being found for C. riparius respiration data contrary to the ANOVA results. Exposure to imidacloprid also compromised antipredator behavioural responses of both insect species, with potential negative consequences in terms of mortality from predation in the field. The results obtained demonstrate that natural and anthropogenic stressors can be treated within the same framework providing compatible data for modelling. For an improved interpretation of ecological effects it will be important to expand the mechanistic study of effects of combined exposure to pesticides and perceived predation risk

  17. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Indrikis Krams

    2016-08-01

    Full Text Available Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus, and the percentage of carbon (C and nitrogen (N content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C, a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures.

  18. The relationship between food intake and predation risk in migratory caribou and implications to caribou and wolf population dynamics

    Directory of Open Access Journals (Sweden)

    Douglas C. Heard

    1996-01-01

    Full Text Available We examined the hypothesis that spring migration in barren-ground caribou (Rangifer tarandus enhances access to high quality food, reduces predation risks or both. We related our findings to the hypothesis that one of the consequences of migration is that prey populations cannot be regulated by predation because predators are unable to respond numerically to changes in abundance of migratory prey. In the Northwest Territories, migration to calving grounds by pregnant cows reduced the risk of predation on neonates. Wolf (Canis lupus densities on calving grounds averaged only 22% of winter range densities because most wolves denned near tree line. The quality and quantity of food that was available to cows that migrated to calving grounds was lower than for bulls and other caribou that lagged far behind the pregnant cows during spring migration. Fecal nitrogen levels were higher in bulls than in cows in late May and early June but there were no differences in mid or late June. Areas occupied by bulls in late May had a greater biomass of live sedges than on the calving ground in early June. It appears that although food in July is abundant and nutritious, insect harassment prevents efficient feeding. Body fat reserves in both sexes declined to almost zero by mid-July, the lowest level of the year. Insect numbers declined in August and body fat levels increased to the highest level of the year by early September. Because the timing of caribou's return to the hunting ranges of tree line denning wolves was related to caribou density, our data were inconsistent with the suggested consequence of migration. Tree line denning by wolves and density-dependent changes in caribou migration suggests a mechanism for population regulation in caribou and wolves. We suggest that the process is as follows; when caribou numbers increase, some density-dependent factor causes range expansion in August (e.g., competition for food causing caribou to return earlier to

  19. Landscape And Edge Effects On The Distribution Of Mammalian Predators In Missouri

    Science.gov (United States)

    William D. Dijak; Frank R. Thompson III

    2000-01-01

    Raccoons (Procyon lotor), opossums (Didelphis virginiana), and striped skunks (Mephitis mephitis) are predators of forest songbird eggs and nestlings. We examined the relative abundance of these predators at landscape and local scales to better understand predation risks. At the landscape scale, we examined the...

  20. Predation Risk versus Pesticide Exposure: Consequences of Fear and Loathing in the Life of Stream Shredders

    Science.gov (United States)

    Pestana, J. T.; Baird, D. J.; Soares, A. M.

    2005-05-01

    Stream invertebrates are exposed to complex stressor regimes including both biotic and abiotic factors. Species living in streams in agricultural landscapes are often subjected to episodic or continuous exposures to low levels of agrochemicals, which may approach or exceed specific substance guidelines. Sublethal effects of pesticides may result in direct effects on organisms (e.g. reduced physiological performance), which may in turn contribute to indirect effects relating to survival (e.g. increased predation risk). Here, we investigate the possibility that predator-release kairomones can act additively with low-level pesticide exposure to reduce physiological performance and survival of stream invertebrates in previously unforeseen ways. Feeding, metabolic and behavioural responses of two shredder insects, the North American stonefly Pteronarcys comstockii and the European caddisfly Sericostoma vittatum were measured under exposure to the insecticide imidacloprid at different levels of indirect predation stress using predator-release kairomones from Brown Trout (Salmo trutta). Pteronarcys feeding was measured in terms of mass of naturally conditioned alder leaf discs consumed over a 6-day and 10 -day period in animals held in cages in stream mesocosms. Pteronarcys feeding was impaired at 1 ppb in the 6-day trial and at 0,5 ppb in the 10-day trial relatively to unexposed controls. Metabolic rate was measured in the lab in terms of oxygen consumption of Pteronarcys. Animals exposed to 0.5 and 1 ppb imidacloprid showed elevated respiratory rates compared to controls. Laboratory experiments with Sericostoma, currently in progress, are examining the separate and combined effects of imidacloprid and predator kairomone on similar endpoints. These preliminary results are discussed in relation to the development of the Mechanistic Unifying Stressor Effects (MUSE) model which can be used to predict combined ecological effects of multiple stressors at the population level.

  1. Coping with shifting nest predation refuges by European reed Warblers Acrocephalus scirpaceus.

    Directory of Open Access Journals (Sweden)

    Lucyna Halupka

    Full Text Available Predation, the most important source of nest mortality in altricial birds, has been a subject of numerous studies during past decades. However, the temporal dynamics between changing predation pressures and parental responses remain poorly understood. We analysed characteristics of 524 nests of European reed warblers monitored during six consecutive breeding seasons in the same area, and found some support for the shifting nest predation refuge hypothesis. Nest site characteristics were correlated with nest fate, but a nest with the same nest-site attributes could be relatively safe in one season and vulnerable to predation in another. Thus nest predation refuges were ephemeral and there was no between-season consistency in nest predation patterns. Reed warblers that lost their first nests in a given season did not disperse farther for the subsequent reproductive attempt, compared to successful individuals, but they introduced more changes to their second nest sites. In subsequent nests, predation risk remained constant for birds that changed nest-site characteristics, but increased for those that did not. At the between-season temporal scale, individual birds did not perform better with age in terms of reducing nest predation risk. We conclude that the experience acquired in previous years may not be useful, given that nest predation refuges are not stable.

  2. Predator diversity effects in an exotic freshwater food web.

    Science.gov (United States)

    Naddafi, Rahmat; Rudstam, Lars G

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  3. Predator diversity effects in an exotic freshwater food web.

    Directory of Open Access Journals (Sweden)

    Rahmat Naddafi

    Full Text Available Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs. Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  4. Diet quality in a wild grazer declines under the threat of an ambush predator.

    Science.gov (United States)

    Barnier, Florian; Valeix, Marion; Duncan, Patrick; Chamaillé-Jammes, Simon; Barre, Philippe; Loveridge, Andrew J; Macdonald, David W; Fritz, Hervé

    2014-06-22

    Predators influence prey populations not only through predation itself, but also indirectly through prompting changes in prey behaviour. The behavioural adjustments of prey to predation risk may carry nutritional costs, but this has seldom been studied in the wild in large mammals. Here, we studied the effects of an ambush predator, the African lion (Panthera leo), on the diet quality of plains zebras (Equus quagga) in Hwange National Park, Zimbabwe. We combined information on movements of both prey and predators, using GPS data, and measurements of faecal crude protein, an index of diet quality in the prey. Zebras which had been in close proximity to lions had a lower quality diet, showing that adjustments in behaviour when lions are within short distance carry nutritional costs. The ultimate fitness cost will depend on the frequency of predator-prey encounters and on whether bottom-up or top-down forces are more important in the prey population. Our finding is the first attempt to our knowledge to assess nutritionally mediated risk effects in a large mammalian prey species under the threat of an ambush predator, and brings support to the hypothesis that the behavioural effects of predation induce important risk effects on prey populations.

  5. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous...

  6. Responses of tadpoles to hybrid predator odours: strong maternal signatures and the potential risk/response mismatch

    OpenAIRE

    Chivers, Douglas P.; Mathiron, Anthony; Sloychuk, Janelle R.; Ferrari, Maud C. O.

    2015-01-01

    Previous studies have established that when a prey animal knows the identity of a particular predator, it can use this knowledge to make an ‘educated guess' about similar novel predators. Such generalization of predator recognition may be particularly beneficial when prey are exposed to introduced and invasive species of predators or hybrids. Here, we examined generalization of predator recognition for woodfrog tadpoles exposed to novel trout predators. Tadpoles conditioned to recognize tiger...

  7. Neuroendocrine changes upon exposure to predator odors.

    Science.gov (United States)

    Hegab, Ibrahim M; Wei, Wanhong

    2014-05-28

    Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic-pituitary-adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of anti-predator responses in prey species. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    Science.gov (United States)

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  9. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks

    NARCIS (Netherlands)

    Bell, A. M.; Dingemanse, N. J.; Hankison, S. J.; Langenhof, M. B. W.; Rollins, K.

    Predation has an important influence on life history traits in many organisms, especially when they are young. When cues of trout were present, juvenile sticklebacks grew faster. The increase in body size as a result of exposure to cues of predators was adaptive because larger individuals were more

  10. Size-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic char

    NARCIS (Netherlands)

    Byström, P.; Andersson, J.; Persson, L.; de Roos, A.M.

    2004-01-01

    Variation in growth and habitat use is closely connected to individual responses to habitat specific resource levels and predation risk. In three mountain lakes which differed in the density of young-of-the-year (YOY) arctic char (Salvelinus alpinus), we studied the growth, diets and habitat use of

  11. Size-dependent resource limitation and foraging-predation risk trade-offs:growth and habitat use in young artic char

    NARCIS (Netherlands)

    Bystrom, P.; Persson, L.; de Roos, A.M.; Andersson, J.A.

    2004-01-01

    Variation in growth and habitat use is closely connected to individual responses to habitat specific resource levels and predation risk. In three mountain lakes which differed in the density of young-of-the-year (YOY) arctic char (Salvelinus alpinus), we studied the growth, diets and habitat use of

  12. Risk of spider predation alters food web structure and reduces local herbivory in the field.

    Science.gov (United States)

    Bucher, Roman; Menzel, Florian; Entling, Martin H

    2015-06-01

    Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.

  13. Dynamics of a intraguild predation model with generalist or specialist predator.

    Science.gov (United States)

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  14. Predators are attracted to the olfactory signals of prey.

    Directory of Open Access Journals (Sweden)

    Nelika K Hughes

    2010-09-01

    Full Text Available Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals.This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.

  15. Half-Blind to the Risk of Predation

    Directory of Open Access Journals (Sweden)

    Guy Beauchamp

    2017-10-01

    Full Text Available Blinking serves several functions in animals, but it comes at the cost of intermittent blindness. Blinking can occur spontaneously, but it is commonly associated with head movements. As feeding animals often need to move the head down repeatedly to gather resources, intermittent blindness might represent a hitherto unappreciated cost of feeding. In addition, this cost might also be more prevalent in larger groups as feeding effort typically increases with group size. In chickens (Gallus gallus domesticus, blinks associated with head movements occurred at a high frequently during feeding bouts. While blinks tended to be short, the amount of time spent blinking was close to 50% when feeding and increased with group size. By contrast, time spent blinking was much lower when birds simply monitored their surroundings between feeding bouts. Intermittent blinking at this scale when feeding is likely to decrease the ability to detect predation threats in a timely fashion and to monitor neighbors effectively.

  16. Top predators induce the evolutionary diversification of intermediate predator species.

    Science.gov (United States)

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Higher predation risk for insect prey at low latitudes and elevations

    Czech Academy of Sciences Publication Activity Database

    Roslin, T.; Hardwick, B.; Novotný, Vojtěch; Petry, W. K.; Andrew, N. R.; Asmus, A.; Barrio, I. C.; Basset, Yves; Boesing, A. L.; Bonebrake, T. C.; Cameron, E. K.; Dáttilo, W.; Donoso, D. A.; Drozd, P.; Gray, C. L.; Hik, S. D.; Hill, S. J.; Hopkins, T.; Huang, S.; Koane, B.; Laird-Hopkins, B.; Laukkanen, L.; Lewis, O. T.; Milne, S.; Mwesige, I.; Nakamura, A.; Nell, C. S.; Nichols, E.; Prokurat, A.; Sam, Kateřina; Schmidt, N. M.; Slade, A.; Slade, V.; Suchánková, A.; Teder, T.; van Nouhuys, S.; Vandvik, V.; Weissflog, A.; Zhukovich, V.; Slade, E. M.

    2017-01-01

    Roč. 356, č. 6339 (2017), s. 742-744 ISSN 0036-8075 R&D Projects: GA ČR(CZ) GP14-32024P; GA ČR(CZ) GA14-04258S EU Projects: European Commission(XE) 669609 - Diversity6continents Institutional support: RVO:60077344 Keywords : plasticine caterpillars * arthropod predation * bird predation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 37.205, year: 2016 http:// science . science mag.org/content/356/6339/742/tab-pdf

  18. Reduced flocking by birds on islands with relaxed predation.

    Science.gov (United States)

    Beauchamp, Guy

    2004-05-22

    Adaptive hypotheses for the evolution of flocking in birds have usually focused on predation avoidance or foraging enhancement. It still remains unclear to what extent each factor has contributed to the evolution of flocking. If predation avoidance were the sole factor involved, flocking should not be prevalent when predation is relaxed. I examined flocking tendencies along with mean and maximum flock size in species living on islands where predation risk is either absent or negligible and then compared these results with matched counterparts on the mainland. The dataset consisted of 46 pairs of species from 22 different islands across the world. The tendency to flock was retained on islands in most species, but in pairs with dissimilar flocking tendencies, island species were less likely to flock. Mean and maximum flock size were smaller on islands than on the mainland. Potential confounding factors such as population density, nest predation, habitat type, food type and body mass failed to account for the results. The results suggest that predation is a significant factor in the evolution of flocking in birds. Nevertheless, predation and other factors, such as foraging enhancement, probably act together to maintain the trait in most species.

  19. Swimming and escape behavior of copepod nauplii: implications for predator-prey interactions among copepods

    DEFF Research Database (Denmark)

    Titelman, Josefin

    2001-01-01

    This study focuses on how prey behavior may affect predation risk through encounter rates and the escape success of the prey given an encounter. Temora longicornis nauplii require stronger hydrodynamic signals to elicit escape than Acartia tonsa nauplii (critical fluid deformation rates, Delta......* of 2.8 to 4.0 and 1.2 to 2.5 s(-1), respectively) suggesting that T. longicornis may be more susceptible to predation. Quantification of naupliar motility behavior and subsequent estimation of the hydrodynamic signals which the nauplii generate suggest that an adult female Centropages typicus may......, the behavior of A. tonsa acts predominantly at the post-encounter stage where its sensitivity to hydrodynamic signals (i,e., low Delta*) effectively compensates for the high predator encounter rate generated by its motility....

  20. ``Sleeping with the enemy''—predator-induced diapause in a mite

    Science.gov (United States)

    Kroon, Annemarie; Veenendaal, René L.; Bruin, Jan; Egas, Martijn; Sabelis, Maurice W.

    2008-12-01

    Diapause in arthropods is a physiological state of dormancy that is generally thought to promote survival during harsh seasons and dispersal, but it may also serve to avoid predation in space and time. Here, we show that predation-related odours induce diapause in female adult spider mites. We argue that this response allows them to move into an area where they are free of enemies, yet forced to survive without food. Spider mites are specialised leaf feeders, but—in late summer—they experience severe predation on leaves. Hence, they face a dilemma: to stay on the leaf and risk being eaten or to move away from the leaf and risk death from starvation and thirst. Female two-spotted spider mites solve this dilemma by dramatically changing their physiology when exposed to predation-associated cues. This allows them to disperse away from leaves and to survive in winter refuges in the bark of trees or in the soil. We conclude that the mere presence of predation-associated cues causes some herbivorous mites to seek refuge, thereby retarding the growth rate of the population as a whole: a trait-mediated indirect effect that may have consequences for the stability of predator prey systems and for ecosystem structure.

  1. Olfactory recognition of predators by nocturnal lizards: safety outweighs thermal benefits

    OpenAIRE

    Jonathan K. Webb; David A. Pike; Richard Shine

    2009-01-01

    Many prey species are faced with multiple predators that differ in the degree of danger posed. The threat-sensitive predator avoidance hypothesis predicts that prey should assess the degree of threat posed by different predators and match their behavior according to current levels of risk. To test this prediction, we compared the behavioral responses of nocturnal velvet geckos, Oedura lesueurii, to chemicals from 2 snakes that pose different threats: the dangerous broad-headed snake Hoploceph...

  2. Predator confusion is sufficient to evolve swarming behaviour.

    Science.gov (United States)

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  3. Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow.

    Science.gov (United States)

    Wu, Xinwei; Griffin, John N; Sun, Shucun

    2014-05-01

    Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these

  4. Biologically meaningful scents: a framework for understanding predator-prey research across disciplines.

    Science.gov (United States)

    Parsons, Michael H; Apfelbach, Raimund; Banks, Peter B; Cameron, Elissa Z; Dickman, Chris R; Frank, Anke S K; Jones, Menna E; McGregor, Ian S; McLean, Stuart; Müller-Schwarze, Dietland; Sparrow, Elisa E; Blumstein, Daniel T

    2018-02-01

    Fear of predation is a universal motivator. Because predators hunt using stealth and surprise, there is a widespread ability among prey to assess risk from chemical information - scents - in their environment. Consequently, scents often act as particularly strong modulators of memory and emotions. Recent advances in ecological research and analytical technology are leading to novel ways to use this chemical information to create effective attractants, repellents and anti-anxiolytic compounds for wildlife managers, conservation biologists and health practitioners. However, there is extensive variation in the design, results, and interpretation of studies of olfactory-based risk discrimination. To understand the highly variable literature in this area, we adopt a multi-disciplinary approach and synthesize the latest findings from neurobiology, chemical ecology, and ethology to propose a contemporary framework that accounts for such disparate factors as the time-limited stability of chemicals, highly canalized mechanisms that influence prey responses, and the context within which these scents are detected (e.g. availability of alternative resources, perceived shelter, and ambient physical parameters). This framework helps to account for the wide range of reported responses by prey to predator scents, and explains, paradoxically, how the same individual predator scent can be interpreted as either safe or dangerous to a prey animal depending on how, when and where the cue was deposited. We provide a hypothetical example to illustrate the most common factors that influence how a predator scent (from dingoes, Canis dingo) may both attract and repel the same target organism (kangaroos, Macropus spp.). This framework identifies the catalysts that enable dynamic scents, odours or odorants to be used as attractants as well as deterrents. Because effective scent tools often relate to traumatic memories (fear and/or anxiety) that cause future avoidance, this information may

  5. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.

    Science.gov (United States)

    Välimäki, Kaisa; Herczeg, Gábor

    2012-07-01

    1. Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2. Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3. We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4. The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  6. Predation by Northern Pikeminnow and tiger muskellunge on juvenile salmonids in a high–head reservoir: Implications for anadromous fish reintroductions

    Science.gov (United States)

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Wilson, Andrew C.; Lowery, Erin D.; Beauchamp, David A.

    2016-01-01

    The feasibility of reintroducing anadromous salmonids into reservoirs above high-head dams is affected by the suitability of the reservoir habitat for rearing and the interactions of the resident fish with introduced fish. We evaluated the predation risk to anadromous salmonids considered for reintroduction in Merwin Reservoir on the North Fork Lewis River in Washington State for two reservoir use-scenarios: year-round rearing and smolt migration. We characterized the role of the primary predators, Northern Pikeminnow Ptychocheilus oregonensis and tiger muskellunge (Northern Pike Esox lucius × Muskellunge E. masquinongy), by using stable isotopes and stomach content analysis, quantified seasonal, per capita predation using bioenergetics modeling, and evaluated the size and age structures of the populations. We then combined these inputs to estimate predation rates of size-structured population units. Northern Pikeminnow of FL ≥ 300 mm were highly cannibalistic and exhibited modest, seasonal, per capita predation on salmonids, but they were disproportionately much less abundant than smaller, less piscivorous, conspecifics. The annual predation on kokanee Oncorhynchus nerka (in biomass) by a size-structured unit of 1,000 Northern Pikeminnow having a FL ≥ 300 mm was analogous to 16,000–40,000 age-0 spring Chinook Salmon O. tshawytscha rearing year-round, or 400–1,000 age-1 smolts migrating April–June. The per capita consumption of salmonids by Northern Pikeminnow having a FL ≥ 200 mm was relatively low, due in large part to spatial segregation during the summer and the skewed size distribution of the predator population. Tiger muskellunge fed heavily on Northern Pikeminnow, other nonsalmonids, and minimally on salmonids. In addition to cannibalism within the Northern Pikeminnow population, predation by tiger muskellunge likely contributed to the low recruitment of larger (more piscivorous) Northern Pikeminnow, thereby decreasing the risk of predation to

  7. A comparison of spatial and movement patterns between sympatric predators: bull sharks (Carcharhinus leucas and Atlantic tarpon (Megalops atlanticus.

    Directory of Open Access Journals (Sweden)

    Neil Hammerschlag

    Full Text Available BACKGROUND: Predators can impact ecosystems through trophic cascades such that differential patterns in habitat use can lead to spatiotemporal variation in top down forcing on community dynamics. Thus, improved understanding of predator movements is important for evaluating the potential ecosystem effects of their declines. METHODOLOGY/PRINCIPAL FINDINGS: We satellite-tagged an apex predator (bull sharks, Carcharhinus leucas and a sympatric mesopredator (Atlantic tarpon, Megalops atlanticus in southern Florida waters to describe their habitat use, abundance and movement patterns. We asked four questions: (1 How do the seasonal abundance patterns of bull sharks and tarpon compare? (2 How do the movement patterns of bull sharks and tarpon compare, and what proportion of time do their respective primary ranges overlap? (3 Do tarpon movement patterns (e.g., straight versus convoluted paths and/or their rates of movement (ROM differ in areas of low versus high bull shark abundance? and (4 Can any general conclusions be reached concerning whether tarpon may mitigate risk of predation by sharks when they are in areas of high bull shark abundance? CONCLUSIONS/SIGNIFICANCE: Despite similarities in diet, bull sharks and tarpon showed little overlap in habitat use. Bull shark abundance was high year-round, but peaked in winter; while tarpon abundance and fishery catches were highest in late spring. However, presence of the largest sharks (>230 cm coincided with peak tarpon abundance. When moving over deep open waters (areas of high shark abundance and high food availability tarpon maintained relatively high ROM in directed lines until reaching shallow structurally-complex areas. At such locations, tarpon exhibited slow tortuous movements over relatively long time periods indicative of foraging. Tarpon periodically concentrated up rivers, where tracked bull sharks were absent. We propose that tarpon trade-off energetic costs of both food assimilation and

  8. Prey responses to predator chemical cues: disentangling the importance of the number and biomass of prey consumed.

    Directory of Open Access Journals (Sweden)

    Michael W McCoy

    Full Text Available To effectively balance investment in predator defenses versus other traits, organisms must accurately assess predation risk. Chemical cues caused by predation events are indicators of risk for prey in a wide variety of systems, but the relationship between how prey perceive risk in relation to the amount of prey consumed by predators is poorly understood. While per capita predation rate is often used as the metric of relative risk, studies aimed at quantifying predator-induced defenses commonly control biomass of prey consumed as the metric of risk. However, biomass consumed can change by altering either the number or size of prey consumed. In this study we determine whether phenotypic plasticity to predator chemical cues depends upon prey biomass consumed, prey number consumed, or both. We examine the growth response of red-eyed treefrog tadpoles (Agalychnis callidryas to cues from a larval dragonfly (Anax amazili. Biomass consumed was manipulated by either increasing the number of prey while holding individual prey size constant, or by holding the number of prey constant and varying individual prey size. We address two questions. (i Do prey reduce growth rate in response to chemical cues in a dose dependent manner? (ii Does the magnitude of the response depend on whether prey consumption increases via number or size of prey? We find that the phenotypic response of prey is an asymptotic function of prey biomass consumed. However, the asymptotic response is higher when more prey are consumed. Our findings have important implications for evaluating past studies and how future experiments should be designed. A stronger response to predation cues generated by more individual prey deaths is consistent with models that predict prey sensitivity to per capita risk, providing a more direct link between empirical and theoretical studies which are often focused on changes in population sizes not individual biomass.

  9. Effects of predation and dispersal on Mastomys natalensis population dynamics in Tanzanian maize fields

    DEFF Research Database (Denmark)

    Vibe-Petersen, Solveig; Leirs, Herwig; de Bruyn, L

    2006-01-01

    ), excluding predators by nets and attracting avian predators by nest boxes and perch poles. Because dispersal of the rodents could mask the predation pressure treatment effects, control and predator exclusion treatments were repeated with enclosed rodent populations. 3.  Population growth during the annual...... risk. Reducing dispersal of rodents removed the effect of predation on population growth and peak size, suggesting that local predators may play a role in driving rodent dispersal, but have otherwise little direct effect on population dynamics....

  10. Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and size-selective predation.

    Science.gov (United States)

    Zhang, Chao; Jansen, Mieke; De Meester, Luc; Stoks, Robby

    2016-11-01

    A key challenge for ecologists is to predict how single and joint effects of global warming and predation risk translate from the individual level up to ecosystem functions. Recently, stoichiometric theory linked these levels through changes in body stoichiometry, predicting that both higher temperatures and predation risk induce shifts in energy storage (increases in C-rich carbohydrates and reductions in N-rich proteins) and body stoichiometry (increases in C : N and C : P). This promising theory, however, is rarely tested and assumes that prey will divert energy away from reproduction under predation risk, while under size-selective predation, prey instead increase fecundity. We exposed the water flea Daphnia magna to 4 °C warming and fish predation risk to test whether C-rich carbohydrates increase and N-rich proteins decrease, and as a result, C : N and C : P increase under warming and predation risk. Unexpectedly, warming decreased body C : N, which was driven by reductions in C-rich fat and sugar contents while the protein content did not change. This reflected a trade-off where the accelerated intrinsic growth rate under warming occurred at the cost of a reduced energy storage. Warming reduced C : N less and only increased C : P and N : P in the fish-period Daphnia. These evolved stoichiometric responses to warming were largely driven by stronger warming-induced reductions in P than in C and N and could be explained by the better ability to deal with warming in the fish-period Daphnia. In contrast to theory predictions, body C : N decreased under predation risk due to a strong increase in the N-rich protein content that offsets the increase in C-rich fat content. The higher investment in fecundity (more N-rich eggs) under predation risk contributed to this stronger increase in protein content. Similarly, the lower body C : N of pre-fish Daphnia also matched their higher fecundity. Warming and predation risk independently shaped body

  11. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  12. Predation on rose galls: parasitoids and predators determine gall size through directional selection.

    Directory of Open Access Journals (Sweden)

    Zoltán László

    Full Text Available Both predators and parasitoids can have significant effects on species' life history traits, such as longevity or clutch size. In the case of gall inducers, sporadically there is evidence to suggest that both vertebrate predation and insect parasitoid attack may shape the optimal gall size. While the effects of parasitoids have been studied in detail, the influence of vertebrate predation is less well-investigated. To better understand this aspect of gall size evolution, we studied vertebrate predation on galls of Diplolepis rosae on rose (Rosa canina shrubs. We measured predation frequency, predation incidence, and predation rate in a large-scale observational field study, as well as an experimental field study. Our combined results suggest that, similarly to parasitoids, vertebrate predation makes a considerable contribution to mortality of gall inducer larvae. On the other hand, its influence on gall size is in direct contrast to the effect of parasitoids, as frequency of vertebrate predation increases with gall size. This suggests that the balance between predation and parasitoid attack shapes the optimal size of D. rosae galls.

  13. Nocturnal activity by the primarily diurnal Central American agouti (Dasyprocta punctata) in relation to environmental conditions, resource abundance and predation risk

    NARCIS (Netherlands)

    Lambert, T.D.; Kays, R.W.; Jansen, P.A.; Aliaga-Rosse, E.; Wikelski, M.

    2009-01-01

    An animal's fitness is in part based on its ability to manage the inherent risks (foraging costs, predation, exposure to disease) with the benefits (resource gain, access to mates, social interactions) of activity (Abrams 1991, Altizer et al. 2003, Lima & Bednekoff 1999, Rubenstein & Hohmann

  14. Habitat stability, predation risk and ‘memory syndromes’

    OpenAIRE

    S. Dalesman; A. Rendle; S.R.X. Dall

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonst...

  15. Alternative responses to predation in two headwater stream minnows is reflected in their contrasting diel activity patterns.

    Science.gov (United States)

    Kadye, Wilbert T; Booth, Anthony J

    2014-01-01

    Animals exhibit diel periodicity in their activity in part to meet energy requirements whilst evading predation. A competing hypothesis suggests that partitioning of diel activities is less important because animals capitalise on opportunity. To test these hypotheses we examined the diel activity patterns for two cyprinid minnows, chubbyhead barb Barbus anoplus and the Eastern Cape redfin minnow Pseudobarbus afer that both occur within headwater streams in the Eastern Cape, South Africa. Chubbyhead barbs exhibited consistent nocturnal activity based on both field and laboratory observations. Due to the absence of fish predators within its habitat, its nocturnal behaviour suggests a response to the cost associated with diurnal activity, such as predation risk by diving and wading birds. In contrast, redfin minnows showed high diurnal activity and a shoaling behaviour in the wild, whereas, in the laboratory, they showed high refuge use during the diel cycle. Despite their preference for refuge in the laboratory, they were diurnally active, a behaviour that was consistent with observations in the wild. The diurnal activity of this species suggests a response to the cost associated with nocturnal activity. Such a cost could be inferred from the presence of the longfin eel, a native predator that was active at night, whereas the daytime shoaling behaviour suggests an anti-predator mechanism to diurnal visual predators. The implications of these findings relate to the impacts associated with the potential invasions by non-native piscivores that occur in the mainstem sections. Diurnal activity patterns for redfin minnows, that are IUCN-listed as endangered, may, in part, explain their susceptibility to high predation by visual non-native piscivores, such as bass and trout. In contrast, the nocturnal habits of chubbyhead barbs suggest a probable pre-adaptation to visual predation. The likelihood of invasion by nocturnally-active sharptooth catfish Clarias gariepinus

  16. Alternative responses to predation in two headwater stream minnows is reflected in their contrasting diel activity patterns.

    Directory of Open Access Journals (Sweden)

    Wilbert T Kadye

    Full Text Available Animals exhibit diel periodicity in their activity in part to meet energy requirements whilst evading predation. A competing hypothesis suggests that partitioning of diel activities is less important because animals capitalise on opportunity. To test these hypotheses we examined the diel activity patterns for two cyprinid minnows, chubbyhead barb Barbus anoplus and the Eastern Cape redfin minnow Pseudobarbus afer that both occur within headwater streams in the Eastern Cape, South Africa. Chubbyhead barbs exhibited consistent nocturnal activity based on both field and laboratory observations. Due to the absence of fish predators within its habitat, its nocturnal behaviour suggests a response to the cost associated with diurnal activity, such as predation risk by diving and wading birds. In contrast, redfin minnows showed high diurnal activity and a shoaling behaviour in the wild, whereas, in the laboratory, they showed high refuge use during the diel cycle. Despite their preference for refuge in the laboratory, they were diurnally active, a behaviour that was consistent with observations in the wild. The diurnal activity of this species suggests a response to the cost associated with nocturnal activity. Such a cost could be inferred from the presence of the longfin eel, a native predator that was active at night, whereas the daytime shoaling behaviour suggests an anti-predator mechanism to diurnal visual predators. The implications of these findings relate to the impacts associated with the potential invasions by non-native piscivores that occur in the mainstem sections. Diurnal activity patterns for redfin minnows, that are IUCN-listed as endangered, may, in part, explain their susceptibility to high predation by visual non-native piscivores, such as bass and trout. In contrast, the nocturnal habits of chubbyhead barbs suggest a probable pre-adaptation to visual predation. The likelihood of invasion by nocturnally-active sharptooth catfish

  17. Direct look from a predator shortens the risk-assessment time by prey.

    Directory of Open Access Journals (Sweden)

    Sang-im Lee

    Full Text Available Decision making process is an important component of information use by animals and has already been studied in natural situations. Decision making takes time, which is expressed as a cost in evolutionary explanations of decision making abilities of animals. However, the duration of information assessment and decision making process has not been measured in a natural situation. Here, we use responses of wild magpies (Pica pica to predictably approaching humans to demonstrate that, regardless of whether the bird perceived high (decided to fly away or low (resumed foraging threat level, the bird assessed the situation faster when approaching humans looked directly at it than when the humans were not directly looking at it. This indicates that prey is able to extract more information about the predator's intentions and to respond sooner when the predator is continuously ("intently" looking at the prey. The results generally illustrate how an increase of information available to an individual leads to a shorter assessment and decision making process, confirming one of central tenets of psychology of information use in a wild bird species in its natural habitat.

  18. Facultative nest patch shifts in response to nest predation risk in the Brewer's sparrow: a "win-stay, lose-switch" strategy?

    Science.gov (United States)

    Anna D. Chalfoun; Thomas E. Martin

    2010-01-01

    Facultative shifts in nesting habitat selection in response to perceived predation risk may allow animals to increase the survival probability of sessile offspring. Previous studies on this behavioral strategy have primarily focused on single attributes, such as the distance moved or changes in nesting substrate. However, nest site choice often encompasses multiple...

  19. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats.

    Science.gov (United States)

    Otte, Kathrin A; Schrank, Isabella; Fröhlich, Thomas; Arnold, Georg J; Laforsch, Christian

    2015-08-01

    Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator-induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator-free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator-exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high-throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype-dependent manner. Proteins connected to genotype-dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype-dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype-dependent and general molecular processes involved in predator-induced phenotypic plasticity in D. magna. © 2015 John Wiley & Sons Ltd.

  20. Prey life-history and bioenergetic responses across a predation gradient.

    Science.gov (United States)

    Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E

    2010-10-01

    To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  1. Interactions among predators and plant specificity protect herbivores from top predators.

    Science.gov (United States)

    Bosc, Christopher; Pauw, Anton; Roets, Francois; Hui, Cang

    2018-05-04

    The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on 1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on 2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree

  2. Local and landscape drivers of predation services in urban gardens.

    Science.gov (United States)

    Philpott, Stacy M; Bichier, Peter

    2017-04-01

    In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.

  3. Predators on private land: broad-scale socioeconomic interactions influence large predator management

    Directory of Open Access Journals (Sweden)

    Hayley S. Clements

    2016-06-01

    Full Text Available The proliferation of private land conservation areas (PLCAs is placing increasing pressure on conservation authorities to effectively regulate their ecological management. Many PLCAs depend on tourism for income, and charismatic large mammal species are considered important for attracting international visitors. Broad-scale socioeconomic factors therefore have the potential to drive fine-scale ecological management, creating a systemic scale mismatch that can reduce long-term sustainability in cases where economic and conservation objectives are not perfectly aligned. We assessed the socioeconomic drivers and outcomes of large predator management on 71 PLCAs in South Africa. Owners of PLCAs that are stocking free-roaming large predators identified revenue generation as influencing most or all of their management decisions, and rated profit generation as a more important objective than did the owners of PLCAs that did not stock large predators. Ecotourism revenue increased with increasing lion (Panthera leo density, which created a potential economic incentive for stocking lion at high densities. Despite this potential mismatch between economic and ecological objectives, lion densities were sustainable relative to available prey. Regional-scale policy guidelines for free-roaming lion management were ecologically sound. By contrast, policy guidelines underestimated the area required to sustain cheetah (Acinonyx jubatus, which occurred at unsustainable densities relative to available prey. Evidence of predator overstocking included predator diet supplementation and frequent reintroduction of game. We conclude that effective facilitation of conservation on private land requires consideration of the strong and not necessarily beneficial multiscale socioeconomic factors that influence private land management.

  4. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    Science.gov (United States)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  5. Local predation pressure predicts the strength of mobbing responses in tropical birds

    Directory of Open Access Journals (Sweden)

    Luis SANDOVAL, David R. WILSON

    2012-10-01

    Full Text Available Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and increased risk of predation. Explaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob. An important step in understanding the evolution of mobbing is to identify factors affecting its expression. The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions, such as when local predation pressure is high. We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator, the ferruginous pygmy-owl Glaucidium brasilianum. We used acoustic playback to elicit mobbing responses in environments where owls were common, uncommon, or rare. Stimuli were either the song of a ferruginous pygmy-owl or the mobbing calls of three of the owl’s common prey species. During each playback, we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker, as well as the closest approach by any bird. Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common, intermediate where owls were uncommon, and weak where they were rare. This pattern persisted even after controlling for differences in species richness and composition among the three environments. Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds [Current Zoology 58 (5: 781-790, 2012].

  6. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    a predator-prey system with prey refuge and additional food for predator apart from the focal prey in the presence of diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the system dynamics and especially on the controllability of prey (pest). Different types......Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze...... of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution...

  7. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    Directory of Open Access Journals (Sweden)

    Barbara A Han

    2011-02-01

    Full Text Available The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  8. Detecting predators and locating competitors while foraging: an experimental study of a medium-sized herbivore in an African savanna.

    Science.gov (United States)

    Pays, Olivier; Blanchard, Pierrick; Valeix, Marion; Chamaillé-Jammes, Simon; Duncan, Patrick; Périquet, Stéphanie; Lombard, Marion; Ncube, Gugulethu; Tarakini, Tawanda; Makuwe, Edwin; Fritz, Hervé

    2012-06-01

    Vigilance allows individuals to escape from predators, but it also reduces time for other activities which determine fitness, in particular resource acquisition. The principles determining how prey trade time between the detection of predators and food acquisition are not fully understood, particularly in herbivores because of many potential confounding factors (such as group size), and the ability of these animals to be vigilant while handling food. We designed a fertilization experiment to manipulate the quality of resources, and compared awareness (distinguishing apprehensive foraging and vigilance) of wild impalas (Aepyceros melampus) foraging on patches of different grass height and quality in a wilderness area with a full community of predators. While handling food, these animals can allocate time to other functions. The impalas were aware of their environment less often when on good food patches and when the grass was short. The animals spent more time in apprehensive foraging when grass was tall, and no other variable affected apprehensive behavior. The probability of exhibiting a vigilance posture decreased with group size. The interaction between grass height and patch enrichment also affected the time spent in vigilance, suggesting that resource quality was the main driver when visibility is good, and the risk of predation the main driver when the risk is high. We discuss various possible mechanisms underlying the perception of predation risk: foraging strategy, opportunities for scrounging, and inter-individual interference. Overall, this experiment shows that improving patch quality modifies the trade-off between vigilance and foraging in favor of feeding, but vigilance remains ultimately driven by the visibility of predators by foragers within their feeding patches.

  9. Ocean acidification alters predator behaviour and reduces predation rate.

    Science.gov (United States)

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  10. Nest predators of open and cavity nesting birds in oak woodlands

    Science.gov (United States)

    Kathryn L. Purcell; Jared Verner

    1999-01-01

    Camera setups revealed at least three species of rodents and seven species of birds as potential predators at artificial open nests. Surprisingly, among avian predators identified at open nests, one third were Bullock's Orioles (Icterus bullockii). Two rodent species and three bird species were potential predators at artificial cavity nests. This high predator...

  11. Bird species turnover is related to changing predation risk along a vegetation gradient

    Science.gov (United States)

    LaManna, Joseph A.; Hemenway, Amy B.; Boccadori, Vanna; Martin, Thomas E.

    2015-01-01

    Turnover in animal species along vegetation gradients is often assumed to reflect adaptive habitat preferences that are narrower than the full gradient. Specifically, animals may decline in abundance where their reproductive success is low, and these poor-quality locations differ among species. Yet habitat use does not always appear adaptive. The crucial tests of how abundances and demographic costs of animals vary along experimentally manipulated vegetation gradients are lacking. We examined habitat use and nest predation rates for 16 bird species that exhibited turnover with shifts in deciduous and coniferous vegetation. For most bird species, decreasing abundance was associated with increasing predation rates along both natural and experimentally modified vegetation gradients. This landscape-scale approach strongly supports the idea that vegetation-mediated effects of predation are associated with animal distributions and species turnover.

  12. The Truth About the Internet and Online Predators

    CERN Document Server

    Dingwell, Heath; Peterson, Fred L

    2011-01-01

    To help readers avoid and recognize risky behaviors, The Truth About the Internet and Online Predators explains many of the dangers associated with the Internet. The A-to-Z entries detail the social, legal, and personal risks of Internet use, while personal testimonies and question-and-answer sections provide readers with an inside look at common issues online. Entries include:. Bullies and cyberbullying. Characteristics of online predators. Chat rooms and instant messaging. Internet safety. Parental control. Peers and peer pressure. Phishing and pharming. Privacy issues. Social networking Web

  13. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    Science.gov (United States)

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation

  14. When top predators become prey: Black bears alter movement behaviour in response to hunting pressure.

    Science.gov (United States)

    Stillfried, Milena; Belant, Jerrold L; Svoboda, Nathan J; Beyer, Dean E; Kramer-Schadt, Stephanie

    2015-11-01

    The trade-off between predator avoidance and foraging is a key decision making factor that shapes an organism's adaptive behaviour and movement patterns. Human hunters act as top predators to influence the behaviour of free-ranging mammals, including large carnivorous species such as black bears (Ursus americanus). Analysing the effects of hunting on animal behavioural patterns is essential for understanding the extent to which animals detect and respond to human-induced disturbances. To this end, we assessed whether black bear movement behaviour changed with varying risk from spatially and temporally heterogeneous human predation. Levels of risk were categorized as either low (disturbance from dog training; n=19 bears) or high (disturbance from hunting activities; n=11 bears). Road types were either paved (risk due to vehicles) or non-paved (risk due to hunters) and were used as proxies for hunting effort and amount of disturbance. We began by testing the null hypothesis that bears' distribution before the onset of human disturbance is spatially random. Next, to test temporal movement adjustment between the low and high risk levels, we measured the distance to the nearest road and the road crossing frequency using mixed effects models with risk level, time of day and sex as predictor variables. As disturbance near non-paved roads increased due to the start of the hunting activity, the mean distances of bears to non-paved roads increased while the mean distances of bears to paved roads decreased, despite the continual risk of vehicle collision. These behavioural responses were observed during day and night, with the frequency of crossing paved roads at night five times greater than in daytime during the hunting season. Our findings demonstrate that black bears are able to detect risky places and adjust their spatial movements accordingly. More specifically, bears can perceive changes in the level of risk from human hunting activities on a fine temporal scale

  15. Predator avoidance during reproduction: diel movements by spawning sockeye salmon between stream and lake habitats.

    Science.gov (United States)

    Bentley, Kale T; Schindler, Daniel E; Cline, Timothy J; Armstrong, Jonathan B; Macias, Daniel; Ciepiela, Lindsy R; Hilborn, Ray

    2014-11-01

    Daily movements of mobile organisms between habitats in response to changing trade-offs between predation risk and foraging gains are well established; however, less in known about whether similar tactics are used during reproduction, a time period when many organisms are particularly vulnerable to predators. We investigated the reproductive behaviour of adult sockeye salmon (Oncorhynchus nerka) and the activity of their principal predator, brown bears (Ursus arctos), on streams in south-western Alaska. Specifically, we continuously monitored movements of salmon between lake habitat, where salmon are invulnerable to bears, and three small streams, where salmon spawn and are highly vulnerable to bears. We conducted our study across 2 years that offered a distinct contrast in bear activity and predation rates. Diel movements by adult sockeye salmon between stream and lake habitat were observed in 51.3% ± 17.7% (mean ± SD) of individuals among years and sites. Fish that moved tended to hold in the lake for most of the day and then migrated into spawning streams during the night, coincident with when bear activity on streams tended to be lowest. Additionally, cyclic movements between lakes and spawning streams were concentrated earlier in the spawning season. Individuals that exhibited diel movements had longer average reproductive life spans than those who made only one directed movement into a stream. However, the relative effect was dependent on the timing of bear predation, which varied between years. When predation pressure primarily occurred early in the spawning run (i.e., during the height of the diel movements), movers lived 120-310% longer than non-movers. If predation pressure was concentrated later in the spawning run (i.e. when most movements had ceased), movers only lived 10-60% longer. Our results suggest a dynamic trade-off in reproductive strategies of sockeye salmon; adults must be in the stream to reproduce, but must also avoid predation long

  16. Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?

    Science.gov (United States)

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  17. Ultrasonic predator-prey interactions in water– convergent evolution with insects and bats in air?

    Directory of Open Access Journals (Sweden)

    Maria eWilson

    2013-06-01

    Full Text Available Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden. These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them.Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments however, show that neither fish with swim bladder, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  18. Does predation by grey seals (Halichoerus grypus) affect Bothnian Sea herring stock estimates?

    DEFF Research Database (Denmark)

    Gårdmark, Anna; Östman, Örjan; Nielsen, Anders

    2012-01-01

    when accounting for seal predation, this did not change the conclusions about drivers of herring dynamics. Accounting for grey seal predation is important for abundance estimates of old herring, but currently not for SSB estimates, given the great uncertainties in the standard assessment. The grey seal...... fivefold since 1985. Its main prey, herring (Clupea harrengus), is a key species for fisheries in the region. Yet, current stock assessments assume constant natural mortality, leading to a risk of biased stock estimates with increasing predation and misleading analyses of herring population dynamics. We...... estimated grey seal predation from diet data and reanalysed herring spawning stock biomass (SSB) during 1973–2009. Accounting for predation increased the herring SSB 16% (maximum 19%), but this was within the confidence intervals when ignoring predation. Although mortality in older individuals was inflated...

  19. Reduced predation risk for melanistic pygmy grasshoppers in post-fire environments

    Science.gov (United States)

    Karpestam, Einat; Merilaita, Sami; Forsman, Anders

    2012-01-01

    The existence of melanistic (black) color forms in many species represents interesting model systems that have played important roles for our understanding of selective processes, evolution of adaptations, and the maintenance of variation. A recent study reported on rapid evolutionary shifts in frequencies of the melanistic forms in replicated populations of Tetrix subulata pygmy grasshoppers; the incidence of the melanistic form was higher in recently burned areas with backgrounds blackened by fire than in nonburned areas, and it declined over time in postfire environments. Here, we tested the hypothesis that the frequency shifts of the black color variant were driven, at least in part, by changes in the selective regime imposed by visual predators. To study detectability of the melanistic form, we presented human “predators” with images of black grasshoppers and samples of the natural habitat on computer screens. We demonstrate that the protective value of black coloration differs between burnt and nonburnt environments and gradually increases in habitats that have been more blackened by fire. These findings support the notion that a black color pattern provides improved protection from visually oriented predators against blackened backgrounds and implicate camouflage and predation as important drivers of fire melanism in pygmy grasshoppers. PMID:23139879

  20. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    Science.gov (United States)

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  1. Chemosensory Perception of Predators by Larval Amphibians Depends on Water Quality.

    Directory of Open Access Journals (Sweden)

    Rachael R Troyer

    Full Text Available The acquisition of sensory information by animals is central to species interactions. In aquatic environments, most taxa use chemical cues to assess predation risk and other key ecological factors. A number of laboratory studies suggest that anthropogenic pollutants can disrupt chemoreception, even when at low, non-toxic concentrations, but there are few tests of whether real-world variation in water quality affects chemoreception. Here we investigate whether chemosensory perception of predators by the gray treefrog, Hyla versicolor, depends on water quality. We evaluated the anti-predator response of anuran tadpoles housed in water collected from three sites that represent strong contrasts in the concentration and types of dissolved solids: de-chlorinated tap water, water from an impaired stream, and treated wastewater effluent. Behavioral assays were conducted in laboratory aquaria. Chemical cues associated with predation were generated by feeding tadpoles to dragonfly predators held in containers, and then transferring aliquots of water from dragonfly containers to experimental aquaria. Tadpoles housed in tap water responded to predator cues with an activity reduction of 49%. Tadpoles housed in stream water and wastewater effluent responded to predator cues by reducing activity by 29% and 24% respectively. The results of factorial ANOVA support the hypothesis that the response to predator cues depended on water type. These results show that alteration of the chemical environment can mediate chemical perception of predators in aquatic ecosystems. Because most aquatic species rely on chemoreception to gather information on the location of food and predators, any impairment of sensory perception likely has important ecological consequences.

  2. Energetic conditions promoting top-down control of prey by predators.

    Directory of Open Access Journals (Sweden)

    Kristin N Marshall

    Full Text Available Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to predict because of limited information on species interaction strengths. Here we used a three species predator-prey model to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is moderately high.

  3. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  4. Predator-induced physiological responses in tadpoles challenged with herbicide pollution

    Directory of Open Access Journals (Sweden)

    Pablo BURRACO, Lidia Jiménez DUARTE, Ivan GOMEZ-MESTRE

    2013-08-01

    Full Text Available Predators induce plastic responses in multiple prey taxa, ranging from morphological to behavioral or physiological changes. In amphibians, tadpoles activate plastic responses to reduce predation risk by reducing their activity rate and altering their morphology, specifically tail depth and pigmentation. Furthermore, there is now evidence that tadpoles’ defenses are modified when predators combine with other stressful factors such as pollutants or competitors, but our knowledge on the physiological responses underlying these responses is still scarce. Here we study physiological responses in Pelobates cultripes tadpoles exposed to a natural predator (larvae of the aquatic beetle Dytiscus circumflexus, non-lethal concentrations of herbicide (glyphosate, 0.5 mg/L and 1.0 mg/L or both factors combined. We measured corticosterone levels, standard metabolic rate, oxidative damage (TBARS and activity of antioxidant enzymes, and immune response (via leukocyte count. Tadpoles reduced their corticosterone concentration by ca. 24% in the presence of predator cues, whereas corticosterone did not change in the presence of glyphosate. Two enzymes involved in antioxidant response also decreased in the presence of predators (14.7% and 13.2% respectively but not to glyphosate. Herbicide, however, increased the number of neutrophils and reduced that of lymphocytes, and had an interaction effect with predator presence. Standard metabolic rate did not vary across treatments in our experiment. Thus we show a marked physiological response to the presence of predators but little evidence for interaction between predators and low levels of herbicide. Multiple assessment of the physiological state of animals is important to understand the basis and consequences of phenotypic plasticity [Current Zoology 59 (4: 475–484, 2013].

  5. The role of ecological context and predation risk-stimuli in revealing the true picture about the genetic basis of boldness evolution in fish

    DEFF Research Database (Denmark)

    Klefoth, Thomas; Skov, Christian; Krause, Jens

    2011-01-01

    To showcase the importance of genotype × environment interactions and the presence of predation risk in the experimental assessment of boldness in fish, we investigated boldness in terms of feeding behavior and refuge use in two genetically different populations of juvenile carp (Cyprinus carpio)...

  6. Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.).

    Science.gov (United States)

    Preetha, G; Stanley, J; Suresh, S; Samiyappan, R

    2010-07-01

    The green miridbug, Cyrtorhinus lividipennis, an important natural enemy of the rice brown planthopper (BPH), Nilaparvata lugens plays a major role as a predator in suppressing the pest population. The study assessed the impact of certain potential insecticides used in the rice ecosystem on the miridbug predator and brown planthopper through contact toxicity. Eleven insecticides, including neonicotinoids, diamides, azomethine pyridines, carbamates, pyrethroids, organophosphates and cyclodienes were selected to test their toxicities against the nymphs of C. lividipennis and N. lugens. Median lethal concentration (LC(50)) was determined for each insecticide using an insecticide-coated vial (scintillation) residue bioassay, which revealed BPMC as the highly toxic chemical with an LC(50) of 0.003mga.iL(-1) followed by ethofenprox and clothianidin with LC(50) of 0.006mga.iL(-1) at 48 HAT against C. lividipennis and ethofenprox as the highly toxic chemical with an LC(50) of 0.009mga.iL(-1) followed by clothianidin with an LC(50) of 0.211mga.iL(-1) at 48h after treatment (HAT) against N. lugens. Among the insecticides tested, the cyclodiene compound, endosulfan had the lowest acute contact toxicity (LC(50)=66.65mga.iL(-1) at 48 HAT) to C. lividipennis. Among the insecticides tested, endosulfan, chlorpyriphos, acephate and methyl parathion are regarded as safer to C. lividipennis based on selectivity ratio, hazard quotient and probit substitution method of risk assessments. 2010 Elsevier Ltd. All rights reserved.

  7. Synchronisation of parental behaviours reduces the risk of nest predation in a socially monogamous passerine bird.

    Science.gov (United States)

    Leniowski, K; Węgrzyn, E

    2018-05-09

    Social monogamy with bi-parental care is the most common breeding pattern in birds, yet cooperation between mates has not been intensively studied to date. In this study we investigate synchronisation of parental behaviours in the blackcap Sylvia atricapilla, a species characterized by bi-parental care and high nest predation. We test the hypothesis that mates synchronize their behaviours to decrease total activity at the nest, which is known to affect predation rate in birds. We examine if blackcap parents synchronise their feeding trips more when nestlings are at the poikilothermic stage, and they may be more vulnerable to nest predation due to their inability to escape and survive outside the nest without parental brooding. We also investigate the alternation of feeding trips by parents. We show that blackcap parents synchronise the majority of their feeding trips during the whole nestling period, and the level of parental synchrony is higher before nestlings develop endothermy. The alternation of male and female feeding trips was much higher than would be expected by chance and was positively related to parental synchrony. We have demonstrated that synchronisation of parental feeding trips significantly decreased parental activity at the nest, and nest survival time increased with the synchrony of parental feeding trips.

  8. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    Science.gov (United States)

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  9. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    Directory of Open Access Journals (Sweden)

    Pablo Rodríguez-Lozano

    Full Text Available Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1 leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2 triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel, conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  10. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    Directory of Open Access Journals (Sweden)

    Lisa Jacquin

    Full Text Available Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host, and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction, we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish. During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus, such a

  11. Putting prey and predator into the CO2 equation--qualitative and quantitative effects of ocean acidification on predator-prey interactions.

    Science.gov (United States)

    Ferrari, Maud C O; McCormick, Mark I; Munday, Philip L; Meekan, Mark G; Dixson, Danielle L; Lonnstedt, Öona; Chivers, Douglas P

    2011-11-01

    Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems. © 2011 Blackwell Publishing Ltd/CNRS.

  12. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    Science.gov (United States)

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large

  13. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    Science.gov (United States)

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  14. Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal

    Directory of Open Access Journals (Sweden)

    Yantao Luo

    2017-01-01

    Full Text Available An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper, which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species can greatly impact the permanence, extinction, and coexistence of the population.

  15. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.

    Science.gov (United States)

    Green, Stephanie J; Côté, Isabelle M

    2014-11-01

    Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly

  16. Gregarious nesting - An anti-predator response in laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch

    2012-01-01

    Gregarious nesting can be defined as a behaviour that occurs when a laying hen (Gallus gallus domesticus) given the choice between an occupied and an unoccupied nest site chooses the occupied nest site. It occurs frequently in flocks of laying hens kept under commercial conditions, contrasting...... the behaviour displayed by feral hens that isolate themselves from the flock during nesting activities. What motivates laying hens to perform gregarious nesting is unknown. One possibility is that gregarious nesting is an anti-predator response to the risk of nest predation emerging from behavioural flexibility...

  17. Defensive responses by a social caterpillar are tailored to different predators and change with larval instar and group size

    Science.gov (United States)

    McClure, Melanie; Despland, Emma

    2011-05-01

    Gregariousness in animals is widely accepted as a behavioral adaptation for protection from predation. However, predation risk and the effectiveness of a prey's defense can be a function of several other factors, including predator species and prey size or age. The objective of this study was to determine if the gregarious habit of Malacosoma disstria caterpillars is advantageous against invertebrate natural enemies, and whether it is through dilution or cooperative defenses. We also examined the effects of larval growth and group size on the rate and success of attacks. Caterpillars of M. disstria responded with predator-specific behaviors, which led to increased survival. Evasive behaviors were used against stinkbugs, while thrashing by fourth instar caterpillars and holding on to the silk mat by second instar caterpillars was most efficient against spider attacks. Collective head flicking and biting by groups of both second and fourth instar caterpillars were observed when attacked by parasitoids. Increased larval size decreased the average number of attacks by spiders but increased the number of attacks by both stinkbugs and parasitoids. However, increased body size decreased the success rate of attacks by all three natural enemies and increased handling time for both predators. Larger group sizes did not influence the number of attacks from predators but increased the number of attacks and the number of successful attacks from parasitoids. In all cases, individual risk was lower in larger groups. Caterpillars showed collective defenses against parasitoids but not against the walking predators. These results show that caterpillars use different tactics against different natural enemies. Overall, these tactics are both more diverse and more effective in fourth instar than in second instar caterpillars, confirming that growth reduces predation risk. We also show that grouping benefits caterpillars through dilution of risk, and, in the case of parasitoids, through

  18. Maternal body condition influences magnitude of anti-predator response in offspring.

    Science.gov (United States)

    Bennett, Amanda M; Murray, Dennis L

    2014-11-07

    Organisms exhibit plasticity in response to their environment, but there is large variation even within populations in the expression and magnitude of response. Maternal influence alters offspring survival through size advantages in growth and development. However, the relationship between maternal influence and variation in plasticity in response to predation risk is unknown. We hypothesized that variation in the magnitude of plastic responses between families is at least partly due to maternal provisioning and examined the relationship between maternal condition, egg provisioning and magnitude of plastic response to perceived predation risk (by dragonfly larvae: Aeshna spp.) in northern leopard frogs (Lithobates pipiens). Females in better body condition tended to lay more (clutch size) larger (egg diameter) eggs. Tadpoles responded to predation risk by increasing relative tail depth (morphology) and decreasing activity (behaviour). We found a positive relationship between morphological effect size and maternal condition, but no relationship between behavioural effect size and maternal condition. These novel findings suggest that limitations imposed by maternal condition can constrain phenotypic variation, ultimately influencing the capacity of populations to respond to environmental change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Blunted hypothalamo-pituitary adrenal axis response to predator odor predicts high stress reactivity.

    Science.gov (United States)

    Whitaker, Annie M; Gilpin, Nicholas W

    2015-08-01

    Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as 'Avoiders' or 'Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24h and 11days), anxiety-like behavior (48h and 5days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24h that persisted 11days post-stress. Both Avoiders and Non-Avoiders exhibited a heightened anxiety-like behavior at 48h and 5days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and build on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. Copyright © 2015. Published by Elsevier Inc.

  20. Scale Dependence of Female Ungulate Reproductive Success in Relation to Nutritional Condition, Resource Selection and Multi-Predator Avoidance.

    Directory of Open Access Journals (Sweden)

    Jared F Duquette

    Full Text Available Female ungulate reproductive success is dependent on the survival of their young, and affected by maternal resource selection, predator avoidance, and nutritional condition. However, potential hierarchical effects of these factors on reproductive success are largely unknown, especially in multi-predator landscapes. We expanded on previous research of neonatal white-tailed deer (Odocoileus virginianus daily survival within home ranges to assess if resource use, integrated risk of 4 mammalian predators, maternal nutrition, winter severity, hiding cover, or interactions among these variables best explained landscape scale variation in daily or seasonal survival during the post-partum period. We hypothesized that reproductive success would be limited greater by predation risk at coarser spatiotemporal scales, but habitat use at finer scales. An additive model of daily non-ideal resource use and maternal nutrition explained the most (69% variation in survival; though 65% of this variation was related to maternal nutrition. Strong support of maternal nutrition across spatiotemporal scales did not fully support our hypothesis, but suggested reproductive success was related to dam behaviors directed at increasing nutritional condition. These behaviors were especially important following severe winters, when dams produced smaller fawns with less probability of survival. To increase nutritional condition and decrease wolf (Canis lupus predation risk, dams appeared to place fawns in isolated deciduous forest patches near roads. However, this resource selection represented non-ideal resources for fawns, which had greater predation risk that led to additive mortalities beyond those related to resources alone. Although the reproductive strategy of dams resulted in greater predation of fawns from alternative predators, it likely improved the life-long reproductive success of dams, as many were late-aged (>10 years old and could have produced multiple litters

  1. Tests for attraction to prey and predator avoidance by chemical cues in spiders of the beech forest floor

    Directory of Open Access Journals (Sweden)

    Wetter, Melissa B.

    2012-07-01

    Full Text Available Spiders leave draglines, faeces and other secretions behind when traveling through their microhabitat. The presence of these secretions may unintentionally inform other animals, prey as well as predators, about a recent and possible current predation risk or food availability. For a wolf spider, other spiders including smaller conspecifics, form a substantial part of their prey, and larger wolf spiders, again including conspecifics, are potential predators. We tested two hypotheses: that large wolf spiders may locate patches of potential spider prey through the presence of silk threads and/or other secretions; and that prey spiders may use secretions from large wolf spiders to avoid patches with high predation risk. We used large (subadult or adult Pardosa saltans to provide predator cues and mixed dwarf spiders or small (juvenile P. saltans to provide prey cues. Subadult wolf spiders were significantly attracted to litter contaminated by dwarf spiders or small conspecifics after 6 hours but no longer after 24 hours. In contrast, neither dwarf spiders nor small P. saltans showed significant avoidance of substrate contaminated by adult P. saltans. However, small P. saltans showed different activity patterns on the two substrates. The results indicate that wolf spiders are able to increase the efficiency of foraging by searching preferentially in patches with the presence of intraguild prey. The lack of a clear patch selection response of the prey in spite of a modified activity pattern may possibly be associated with the vertical stratification of the beech litter habitat: the reduced volume of spaces in the deeper layers could make downward rather than horizontal movement a fast and safe tactic against a large predator that cannot enter these spaces.

  2. Estuarine predation on radiotagged wild and domesticated sea trout ( Salmo trutta L.) smolts

    DEFF Research Database (Denmark)

    Dieperink, C.; Pedersen, Stig; Pedersen, Michael Ingemann

    2001-01-01

    days after entering the sea, both wild and domesticated smolts suffered a severe daily predation rate (range 20-34%). The results support the hypothesis of a transient period immediately after exposure to full-strength sea water, where smolts experience an elevated risk of predation. A transient......Avian predation on emigrating wild and domesticated sea trout smolts was investigated in a fjord in the western Baltic Sea. In April 1997, 50 domesticated and 50 wild smolts were intraperitoneally tagged with radio-transmitters and released in a small coastal stream. Predation was recorded...... by signal interception in an estuarine breeding colony of cormorants and herons near the outlet of the stream. Of the 78 emigrating smolts, 51 (65%) were recorded as eaten. Predation rates were significantly higher among small than large smolts and significantly higher among domesticated smolts. The first 2...

  3. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2012-01-01

    In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692

  4. Predator avoidance in extremophile fish.

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-02-06

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis.

  5. Predator Avoidance in Extremophile Fish

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-01-01

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis. PMID:25371337

  6. Interactive drivers of activity in a free-ranging estuarine predator.

    Directory of Open Access Journals (Sweden)

    Matthew D Taylor

    Full Text Available Animal activity patterns evolve as an optimal balance between energy use, energy acquisition, and predation risk, so understanding how animals partition activity relative to extrinsic environmental fluctuations is central to understanding their ecology, biology and physiology. Here we use accelerometry to examine the degree to which activity patterns of an estuarine teleost predator are driven by a series of rhythmic and arrhythmic environmental fluctuations. We implanted free-ranging bream Acanthopagrus australis with acoustic transmitters that measured bi-axial acceleration and pressure (depth, and simultaneously monitored a series of environmental variables (photosynthetically active radiation, tidal height, temperature, turbidity, and lunar phase for a period of approximately four months. Linear modeling showed an interaction between fish activity, light level and tidal height; with activity rates also negatively correlated with fish depth. These patterns highlight the relatively-complex trade-offs that are required to persist in highly variable environments. This study demonstrates how novel acoustic sensor tags can reveal interactive links between environmental cycles and animal behavior.

  7. A test of the predator satiation hypothesis, acorn predator size, and acorn preference

    Science.gov (United States)

    C.H. Greenberg; S.J. Zarnoch

    2018-01-01

    Mast seeding is hypothesized to satiate seed predators with heavy production and reduce populations with crop failure, thereby increasing seed survival. Preference for red or white oak acorns could influence recruitment among oak species. We tested the predator satiation hypothesis, acorn preference, and predator size by concurrently...

  8. Cumulative human impacts on marine predators.

    Science.gov (United States)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.

  9. Antipredatory reaction of the leopard gecko Eublepharis macularius to snake predators.

    Science.gov (United States)

    Landová, Eva; Musilová, Veronika; Polák, Jakub; Sedláčková, Kristýna; Frynta, Daniel

    2016-10-01

    Ability to recognize a risk of predation and react with adaptive antipredatory behavior can enhance fitness, but has some costs as well. Animals can either specifically react on the most dangerous predators (threat-sensitive avoidance) or they have safe but costly general wariness avoiding all potential predators. The level of threat may depend on the predator's foraging ecology and distribution with the prey with sympatric and specialist species being the most dangerous. We used 2 choice trials to investigate antipredatory behavior of captive born and wild-caught leopard geckos confronted with different snake predators from 2 families (Colubridae, Boidae) varying in foraging ecology and sympatric/allopatric distribution with the geckos. Predator-naïve subadult individuals have general wariness, explore both chemically and visually, and perform antipredatory postures toward a majority of snake predators regardless of their sympatry/allopatry or food specialization. The most exaggerated antipredatory postures in both subadult and adult geckos were toward 2 sympatric snake species, the spotted whip snake Hemorrhois ravergieri , an active forager, and the red sand boa Eryx johnii , a subterranean snake with a sit-and-wait strategy. In contrast, also subterranean but allopatric the Kenyan sand boa Eryx colubrinus did not elicit any antipredatory reaction. We conclude that the leopard gecko possesses an innate general antipredatory reaction to different species of snake predators, while a specific reaction to 2 particular sympatric species can be observed. Moreover, adult wild caught geckos show lower reactivity compared with the captive born ones, presumably due to an experience of a real predation event that can hardly be simulated under laboratory conditions.

  10. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities

    DEFF Research Database (Denmark)

    Viitasalo, M; Kiørboe, T; Flinkman, J.

    1998-01-01

    We investigated the vulnerability of 2 copepod species (Eurytemora affinis and Temora longicornis) to predation by predators with different foraging modes, three-spined stickleback Gasterosteus aculeatus juveniles and mysid shrimps Neomysis integer. Copepods were videofilmed escaping from predators...

  11. Understanding predation: implications toward forest management

    Science.gov (United States)

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  12. Predation rates, timing, and predator composition for Scoters (Melanitta spp.) in marine habitats

    Science.gov (United States)

    Anderson, Eric J.; Esler, Daniel N.; Sean, Boyd W.; Evenson, Joseph; Nysewander, David R.; Ward, David H.; Dickson, Rian D.; Uher-Koch, Brian D.; Vanstratt, C.S.; Hupp, Jerry

    2012-01-01

    Studies of declining populations of sea ducks have focused mainly on bottom-up processes with little emphasis on the role of predation. We identified 11 potential predators of White-winged Scoters (Melanitta fusca (L., 1758)) and Surf Scoters (Melanitta perspicillata (L., 1758)) in North American marine habitats. However, of 596 Scoters marked with VHF transmitters along the Pacific coast, mortalities were recovered in association with just two identifiable categories of predators: in southeast Alaska recoveries occurred mainly near mustelid feeding areas, while those in southern British Columbia and Washington occurred mainly near feeding areas of Bald Eagles (Haliaeetus leucocephalus (L., 1766)). Determining whether marked Scoters had been depredated versus scavenged was often not possible, but mortalities occurred more frequently during winter than during wing molt (13.1% versus 0.7% of both species combined, excluding Scoters that died within a postrelease adjustment period). In two sites heavily used by Scoters, diurnal observations revealed no predation attempts and low rates of predator disturbances that altered Scoter behavior (≤ 0.22/h). These and other results suggest that predation by Bald Eagles occurs mainly at sites and times where densities of Scoters are low, while most predation by mustelids probably occurs when Scoters are energetically compromised.

  13. Trade-offs of predation and foraging explain sexual segregation in African buffalo

    Science.gov (United States)

    Hay, C.T.; Cross, P.C.; Funston, P.J.

    2008-01-01

    1. Many studies have investigated why males and females segregate spatially in sexually dimorphic species. These studies have focused primarily on temperate zone ungulates in areas lacking intact predator communities, and few have directly assessed predation rates in different social environments. 2. Data on the movement, social affiliation, mortality and foraging of radio-collared African buffalo (Syncerus caffer) were collected from 2001-06 in the Kruger National Park, South Africa. 3. The vast majority of mortality events were due to lion (Panthera leo) predation, and the mortality hazard associated with being an adult male buffalo in a male-only 'bachelor' group was almost four times higher than for adult females in mixed herds. The mortality rates of adult males and females within mixed herds were not statistically different. Mortality sites of male and female buffalo were in areas of low visibility similar to those used by bachelor groups, while mixed herds tended to use more open habitats. 4. Males in bachelor groups ate similar or higher quality food (as indexed by percentage faecal nitrogen), and moved almost a third less distance per day compared with mixed herds. As a result, males in bachelor groups gained more body condition than did males in breeding herds. 5. Recent comparative analyses suggest the activity-budget hypothesis as a common underlying cause of social segregation. However, our intensive study, in an area with an intact predator community showed that male and female buffalo segregated by habitat and supported the predation-risk hypothesis. Male African buffalo appear to trade increased predation risk for additional energy gains in bachelor groups, which presumably leads to increased reproductive success. ?? 2008 The Authors.

  14. A predator-prey system with stage-structure for predator and nonlocal delay

    DEFF Research Database (Denmark)

    Lin, Z.G.; Pedersen, Michael; Zhang, Lai

    2010-01-01

    This paper deals with the behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition, which describes a prey-predator model with nonlocal delay. Sufficient conditions for the global stability of each equilibrium are derived by the Lyapunov functional...... and the results show that the introduction of stage-structure into predator positively affects the coexistence of prey and predator. Numerical simulations are performed to illustrate the results....

  15. Landscape-moderated bird nest predation in hedges and forest edges

    Science.gov (United States)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  16. Does a Simple Cope's Rule Mechanism Overlook Predators?

    International Nuclear Information System (INIS)

    Penteriani, V.; Kenward, R.

    2007-01-01

    The Copes rule predicts a tendency for species to evolve towards an increase in size. Recently, it has been suggested that such a tendency is due to the fact that large body sizes provide a general increase in individual fitness. Here we highlight evidence that predator species do not always fit the large-size = high-fitness mechanism for Copes rule. Given the specific requirements of predators and the complexity of prey-predator relationships, any analysis that does not take into account all animal groups may overlook a significant portion of evolutive trends. Generalisations may not be possible regardless of taxa.

  17. George’s Island, Labrador - A high-density predator-free refuge for a woodland caribou subpopulation?

    Directory of Open Access Journals (Sweden)

    Rebecca A. Jeffery

    2007-04-01

    Full Text Available The movement patterns and demographic parameters were measured for caribou (Rangifer tarandus caribou on George’s Island (Labrador, Canada to determine if the population is separate from the Mealy Mountain Caribou Herd. Movements between George’s Island caribou and nearby Mealy Mountain caribou were examined through satellite telemetry (April 2005 to April 2006. Demographic information was collected through aerial classification surveys. The predator-free island is currently maintaining a density of 22.5-26.5 caribou/km2. Female survival appears high and the recruitment rate in late fall-early spring was 19.0-29.2% calves. Mainland caribou moved very little throughout the year, travelling no more than 53.7 km on average from their initial collaring locations. Also, satellite data indicated no mixing between animals on George’s Island and the mainland. The elevated caribou density and high proportion of calves suggest that George’s Island could at times be acting as a predator-free recruitment area and that George’s Island may be a subpopulation from which animals disperse to the mainland.

  18. The importance of high-level predators in marine protected area management: Consequences of their decline and their potential recovery in the Mediterranean context

    Directory of Open Access Journals (Sweden)

    Giulia Prato

    2013-11-01

    Full Text Available High-level predators have been depleted in the oceans worldwide following centuries of selective fishing. There is widespread evidence that high-level predators’ extirpation may trigger trophic cascades leading to the degradation of marine ecosystems. Restoration of large carnivores to former levels of abundance might lead to ecosystem recovery, but very few pristine ecosystems are left as baselines for comparison. Marine protected areas (MPAs can trigger initial rapid increases of high-level predator abundance and biomass. Nevertheless, long term protection is needed before the ecosystem's carrying capacity for large carnivores is approached and indirect effects on lower trophic levels are observed. The Mediterranean is probably very far from its pristine condition, due to a long history of fishing. Today small to medium-sized consumers (e.g. sea breams are the most abundant predators shaping coastal benthic communities, while historical reconstructions depict abundant populations of large piscivores and sharks inhabiting coastal areas. Mediterranean MPAs are following a promising trajectory of ecosystem recovery, as suggested by a strong gradient of fish biomass increase. Consistent monitoring methods to assess relative variations of high-level predators, together with food-web models aimed at disentangling the indirect effects of their recovery, could be useful tools to help set up appropriate management strategies of MPAs.

  19. Prey aggregation is an effective olfactory predator avoidance strategy

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2014-05-01

    Full Text Available Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a the inability of the predator to consume all prey in a group and (b detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation experiments using a fish predator and (dead chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues, aggregated (large groups and semi-dispersed prey survived for longer than dispersed prey—including long term survival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators.

  20. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation...... on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  1. Fish ladders: safe fish passage or hotspot for predation?

    Directory of Open Access Journals (Sweden)

    Angelo Antonio Agostinho

    Full Text Available Fish ladders are a strategy for conserving biodiversity, as they can provide connectivity between fragmented habitats and reduce predation on shoals that accumulate immediately below dams. Although the impact of predation downstream of reservoirs has been investigated, especially in juvenile salmonids during their downstream movements, nothing is known about predation on Neotropical fish in the attraction and containment areas commonly found in translocation facilities. This study analysed predation in a fish passage system at the Lajeado Dam on the Tocantins River in Brazil. The abundance, distribution, and the permanence (time spent of large predatory fish along the ladder, the injuries imposed by piranhas during passage and the presence of other vertebrate predators were investigated. From December 2002 to October 2003, sampling was conducted in four regions (downstream, along the ladder, in the forebay, and upstream of the reservoir using gillnets, cast nets and counts or visual observations. The captured fish were tagged with thread and beads, and any mutilations were registered. Fish, birds and dolphins were the main predator groups observed, with a predominance of the first two groups. The entrance to the ladder, in the downstream region, was the area with the highest number of large predators and was the only region with relevant non-fish vertebrates. The main predatory fish species were Rhaphiodon vulpinus, Hydrolycus armatus, and Serrasalmus rhombeus. Tagged individuals were detected predating along the ladder for up to 90 days. Mutilations caused by Serrasalmus attacks were noted in 36% of species and 4% of individuals at the top of the ladder. Our results suggested that the high density of fish in the restricted ladder environment, which is associated with injuries suffered along the ladder course and the presence of multiple predator groups with different predation strategies, transformed the fish corridor into a hotspot for

  2. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation.

    Directory of Open Access Journals (Sweden)

    Markus Andreas Strodl

    Full Text Available Social familiarity, which is based on the ability to recognise familiar conspecific individuals following prior association, may affect all major life activities of group-living animals such as foraging, reproduction and anti-predator behaviours. A scarcely experimentally tested explanation why social familiarity is beneficial for group-living animals is provided by limited attention theory. Limited attention theory postulates that focusing on a given task, such as inspection and assessment of unfamiliar group members, has cognitive and associated physiological and behavioural costs with respect to the attention paid to other tasks, such as anti-predator vigilance and response. Accordingly, we hypothesised that social familiarity enhances the anti-predator success of group-living predatory mites, Phytoseiulus persimilis, confronted with an intraguild predator, the predatory mite Amblyseius andersoni.We videotaped and analysed the response of two P. persimilis larvae, held in familiar or unfamiliar pairs, to attacks by a gravid A. andersoni female, using the behavioural analyses software EthoVision Pro®. Familiar larvae were more frequently close together, reacted more quickly to predator attacks, survived more predator encounters and survived longer than unfamiliar larvae.In line with the predictions of limited attention theory, we suggest that social familiarity improves anti-predator behaviours because it allows prey to shift attention to other tasks rather than group member assessment.

  3. Social Familiarity Reduces Reaction Times and Enhances Survival of Group-Living Predatory Mites under the Risk of Predation

    Science.gov (United States)

    Strodl, Markus Andreas; Schausberger, Peter

    2012-01-01

    Background Social familiarity, which is based on the ability to recognise familiar conspecific individuals following prior association, may affect all major life activities of group-living animals such as foraging, reproduction and anti-predator behaviours. A scarcely experimentally tested explanation why social familiarity is beneficial for group-living animals is provided by limited attention theory. Limited attention theory postulates that focusing on a given task, such as inspection and assessment of unfamiliar group members, has cognitive and associated physiological and behavioural costs with respect to the attention paid to other tasks, such as anti-predator vigilance and response. Accordingly, we hypothesised that social familiarity enhances the anti-predator success of group-living predatory mites, Phytoseiulus persimilis, confronted with an intraguild predator, the predatory mite Amblyseius andersoni. Methodology/Principal Findings We videotaped and analysed the response of two P. persimilis larvae, held in familiar or unfamiliar pairs, to attacks by a gravid A. andersoni female, using the behavioural analyses software EthoVision Pro®. Familiar larvae were more frequently close together, reacted more quickly to predator attacks, survived more predator encounters and survived longer than unfamiliar larvae. Significance In line with the predictions of limited attention theory, we suggest that social familiarity improves anti-predator behaviours because it allows prey to shift attention to other tasks rather than group member assessment. PMID:22927997

  4. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.

    Science.gov (United States)

    Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T

    2017-03-01

    It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.

  5. Space-time clusters for early detection of grizzly bear predation.

    Science.gov (United States)

    Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco

    2018-01-01

    Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based

  6. Local habitat disturbance increases bird nest predation in the Brazilian Atlantic rainforest

    Directory of Open Access Journals (Sweden)

    Rodrigues, V. B.

    2018-01-01

    Full Text Available We evaluated the effect of anthropogenic disturbance on nest predation in Brazilian Atlantic forest. Artificial nests were distributed in fragments with distinct degrees of anthropogenic disturbance. We found a higher proportion of egg predation on the ground and in the fragments classified as ‘high’ and ‘medium’ disturbance than in the fragments classified as ‘low’ degree of disturbance. The higher egg predation is probably linked to low structural complexity of vegetation and high accessibility of these areas to opportunistic predators. We suggest that forest fragments with high vegetation complexity and low human activity should be preserved in order to maintain the biodiversity of bird species.

  7. The young, the weak and the sick: evidence of natural selection by predation.

    Directory of Open Access Journals (Sweden)

    Meritxell Genovart

    2010-03-01

    Full Text Available It is assumed that predators mainly prey on substandard individuals, but even though some studies partially support this idea, evidence with large sample sizes, exhaustive analysis of prey and robust analysis is lacking. We gathered data from a culling program of yellow-legged gulls killed by two methods: by the use of raptors or by shooting at random. We compared both data sets to assess whether birds of prey killed randomly or by relying on specific individual features of the prey. We carried out a meticulous post-mortem examination of individuals, and analysing multiple prey characteristics simultaneously we show that raptors did not hunt randomly, but rather preferentially predate on juveniles, sick gulls, and individuals with poor muscle condition. Strikingly, gulls with an unusually good muscle condition were also predated more than expected, supporting the mass-dependent predation risk theory. This article provides a reliable example of how natural selection may operate in the wild and proves that predators mainly prey on substandard individuals.

  8. Spatio-Temporal Variation in Predation by Urban Domestic Cats (Felis catus) and the Acceptability of Possible Management Actions in the UK

    Science.gov (United States)

    Thomas, Rebecca L.; Fellowes, Mark D. E.; Baker, Philip J.

    2012-01-01

    Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners. PMID:23173057

  9. Spatio-temporal variation in predation by urban domestic cats (Felis catus and the acceptability of possible management actions in the UK.

    Directory of Open Access Journals (Sweden)

    Rebecca L Thomas

    Full Text Available Urban domestic cat (Felis catus populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat⁻¹ year⁻¹ but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%, but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners.

  10. Predation of Five Generalist Predators on Brown Planthopper (Nilaparvata lugens Stål

    Directory of Open Access Journals (Sweden)

    Sri Karindah

    2015-09-01

    Full Text Available Two generalist predators of brown planthopper,Metioche vittaticollis and Anaxipha longipennis (Gryllidae have not been much studied in Indonesia. This research was conducted to study and compare the predatory ability of M. vittaticollis, A. longipennis (Gryllidae and three coleopterans, Paederus fuscipes (Staphylinidae, Ophionea sp. (Carabidae,and Micraspis sp. (Coccinellidae against brown planthopper (fourth and fifth instars under laboratory condition. In total, 20 nymphs of N. lugens were exposed for 2 hour to each predator for 5 consecutive days. Prey consumptions by the predatory crickets, M. vittaticollis and A. longipennis were greater than the other predators and followed by A. longipennis, Micraspis sp., P. fuscipes, and Ophionea sp. respectively. Consumption rates of M. vittaticolis and A. longipenis were also higher than other predators. Micraspis sp was more active on predation in the morning,while M. vittaticollis, A. longipennis, P. fuscipes, and Ophionea sp. were more active both in the morning and the night but not in the afternoon. However, all five species of predators were not so active in preying during the afternoon. In conclusion, a major effort should be extended to conserve these predatory crickets especially M. vittaticollis and A. longipennis.

  11. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Science.gov (United States)

    W. Andrew Cox; Frank R. III Thompson; John. Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  12. Influence of human development and predators on nest survival of tundra birds, Arctic Coastal Plain, Alaska.

    Science.gov (United States)

    Liebezeit, J R; Kendall, S J; Brown, S; Johnson, C B; Martin, P; McDonald, T L; Payer, D C; Rea, C L; Streever, B; Wildman, A M; Zack, S

    2009-09-01

    Nest predation may influence population dynamics of birds on the Arctic Coastal Plain (ACP) of Alaska, USA. Anthropogenic development on the ACP is increasing, which may attract nest predators by providing artificial sources of food, perches, den sites, and nest sites. Enhanced populations or concentrations of human-subsidized predators may reduce nest survival for tundra-nesting birds. In this study, we tested the hypothesis that nest survival decreases in proximity to human infrastructure. We monitored 1257 nests of 13 shorebird species and 619 nests of four passerine species at seven sites on the ACP from 2002 to 2005. Study sites were chosen to represent a range of distances to infrastructure from 100 m to 80 km. We used Cox proportional hazards regression models to evaluate the effects of background (i.e., natural) factors and infrastructure on nest survival. We documented high spatial and temporal variability in nest survival, and site and year were both included in the best background model. We did not detect an effect of human infrastructure on nest survival for shorebirds as a group. In contrast, we found evidence that risk of predation for passerine nests increased within 5 km of infrastructure. This finding provides quantitative evidence of a relationship between infrastructure and nest survival for breeding passerines on the ACP. A posteriori finer-scale analyses (within oil field sites and individual species) suggested that Red and Red-necked Phalaropes combined (Phalaropus fulicarius, P. lobatus) had lower productivity closer to infrastructure and in areas with higher abundance of subsidized predators. However, we did not detect such a relationship between infrastructure and nest survival for Semipalmated and Pectoral Sandpipers (Calidris pusilla, C. melanotos), the two most abundant shorebirds. High variability in environmental conditions, nest survival, and predator numbers between sites and years may have contributed to these inconsistent results

  13. Predator Politics

    Directory of Open Access Journals (Sweden)

    Mary Louisa Cappelli

    2017-01-01

    Full Text Available Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer urges readers to see coyotes as crucial members of the natural community whose predation is essential for the maintenance of biodiversity and ecological stability. Their cultural production provides a human story of ecocritical engagement for understanding the cascading effects of removing top predators from their ecosystems. By envisioning biocentric possibilities within place-based and scientific contexts, Edward Abbey and Barbara Kingsolver share a common theme of political ecology: political processes shape ecological conditions. A close reading of Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer provides a literary entryway to connect research, arguments, and discourse across disciplines tasking readers to engage in political discussions of environmental sustainability and to consider viable solutions to preserve the ecological diversity of our predator populations and ecosystems.

  14. Molecular forensics in avian conservation: a DNA-based approach for identifying mammalian predators of ground-nesting birds and eggs.

    Science.gov (United States)

    Hopken, Matthew W; Orning, Elizabeth K; Young, Julie K; Piaggio, Antoinette J

    2016-01-07

    The greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird from the Northern Rocky Mountains and a species at risk of extinction in in multiple U.S. states and Canada. Herein we report results from a proof of concept that mitochondrial and nuclear DNAs from mammalian predator saliva could be non-invasively collected from depredated greater sage-grouse eggshells and carcasses and used for predator species identification. Molecular forensic approaches have been applied to identify predators from depredated remains as one strategy to better understand predator-prey dynamics and guide management strategies. This can aid conservation efforts by correctly identifying predators most likely to impact threatened and endangered species. DNA isolated from non-invasive samples around nesting sites (e.g. fecal or hair samples) is one method that can increase the success and accuracy of predator species identification when compared to relying on nest remains alone. Predator saliva DNA was collected from depredated eggshells and carcasses using swabs. We sequenced two partial fragments of two mitochondrial genes and obtained microsatellite genotypes using canid specific primers for species and individual identification, respectively. Using this multilocus approach we were able to identify predators, at least down to family, from 11 out of 14 nests (79%) and three out of seven carcasses (47%). Predators detected most frequently were canids (86%), while other taxa included rodents, a striped skunk, and cattle. We attempted to match the genotypes of individual coyotes obtained from eggshells and carcasses with those obtained from fecal samples and coyotes collected in the areas, but no genotype matches were found. Predation is a main cause of nest failure in ground-nesting birds and can impact reproduction and recruitment. To inform predator management for ground-nesting bird conservation, accurate identification of predator species is necessary. Considering

  15. Optimal control of native predators

    Science.gov (United States)

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  16. Feeding under predation risk: potential sex-specific response of perch (Perca fluviatilis).

    Czech Academy of Sciences Publication Activity Database

    Estlander, Satu; Nurminen, L.

    2014-01-01

    Roč. 23, č. 3 (2014), s. 478-480 ISSN 0906-6691 Institutional support: RVO:60077344 Keywords : foraging * sexual size dimorphism * predation * perch * pike Subject RIV: EH - Ecology, Behaviour Impact factor: 1.701, year: 2014

  17. Scale dependence of felid predation risk: Identifying predictors of livestock kills by tiger and leopard in Bhutan

    Science.gov (United States)

    Susana Rostro-Garcia; Lhendup Tharchen; Leandro Abade; Christos Astaras; Samuel A. Cushman; David W. Macdonald

    2016-01-01

    Livestock predation by tiger and leopard in Bhutan is a major threat to the conservation of these felids. Conflict mitigation planning would benefit from an improved understanding of the spatial pattern of livestock kills by the two predators.

  18. Susceptibility of Select Agents to Predation by Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Riccardo Russo

    2015-12-01

    Full Text Available Select Agents are microorganisms and toxins considered to be exploitable as biological weapons. Although infections by many Select Agents can be treated by conventional antibiotics, the risk of an emerging or engineered drug resistant strain is of great concern. One group of microorganisms that is showing potential to control drug resistant Gram-negative bacteria are the predatory bacteria from the genera Bdellovibrio spp. and Micavibrio spp. In this study, we have examined the ability of Bdellovibrio bacteriovorus (B. bacteriovorus strain 109J, HD100 and Micavibrio aeruginosavorus (M. aeruginosavorus ARL-13 to prey on a variety of Select Agents. Our findings demonstrate that B. bacteriovorus and M. aeruginosavorus are able to prey efficiently on Yersinia pestis and Burkholderia mallei. Modest predation was also measured in co-cultures of B. bacteriovorus and Francisella tularensis. However, neither of the predators showed predation when Burkholderia pseudomallei and Brucella melitensis were used as prey.

  19. Stress triangle: do introduced predators exert indirect costs on native predators and prey?

    Directory of Open Access Journals (Sweden)

    Jennifer R Anson

    Full Text Available Non-consumptive effects of predators on each other and on prey populations often exceed the effects of direct predation. These effects can arise from fear responses elevating glucocorticoid (GC hormone levels (predator stress hypothesis or from increased vigilance that reduces foraging efficiency and body condition (predator sensitive foraging hypothesis; both responses can lead to immunosuppression and increased parasite loads. Non-consumptive effects of invasive predators have been little studied, even though their direct impacts on local species are usually greater than those of their native counterparts. To address this issue, we explored the non-consumptive effects of the invasive red fox Vulpes vulpes on two native species in eastern Australia: a reptilian predator, the lace monitor Varanus varius and a marsupial, the ringtail possum Pseudocheirus peregrinus. In particular, we tested predictions derived from the above two hypotheses by comparing the basal glucocorticoid levels, foraging behaviour, body condition and haemoparasite loads of both native species in areas with and without fox suppression. Lace monitors showed no GC response or differences in haemoparasite loads but were more likely to trade safety for higher food rewards, and had higher body condition, in areas of fox suppression than in areas where foxes remained abundant. In contrast, ringtails showed no physiological or behavioural differences between fox-suppressed and control areas. Predator sensitive foraging is a non-consumptive cost for lace monitors in the presence of the fox and most likely represents a response to competition. The ringtail's lack of response to the fox potentially represents complete naiveté or strong and rapid selection to the invasive predator. We suggest evolutionary responses are often overlooked in interactions between native and introduced species, but must be incorporated if we are to understand the suite of forces that shape community

  20. Reduction in predator defense in the presence of neighbors in a colonial fish.

    Directory of Open Access Journals (Sweden)

    Franziska C Schädelin

    Full Text Available Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or

  1. Selective attention in peacocks during predator detection.

    Science.gov (United States)

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  2. Predator-dependent functional response in wolves: from food limitation to surplus killing.

    Science.gov (United States)

    Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter

    2015-01-01

    The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  3. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    Science.gov (United States)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  4. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  5. Desert bighorn sheep lambing habitat: Parturition, nursery, and predation sites

    Science.gov (United States)

    Karsch, Rebekah C.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2016-01-01

    Fitness of female ungulates is determined by neonate survival and lifetime reproductive success. Therefore, adult female ungulates should adopt behaviors and habitat selection patterns that enhance survival of neonates during parturition and lactation. Parturition site location may play an important role in neonatal mortality of desert bighorn sheep (Ovis canadensis mexicana) when lambs are especially vulnerable to predation, but parturition sites are rarely documented for this species. Our objectives were to assess environmental characteristics at desert bighorn parturition, lamb nursery, and predation sites and to assess differences in habitat characteristics between parturition sites and nursery group sites, and predation sites and nursery group sites. We used vaginal implant transmitters (VITs) to identify parturition sites and capture neonates. We then compared elevation, slope, terrain ruggedness, and visibility at parturition, nursery, and lamb predation sites with paired random sites and compared characteristics of parturition sites and lamb predation sites to those of nursery sites. When compared to random sites, odds of a site being a parturition site were highest at intermediate slopes and decreased with increasing female visibility. Odds of a site being a predation site increased with decreasing visibility. When compared to nursery group sites, odds of a site being a parturition site had a quadratic relationship with elevation and slope, with odds being highest at intermediate elevations and intermediate slopes. When we compared predation sites to nursery sites, odds of a site being a predation were highest at low elevation areas with high visibility and high elevation areas with low visibility likely because of differences in hunting strategies of coyote (Canis latrans) and puma (Puma concolor). Parturition sites were lower in elevation and slope than nursery sites. Understanding selection of parturition sites by adult females and how habitat

  6. Microhabitat choice in island lizards enhances camouflage against avian predators.

    Science.gov (United States)

    Marshall, Kate L A; Philpot, Kate E; Stevens, Martin

    2016-01-25

    Camouflage can often be enhanced by genetic adaptation to different local environments. However, it is less clear how individual behaviour improves camouflage effectiveness. We investigated whether individual Aegean wall lizards (Podarcis erhardii) inhabiting different islands rest on backgrounds that improve camouflage against avian predators. In free-ranging lizards, we found that dorsal regions were better matched against chosen backgrounds than against other backgrounds on the same island. This suggests that P. erhardii make background choices that heighten individual-specific concealment. In achromatic camouflage, this effect was more evident in females and was less distinct in an island population with lower predation risk. This suggests that behavioural enhancement of camouflage may be more important in females than in sexually competing males and related to predation risk. However, in an arena experiment, lizards did not choose the background that improved camouflage, most likely due to the artificial conditions. Overall, our results provide evidence that behavioural preferences for substrates can enhance individual camouflage of lizards in natural microhabitats, and that such adaptations may be sexually dimorphic and dependent on local environments. This research emphasizes the importance of considering links between ecology, behaviour, and appearance in studies of intraspecific colour variation and local adaptation.

  7. Pemangsaan Propagul Mangrove Rhizophora sp. Sebagai Bukti Teori Dominance-Predation (Predation of Mangrove Propagule, Rhizophora sp. as Evidence of Dominance-Predation Theory

    Directory of Open Access Journals (Sweden)

    Rudhi Pribadi

    2014-06-01

    Propagule predation on mangrove in some extent reduced its viability to grow into seedling. The predation could happened before (pre-dispersal or after (post-dispersal the propagule drop from the tree.The reasearch was conducted in Pasar Banggi, Rembang District, Central Java. The aim was to investigate the predation rate of Rhizophora mucronata Lamk., R. stylosa Griff. and R. apiculata Blume propagules pre-dispersal and post-dispersal. Firstly, preface experiment for find domination spesies in the location, Second, with applied descriptive-based survey sampling and field experiment methods. Than all propagules of five replication trees were harvested and checked for its condition on pre-dispersal step. The third, with post-dispersal study there were twenty propagules from each spesies and tied them with used nylon string and placed on the forest floor for 2 until 18 days and checked its condition every 2 days after placement. This study is also set for tested the Smith’s theory on propagule predation related to tree domination. Rhizophora stylosa propagule was  most predated before they fall (mean 61,06%, range 45,40-76,05%, followed by R. apiculata (mean 58,18%, range 47,41-68% and the lowest isR. mucronata with mean 11,88% (range 7,06-15,71%. After 18 days of experiment in the field R. stylosa propagule in R. stylosa–dominated area was the lowest predated (mean 46,67% compared to propagule in the area dominated by R. apiculata (63,33% and also in R. mucronata area (83,33 Predated R. mucronata propagule is the highest in the R. mucronata dominated area (mean 95% compared with R. apiculata dominated area (mean 55% and also in R. stylosa dominated area (45%. Pradated of R. apiculata propagule is the lowest in the domination area of R. apiculata (50% compared with R. stylosa area domination with (mean 70% also R. mucronata (73,33%. The result showed that the theory of dominance-predation can be proved only for R. stylosa and R. apiculata spesies, but not for R

  8. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    Science.gov (United States)

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  10. Is it safe to nest near conspicuous neighbours? Spatial patterns in predation risk associated with the density of American Golden-Plover nests

    OpenAIRE

    Marie-Andrée Giroux; Myriam Trottier-Paquet; Joël Bêty; Vincent Lamarre; Nicolas Lecomte

    2016-01-01

    Predation is one of the main factors explaining nesting mortality in most bird species. Birds can avoid nest predation or reduce predation pressure by breeding at higher latitude, showing anti-predator behaviour, selecting nest sites protected from predators, and nesting in association with protective species. American Golden-Plovers (Pluvialis dominica) defend their territory by using various warning and distraction behaviours displayed at varying levels of intensity (hereafter ?conspicuous ...

  11. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals

    OpenAIRE

    Capellini, I.; Nunn, C. L.; McNamara, P.; Preston, B. T.; Barton, R. A.

    2008-01-01

    Mammalian sleep is composed of two distinct states – rapid-eye-movement (REM) and non-REM (NREM) sleep – that alternate in cycles over a sleep bout. The duration of these cycles varies extensively across mammalian species. Because the end of a sleep cycle is often followed by brief arousals to waking, a shorter sleep cycle has been proposed to function as an anti-predator strategy. Similarly, higher predation risk could explain why many species exhibit a polyphasic sleep pattern (division of ...

  12. Nest predation increases with parental activity: separating nest site and parental activity effects.

    OpenAIRE

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators h...

  13. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Directory of Open Access Journals (Sweden)

    Maria L Pappas

    Full Text Available Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI, may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood. The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  14. Predator response to releases of American shad larvae in the Susquehanna River basin

    Science.gov (United States)

    Johnson, James H.; Ringler, N.H.

    1998-01-01

    Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.

  15. Female preference and predation risk models can explain the maintenance of a fallow deer (Dama dama lek and its 'handy' location.

    Directory of Open Access Journals (Sweden)

    Marco Apollonio

    Full Text Available We tested the predictions of three models (female preference; hotspot; predator avoidance on lek formation in the fallow deer population of San Rossore, Tuscany. We collected behavioural observations in two leks and radiotracking data on 67 deer over 7 years. Two deer sub-populations were present in the northern and southern sides of the area, respectively, the two sectors being delimited by a river and including one lek each. Predictions were tested for one lek (SG, located in the south-side where we set up our 7-year radiotracking program. Data from a second lek (FO, north-side were used to test those predictions which imply the occurrence of multiple leks in the same population. We showed that the majority of females made one single visit to one lek, only during the rut. The lek was located outside areas of higher female traffic and home range overlap, and females increased home range sizes during the rut to reach it. Twilight routes of females never crossed the lek; instead, females walked atypical routes and at a faster pace to reach the lek and mate. The distance between the two leks was higher than the average diameter of female home ranges, and only one lek was present within female home ranges. Males reached the lek one month before the arrival of females, corroborating that lekking is a female-initiated process (females moving towards large clumped male aggregations rather than a male-initiated process (males moving towards female hotspots. Our results supported the female preference model, and rejected the predictions of the hotspot model. Also, leks were located far from areas with higher predation risk, supporting the predator avoidance model. The position of lek SG resulted 'handy' at the sub-population level because of the optimal trade-off between travel costs for females to reach it and avoidance of human predators.

  16. Non-pest prey do not disrupt aphid predation by a web-building spider.

    Science.gov (United States)

    Welch, K D; Whitney, T D; Harwood, J D

    2016-02-01

    A generalist predator's ability to contribute to biological control is influenced by the decisions it makes during foraging. Predators often use flexible foraging tactics, which allows them to pursue specific types of prey at the cost of reducing the likelihood of capturing other types of prey. When a pest insect has low nutritional quality or palatability for a predator, the predator is likely to reject that prey in favour of pursuing alternative, non-pest prey. This is often thought to limit the effectiveness of generalist predators in consuming aphids, which are of low nutritional quality for many generalist predators. Here, we report behavioural assays that test the hypothesis that the generalist predator, Grammonota inornata (Araneae: Linyphiidae), preferentially forages for a non-pest prey with high nutritional quality (springtails), and rejects a pest prey with low nutritional quality (aphids). In no-choice assays, molecular gut-content analysis revealed that spiders continued to feed on the low-quality aphids at high rates, even when high-quality springtails were readily available. When provided a choice between aphids and springtails in two-way choice tests, spiders did not show the expected preference for springtails. Decision-making by spiders during foraging therefore appears to be sub-optimal, possibly because of attraction to the less frequently encountered of two preys as part of a dietary diversification strategy. These results indicate that behavioural preferences alone do not necessarily compromise the pest-suppression capacity of natural enemies: even nutritionally sub-optimal pest prey can potentially be subject to predation and suppression by natural enemies.

  17. Foraging trade-offs along a predator-permanence gradient in subalpine wetlands

    Science.gov (United States)

    Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.

    1999-01-01

    We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders

  18. Prey risk allocation in a grazing ecosystem.

    Science.gov (United States)

    Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred

    2006-02-01

    Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.

  19. Clever strategists: Australian Magpies vary mobbing strategies, not intensity, relative to different species of predator

    Directory of Open Access Journals (Sweden)

    A Koboroff

    2013-03-01

    Full Text Available Anti-predator behaviour of magpies was investigated, using five species of model predators, at times of raising offspring. We predicted differences in mobbing strategies for each predator presented and also that raising juveniles would affect intensity of the mobbing event. Fourteen permanent resident family groups were tested using 5 different types of predator (avian and reptilian known to be of varying degrees of risk to magpies and common in their habitat. In all, 210 trials were conducted (across three different stages of juvenile development. We found that the stage of juvenile development did not alter mobbing behaviour significantly, but predator type did. Aerial strategies (such as swooping were elicited by taxidermic models of raptors, whereas a taxidermic model of a monitor lizard was approached on the ground and a model snake was rarely approached. Swooping patterns also changed according to which of the three raptors was presented. Our results show that, in contrast to findings in other species, magpies vary mobbing strategy depending on the predator rather than varying mobbing intensity.

  20. Clever strategists: Australian Magpies vary mobbing strategies, not intensity, relative to different species of predator.

    Science.gov (United States)

    Koboroff, A; Kaplan, G; Rogers, Lj

    2013-01-01

    Anti-predator behaviour of magpies was investigated, using five species of model predators, at times of raising offspring. We predicted differences in mobbing strategies for each predator presented and also that raising juveniles would affect intensity of the mobbing event. Fourteen permanent resident family groups were tested using 5 different types of predator (avian and reptilian) known to be of varying degrees of risk to magpies and common in their habitat. In all, 210 trials were conducted (across three different stages of juvenile development). We found that the stage of juvenile development did not alter mobbing behaviour significantly, but predator type did. Aerial strategies (such as swooping) were elicited by taxidermic models of raptors, whereas a taxidermic model of a monitor lizard was approached on the ground and a model snake was rarely approached. Swooping patterns also changed according to which of the three raptors was presented. Our results show that, in contrast to findings in other species, magpies vary mobbing strategy depending on the predator rather than varying mobbing intensity.

  1. Can cat predation help competitors coexist in seabird communities?

    Science.gov (United States)

    Pontier, Dominique; Fouchet, David; Bried, Joël

    2010-01-07

    On oceanic islands, nest site availability can be an important factor regulating seabird population dynamics. The potential for birds to secure a nest to reproduce can be an important component of their life histories. The dates at which different seabird species arrive at colonies to breed will have important consequences for their relative chances of success. Early arrival on the island allows birds to obtain nests more easily and have higher reproductive success. However, the presence of an introduced predator may reverse this situation. For instance, in the sub-Antarctic Kerguelen archipelago, early arriving birds suffer heavy predation from introduced cats. Cats progressively switch from seabirds to rabbits, since the local rabbit population starts to peak after early arriving seabird species have already returned to the colony. When late-arriving birds arrive, cat predation pressure on seabirds is thus weaker. In this paper, we investigate the assumption that the advantage of early nest mnopolization conferred to early arriving birds may be counterbalanced by the cost resulting from predation. We develop a mathematical model representing a simplified situation in which two insular seabird species differ only in their arrival date at the colony site and compete for nesting sites. We conclude that predation may ensure the coexistence of the two bird species or favor the late-arriving species, but only when seasonal variations in predation pressure are large. Interestingly, we conclude that arriving early is only favorable until a given level where high reproductive success no longer compensates for the long exposure to strong predation pressure. Our work suggests that predation can help to maintain the balance between species of different phenologies.

  2. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  3. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Science.gov (United States)

    Dreher, Corinna E; Cummings, Molly E; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological

  4. Conservation implications when the nest predators are known

    Science.gov (United States)

    Ribic, Christine; Thompson, Frank

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using video surveillance to identify nest predators allow researchers to start evaluating what methods could be used to mitigate nest predation to help passerines of conservation concern. From recent studies, we identified latitudinal and habitat-related patterns in the importance of predator groups that depredate passerine nests. We then reviewed how knowledge of specific nest predators can benefit conservation of bird species of concern. Mammals were the dominant predator group in northern grasslands. Snakes were the dominant predator group in southern habitats. Fire ants were only a nest predator in southern latitudes. Differences in the importance of predator species or groups were likely the result of both their geographic patterns of distribution and habitat preferences. Some direct and indirect predator control measures developed for waterfowl management potentially could be used to benefit passerine productivity. We reviewed three examples-cowbirds, snakes in shrublands, and ground squirrels in grasslands-to illustrate how different predator control strategies may be needed in different situations. Mitigation of passerine nest predation will need to be based on knowledge of predator communities to be effective. This requires large samples of predation events with identified predators; video technology is essential for this task.

  5. Weed seed predation in organic and conventional fields

    DEFF Research Database (Denmark)

    Navntoft, Søren; Wratten, S.D.; Kristensen, Kristian

    2009-01-01

    Enhanced biological control of weed seeds may improve sustainability of agricultural production. Biological control due to seed predation may be higher in organic fields because organic production generally supports more seed predators. To investigate such a difference, weed seed predation...... University and in two of the fields used for estimating seed predation. Recording of predators had therefore limited overlap with seed predation assays but was expected to give important information on key seed predators in the region. The mean seed removal rate was 17% in organic fields compared with 10...... edges. Overall, there was no consistent effect of distance from the field edge. Vegetation had a significant influence on the predation rates, with maximum rates at a medium-dense plant cover. Based on the video images, birds were the most important seed predators. The higher weed seed predation rate...

  6. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease.

    NARCIS (Netherlands)

    Kooi, B.W.; van Voorn, G.A.K.; Pada Das, K.

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator-prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  7. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    Science.gov (United States)

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  8. Species invasion shifts the importance of predator dependence.

    Science.gov (United States)

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  9. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A. [Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative

  10. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  11. Humans as predators: an overview of predation strategies of hunters with contrasting motivational drivers

    Directory of Open Access Journals (Sweden)

    Fredrik Dalerum

    2018-01-01

    Full Text Available Predator-prey theory suggests that generalist predators are linked to demographic stability of prey whereas specialists are destabilizing. We overview the demographic consequences of different predation strategies and hypothesize that subsistence hunting occurs opportunistically, persecution hunters behave like specialist predators, and recreational hunters behave like generalist predators. Under this hypothesis, persecution hunting would have destabilizing effects, whereas the effects of subsistence and recreational hunting would be neutral or stabilizing. We found poor empirical support for this hypothesis, but there was scarce empirical data. Recreational hunters mainly hunted opportunistically and hunting as managed persecution followed a type III functional response, i.e. with low hunting intensity at low game abundances and a switch to an increased intensity at some level of abundance. We suggest that recreational hunters have limited destabilizing effects on game populations and that hunting may be an ineffective way of complete the removal of invasive species. We urge for further studies quantifying the responses of hunters to game abundances, in particular studies evaluating the responses of subsistence hunters and illegal persecution.

  12. A predator-prey model with a holling type I functional response including a predator mutual interference

    Science.gov (United States)

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  13. Parental risk management in relation to offspring defence: bad news for kids.

    Science.gov (United States)

    Mahr, Katharina; Riegler, Georg; Hoi, Herbert

    2015-01-07

    Do parents defend their offspring whenever necessary, and do self-sacrificing parents really exist? Studies recognized that parent defence is dynamic, mainly depending on the threat predators pose. In this context, parental risk management should consider the threat to themselves and to their offspring. Consequently, the observed defence should be a composite of both risk components. Surprisingly, no study so far has determined the influence of these two threat components on parental decision rules. In a field experiment, we investigated parental risk taking in relation to the threat posed to themselves and their offspring. To disentangle the two threat components, we examined defence behaviours of parent blue tits Cyanistes caeruleus towards three different predators and during different nestling developmental stages. Nest defence strategies in terms of alarm call intensity and nearest predator approach differed between the three predators. Defence intensity was only partly explained by threat level. Most importantly, parental risk management varied in relation to their own, but not offspring risk. Parent defence investment was independent of nestling risk when parents followed a high-risk strategy. However, parents considered nestling as well as parental risk when following a low-risk strategy. Our findings could have general implications for the economy of risk management and decision-making strategies in living beings, including humans. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Adding constraints to predation through allometric relation of scats to consumption.

    Science.gov (United States)

    Chakrabarti, Stotra; Jhala, Yadvendradev V; Dutta, Sutirtha; Qureshi, Qamar; Kadivar, Riaz F; Rana, Vishwadipsinh J

    2016-05-01

    A thorough understanding of mechanisms of prey consumption by carnivores and the constraints on predation help us in evaluating the role of carnivores in an ecosystem. This is crucial in developing appropriate management strategies for their conservation and mitigating human-carnivore conflict. Current models on optimal foraging suggest that mammalian carnivores would profit most from killing the largest prey that they can subdue with minimal risk of injury to themselves. Wild carnivore diets are primarily estimated through analysis of their scats. Using extensive feeding experiments (n = 68) on a wide size range (4·5-130 kg) of obligate carnivores - lion, leopard, jungle cat and domestic cat, we parameterize biomass models that best relate consumption to scat production. We evaluate additional constraints of gut fill, prey digestibility and carcass utilization on carnivory that were hereto not considered in optimal foraging studies. Our results show that patterns of consumption to scat production against prey size are similar and asymptotic, contrary to established linear models, across these carnivores after accounting for the effect of carnivore size. This asymptotic, allometric relationship allowed us to develop a generalized model: biomass consumed per collectable scat/predator weight = 0·033-0·025exp(-4·284(prey weight/predator weight)) , which is applicable to all obligate carnivores to compute prey biomass consumed from scats. Our results also depict a relationship for prey digestibility which saturates at about 90% for prey larger than predator size. Carcass utilization declines exponentially with prey size. These mechanisms result in digestible biomass saturating at prey weights approximately equal to predator weight. Published literature on consumption by tropical carnivores that has relied on linear biomass models is substantially biased. We demonstrate the nature of these biases by correcting diets of tiger, lion and leopard in recent

  15. The smell of success: the amount of prey consumed by predators determines the strength and range of cascading non-consumptive effects

    Directory of Open Access Journals (Sweden)

    Marc Weissburg

    2015-11-01

    Full Text Available We examined whether chemically mediated risk perception by prey and the effects of changes in prey behavior on basal resources vary as a function of the amount of prey biomass consumed by the predator. We studied these issues using a tritrophic system composed of blue crabs, Callinectes sapidus (top predator, mud crabs Panopeus herbstii (intermediate prey, and oysters Crassostrea virginica (basal resource. Working in a well characterized field environment where experiments preserve natural patterns of water flow, we found that biomass consumed by a predator determines the range, intensity and nature of prey aversive responses. Predators that consume large amounts of prey flesh more strongly diminish consumption of basal resources by prey and exert effects over a larger range (in space and time compared to predators that have eaten less. Less well-fed predators produce weaker effects, with the consequence that behaviorally mediated cascades preferentially occur in refuge habitats. Well-fed predators affected prey behavior and increased basal resources up to distances of 1–1.5 m, whereas predators fed restricted diet evoked changes in prey only when they were extremely close, typically 50 cm or less. Thus, consumptive and non-consumptive effects may be coupled; predators that have a greater degree of predatory success will affect prey traits more strongly and non-consumptive and consumptive effects may fluctuate in tandem, with some lag. Moreover, differences among predators in their degree of prey capture will create spatial and temporal variance in risk cue availability in the absence of underlying environmental effects.

  16. Odontocete Cetaceans: Quantifying Behavioral Ecology and Response to Predators Using a Multi-Species Approach

    Science.gov (United States)

    2016-03-21

    Behaviour 144(11): 1315–1332. http://doi.org/10.1163/156853907782418213 Madsen, P.T., M. Wahlberg, J. Tougaard, and K. Lucke. 2006. Wind turbine ...individual in small 14 group (Stanford 2002). Increased vigilance and diluted predation risk is often cited as a factor promoting sociality in birds ...also be used to recruit conspecifics to engage in mobbing behavior in both mammals and birds (Curio et al. 1978; Tamura 1989). Actual predation

  17. Effects of subsidized predators, resource variability, and human population density on desert tortoise populations in the Mojave Desert, USA

    Science.gov (United States)

    Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.

    2010-01-01

    Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.

  18. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Interaction between two predator mites of Tetranychus urticae koch (Acariformes: Tetranychidae) in laboratory

    International Nuclear Information System (INIS)

    Arguelles R, Angelica; Plazas, Natali; Bustos R, Alexander; Cantor R, Fernando; Rodriguez, Daniel; Hilarion, Alejandra

    2013-01-01

    Tetranychus urticae (Acari: Tetranychidae) is an important pest of ornamental crops. A species of predatory mite used for its control is Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). This research proposes the use of joint releases of the two cited predators for the control of the pest. Several situations leading to interaction were evaluated: high density of one predator and low density of the other one, being the prey present or absent. The scenario with predators in equal densities and in presence of the prey was also evaluated. When a predator is in higher density and the prey present, the predator with the lower density increases the interference with the consumption of preys by the predator with higher density. On the other hand, when the consumption of T. urticae reduces, intraguild predation increases. P. persimilis shows intraguild predation behavior when t. urticae is absent and N. californicus is present, consuming all developmental stages of its conspecific. Instead, N. californicus only feed on conspecific larvae, when the fitofagous was absent and P. persimilis was present. When the two predators were present in the same assemblage and with the same population density, the quantity of T. urticae consumed by both of them was not higher than the consumed one when each predator was present in separate way.

  20. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    Science.gov (United States)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement

  1. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Directory of Open Access Journals (Sweden)

    Corinna E Dreher

    Full Text Available Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and

  2. Predator mediated selection and the impact of developmental stage on viability in wood frog tadpoles (Rana sylvatica

    Directory of Open Access Journals (Sweden)

    Calsbeek Ryan

    2011-12-01

    Full Text Available Abstract Background Complex life histories require adaptation of a single organism for multiple ecological niches. Transitions between life stages, however, may expose individuals to an increased risk of mortality, as the process of metamorphosis typically includes developmental stages that function relatively poorly in both the pre- and post-metamorphic habitat. We studied predator-mediated selection on tadpoles of the wood frog, Rana sylvatica, to identify this hypothesized period of differential predation risk and estimate its ontogenetic onset. We reared tadpoles in replicated mesocosms in the presence of the larval odonate Anax junius, a known tadpole predator. Results The probability of tadpole survival increased with increasing age and size, but declined steeply at the point in development where hind limbs began to erupt from the body wall. Selection gradient analyses indicate that natural selection favored tadpoles with short, deep tail fins. Tadpoles resorb their tails as they progress toward metamorphosis, which may have led to the observed decrease in survivorship. Path models revealed that selection acted directly on tail morphology, rather than through its indirect influence on swimming performance. Conclusions This is consistent with the hypothesis that tail morphology influences predation rates by reducing the probability a predator strikes the head or body.

  3. Female Preference and Predation Risk Models Can Explain the Maintenance of a Fallow Deer (Dama dama) Lek and Its ‘Handy’ Location

    Science.gov (United States)

    Apollonio, Marco; De Cena, Fabio; Bongi, Paolo; Ciuti, Simone

    2014-01-01

    We tested the predictions of three models (female preference; hotspot; predator avoidance) on lek formation in the fallow deer population of San Rossore, Tuscany. We collected behavioural observations in two leks and radiotracking data on 67 deer over 7 years. Two deer sub-populations were present in the northern and southern sides of the area, respectively, the two sectors being delimited by a river and including one lek each. Predictions were tested for one lek (SG), located in the south-side where we set up our 7-year radiotracking program. Data from a second lek (FO, north-side) were used to test those predictions which imply the occurrence of multiple leks in the same population. We showed that the majority of females made one single visit to one lek, only during the rut. The lek was located outside areas of higher female traffic and home range overlap, and females increased home range sizes during the rut to reach it. Twilight routes of females never crossed the lek; instead, females walked atypical routes and at a faster pace to reach the lek and mate. The distance between the two leks was higher than the average diameter of female home ranges, and only one lek was present within female home ranges. Males reached the lek one month before the arrival of females, corroborating that lekking is a female-initiated process (females moving towards large clumped male aggregations) rather than a male-initiated process (males moving towards female hotspots). Our results supported the female preference model, and rejected the predictions of the hotspot model. Also, leks were located far from areas with higher predation risk, supporting the predator avoidance model. The position of lek SG resulted ‘handy’ at the sub-population level because of the optimal trade-off between travel costs for females to reach it and avoidance of human predators. PMID:24599036

  4. Species diversity modulates predation

    NARCIS (Netherlands)

    Kratina, P.; Vos, M.; Anholt, B.R.

    2007-01-01

    Predation occurs in a context defined by both prey and non-prey species. At present it is largely unknown how species diversity in general, and species that are not included in a predator's diet in particular, modify predator–prey interactions.Therefore we studied how both the density and diversity

  5. Generalist predator, cyclic voles and cavity nests: testing the alternative prey hypothesis.

    Science.gov (United States)

    Pöysä, Hannu; Jalava, Kaisa; Paasivaara, Antti

    2016-12-01

    The alternative prey hypothesis (APH) states that when the density of the main prey declines, generalist predators switch to alternative prey and vice versa, meaning that predation pressure on the alternative prey should be negatively correlated with the density of the main prey. We tested the APH in a system comprising one generalist predator (pine marten, Martes martes), cyclic main prey (microtine voles, Microtus agrestis and Myodes glareolus) and alternative prey (cavity nests of common goldeneye, Bucephala clangula); pine marten is an important predator of both voles and common goldeneye nests. Specifically, we studied whether annual predation rate of real common goldeneye nests and experimental nests is negatively associated with fluctuation in the density of voles in four study areas in southern Finland in 2000-2011. Both vole density and nest predation rate varied considerably between years in all study areas. However, we did not find support for the hypothesis that vole dynamics indirectly affects predation rate of cavity nests in the way predicted by the APH. On the contrary, the probability of predation increased with vole spring abundance for both real and experimental nests. Furthermore, a crash in vole abundance from previous autumn to spring did not increase the probability of predation of real nests, although it increased that of experimental nests. We suggest that learned predation by pine marten individuals, coupled with efficient search image for cavities, overrides possible indirect positive effects of high vole density on the alternative prey in our study system.

  6. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Directory of Open Access Journals (Sweden)

    Debora B Lima

    Full Text Available Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae. The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot (Acari: Phytoseiidae. Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  7. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Science.gov (United States)

    Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C

    2015-01-01

    Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  8. Dynamic complexity of a two-prey one-predator system with impulsive effect

    International Nuclear Information System (INIS)

    Zhang Yujuan; Xiu Zhilong; Chen Lansun

    2005-01-01

    In this paper, we investigate the dynamic complexity of a two-prey one-predator system with impulsive perturbation on predator at fixed moments. With the increase of the predation rate for the super competitor, the system displays complicated phenomena including a sequence of direct and inverse cascade of periodic-doubling, chaos, and symmetry breaking bifurcation. Moreover, we discuss the effect of the period of releasing predator on the dynamical behaviors of the unforced continuous system, and find that periodically releasing predator at fixed moments change the properties of the unforced continuous system. We suggest a highly effective method in pest control. The target pest population can be driven to extinction and the non-target pest (or harmless insect) can be permanent by choosing impulsive period, while classical method cannot emulate

  9. Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.

    Directory of Open Access Journals (Sweden)

    Yoel E Stuart

    Full Text Available Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.

  10. How to Protect Children from Internet Predators: A Phenomenological Study

    Science.gov (United States)

    Alexander, Rodney T.

    2012-01-01

    Teenage Internet users are the fastest growing segment in the Internet user population. These teenagers are at risk of sexual assault from Internet predators. This phenomenological study explored teacher and counselors' perceptions of how to prevent this sexual assault. Twenty-five teacher and counselor participants were interviewed. A…

  11. Predator control promotes invasive dominated ecological states.

    Science.gov (United States)

    Wallach, Arian D; Johnson, Christopher N; Ritchie, Euan G; O'Neill, Adam J

    2010-08-01

    Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity.

  12. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, Karen; Ersin, Firdevs; Pijnakker, Juliette; Houten, van Yvonne; Hoogerbrugge, Hans; Leman, Ada; Pappas, Maria L.; Duarte, Marcus V.A.; Messelink, Gerben J.; Sabelis, Maurice W.; Janssen, Arne

    2017-01-01

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  13. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, K.; Ersin, F.; Pijnakker, J.; van Houten, Y.; Hoogerbrugge, H.; Leman, A.; Pappas, M.L.; Duarte, M.V.A.; Messelink, G.J.; Sabelis, M.W.; Janssen, A.

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  14. What do predators really want? The role of gerbil energetic state in determining prey choice by Barn Owls.

    Science.gov (United States)

    Embar, Keren; Mukherjee, Shomen; Kotler, Burt P

    2014-02-01

    In predator-prey foraging games, predators should respond to variations in prey state. The value of energy for the prey changes depending on season. Prey in a low energetic state and/or in a reproductive state should invest more in foraging and tolerate higher predation risk. This should make the prey more catchable, and thereby, more preferable to predators. We ask, can predators respond to prey state? How does season and state affect the foraging game from the predator's perspective? By letting owls choose between gerbils whose states we experimentally manipulated, we could demonstrate predator sensitivity to prey state and predator selectivity that otherwise may be obscured by the foraging game. During spring, owls invested more time and attacks in the patch with well-fed gerbils. During summer, owls attacked both patches equally, yet allocated more time to the patch with hungry gerbils. Energetic state per se does not seem to be the basis of owl choice. The owls strongly responded to these subtle differences. In summer, gerbils managed their behavior primarily for survival, and the owls equalized capture opportunities by attacking both patches equally.

  15. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2016-10-01

    foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes. © 2016 by the Ecological Society of America.

  16. Species Diversity Enhances Predator Growth Rates

    International Nuclear Information System (INIS)

    Olson, M.H.; Jacobs, R.P.; O'Donnell, E.B.

    2007-01-01

    Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index) and growth rates of largemouth bass (Micropterus salmoides). This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  17. Aquatic insect predators and mosquito control.

    Science.gov (United States)

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  18. Modelling the dynamics of traits involved in fighting-predators-prey system.

    Science.gov (United States)

    Kooi, B W

    2015-12-01

    We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

  19. Accelerated hatching of southern leopard frog (Rana sphenocephala) eggs in response to the presence of a crayfish Procambarus nigrocinctus predator

    Science.gov (United States)

    Daniel Saenz; James B. Johnson; Cory K. Adams; Gage H. Dayton

    2003-01-01

    Phenotypic plasticity, such as morphological and behavioral changes in response to predators, is common in larval anurans. Less is known about inducible defenses in the embryonic stages of development. We investigated the predation risk imposed by crayfish (Procambarus nigrocinctus) on southern leopard frog (Rana sphenocephala)...

  20. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  1. The limits of adaptation: humans and the predator-prey arms race.

    Science.gov (United States)

    Vermeij, Geerat J

    2012-07-01

    In the history of life, species have adapted to their consumers by evolving a wide variety of defenses. By contrast, animal species harvested in the wild by humans have not adapted structurally. Nonhuman predators have high failure rates at one or more stages of an attack, indicating that victim species have spatial refuges or phenotypic defenses that permit further functional improvement. A new compilation confirms that species in the wild cannot achieve immunity from human predation with structural defenses. The only remaining options are to become undesirable or to live in or escape to places where harvesting by people is curtailed. Escalation between prey defenses and predators' weapons may be restricted under human dominance to interactions involving those low-level predators that have benefited from human overexploitation of top consumers. © 2012 The Author.

  2. Fatal attraction? Intraguild facilitation and suppression among predators

    Science.gov (United States)

    Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.

    2017-01-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  3. Fatal Attraction? Intraguild Facilitation and Suppression among Predators.

    Science.gov (United States)

    Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R

    2017-11-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  4. Effects of predation risk on site selection of barnacle geese during brood-rearing

    NARCIS (Netherlands)

    Stahl, J; Loonen, MJJE; Mehlum, F; Black, JM; Madsen, J

    1998-01-01

    Barnacle geese Branta leucopsis breed on small islands in the Kongsfjorden area, Spitsbergen. Shortly after hatching, families approach feeding sites at the mainland coast in the close surroundings of the village Ny-Alesund. The goslings are subject to predation by arctic foxes Alopex lagopus

  5. Maternally derived chemical defences are an effective deterrent against some predators of poison frog tadpoles (Oophaga pumilio).

    Science.gov (United States)

    Stynoski, Jennifer L; Shelton, Georgia; Stynoski, Peter

    2014-05-01

    Parents defend their young in many ways, including provisioning chemical defences. Recent work in a poison frog system offers the first example of an animal that provisions its young with alkaloids after hatching or birth rather than before. But it is not yet known whether maternally derived alkaloids are an effective defence against offspring predators. We identified the predators of Oophaga pumilio tadpoles and conducted laboratory and field choice tests to determine whether predators are deterred by alkaloids in tadpoles. We found that snakes, spiders and beetle larvae are common predators of O. pumilio tadpoles. Snakes were not deterred by alkaloids in tadpoles. However, spiders were less likely to consume mother-fed O. pumilio tadpoles than either alkaloid-free tadpoles of the red-eyed treefrog, Agalychnis callidryas, or alkaloid-free O. pumilio tadpoles that had been hand-fed with A. callidryas eggs. Thus, maternally derived alkaloids reduce the risk of predation for tadpoles, but only against some predators. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos.

    Directory of Open Access Journals (Sweden)

    Lois Jane Oulton

    Full Text Available Exposure to olfactory cues during embryonic development can have long term impacts on birds and amphibians behaviour. Despite the vast literature on predator recognition and responses in fishes, few researchers have determined how fish embryos respond to predator cues. Here we exposed four-day-old rainbowfish (Melanotaenia duboulayi embryos to cues emanating from a novel predator, a native predator and injured conspecifics. Their response was assessed by monitoring heart rate and hatch time. Results showed that embryos have an innate capacity to differentiate between cues as illustrated by faster heart rates relative to controls. The greatest increase in heart rate occurred in response to native predator odour. While we found no significant change in the time taken for eggs to hatch, all treatments experienced slight delays as expected if embryos are attempting to reduce exposure to larval predators.

  7. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes

    Science.gov (United States)

    Martin, Thomas E.; Boyce, Andy J.; Fierro-Calderon, Karolina; Mitchell, Adam E.; Armstad, Connor E.; Mouton, James C.; Bin Soudi, Evertius E.

    2017-01-01

    Nest structure is thought to provide benefits that have fitness consequences for several taxa. Traditionally, reduced nest predation has been considered the primary benefit underlying evolution of nest structure, whereas thermal benefits have been considered a secondary or even non-existent factor. Yet, the relative roles of these factors on nest structures remain largely unexplored.Enclosed nests have a constructed or natural roof connected to sides that allow a restricted opening or tube entrance that provides cover in all directions except the entrance, whereas open nests are cups or platforms that are open above. We show that construction of enclosed nests is more common among songbirds (Passeriformes) in tropical and southern hemisphere regions than in north temperate regions. This geographic pattern may reflect selection from predation risk, under long-standing assumptions that nest predation rates are higher in southern regions and that enclosed nests reduce predation risk compared with open cup nests. We therefore compared nest predation rates between enclosed vs. open nests in 114 songbird species that do not nest in tree holes among five communities of coexisting birds, and for 205 non-hole-nesting species from the literature, across northern temperate, tropical, and southern hemisphere regions.Among coexisting species, enclosed nests had lower nest predation rates than open nests in two south temperate sites, but not in either of two tropical sites or a north temperate site. Nest predation did not differ between nest types at any latitude based on literature data. Among 319 species from both our field studies and the literature, enclosed nests did not show consistent benefits of reduced predation and, in fact, predation was not consistently higher in the tropics, contrary to long-standing perspectives.Thermal benefits of enclosed nests were indicated based on three indirect results. First, species that built enclosed nests were smaller than species using

  8. Are lemmings prey or predators?

    Science.gov (United States)

    Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.

    2000-06-01

    Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.

  9. Role of intraguild predation in aphidophagous guilds

    Czech Academy of Sciences Publication Activity Database

    Hemptinne, J. L.; Magro, A.; Saladin, C.; Dixon, Anthony F. G.

    2012-01-01

    Roč. 136, č. 3 (2012), s. 161-170 ISSN 0931-2048 Institutional support: RVO:67179843 Keywords : aphidophagous guilds * cost of intraguild predation * interspecific predation * intraguild predation * ladybird beetles * omnivory Subject RIV: EH - Ecology, Behaviour Impact factor: 1.560, year: 2012

  10. Predators and predation rates of skylark Alauda arvensis and woodlark Lullula arborea nests in a semi-natural area in the Netherlands

    NARCIS (Netherlands)

    Praus, Libor; Hegemann, Arne; Tieleman, B. Irene; Weidinger, Karel

    2014-01-01

    Predation is a major cause of breeding failure in bird species with open nests. Although many studies have investigated nest predation rates, direct identification of nest predators is sporadic, especially in (semi-)natural habitats. We quantified nest success and identified nest predators in a

  11. Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator.

    Science.gov (United States)

    Barrios-O'Neill, Daniel; Dick, Jaimie T A; Emmerson, Mark C; Ricciardi, Anthony; MacIsaac, Hugh J; Alexander, Mhairi E; Bovy, Helene C

    2014-05-01

    Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  12. Dynamics of a Diffusive Predator-Prey Model with Allee Effect on Predator

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wang

    2013-01-01

    Full Text Available The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary conditions, is discussed. Some properties of the solutions, such as dissipation and persistence, are obtained. Local and global stability of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns, including holes, stripes, and spots patterns, are obtained.

  13. Predation by the Dwarf Seahorse on Copepods: Quantifying Motion and Flows Using 3D High Speed Digital Holographic Cinematography - When Seahorses Attack!

    Science.gov (United States)

    Gemmell, Brad; Sheng, Jian; Buskey, Ed

    2008-11-01

    Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.

  14. Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk

    DEFF Research Database (Denmark)

    Visser, Andre; Mariani, Patrizio; Pigolotti, Simone

    2009-01-01

    idealized descriptions of foraging and predation in a turbulent water column, we determine how fast a zooplankter should swim, if at all, and where should it position itself in the vertical to maximize its fitness given certain environmental conditions. Suspension feeding has an advantage over ambush...

  15. Competition and Dispersal in Predator-Prey Waves

    NARCIS (Netherlands)

    Savill, N.J.; Hogeweg, P.

    1998-01-01

    Dispersing predators and prey can exhibit complex spatio-temporal wave-like patterns if the interactions between them cause oscillatory dynamics. We study the effect of these predator- prey density waves on the competition between prey populations and between predator popu- lations with different

  16. Diversity of protists and bacteria determines predation performance and stability.

    Science.gov (United States)

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  17. Evidence of leopard predation on bonobos (Pan paniscus).

    Science.gov (United States)

    D'Amour, Danielle E; Hohmann, Gottfried; Fruth, Barbara

    2006-01-01

    Current models of social organization assume that predation is one of the major forces that promotes group living in diurnal primates. As large body size renders some protection against predators, gregariousness of great apes and other large primate species is usually related to other parameters. The low frequency of observed cases of nonhuman predation on great apes seems to support this assumption. However, recent efforts to study potential predator species have increasingly accumulated direct and indirect evidence of predation by leopards (Panthera pardus) on chimpanzees and gorillas. The following report provides the first evidence of predation by a leopard on bonobos (Pan paniscus). Copyright 2006 S. Karger AG, Basel.

  18. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    Science.gov (United States)

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  19. The functional response of a generalist predator.

    Directory of Open Access Journals (Sweden)

    Sophie Smout

    Full Text Available BACKGROUND: Predators can have profound impacts on the dynamics of their prey that depend on how predator consumption is affected by prey density (the predator's functional response. Consumption by a generalist predator is expected to depend on the densities of all its major prey species (its multispecies functional response, or MSFR, but most studies of generalists have focussed on their functional response to only one prey species. METHODOLOGY AND PRINCIPAL FINDINGS: Using Bayesian methods, we fit an MSFR to field data from an avian predator (the hen harrier Circus cyaneus feeding on three different prey species. We use a simple graphical approach to show that ignoring the effects of alternative prey can give a misleading impression of the predator's effect on the prey of interest. For example, in our system, a "predator pit" for one prey species only occurs when the availability of other prey species is low. CONCLUSIONS AND SIGNIFICANCE: The Bayesian approach is effective in fitting the MSFR model to field data. It allows flexibility in modelling over-dispersion, incorporates additional biological information into the parameter priors, and generates estimates of uncertainty in the model's predictions. These features of robustness and data efficiency make our approach ideal for the study of long-lived predators, for which data may be sparse and management/conservation priorities pressing.

  20. Disease and predation: sorting out causes of a bighorn sheep (Ovis canadensis decline.

    Directory of Open Access Journals (Sweden)

    Joshua B Smith

    Full Text Available Estimating survival and documenting causes and timing of mortality events in neonate bighorn sheep (Ovis canadensis improves understanding of population ecology and factors influencing recruitment. During 2010-2012, we captured and radiocollared 74 neonates in the Black Hills, South Dakota, of which 95% (70 died before 52 weeks of age. Pneumonia (36% was the leading cause of mortality followed by predation (30%. We used known fate analysis in Program MARK to estimate weekly survival rates and investigate the influence of intrinsic variables on 52-week survival. Model {S1 wk, 2-8 wks, >8 wks} had the lowest AIC c (Akaike's Information Criterion corrected for small sample size value, indicating that age (3-stage age-interval: 1 week, 2-8 weeks, and >8 weeks best explained survival. Weekly survival estimates for 1 week, 2-8 weeks, and >8 weeks were 0.81 (95% CI = 0.70-0.88, 0.86 (95% CI = 0.81-0.90, and 0.94 (95% CI = 0.91-0.96, respectively. Overall probability of surviving 52 weeks was 0.02 (95% CI = 0.01-0.07. Of 70 documented mortalities, 21% occurred during the first week, 55% during weeks 2-8, and 23% occurred >8 weeks of age. We found pneumonia and predation were temporally heterogeneous with lambs most susceptible to predation during the first 2-3 weeks of life, while the greatest risk from pneumonia occurred from weeks 4-8. Our results indicated pneumonia was the major factor limiting recruitment followed by predation. Mortality from predation may have been partly compensatory to pneumonia and its effects were less pronounced as alternative prey became available. Given the high rates of pneumonia-caused mortality we observed, and the apparent lack of pneumonia-causing pathogens in bighorn populations in the western Black Hills, management activities should be geared towards eliminating contact between diseased and healthy populations.

  1. Disease and predation: Sorting out causes of a bighorn sheep (Ovis canadensis) decline

    Science.gov (United States)

    Smith, Joshua B.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2014-01-01

    Estimating survival and documenting causes and timing of mortality events in neonate bighorn sheep (Ovis canadensis) improves understanding of population ecology and factors influencing recruitment. During 2010–2012, we captured and radiocollared 74 neonates in the Black Hills, South Dakota, of which 95% (70) died before 52 weeks of age. Pneumonia (36%) was the leading cause of mortality followed by predation (30%). We used known fate analysis in Program MARK to estimate weekly survival rates and investigate the influence of intrinsic variables on 52-week survival. Model {S1 wk, 2–8 wks, >8 wks} had the lowest AICc (Akaike’s Information Criterion corrected for small sample size) value, indicating that age (3-stage age-interval: 1 week, 2–8 weeks, and >8 weeks) best explained survival. Weekly survival estimates for 1 week, 2–8 weeks, and >8 weeks were 0.81 (95% CI = 0.70–0.88), 0.86 (95% CI = 0.81–0.90), and 0.94 (95% CI = 0.91–0.96), respectively. Overall probability of surviving 52 weeks was 0.02 (95% CI = 0.01–0.07). Of 70 documented mortalities, 21% occurred during the first week, 55% during weeks 2–8, and 23% occurred >8 weeks of age. We found pneumonia and predation were temporally heterogeneous with lambs most susceptible to predation during the first 2–3 weeks of life, while the greatest risk from pneumonia occurred from weeks 4–8. Our results indicated pneumonia was the major factor limiting recruitment followed by predation. Mortality from predation may have been partly compensatory to pneumonia and its effects were less pronounced as alternative prey became available. Given the high rates of pneumonia-caused mortality we observed, and the apparent lack of pneumonia-causing pathogens in bighorn populations in the western Black Hills, management activities should be geared towards eliminating contact between diseased and healthy populations.

  2. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.M.H.; Van Donk, E.; Huisman, Jef

    2014-01-01

    Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte

  3. Red fox predation on breeding ducks in midcontinent North America

    Science.gov (United States)

    Sargeant, Alan B.; Allen, Stephen H.; Eberhardt, Robert T.

    1984-01-01

    populations in that area. Of 5,402 individual food items found at dens in the intensive study area, 24% were adult ducks. Ducks made up an estimated maximum average of 16% of the prey biomass required by fox families during the denning season. The average annual take of adult ducks by foxes in the midcontinent area was estimated to be about 900,000. This estimate included both scavenged and fox-killed ducks, as well as ducks taken after the denning season. Fox impact on midcontinent ducks was greatest in eastern North Dakota where both fox and duck densities were relatively high. Predation in that area was likely increased by environmental factors, especially intensive agriculture that concentrated nesting and reduced prey abundance. Predation by red foxes and other predators severely reduces duck production in the midcontinent area. Effective management to increase waterfowl production will necessitate coping with or reducing high levels of predation.

  4. Predators and the public trust.

    Science.gov (United States)

    Treves, Adrian; Chapron, Guillaume; López-Bao, Jose V; Shoemaker, Chase; Goeckner, Apollonia R; Bruskotter, Jeremy T

    2017-02-01

    Many democratic governments recognize a duty to conserve environmental resources, including wild animals, as a public trust for current and future citizens. These public trust principles have informed two centuries of U.S.A. Supreme Court decisions and environmental laws worldwide. Nevertheless numerous populations of large-bodied, mammalian carnivores (predators) were eradicated in the 20th century. Environmental movements and strict legal protections have fostered predator recoveries across the U.S.A. and Europe since the 1970s. Now subnational jurisdictions are regaining management authority from central governments for their predator subpopulations. Will the history of local eradication repeat or will these jurisdictions adopt public trust thinking and their obligation to broad public interests over narrower ones? We review the role of public trust principles in the restoration and preservation of controversial species. In so doing we argue for the essential roles of scientists from many disciplines concerned with biological diversity and its conservation. We look beyond species endangerment to future generations' interests in sustainability, particularly non-consumptive uses. Although our conclusions apply to all wild organisms, we focus on predators because of the particular challenges they pose for government trustees, trust managers, and society. Gray wolves Canis lupus L. deserve particular attention, because detailed information and abundant policy debates across regions have exposed four important challenges for preserving predators in the face of interest group hostility. One challenge is uncertainty and varied interpretations about public trustees' responsibilities for wildlife, which have created a mosaic of policies across jurisdictions. We explore how such mosaics have merits and drawbacks for biodiversity. The other three challenges to conserving wildlife as public trust assets are illuminated by the biology of predators and the interacting

  5. Behaviourally mediated indirect effects : interference competition increases predation mortality in foraging redshanks

    NARCIS (Netherlands)

    Minderman, J; Lind, J; Cresswell, W

    The effect of competition for a limiting resource on the population dynamics of competitors is usually assumed to operate directly through starvation, yet may also affect survival indirectly through behaviourally mediated effects that affect risk of predation. Thus, competition can affect more than

  6. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  7. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    Science.gov (United States)

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages

    NARCIS (Netherlands)

    Goedknegt, M.A.; Welsh, J.E.; Drent, J.; Thieltges, D.

    2015-01-01

    Climate change is expected to affect disease risk in many parasite-host systems, e.g., via an effect of temperature on infectivity (temperature effects). However, recent studies indicate that ambient communities can lower disease risk for hosts, for instance via predation on free-living stages of

  9. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.

    Science.gov (United States)

    Gvoždík, Lumír; Smolinský, Radovan

    2015-11-02

    Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.

  10. Instream cover and shade mediate avian predation on trout in semi-natural streams

    Science.gov (United States)

    Penaluna, Brooke E.; Dunham, Jason B.; Noakes, David L. G.

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in replicated semi-natural stream sections. These sections provided high (0.01 m2 of cover per m2 of stream) or low (0.002 m2 of cover per m2 of stream) levels of instream cover available to trout and were closed to emigration. Each fish was individually tagged, allowing us to track retention of individuals during the course of the 36-day experiment, which we attributed to survival from predators, because fish had no other way to leave the streams. Although other avian predators may have been active in our system and not detected, the only predator observed was the belted kingfisher Megaceryle alcyon, which is known to prey heavily on fish. In both treatments, trout >20.4 cm were not preyed upon indicating an increased ability to prey upon on smaller individuals. Increased availability of cover improved survival of trout by 12% in high relative to low cover stream sections. Trout also survived better in stream sections with greater shade, a factor we could not control in our system. Collectively, these findings indicate that instream cover and shade from avian predators can play an important role in driving survival of fish in small streams or during periods of low flow.

  11. Predation-related costs and benefits of conspecific attraction in songbirds--an agent-based approach.

    Science.gov (United States)

    Szymkowiak, Jakub; Kuczyński, Lechosław

    2015-01-01

    Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect) or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution). Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds' aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific attraction for

  12. Predation-Related Costs and Benefits of Conspecific Attraction in Songbirds—An Agent-Based Approach

    Science.gov (United States)

    Szymkowiak, Jakub; Kuczyński, Lechosław

    2015-01-01

    Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect) or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution). Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds’ aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific attraction for

  13. Predation-related costs and benefits of conspecific attraction in songbirds--an agent-based approach.

    Directory of Open Access Journals (Sweden)

    Jakub Szymkowiak

    Full Text Available Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution. Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds' aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific

  14. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    Science.gov (United States)

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  15. Effects of feral cats on the evolution of anti-predator behaviours in island reptiles: insights from an ancient introduction.

    Science.gov (United States)

    Li, Binbin; Belasen, Anat; Pafilis, Panayiotis; Bednekoff, Peter; Foufopoulos, Johannes

    2014-08-07

    Exotic predators have driven the extinction of many island species. We examined impacts of feral cats on the abundance and anti-predator behaviours of Aegean wall lizards in the Cyclades (Greece), where cats were introduced thousands of years ago. We compared populations with high and low cat density on Naxos Island and populations on surrounding islets with no cats. Cats reduced wall lizard populations by half. Lizards facing greater risk from cats stayed closer to refuges, were more likely to shed their tails in a standardized assay, and fled at greater distances when approached by either a person in the field or a mounted cat decoy in the laboratory. All populations showed phenotypic plasticity in flight initiation distance, suggesting that this feature is ancient and could have helped wall lizards survive the initial introduction of cats to the region. Lizards from islets sought shelter less frequently and often initially approached the cat decoy. These differences reflect changes since islet isolation and could render islet lizards strongly susceptible to cat predation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. The sound of danger: threat sensitivity to predator vocalizations, alarm calls, and novelty in gulls.

    Directory of Open Access Journals (Sweden)

    Sarah A MacLean

    Full Text Available The threat sensitivity hypothesis predicts that organisms will evaluate the relative danger of and respond differentially to varying degrees of predation threat. Doing so allows potential prey to balance the costs and benefits of anti-predator behaviors. Threat sensitivity has undergone limited testing in the auditory modality, and the relative threat level of auditory cues from different sources is difficult to infer across populations when variables such as background risk and experience are not properly controlled. We experimentally exposed a single population of two sympatric gull species to auditory stimuli representing a range of potential threats in order to compare the relative threat of heterospecific alarm calls, conspecific alarms calls, predator vocalizations, and novel auditory cues. Gulls were able to discriminate among a diverse set of threat indicators and respond in a graded manner commensurate with the level of threat. Vocalizations of two potential predators, the human voice and bald eagle call, differed in their threat level compared to each other and to alarm calls. Conspecific alarm calls were more threatening than heterospecfic alarm calls to the larger great black-backed gull, but the smaller herring gull weighed both equally. A novel cue elicited a response intermediate between known threats and a known non-threat in herring gulls, but not great black-backed gulls. Our results show that the relative threat level of auditory cues from different sources is highly species-dependent, and that caution should be exercised when comparing graded and threshold threat sensitive responses.

  17. Biomechanical properties of predator-induced body armour in the freshwater crustacean Daphnia.

    Science.gov (United States)

    Kruppert, Sebastian; Horstmann, Martin; Weiss, Linda C; Witzel, Ulrich; Schaber, Clemens F; Gorb, Stanislav N; Tollrian, Ralph

    2017-08-29

    The freshwater crustacean Daphnia is known for its ability to develop inducible morphological defences that thwart predators. These defences are developed only in the presence of predators and are realized as morphological shape alterations e.g. 'neckteeth' in D. pulex and 'crests' in D. longicephala. Both are discussed to hamper capture, handling or consumption by interfering with the predator's prey capture devices. Additionally, D. pulex and some other daphniids were found to armour-up and develop structural alterations resulting in increased carapace stiffness. We used scanning transmission electron microscopy (STEM) and confocal laser scanning microscopy (CLSM) to identify predator-induced structural and shape alterations. We found species specific structural changes accompanying the known shape alterations. The cuticle becomes highly laminated (i.e. an increased number of layers) in both species during predator exposure. Using nano- and micro-indentation as well as finite element analysis (FEA) we determined both: the structure's and shape's contribution to the carapace's mechanical resistance. From our results we conclude that only structural alterations are responsible for increased carapace stiffness, whereas shape alterations appear to pose handling difficulties during prey capture. Therefore, these defences act independently at different stages during predation.

  18. Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia.

    Science.gov (United States)

    Malagnoux, Laure; Capowiez, Yvan; Rault, Magali

    2015-09-01

    The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62%) and chlorpyrifos-ethyl (98%) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (-33%) whereas chlorpyrifos-ethyl affected CbE activity preferentially (-59%). Spinosad (20% of controls), acetamiprid (28%), and chlorpyrifos-ethyl (66%) also significantly decreased the predation behavior of adult male but not female (5 to 40%) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67% of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.

  19. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  20. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-01-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants. PMID:24665344

  1. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  2. Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation.

    Directory of Open Access Journals (Sweden)

    Ramón Perea

    Full Text Available Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal and in two contrasting microsites (open vs. sheltered to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis. In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P. Parthenocarpy (non-fertilized seeds was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed.

  3. Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?

    Science.gov (United States)

    David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier

    1999-01-01

    Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...

  4. Predation and the evolution of complex oviposition behaviour in Amazon rainforest frogs.

    Science.gov (United States)

    Magnusson, William E; Hero, Jean-Marc

    1991-05-01

    conclusion that the presence of fish actually protects aquatic anuran eggs from predation in this tropical system, and allows aquatic oviposition to dominate only in those waterbodies with moderate to high densities of fish. Our results suggest that terrestrial oviposition is a "fixed predator avoidance" trait.

  5. Birds as predators in tropical agroforestry systems.

    Science.gov (United States)

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  6. The adaptive value of gluttony: predators mediate the life history trade-offs of satiation threshold.

    Science.gov (United States)

    Pruitt, J N; Krauel, J J

    2010-10-01

    Animals vary greatly in their tendency to consume large meals. Yet, whether or how meal size influences fitness in wild populations is infrequently considered. Using a predator exclusion, mark-recapture experiment, we estimated selection on the amount of food accepted during an ad libitum feeding bout (hereafter termed 'satiation threshold') in the wolf spider Schizocosa ocreata. Individually marked, size-matched females of known satiation threshold were assigned to predator exclusion and predator inclusion treatments and tracked for a 40-day period. We also estimated the narrow-sense heritability of satiation threshold using dam-on-female-offspring regression. In the absence of predation, high satiation threshold was positively associated with larger and faster egg case production. However, these selective advantages were lost when predators were present. We estimated the heritability of satiation threshold to be 0.56. Taken together, our results suggest that satiation threshold can respond to selection and begets a life history trade-off in this system: high satiation threshold individuals tend to produce larger egg cases but also suffer increased susceptibility to predation. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  7. Effects of seed density and proximity to refuge habitat on seed predation rates for a rare and a common Lupinus species.

    Science.gov (United States)

    Pardini, Eleanor A; Patten, Melissa V; Knight, Tiffany M

    2017-03-01

    Biotic interactions such as seed predation can play a role in explaining patterns of abundance among plant species. The effect of seed predation will depend on how the strength of predation differs across species and environments, and on the degree to which seed loss at one life-cycle phase increases fitness at another phase. Few studies have simultaneously quantified predispersal and postdispersal predation in co-occurring rare and common congeners, despite the value of estimating both for understanding causes of rarity. We quantified predispersal seed predation on the rare, herbaceous species Lupinus tidestromii (Fabaceae) and its common, shrubby congener L. chamissonis across multiple years in the same community. We experimentally measured postdispersal seed predation at two seed densities and locations near or far from an exotic grass housing high densities of deer mice ( Peromyscus maniculatus ), their primary, native seed predator. The common L. chamissonis had the lowest predispersal seed predation of the two lupine species, potentially because of its height: its high racemes received less predation than those low to the ground. By contrast, the same species experienced higher postdispersal seed predation, and at predators traveled long distances away from refuge habitat to consume their seeds. Across both plant species, mice preferentially predated high-density seed sources. Our results show differences in the magnitude and direction of seed predation between the species across different life-cycle phases. We demonstrated possible roles of proximity to refuge habitat, seed density, and seed size in these patterns. Congeneric comparisons would benefit from a comprehensive framework that considers seed predation across different life-cycle phases and the environmental context of predation. © 2017 Botanical Society of America.

  8. Sharp-Tailed Grouse Nest Survival and Nest Predator Habitat Use in North Dakota's Bakken Oil Field.

    Directory of Open Access Journals (Sweden)

    Paul C Burr

    Full Text Available Recent advancements in extraction technologies have resulted in rapid increases of gas and oil development across the United States and specifically in western North Dakota. This expansion of energy development has unknown influences on local wildlife populations and the ecological interactions within and among species. Our objectives for this study were to evaluate nest success and nest predator dynamics of sharp-tailed grouse (Tympanuchus phasianellus in two study sites that represented areas of high and low energy development intensities in North Dakota. During the summers of 2012 and 2013, we monitored 163 grouse nests using radio telemetry. Of these, 90 nests also were monitored using miniature cameras to accurately determine nest fates and identify nest predators. We simultaneously conducted predator surveys using camera scent stations and occupancy modeling to estimate nest predator occurrence at each site. American badgers (Taxidea taxus and striped skunks (Mephitis mephitis were the primary nest predators, accounting for 56.7% of all video recorded nest depredations. Nests in our high intensity gas and oil area were 1.95 times more likely to succeed compared to our minimal intensity area. Camera monitored nests were 2.03 times more likely to succeed than non-camera monitored nests. Occupancy of mammalian nest predators was 6.9 times more likely in our study area of minimal gas and oil intensity compared to the high intensity area. Although only a correlative study, our results suggest energy development may alter the predator community, thereby increasing nest success for sharp-tailed grouse in areas of intense development, while adjacent areas may have increased predator occurrence and reduced nest success. Our study illustrates the potential influences of energy development on the nest predator-prey dynamics of sharp-tailed grouse in western North Dakota and the complexity of evaluating such impacts on wildlife.

  9. Two-prey one-predator model

    International Nuclear Information System (INIS)

    Elettreby, M.F.

    2009-01-01

    In this paper we propose a new multi-team prey-predator model, in which the prey teams help each other. We study its local stability. In the absence of predator, there is no help between the prey teams. So, we study the global stability and persistence of the model without help.

  10. Livestock Predation by Puma (Puma concolor) in the Highlands of a Southeastern Brazilian Atlantic Forest.

    Science.gov (United States)

    Palmeira, Francesca Belem Lopes; Trinca, Cristiano Trapé; Haddad, Claudio Maluf

    2015-10-01

    We evaluated local opinion about reducing livestock losses to puma (Puma concolor) and the potential for conflict among livestock breeders inside a protected area in the highlands of a southeastern Brazilian Atlantic forest. We also quantified the number and type of livestock losses, and determined if predation by puma was correlated with property profile and landscape characteristics. We conducted semistructured interviews with 42 livestock breeders sampled in 36 rural properties. When asked how to reduce predation, 33% of livestock breeders refused to answer, 26% suggested improving livestock husbandry practices, 19% stated that there was no appropriate action, 17% favored removing the "problem" individual, and 5 % suggested killing the puma. Opinion on how to solve predation was independent of herd size and history of losses, and was correlated with respondent age class. Older respondents tended to suggest removing or killing pumas. Attitudes toward predation represented high potential for conflict among livestock breeders who demonstrated high discordance among responses. Horses were the most common prey (51%), followed by cattle (28%), sheep (17%), and goats (4%); totaling 47 animals attacked between 2004 and 2007. Annual predation was approximately 12 ± 5 animals, equivalent to 0.4% of the total livestock. Property elevation and distance from the urban center were the main predictors of predation probability. This survey used a novel approach that has not been addressed directly in other studies on livestock predation and demonstrated that the high potential for conflict among livestock breeders should be considered before implementing management actions.

  11. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    Directory of Open Access Journals (Sweden)

    Andrew Wilby

    Full Text Available The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by

  12. The modeling of predator-prey interactions

    OpenAIRE

    Muhammad Shakil; H. A. Wahab; Muhammad Naeem, et al.

    2015-01-01

    In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action law for predator prey models and the quasi chemical approach is applied for the interactions between the predator and its prey to develop the modeled equations...

  13. Golden Eagle predation on experimental Sandhill and Whooping Cranes

    Science.gov (United States)

    Ellis, D.H.; Clegg, K.R.; Lewis, J.C.; Spaulding, E.

    1999-01-01

    There are very few published records of Golden Eagles preying upon cranes, especially in North America. During our experiments to lead cranes on migration behind motorized craft in the western United States, we experienced 15 attacks (four fatal) and believe many more attacks would have occurred (and more would have been fatal) without human intervention. We recognize eagle predation as an important risk to cranes especially during migration.

  14. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species.

    Science.gov (United States)

    Manríquez, Patricio H; Jara, María Elisa; Seguel, Mylene E; Torres, Rodrigo; Alarcon, Emilio; Lee, Matthew R

    2016-01-01

    The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39 °S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19 °C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15 °C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the

  15. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species.

    Directory of Open Access Journals (Sweden)

    Patricio H Manríquez

    Full Text Available The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39 °S to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months to contrasting pCO2 (ca. 500 and 1400 μatm and temperature (15 and 19 °C levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15 °C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response or secretion of adhesive mucous (e.g. dislodgement resistance. Moreover, we conclude that positive behavioural responses may assist

  16. Ocean Acidification and Increased Temperature Have Both Positive and Negative Effects on Early Ontogenetic Traits of a Rocky Shore Keystone Predator Species

    Science.gov (United States)

    Manríquez, Patricio H.; Jara, María Elisa; Seguel, Mylene E.; Torres, Rodrigo; Alarcon, Emilio; Lee, Matthew R.

    2016-01-01

    The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39°S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19°C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15°C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation

  17. Perceptual advertisement by the prey of stalking or ambushing predators.

    Science.gov (United States)

    Broom, Mark; Ruxton, Graeme D

    2012-12-21

    There has been previous theoretical explorations of the stability of signals by prey that they have detected a stalking or ambush predator, where such perceptual advertisement dissuades the predator from attacking. Here we use a game theoretical model to extend the theory to consider some empirically-motivated complexities: (i) many perceptual advertisement signals appear to have the potential to vary in intensity, (ii) higher intensity signals are likely to be most costly to produce, and (iii) some high-cost signals (such as staring directly at the predator) can only be utilised if the prey is very confident of the existence of a nearby predator (that is, there are reserved or unfakable signals). We demonstrate that these complexities still allow for stable signalling. However, we do not find solutions where prey use a range of signal intensities to signal different degrees of confidence in the proximity of a predator; with prey simply adopting a binary response of not signalling or always signalling at the same fixed level. However this fixed level will not always be the cheapest possible signal, and we predict that prey that require more certainty about proximity of a predator will use higher-cost signals. The availability of reserved signals does not prohibit the stability of signalling based on lower-cost signals, but we also find circumstances where only the reserved signal is used. We discuss the potential to empirically test our model predictions, and to develop theory further to allow perceptual advertisement to be combined with other signalling functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    Science.gov (United States)

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  19. Predator-induced demographic shifts in coral reef fish assemblages

    Science.gov (United States)

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  20. Predator-induced demographic shifts in coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Benjamin I Ruttenberg

    Full Text Available In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.

  1. Effects of seed predators of different body size on seed mortality in Bornean logged forest.

    Science.gov (United States)

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy

    2010-07-19

    The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.

  2. Inhibition between invasives: a newly introduced predator moderates the impacts of a previously established invasive predator.

    Science.gov (United States)

    Griffen, Blaine D; Guy, Travis; Buck, Julia C

    2008-01-01

    1. With continued globalization, species are being transported and introduced into novel habitats at an accelerating rate. Interactions between invasive species may provide important mechanisms that moderate their impacts on native species. 2. The European green crab Carcinus maenas is an aggressive predator that was introduced to the east coast of North America in the mid-1800 s and is capable of rapid consumption of bivalve prey. A newer invasive predator, the Asian shore crab Hemigrapsus sanguineus, was first discovered on the Atlantic coast in the 1980s, and now inhabits many of the same regions as C. maenas within the Gulf of Maine. Using a series of field and laboratory investigations, we examined the consequences of interactions between these predators. 3. Density patterns of these two species at different spatial scales are consistent with negative interactions. As a result of these interactions, C. maenas alters its diet to consume fewer mussels, its preferred prey, in the presence of H. sanguineus. Decreased mussel consumption in turn leads to lower growth rates for C. maenas, with potential detrimental effects on C. maenas populations. 4. Rather than an invasional meltdown, this study demonstrates that, within the Gulf of Maine, this new invasive predator can moderate the impacts of the older invasive predator.

  3. Invasion and predation in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Judith S. WEIS

    2011-10-01

    Full Text Available This article reviews biological invasions in which predation (or its absence plays a major role in the success of the invader. Examples are described in which the invader out-competes native species for the same food, and cases in which the invader consumes valued native species. In many instances, better predator avoidance by the invasive species or the absence of predators in the new habitat contributes to the success of the invaders; in other cases native or introduced predators appear to be able to keep the invasive species in check. A relatively new management approach in the US is the idea of adding another trophic level – to have humans act as the predators and consume the invasive species. This approach is being utilized in Florida and throughout the Caribbean against the lionfish, but could be extended to other fishes, as well as to various invasive crustaceans and mollusks. This idea is controversial, and current regulations prohibiting the possession of individuals of the invasive species (e.g., mitten crabs or snakefish would preclude the development of a fishery for them [Current Zoology 57 (5: 613–624, 2011].

  4. Predation by northern squawfish on live and dead juvenile chinook salmon

    International Nuclear Information System (INIS)

    Gadomski, D.M.; Hall-Griswold, J.A.

    1992-01-01

    Northern squawfish Ptychocheilus oregonensis is a major predator of juvenile salmonids Oncorhynchus spp. migrating downstream through the Columbia River. High predation rates occur just below dams. If northern squawfish selectively consume salmonids killed or injured during dam passage, previous estimates of predation mortality may be too high. We conducted laboratory experiments that indicate northern squawfish prefer dead juvenile chinook salmon O. tshawytscha over live individuals. When equal numbers of dead and live chinook salmon were offered to northern squawfish maintained on a natural photoperiod (15 h light: 9 h darkness), significantly more (P < 0.05) dead than live fish were consumed, both in 1,400-L circular tanks and in an 11,300-L raceway (62% and 79% of prey consumed were dead, respectively). When dead and live juvenile chinook salmon were provided in proportions more similar to those below dams (20% dead, 80% live), northern squawfish still selected for dead prey (36% of fish consumed were dead). In additional experiments, northern squawfish were offered a proportion of 20% dead juvenile chinook salmon during 4-h periods of either light or darkness. The predators were much more selective for dead chinook salmon during bright light (88% of fish consumed were dead) than during darkness (31% were dead)

  5. Nest predation research: Recent findings and future perspectives

    Science.gov (United States)

    Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.

    2016-01-01

    Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.

  6. Assessing diet compositions of Lake Ontario predators using fatty acid profiles of prey fishes

    Science.gov (United States)

    Happell, Austin; Pattridge, Robert; Rinchard, Jacques; Walsh, Maureen

    2017-01-01

    Fatty acid profiles are used in food web studies to assess trophic interactions between predator and prey. The present study provides the first comprehensive fatty acid dataset for important prey and predator species in Lake Ontario. Three major prey fish (alewife, rainbow smelt, and round goby) were collected at three sites along the southern shore of Lake Ontario during the spring and fall of 2013, and predator species were collected in similar locations during the summer of 2013. Fatty acid compositions were compared among all prey species, all predator species, and information from both predator and prey was used to infer foraging differences among predators. Seasonal differences in fatty acids were found within each prey species studied. Differences among prey species were greater than any spatio-temporal differences detected within species. Fatty acids of predators revealed species-specific differences that matched known foraging habits. Chinook and Coho salmon, which are known to select alewife as their dominant prey item, had relatively little variation in fatty acid profiles. Conversely, brown trout, lake trout, yellow perch and esocids had highly variable fatty acid profiles and likely highly variable diet compositions. In general, our data suggested three dominant foraging patterns: 1) diet composed of nearly exclusively alewife for Chinook and Coho Salmon; 2) a mixed diet of alewife and round goby for brown and lake trout, and both rock and smallmouth bass; 3) a diet that is likely comprised of forage fishes other than those included in our study for northern pike and chain pickerel.

  7. Host Range Specificity of Scymnus camptodromus (Coleoptera: Coccinellidae), A Predator of Hemlock Woolly Adelgid (Hemiptera: Adelgidae).

    Science.gov (United States)

    Limbu, Samita; Cassidy, Katie; Keena, Melody; Tobin, Patrick; Hoover, Kelli

    2016-02-01

    Scymnus (Neopullus) camptodromus Yu and Liu (Coleoptera: Coccinellidae) was brought to the United States from China as a potential biological control agent for hemlock woolly adelgid (Adelges tsugae Annand) (Hemiptera: Adelgidae). Scymnus camptodromus phenology is closely synchronized with that of A. tsugae and has several characteristics of a promising biological control agent. As a prerequisite to field release, S. camptodromus was evaluated for potential nontarget impacts. In host range studies, the predator was given the choice of sympatric adelgid and nonadelgid prey items. Nontarget testing showed that S. camptodromus will feed to some degree on other adelgid species, but highly prefers A. tsugae. We also evaluated larval development of S. camptodromus on pine bark adelgid (Pineus strobi (Hartig)) (Hemiptera: Adelgidae) and larch adelgid (Adelges laricis Vallot) (Hemiptera: Adelgidae); a small proportion of predator larvae was able to develop to adulthood on P. strobi or A. laricis alone. Scymnus camptodromus showed no interest in feeding on woolly alder aphid (Paraprociphilus tessellatus Fitch) (Hemiptera: Aphididae) or woolly apple aphid (Eriosoma lanigerum (Hausmann)) (Hemiptera: Aphididae), and minimal interest in cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) in choice and no-choice experiments. Scymnus camptodromus females did not oviposit on any host material other than A. tsugae-infested hemlock. Under the circumstances of the study, S. camptodromus appears to be a specific predator of A. tsugae, with minimal risk to nontarget species. Although the predator can develop on P. strobi, the likelihood that S. camptodromus would oviposit on pine hosts of this adelgid is small.

  8. The effects of recruitment to direct predator cues on predator responses in meerkats

    OpenAIRE

    Zottl, M.; Lienert, R.; Clutton-Brock, T.; Millesi, E.; Manser, M B.

    2017-01-01

    Behavioral responses of animals to direct predator cues (DPCs; e.g., urine) are common and may improve their survival. We investigated wild meerkat (Suricata suricatta) responses to DPCs by taking an experimental approach. When meerkats encounter a DPC they often recruit group members by emitting a call type, which causes the group members to interrupt foraging and approach the caller. The aim of this study was to identify the qualities of olfactory predator cues, which affect the strength of...

  9. Sublethal effects of catch-and-release fishing: measuring capture stress, fish impairment, and predation risk using a condition index

    Science.gov (United States)

    Campbell, Matthew D.; Patino, Reynaldo; Tolan, J.M.; Strauss, R.E.; Diamond, S.

    2009-01-01

    The sublethal effects of simulated capture of red snapper (Lutjanus campechanus) were analysed using physiological responses, condition indexing, and performance variables. Simulated catch-and-release fishing included combinations of depth of capture and thermocline exposure reflective of environmental conditions experienced in the Gulf of Mexico. Frequency of occurrence of barotrauma and lack of reflex response exhibited considerable individual variation. When combined into a single condition or impairment index, individual variation was reduced, and impairment showed significant increases as depth increased and with the addition of thermocline exposure. Performance variables, such as burst swimming speed (BSS) and simulated predator approach distance (AD), were also significantly different by depth. BSSs and predator ADs decreased with increasing depth, were lowest immediately after release, and were affected for up to 15 min, with longer recovery times required as depth increased. The impairment score developed was positively correlated with cortisol concentration and negatively correlated with both BSS and simulated predator AD. The impairment index proved to be an efficient method to estimate the overall impairment of red snapper in the laboratory simulations of capture and shows promise for use in field conditions, to estimate release mortality and vulnerability to predation.

  10. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.

    Directory of Open Access Journals (Sweden)

    Michael Natt

    Full Text Available Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may

  11. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems.

    Science.gov (United States)

    Lea, James S E; Wetherbee, Bradley M; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L; Mucientes, Gonzalo R; Humphries, Nicolas E; Harvey, Guy M; Sims, David W; Shivji, Mahmood S

    2015-06-09

    Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.

  12. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems

    Science.gov (United States)

    Lea, James S. E.; Wetherbee, Bradley M.; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L.; Mucientes, Gonzalo R.; Humphries, Nicolas E.; Harvey, Guy M.; Sims, David W.; Shivji, Mahmood S.

    2015-06-01

    Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.

  13. Behavioral and Physiological Responses of Ozark Zigzag Salamanders to Stimuli from an Invasive Predator: The Armadillo

    Directory of Open Access Journals (Sweden)

    Adam L. Crane

    2012-01-01

    Full Text Available When new predators invade a habitat, either through range extensions or introductions, prey may be at a high risk because they do not recognize the predators as dangerous. The nine-banded armadillo (Dasypus novemcinctus has recently expanded its range in North America. Armadillos forage by searching soil and leaf litter, consuming invertebrates and small vertebrates, including salamanders. We tested whether Ozark zigzag salamanders (Plethodon angusticlavius from a population coexisting with armadillos for about 30 years exhibit antipredator behavior in the presence of armadillo chemical cues and whether they can discriminate between stimuli from armadillos and a nonpredatory sympatric mammal (white-tailed deer, Odocoileus virginianus. Salamanders appeared to recognize substrate cues from armadillos as a threat because they increased escape behaviors and oxygen consumption. When exposed to airborne cues from armadillos, salamanders also exhibited an antipredator response by spending more time in an inconspicuous posture. Additionally, individually consistent behaviors across treatments for some response variables suggest the potential for a behavioral syndrome in this species.

  14. Relative effects of exophytic predation, endophytic predation, and intraspecific competition on a subcortical herbivore: consequences to the reproduction of Ips pini and Thanasimus dubius.

    Science.gov (United States)

    Aukema, Brian H; Raffa, Kenneth F

    2002-12-01

    We used a laboratory assay to partition the effects of predation and intraspecific competition on the establishment, mating success, and brood development of an endophytic herbivore. We selected a system in which the same predator feeds both exophytically and endophytically on the same prey, to evaluate the role of herbivore feeding guild on predator numerical and functional responses. The bark beetle, Ips pini (Coleoptera: Scolytidae) reproduces within the stems of conifers. Males establish mating chambers under the bark, produce aggregation pheromones, and are subsequently joined by females that construct ovipositional galleries. Thanasimus dubius (Coleoptera: Cleridae) adults prey on adults alighting on the bark surface. T. dubius females then oviposit at the bark beetles' entrance sites, and their larvae prey on developing bark beetle larvae within the tree. We imposed a controlled 3×3 factorial design of prey and predator adult densities on red pine logs. Both predation and competition decreased I. pini reproduction. However, the per capita effect of predation was greater than competition, with one adult T. dubius reducing herbivore reproduction by an equivalent amount as four to five competing males and their harems. Increased densities of adult T. dubius on the plant surface reduced the number of prey captured per predator. Total predation on adults and larvae was similar. However, adult T. dubius on the plant surface ate approximately 18-35 times more I. pini per day than did their endophytic larvae. Within the plant, cannibalism among T. dubius, low herbivore densities, limited feeding times, and presumably the complex gallery architecture of I. pini reduced the number of predator progeny. The progeny of I. pini showed even sex ratios in the absence of predators, but were female biased when predators were present. We quantified a relatively narrow set of predator and prey densities that can generate replacement rates greater than one for this predator

  15. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  16. Parents or predators: Examining intraseasonal variation in nest survival for migratory passerine

    Science.gov (United States)

    Robin Hirsch-Jacobson; W. Andrew Cox; Emily E. Tewes; Frank R., III Thompson; John. Faaborg

    2012-01-01

    For birds, risk of nest predation can vary within a breeding season, but few data exist that explain why such variation occurs. We investigated intraseasonal variation of nest survival of the Acadian Flycatcher (Empidonax virescens) in Midwestern forests and tested whether four of the adults' reproductive strategies (clutch size, nest...

  17. Selective predation and prey class behaviour as possible ...

    African Journals Online (AJOL)

    To test these mechanisms, a study was conducted on Samara Private Game Reserve to investigate the potential impact cheetah (Acinonyx jubatus) predation has had on the kudu (Tragelaphus strepciseros) population. Kudu age and sex data were collected across both predator-present and predator-absent sections using ...

  18. Responses of urban crows to con- and hetero-specic alarm calls in predator and non-predator zoo enclosures.

    OpenAIRE

    BÍLÁ, Kateřina

    2017-01-01

    I investigated if urban crows respond to con- and heterospecific alarm signals in predator and non-predator contexts in enclosures in the ZOO of Vienna. Crows responded strongly to the crow and also jackdaw alarms in both types of contexts, but also responded to the singing of great tit (control) in the predator context. This suggests that crows are aware of the danger the wolf and bear represent but are generally very cautious at the exotic Zoo animals.

  19. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease

    NARCIS (Netherlands)

    Kooi, B.W.; Voorn, van G.A.K.; Das, pada Krishna

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  20. Chemosensory cues of predators and competitors influence search for refuge in fruit by the coconut mite Aceria guerreronis.

    Science.gov (United States)

    Calvet, Érica C; Lima, Debora B; Melo, José W S; Gondim, Manoel G C

    2018-03-01

    Organisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A. guerreronis to cues from the predators Neoseiulus baraki and Amblyseius largoensis in coconut fruits, cues from conspecifics (A. guerreronis injured) and cues from the phytophage S. concavuscutum. The test was carried out through the release of about 300 A. guerreronis on coconut fruits previously treated with cues from predators, conspecific or heterospecific phytophagous. We also observed the walking behaviour of A. guerreronis exposed to the same chemical cues using a video tracking system. The infestation of fruits by A. guerreronis was greater in the presence of predator cues and reduced in the presence of S. concavuscutum cues, but cues from injured conspecifics did not interfere in the infestation process. In addition, the cues also altered the walking parameters of A. guerreronis: it walked more in response to cues from predators and the heterospecific phytophage. Aceria guerreronis spent more time in activity in the treatments with clues than in the control treatment. These results suggest that A. guerreronis recognizes cues from predators and competitors and modifies its behaviour to increase its fitness.

  1. Predator removal and nesting waterbird success at San Francisco Bay, California

    Science.gov (United States)

    Meckstroth, A.M.; Miles, A.K.

    2005-01-01

    The efficacy of long-term predator removal in urbanized areas is poorly understood. The impact of predation on ground-nesting waterbirds, as well as predator abundance and composition in predator removal versus non-removal or reference sites were examined at South San Francisco Bay. The success of natural nests and predator activity was monitored using track plates, trip cameras, wire haircatchers and simulated nests. Removal sites had higher nest densities, but lower hatching success than reference sites. Predator composition and abundance were not different at the removal and reference sites for any predator other than feral Cat (Felis domesticus). Striped Skunk (Mephitis mephitis) comprised the majority (84%) of predators removed, yet remained the most abundant predators in removal and reference sites. Urban environments provide supplemental food that may influence skunks and other nest predators to immigrate into vacancies created by predator removal. Based on the findings from this study, predator removal should be applied intensively over a larger geographic area in order to be a viable management strategy for some mammalian species in urbanized areas.

  2. Modelling exposure of mammalian predators to anticoagulant rodenticide

    Directory of Open Access Journals (Sweden)

    Christopher John Topping

    2016-12-01

    Full Text Available Anticoagulant rodenticides (AR are a widespread and effective method of rodent control but there is concern about the impact these may have on non-target organisms, in particular secondary poisoning of rodent predators. Incidence and concentration of AR in free-living predators in Denmark is very high. We postulate that this is caused by widespread exposure due to widespread use of AR in Denmark in and around buildings. To investigate this theory a spatio-temporal model of AR use and mammalian predator distribution was created. This model was supported by data from an experimental study of mice as vectors of AR, and was used to evaluate likely impacts of restrictions imposed on AR use in Denmark banning the use of rodenticides for plant protection in woodlands and tree-crops. The model uses input based on frequencies and timings of baiting for rodent control for urban, rural and woodland locations and creates an exposure map based on spatio-temporal modelling of movement of mice-vectored AR (based on Apodemus flavicollis. Simulated predator territories are super-imposed over this exposure map to create an exposure index. Predictions from the model concur with field studies of AR prevalence both before and after the change in AR use. In most cases incidence of exposure to AR is predicted to be greater than 90%, although cessation of use in woodlots and Christmas tree plantations should reduce mean exposure concentrations. Model results suggest that the driver of high AR incidence in non-target small mammal predators is likely to be the pattern of use and not the distance AR is vectored. Reducing baiting frequency by 75% had different effects depending on the landscape simulated, but having a maximum of 12% reduction in exposure incidence, and in one landscape a maximum reduction of <2%. We discuss sources of uncertainty in the model and directions for future development of predictive models for environmental impact assessment of rodenticides. The

  3. Developing a predation index and evaluating ways to reduce salmonid losses to predation in the Columbia River basin

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1990-12-01

    We report our results of studies to develop a predation index and evaluate ways to reduce juvenile salmonid losses to predation in the Columbia River Basin. Study objectives of each were: develop an index to estimate predation losses of juvenile salmonids (Oncorhynchus spp) in reservoirs throughout the Columbia River Basin, describe the relationships among predator-caused mortality of juvenile salmonids and physical and biological variables, examine the feasibility of developing bounty, commercial or recreational fisheries on northern squawfish (Ptychocheilus oregonensis) and develop a plan to evaluate the efficacy of predator control fisheries; determine the economic feasibility of developing bounty and commercial fisheries for northern squawfish, assist ODFW with evaluating the economic feasibility of recreational fisheries for northern squawfish and assess the economic feasibility of utilizing northern squawfish, carp (Cyprinus carpio) and suckers (Castostomus spp) in multispecies fisheries; evaluate commercial technology of various fishing methods for harvesting northern squawfish in Columbia River reservoirs and field test the effectiveness of selected harvesting systems, holding facilities and transportation systems; and modify the existing Columbia River Ecosystem Model (CREM) to include processes necessary to evaluate effects of removing northern squawfish on their population size structure and abundance, document the ecological processes, mathematical equations and computer (FORTRAN) programming of the revised version of CREM and conduct systematic analyses of various predator removal scenarios, using revised CREM to generate the simulations. Individual reports are indexed separately

  4. Information Dynamics in the Interaction between a Prey and a Predator Fish

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2015-10-01

    Full Text Available Accessing information efficiently is vital for animals to make the optimal decisions, and it is particularly important when they are facing predators. Yet until now, very few quantitative conclusions have been drawn about the information dynamics in the interaction between animals due to the lack of appropriate theoretic measures. Here, we employ transfer entropy (TE, a new information-theoretic and model-free measure, to explore the information dynamics in the interaction between a predator and a prey fish. We conduct experiments in which a predator and a prey fish are confined in separate parts of an arena, but can communicate with each other visually and tactilely. TE is calculated on the pair’s coarse-grained state of the trajectories. We find that the prey’s TE is generally significantly bigger than the predator’s during trials, which indicates that the dominant information is transmitted from predator to prey. We then demonstrate that the direction of information flow is irrelevant to the parameters used in the coarse-grained procedures. We further calculate the prey’s TE at different distances between it and the predator. The resulted figure shows that there is a high plateau in the mid-range of the distance and that drops quickly at both the near and the far ends. This result reflects that there is a sensitive space zone where the prey is highly vigilant of the predator’s position.

  5. Female in-nest chatter song increases predation.

    Science.gov (United States)

    Kleindorfer, Sonia; Evans, Christine; Mahr, Katharina

    2016-01-01

    Female song is an ancestral trait in songbirds, yet extant females generally sing less than males. Here, we examine sex differences in the predation cost of singing behaviour. The superb fairy-wren (Malurus cyaneus) is a Southern Hemisphere songbird; males and females provision the brood and produce solo song year-round. Both sexes had higher song rate during the fertile period and lower song rate during incubation and chick feeding. Females were more likely than males to sing close to or inside the nest. For this reason, female but not male song rate predicted egg and nestling predation. This study identifies a high fitness cost of song when a parent bird attends offspring inside a nest and explains gender differences in singing when there are gender differences in parental care. © 2016 The Author(s).

  6. Size-selective predation and predator-induced life-history shifts alter the outcome of competition between planktonic grazers

    NARCIS (Netherlands)

    Hülsmann, S.; Rinke, K.; Mooij, W.M.

    2011-01-01

    1.We studied the effect of size-selective predation on the outcome of competition between two differently sized prey species in a homogenous environment. 2. Using a physiologically structured population model, we calculated equilibrium food concentrations for a range of predation scenarios defined

  7. European starlings use their acute vision to check on feline predators but not on conspecifics

    Science.gov (United States)

    Fernández-Juricic, Esteban

    2018-01-01

    Head movements allow birds with laterally placed eyes to move their centers of acute vision around and align them with objects of interest. Consequently, head movements have been used as indicator of fixation behavior (where gaze is maintained). However, studies on head movement behavior have not elucidated the degree to which birds use high-acuity or low-acuity vision. We studied how European starlings (Sturnus vulgaris) used high-acuity vision in the early stages of visual exploration of a stuffed cat (common terrestrial predator), a taxidermy Cooper’s hawk (common aerial predator), and a stuffed study skin of a conspecific. We found that starlings tended to use their high acuity vision when looking at predators, particularly, the cat was above chance levels. However, when they viewed a conspecific, they used high acuity vision as expected by chance. We did not observe a preference for the left or right center of acute vision. Our findings suggest that starlings exposed to a predator (particularly cats) may employ selective attention by using high-acuity vision to obtain quickly detailed information useful for a potential escape, but exposed to a social context may use divided attention by allocating similar levels high- and low-quality vision to monitor both conspecifics and the rest of the environment. PMID:29370164

  8. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere.

    Science.gov (United States)

    Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett

    2018-01-01

    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.

  9. Sarcocystosis of chital-dhole: conditions for evolutionary stability of a predator parasite mutualism

    Directory of Open Access Journals (Sweden)

    Watve Milind G

    2005-02-01

    Full Text Available Abstract Background For parasites with a predator-prey life cycle, the completion of the life cycle often depends on consumption of parasitized prey by the predator. In the case of such parasite species the predator and the parasite have common interests and therefore a mutualistic relationship is possible. Some evidence of a predator-parasite mutualism was reported from spotted deer or chital (Axix axis as a prey species, dhole or Indian wild-dog (Cuon alpinus as the predator and a protozoan (Sarcocystis axicuonis as the parasite. We examine here, with the help of a model, the ecological conditions necessary for the evolution and stability of such a mutualistic relationship. A two – level game theory model was designed in which the payoff of a parasite is decided not only by alternative parasite strategies but also by alternative host strategies and vice versa. Conditions for ESS were examined. Results A tolerant predator strategy and a low or moderately virulent parasite strategy which together constitute mutualism are stable only at a high frequency of recycling of parasite and a substantial prey – capture benefit to the predator. Unlike the preliminary expectation, parasite will not evolve towards reduced virulence, but reach an optimum moderate level of virulence. Conclusion The available data on the behavioral ecology of dhole and chital suggest that they are likely to meet the stability criteria and therefore a predator-parasite mutualism can be stable in this system. The model also points out the gaps in the current data and could help directing further empirical work.

  10. Effect of sublethal levels of ionizing radiation on a predator-prey interaction

    International Nuclear Information System (INIS)

    Chee, P.C.

    1976-01-01

    The predator-prey interaction studied was that between the largemouth bass (Micropterus salmoides) and the fathead minnow (Pimephales promelas) in an artificial test environment. Experiments were first conducted to determine the 50% lethal dose at 30 days of the minnow. Three different dose rates were used to test the effect of dose rate on the 50% lethal dose value. After the 50% lethal dose was determined the predator-prey interaction experiment was conducted using 30% of the 50% lethal dose as the highest radiation dose, this dose being considered the upper limit to sublethal radiation levels. A 4 x 4 Latin square design was chosen for the experiment, with four treatment levels (control plus three radiation levels) and four replicates. In each test 10 prey minnow were offered to one predator bass and the number of prey left after 14 days was the parameter of interest. A predator-prey interaction experiment using a single high level of radiation and two types of controls as conducted to ascertain the ability of the test environment to detect changes in the predator-prey interaction. The two types of controls were irradiated prey not exposed to predation and non-irradiated prey exposed to predation. An experiment was also conducted to test the correlation between the physical activity patterns of minnow and different doses of radiation. At a dose rate of 37.8 rad/min the 50% lethal dose at 30 days for minnow was found to be 2650 rad. It was found that dose rate had a strong influence on the 50% lethal dose. In the predator-prey interaction test it was found that the 14-day survival rate of prey was unaffected by sublethal levels of ionizing radiation. No significant correlation was detected between the physical activity patterns of minnow and radiation dose

  11. Pasta Predation.

    Science.gov (United States)

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  12. Recruitment patterns, low cannibalism and reduced interspecific predation contribute to high invasion success of two Pacific crabs in northwestern Europe

    Science.gov (United States)

    Geburzi, Jonas C.; Brandis, Dirk; Buschbaum, Christian

    2018-01-01

    Life-history traits and interactions with native species play an important role for the successful establishment of non-native species in new habitats. We investigated the recent successful invasion of the Pacific crabs Hemigrapsus takanoi and H. sanguineus to the southeastern North Sea coast with respect to their recruitment patterns, as well as interactions of juvenile with sub-adult individuals among the Pacific crabs and with native shore crabs Carcinus maenas. A field survey of juvenile native and introduced crab abundances (carapace width 1.4-10 mm) was conducted in the northern Wadden Sea, spanning 24 months from 2014 to 2016. The survey revealed different seasonal recruitment patterns of native C. maenas and both introduced Hemigrapsus species. Native shore crabs showed a single recruitment peak from June to July, while Hemigrapsus spp. mainly recruited from August to early September, but recruits occurred in low densities throughout the winter until the end of the following spring season. Field experiments on the effects of larger crabs on the recruitment intensity showed that recruitment of H. takanoi was enhanced by the presence of larger congeners, but remained unaffected by larger C. maenas. Recruitment of juvenile C. maenas, by contrast, was reduced by the presence of larger Hemigrapsus spp. Additional laboratory experiments revealed high rates of cannibalism on newly recruited C. maenas by subadult conspecifics as well as strong predation by larger Hemigrapsus spp. In contrast, newly recruited Hemigrapsus spp. had a much lower risk of being preyed on by subadult conspecifics and native shore crabs. Our results suggest that the timing of recruitment in combination with low intraspecific competition and reduced predation pressure by native shore crabs are crucial for the rapid and ongoing establishment of Hemigrapsus spp. in the Wadden Sea.

  13. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators

    Directory of Open Access Journals (Sweden)

    Rory M. Welsh

    2017-05-01

    Full Text Available Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species, and reduced stability (increased beta-diversity. Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM to a maximum mean relative abundance of 48.75% (±0.14 SEM in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by

  14. Response of predators to Western Sandpiper nest exclosures

    Science.gov (United States)

    Niehaus, Amanda C.; Ruthrauff, Daniel R.; McCaffery, Brian J.

    2004-01-01

    In 2001, predator exclosures were used to protect nests of the Western Sandpiper (Calidris mauri) in western Alaska. During the exclosure experiment, nest contents in exclosures had significantly higher daily survival rates than control nests, however, late in the study predators began to cue in on exclosures and predate the nest contents. An Arctic Fox (Alopex lagopus) dug under one exclosure and took the newly hatched chicks, and Long-tailed Jaegers (Stercorarius longicaudus) learned to associate exclosures with active nests and repeatedly visited them. The jaegers attempted to gain access to exclosed nests and pursued adult sandpipers as they emerged from the exclosures. The exclosures were removed to reduce potential mortality to adult and young sandpipers, but subsequently, post-exclosure nests had lower daily survival rates than controls during the same time period. Predation of post-exclosure eggs and chicks highlighted the lasting influence of the exclosure treatment on offspring survival because predators probably remembered nest locations. Researchers are urged to use caution when considering use of predator exclosures in areas where jaegers occur.

  15. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  16. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  17. Development of a System wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Section II: Evaluation; 1996 Annual Report

    International Nuclear Information System (INIS)

    Young, Franklin R.

    1997-01-01

    Predator control fisheries aimed at reducing predation on juvenile salmonids by northern squawfish (Ptychocheilus oregonensis) were implemented for the seventh consecutive year in the mainstream Columbia and Snake rivers

  18. Assessment of the interactions between two predator mites of Tetranychus urticae (Acariformes: Tetranychidae in laboratory

    Directory of Open Access Journals (Sweden)

    Angelica María Argüelles

    2013-01-01

    Full Text Available Tetranychus urticae (Acari: Tetranychidae is one of the most important pests in ornamental cultures. Between the species most used for its control are Neoseilus sp. and Phytoseiulus persimilis (Acari: Phytoseiidae. Knowing the effectivity and ages of the prefers prey of each species of predator. In this search purposed the management of the plague through the use of combined releases, is necessary to evaluate that could occur between them with the prey when they act together. With this aim, we evaluated any situations. For one side was evaluated when a predator with a second predator with more density for the first predator. This situation was analyzed in presence and with absence of its prey. For other side, was evaluated the interactions of both predators are presents at the same density and with the prey. In the fist situation in presence of the prey was observe that increase the age of predator in minor density also increase the interference over the consumption of the high population’s predator over the prey. Moreover when decreased the T. urticae’s consumption increased the intraguild consumption. P. persimilis in absence of T. urticae and in presence of N. californicus approve a behavior of intraguild predation over all the ages of its cospecifics, while that N. californicus only consumed coespecific’s larvae in the phytofagous absence and in presence of  P. persimilis.  When both predators were in the same test at the same population’s density, was not observe a higher consumption of T. urticae that when each predator act for its way.

  19. Disentangling mite predator-prey relationships by multiplex PCR.

    Science.gov (United States)

    Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A

    2015-11-01

    Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators. © 2015 John Wiley & Sons Ltd.

  20. Titmouse calling and foraging are affected by head and body orientation of cat predator models and possible experience with real cats.

    Science.gov (United States)

    Book, D L; Freeberg, Todd M

    2015-09-01

    Although anti-predator behavior systems have been studied in diverse taxa, less is known about how prey species detect and assess the immediate threat posed by a predator based on its behavior. In this study, we evaluated a potential cue that some species may utilize when assessing predation threat-the predator's body and head orientation. We tested the effect of this orientation cue on signaling and predation-risk-sensitive foraging of a prey species, tufted titmice (Baeolophus bicolor). Earlier work revealed sensitivity of titmice and related species to the presence of predator stimuli. Here, we manipulated cat models to face either toward or away from a food source preferred by titmice and then measured titmouse calling and seed-taking behavior. Titmice showed greater feeder avoidance when the cat predator models faced the feeder, compared to when the models faced away from the feeder or when titmice were exposed to control stimuli. Titmouse calling was also sensitive to predator head/body orientation, depending upon whether titmice were from sites where real cats had been observed or not. This study experimentally demonstrated that both calling and foraging of prey species can be affected by the head and body orientation of an important terrestrial predator. Prey species may therefore signal in strategic ways to conspecifics not just about predator presence, but also urgency of threat related to the more subtle cue of the head and body orientation of the predator. These findings hold potential implications for understanding animal cognition and learning processes.

  1. Heat-conserving postures hinder escape: a thermoregulation–predation trade-off in wintering birds

    OpenAIRE

    Jennie M. Carr; Steven L. Lima

    2012-01-01

    Wintering birds may conserve body heat by adopting postures with minimal leg exposure or significant ptiloerection. However, maximally heat-conserving postures may hinder a bird's ability to escape attack, leading to a trade-off between predation risk and thermoregulation. Such a trade-off implies that birds should use the most heat-conserving postures only at very cold temperatures. Feeding in a relatively low-risk environment should also facilitate the use of such heat-conserving postures. ...

  2. The Great White Guppy: Top Predator

    Science.gov (United States)

    Michalski, G. M.

    2011-12-01

    Nitrogen isotopes are often used to trace the trophic level of members of an ecosystem. As part of a stable isotope biogeochemistry and forensics course at Purdue University, students are introduced to this concept by analyzing nitrogen isotopes in sea food purchased from local grocery stores. There is a systematic increase in 15N/14N ratios going from kelp to clams/shrimp, to sardines, to tuna and finally to shark. These enrichments demonstrate how nitrogen is enriched in biomass as predators consume prey. Some of the highest nitrogen isotope enrichments observed, however, are in the common guppy. We investigated a number of aquarium fish foods and find they typically have high nitrogen isotope ratios because they are made form fish meal that is produced primarily from the remains of predator fish such as tuna. From, a isotope perspective, the guppy is the top of the food chain, more ferocious than even the Great White shark.

  3. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  4. Killing the killer: predation between protists and predatory bacteria.

    Science.gov (United States)

    Johnke, Julia; Boenigk, Jens; Harms, Hauke; Chatzinotas, Antonis

    2017-05-01

    Predation by microbes is one of the main drivers of bacterial mortality in the environment. In most ecosystems multiple micropredators compete at least partially for the same bacterial resource. Predatory interactions between these micropredators might lead to shifts within microbial communities. Integrating these interactions is therefore crucial for the understanding of ecosystem functioning. In this study, we investigated the predation between two groups of micropredators, i.e. phagotrophic protists and Bdellovibrio and like organisms (BALOs). BALOs are obligate predators of Gram-negative bacteria. We hypothesised that protists can prey upon BALOs despite the small size and high swimming speed of the latter, which makes them potentially hard to capture. Predation experiments including three protists, i.e. one filter feeder and two interception feeder, showed that BALOs are a relevant prey for these protists. The growth rate on BALOs differed for the respective protists. The filter feeding ciliate was growing equally well on the BALOs and on Escherichia coli, whereas the two flagellate species grew less well on the BALOs compared to E. coli. However, BALOs might not be a favourable food source in resource-rich environments as they are not enabling all protists to grow as much as on bacteria of bigger volume. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Evolution of embryonic developmental period in the marine bird families Alcidae and Spheniscidae: roles for nutrition and predation?

    Science.gov (United States)

    Hipfner, J Mark; Gorman, Kristen B; Vos, Rutger A; Joy, Jeffrey B

    2010-06-14

    Nutrition and predation have been considered two primary agents of selection important in the evolution of avian life history traits. The relative importance of these natural selective forces in the evolution of avian embryonic developmental period (EDP) remain poorly resolved, perhaps in part because research has tended to focus on a single, high taxonomic-level group of birds: Order Passeriformes. The marine bird families Alcidae (auks) and Spheniscidae (penguins) exhibit marked variation in EDP, as well as behavioural and ecological traits ultimately linked to EDP. Therefore, auks and penguins provide a unique opportunity to assess the natural selective basis of variation in a key life-history trait at a low taxonomic-level. We used phylogenetic comparative methods to investigate the relative importance of behavioural and ecological factors related to nutrition and predation in the evolution of avian EDP. Three behavioural and ecological variables related to nutrition and predation risk (i.e., clutch size, activity pattern, and nesting habits) were significant predictors of residual variation in auk and penguin EDP based on models predicting EDP from egg mass. Species with larger clutch sizes, diurnal activity patterns, and open nests had significantly shorter EDPs. Further, EDP was found to be longer among birds which forage in distant offshore waters, relative to those that foraged in near shore waters, in line with our predictions, but not significantly so. Current debate has emphasized predation as the primary agent of selection driving avian life history diversification. Our results suggest that both nutrition and predation have been important selective forces in the evolution of auk and penguin EDP, and highlight the importance of considering these questions at lower taxonomic scales. We suggest that further comparative studies on lower taxonomic-level groups will continue to constructively inform the debate on evolutionary determinants of avian EDP, as

  6. Key factors affecting the predation risk on insects on leaves in temperate floodplain forest

    Czech Academy of Sciences Publication Activity Database

    Drozdová, M.; Šipoš, Jan; Drozd, P.

    2013-01-01

    Roč. 110, č. 3 (2013), s. 469-476 ISSN 1210-5759 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Diptera * Calliphoridae * Calliphora vicina * insect predators * living prey * temporal and spatial differences * clumped dispersal of attacks Subject RIV: EH - Ecology, Behaviour Impact factor: 1.076, year: 2013

  7. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    Science.gov (United States)

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  8. Bagworm bags as portable armour against invertebrate predators.

    Science.gov (United States)

    Sugiura, Shinji

    2016-01-01

    Some animals have evolved the use of environmental materials as "portable armour" against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  9. Spizaetus hawk-eagles as predators of arboreal colobines.

    Science.gov (United States)

    Fam, S D; Nijman, V

    2011-04-01

    The predation pressure put on primates by diurnal birds of prey differs greatly between continents. Africa and South America have specialist raptors (e.g. crowned hawk-eagle Stephanoaetus coronatus and harpy eagle Harpia harpyja) whereas in Asia the only such specialist's (Philippine eagle Pithecophaga jefferyi) distribution is largely allopatric with primates. The almost universal absence of polyspecific groups in Asia (common in Africa and South America) may indicate reduced predation pressure. As such there is almost no information on predation pressures on primates in Asia by raptors. Here we report successful predation of a juvenile banded langur Presbytis femoralis (~2 kg) by a changeable hawk-eagle Spizaetus cirrhatus. The troop that was attacked displayed no signs of being alarmed, and no calls were made before the event. We argue that in insular Southeast Asia, especially, large Spizaetus hawk-eagles (~2 kg) are significant predators of arboreal colobines. Using data on the relative size of sympatric Spizaetus hawk-eagles and colobines we make predictions on where geographically we can expect the highest predation pressure (Thai-Malay Peninsula) and which colobines are least (Nasalis larvatus, Trachypithecus auratus, P. thomasi) and most (P. femoralis, T. cristatus) affected.

  10. Turbidity interferes with foraging success of visual but not chemosensory predators.

    Science.gov (United States)

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  11. Evolution of Swarming Behavior Is Shaped by How Predators Attack.

    Science.gov (United States)

    Olson, Randal S; Knoester, David B; Adami, Christoph

    2016-01-01

    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.

  12. Cormorant predation on PIT-tagged lake fish

    DEFF Research Database (Denmark)

    Skov, Christian; Jepsen, Niels; Baktoft, Henrik

    2014-01-01

    The present study use data from recovered PIT (Passive Integrated Transponder) tags to explore species-and size-specific annual predation rates by cormorants on three common lacustrine fishes (size range 120-367 mm) in a European lake; roach (Rutilus rutilus), common bream (Abramis brama) and perch...... (Perca fluviatilis). In addition, we quantify the level of age/size truncation that cormorant predation could introduce in a population of perch, an important fish for recreational angling as well as for trophic interactions and ecosystem function in European lakes. Based on three years of PIT tagging...... of fish in Lake Viborg and subsequent recoveries of PIT tags from nearby cormorant roosting and breeding sites, we show that cormorants are major predators of roach, bream and perch within the size groups we investigated and for all species larger individuals had higher predation rates. Perch appear...

  13. Evidence of lead biomagnification in invertebrate predators from laboratory and field experiments

    International Nuclear Information System (INIS)

    Rubio-Franchini, Isidoro; Rico-Martinez, Roberto

    2011-01-01

    This report includes atomic absorption data from water column, elutriates and zooplankton that demonstrate that lead biomagnifies at El Niagara reservoir, Mexico. Results include field data (bioaccumulation factors) (BAFs) and laboratory data (bioconcentration factors) (BCFs). Two findings: high BAFs for invertebrate predator like Acanthocyclops robustus, Asplanchna brightwellii, Culex sp. larvae, and Hyalella azteca, compared to grazer species Moina micrura and Simocephalus vetulus; low BCF's found for some predators, suggested that lead biomagnifications were taking place. The presence of Moina micrura in the gut of Asplanchna allowed us to design experiments where A. brightwellii was fed lead-exposed M. micrura neonates. The BAF of Asplanchna was 123,684, BCF was 490. Asplanchna individuals fed exposed Moina had 13.31 times more lead than Asplanchna individuals just exposed 48-h to lead, confirming that lead biomagnification occurs. Results of two fish species showed no lead biomagnification, suggesting that lead biomagnification might be restricted to invertebrate predators. - Highlights: → Study shows lead biomagnification evidence in reservoirs where top predators are invertebrates. → Study discusses why in previous studies lead biomagnifications were not detected. → Evidence of biomagnification comes from field and laboratory studies. - This study shows evidence (from field and laboratory experiments) of lead biomagnification in a freshwater reservoir where the main predators are invertebrates.

  14. Anti-predator adaptations in a great scallop (Pecten maximus) - a palaeontological perspective

    Science.gov (United States)

    Brom, Krzysztof Roman; Szopa, Krzysztof; Krzykawski, Tomasz; Brachaniec, Tomasz; Salamon, Mariusz Andrzej

    2015-12-01

    Shelly fauna was exposed to increased pressure exerted by shell-crushing durophagous predators during the so-called Mesozoic Marine Revolution that was initiated in the Triassic. As a result of evolutionary `arms race', prey animals such as bivalves, developed many adaptations to reduce predation pressure (e.g. they changed lifestyle and shell morphology in order to increase their mechanical strength). For instance, it was suggested that Pectinidae had acquired the ability to actively swim to avoid predator attack during the early Mesozoic. However, pectinids are also know to have a specific shell microstructure that may effectively protect them against predators. For instance, we highlight that the shells of some recent pectinid species (e.g. Pecten maximus) that display cross-lamellar structures in the middle part playing a significant role in the energy dissipation, improve the mechanical strength. In contrast, the outer layers of these bivalves are highly porous, which allow them to swim more efficiently by reducing the shell weight. Pectinids are thus perfect examples of animals optimising their skeletons for several functions. We suggest that such an optimisation of their skeletons for multiple functions likely occurred as a results of increased predation pressure during the so-called Mesozoic Marine Revolution.

  15. Temporal variation in seed predation by insects in a population of Syagrus romanzoffiana (Arecaceae) in Santa Catarina Island, SC, Brazil.

    Science.gov (United States)

    da Silva, F R; Begnini, R M; Lopes, B C; Castellani, T T

    2012-02-01

    Insect seed predation may vary depending on seed production. The present study considers the hypothesis that the rates of seed predation tend to be smaller in years of higher fruit production. Thus, we monitored the production of fruits and predation of seeds of the palm Syagrus romanzoffiana over 2 years in the Atlantic Forest (Parque Municipal da Lagoa do Peri, Florianópolis, SC, Brazil), between July 2006 and June 2008. Plots of 0.25 m(2) were fitted under 20 mother plants and fruits were monthly collected for assessment of abundance and seed predation. There was variation in fruit production between the 2 years and among reproductive plants. Predation rates were high and occurred in the predispersal phase by the Curculionidae Revena rubiginosa Boheman, Anchylorhynchus aegrotus Fahraeus, and Anchylorhynchus variabilis Gyllenhal. Seed predation by these species of Anchylorhynchus is first registered in the present study. In average, about 60% of the seeds monthly produced in the population tend to escape insect predation in year of high or low production, becoming available for recruitment. The predation rate was not related to the amount of fruits produced per reproductive plant. Also, different than expected, there was a positive relation between the rates of seed predation and the total of fruits produced monthly on the plots. Thus, no evidence for the satiation of insect seed predators was found in this study with S. romanzoffiana.

  16. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2003-03-01

    This report presents results for year eleven in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.

  17. Effects of rodent species, seed species, and predator cues on seed fate

    Science.gov (United States)

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-07-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat ( Dipodomys ordii) and the Great Basin pocket mouse ( Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote ( Canis latrans) vocalization, (3) coyote scent, (4) red fox ( Vulpes vulpes) scent, or (5) short-eared owl ( Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass ( Achnatherum hymenoides) and bluebunch wheatgrass ( Pseudoroegneria spicata), and the non-native cereal rye ( Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  18. Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem

    Science.gov (United States)

    John L. Maron; Dean E. Pearson

    2011-01-01

    The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how strongly a three-species assemblage of rodent...

  19. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  20. A potential predator-prey interaction of an American badger and an Agassiz's desert tortoise with a review of badger predation on turtles

    Science.gov (United States)

    Smith, Amanda L.; Puffer, Shellie R.; Lovich, Jeffrey E.; Tennant, Laura A.; Arundel, Terry; Vamstad, Michael S.; Brundige, Kathleen D.

    2016-01-01

    The federally threatened Agassiz’s desert tortoise (Gopherus agassizii) was listed under the U.S. Endangered Species Act in 1990, but thus far, recovery efforts have been unsuccessful (U.S. Fish and Wildlife Service [USFWS] 2015). Predation has been identified as a contributing factor to declining G. agassizii populations range-wide (e.g., Esque et al. 2010, Lovich et al. 2014). Understanding and managing for predator-prey dynamics is thus an important part of the recovery and conservation of this threatened species (USFWS 2011). Desert tortoises have a host of predators at all stages of their life cycle. Over 20 species of birds, mammals, and reptiles have been recorded as known or suspected predators (Woodbury and Hardy 1948, Luckenbach 1982, Ernst and Lovich 2009). American badgers (Taxidea taxus, family: Mustelidae) are confirmed excavators of desert tortoise nests (Turner and Berry 1984). They are also suspected predators of adult desert tortoises, a possibility which has been presented in some studies but without empirical verification (Luckenbach 1982, Turner and Berry 1984). Active mostly at night, badgers are solitary, secretive predators (Lindzey 1978, 1982; Armitage 2004) that are extremely difficult to observe in predatory encounters. Recently, strong circumstantial evidence presented by Emblidge et al. (2015) suggests that badgers do prey on adult Agassiz’s desert tortoises based on observations of more than two dozen dead tortoises in the Western Mojave Desert of California. In this note, we present another case of potential badger predation on a large adult desert tortoise in the Sonoran Desert of California. Collectively, these recent two cases potentially indicate that badger predation may be more common and widespread than previously thought. In addition, we review the worldwide literature of badger predation on turtles in general and summarize reported badger observations in Joshua Tree National Park, where our observation occurred, over a