WorldWideScience

Sample records for high precision timing

  1. High-Precision Timing of Millisecond Pulsars and Precision Astrometry

    Science.gov (United States)

    Kaspi, V.

    1994-01-01

    We present the technique of long-term, high-precision timing of millisecond pulsars as applied to precision astrometry. We provide a tutorial on pulsars and pulsar timing, as well as up-to-date results of long-term observation of two millisecond pulsars. We consider the feasibility of tying the extragalactic and optical reference frames to that defined by solar system objects, and we conclude that precision astrometry from millisecond pulsar timing will continue to yield interesting results at an accelerating pace in the next decade.

  2. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  3. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  4. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  5. SynUTC - high precision time synchronization over ethernet networks

    CERN Document Server

    Höller, R; Horauer, M; Kerö, N; Schmid, U; Schossmaier, K

    2002-01-01

    This article describes our SynUTC (Synchronized Universal Time Coordinated) technology, which enables high-accuracy distribution of GPS time and time synchronization of network nodes connected via standard Ethernet LANs. By means of exchanging data packets in conjunction with moderate hardware support at nodes and switches, an overall worst-case accuracy in the range of some 100 ns can be achieved, with negligible communication overhead. Our technology thus improves the 1 ms-range accuracy achievable by conventional, software-based approaches like NTP by 4 orders of magnitude. Applications can use the high-accuracy global time provided by SynUTC for event timestamping and event generation both at hardware and software level. SynUTC is based upon inserting highly accurate time information into dedicated data packets at the media-independent interface (MII) between the physical layer transceiver and the network controller upon packet transmission and reception, respectively. As a consequence, every node has acc...

  6. MRPC-PET: A new technique for high precision time and position measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K., E-mail: kdoroud@cern.ch [World Laboratory, Geneva (Switzerland); Hatzifotiadou, D. [Sezione INFN, Bologna (Italy); Li, S. [World Laboratory, Geneva (Switzerland); Williams, M.C.S. [Sezione INFN, Bologna (Italy); Zichichi, A. [Dipartimento di Fisica dell' Universita, Bologna (Italy); PH Dept, CERN, Geneva (Switzerland); Zuyeuski, R. [World Laboratory, Geneva (Switzerland)

    2011-12-21

    The purpose of this paper is to consider a new technology for medical diagnosis: the MRPC-PET. This technology allows excellent time resolution together with 2-D position information thus providing a fundamental step in this field. The principle of this method is based on the Multigap Resistive Plate Chamber (MRPC) capable of high precision time measurements. We have previously found that the route to precise timing is differential readout (this requires matching anode and cathode strips); thus crossed strip readout schemes traditionally used for 2-D readout cannot be exploited. In this paper we consider the time difference from the two ends of the strip to provide a high precision measurement along the strip; the average time gives precise timing. The MRPC-PET thus provides a basic step in the field of medical technology: excellent time resolution together with 2-D position measurement.

  7. 19 Years of high precision timing of the millisecond pulsar J1713+0747

    Science.gov (United States)

    Zhu, Weiwei

    2013-03-01

    We report the analysis of a 19-year span of timing data on PSR J1713+0747 taken by the Arecibo and Green Bank telescopes. PSR J1713+0747 is one of the best high-timing-precision pulsars monitored by the NANOGrav project for the purpose of detecting gravitational waves. The timing precision of this pulsar can be regarded as the benchmark of NANOGrav timing instruments. We show the precision improvement achieved by multi-generation instruments including the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and its counterpart in Arecibo. The new timing solution we found improves the measurement of the pulsars mass, its orbital and geometric parameters, sets new limits on alternative gravitational theories, and may provide a high-quality single pulsar gravitational wave upper limit.

  8. HIGH-PRECISION POSITIONING AND REAL-TIME DATA PROCESSING OF UAV-SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Rieke

    2012-09-01

    Full Text Available Available micro-sized Unmanned Aerial Vehicles (UAVs in the civilian domain currently make use of common GPS receivers and do not address scenarios where high-precision positioning of the UAV is an inevitable requirement. However, for use cases such as creating orthophotos using direct georeferencing, an improved positioning needs to be developed. This article analyses the requirements for integrating Real Time Kinematic positioning into micro-sized UAVs. Additionally, it describes the data processing and synchronisation of the high-precision position data for a workflow of orthorectification of aerial imagery. Preliminary results are described for the use case of precision farming. The described approach for positioning has the potential to achieve a positional accuracy of 1–3 cm, which can be considered as adequate for direct georeferencing of aerial imagery.

  9. Optical timing receiver for the NASA Spaceborne Ranging System. Part II: high precision event-timing digitizer

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, Branko; Turko, Bojan

    1978-08-01

    Position-resolution capabilities of the NASA Spaceborne Laser Ranging System are essentially determined by the timeresolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device; (e.g., photomultiplier or an avalanche photodiode detector), a timing discriminator, a high-precision event-timing digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the resolution of the event-timing digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to the time-resolution capabilities, and to develop a very low time walk timing discriminator and a high-resolution event-timing digitizer to be used in the high-resolution spaceborne laser ranging system receiver. This part of the report describes the development of a high precision event-timing digitizer. The event-timing digitizer is basically a combination of a very accurate high resolution real time digital clock and an interval timer. The timing digitizer is a high resolution multiple stop clock, counting the time up to 131 days in 19.5 ps increments.

  10. A Study of the Merits of Precision Time Protocol (IEEE-1588) Across High-Speed Data Networks

    CERN Document Server

    Oliver, David; Otto, Adam Jedrzej; CERN. Geneva. PH Department

    2015-01-01

    By using Precision Time Protocol across high-speed data networks, it is possible to achieve good time synchronisation using only commercial, off-the-shelve equipment. Even under heavy network loads, the attainable precision far exceeds that which is possible with Network Time Protocol, and is sufficient for many applications. This note explores the time precision possible with PTP under various conditions and attempts to provide a measurement of its performance.

  11. High-precision two-way time transfer system via long-distance commercial fiber link

    Science.gov (United States)

    Ci, Cheng; Zhao, Ying-xin; Wu, Hong; Liu, Bo; Zhang, Xue-song; Zhang, Yu

    2017-11-01

    Time synchronization techniques, especially on the pulse per second (PPS) temporal basis, have attracted growing research interests in recent years. In this paper, we have proposed and experimentally demonstrated a high-precision two-way time transfer (TWTT) system to realize long-distance dissemination of 1 PPS signal generated by a hydrogen maser. A dense-wavelength-division-multiplexing (DWDM) system and bi-directional erbium-doped fiber amplifiers (Bi-EDFAs) have also been adopted to suppress the impact of Rayleigh backscattering and optimize the signal to noise ratio ( SNR) as well. We have theoretically analyzed the systematic delay in detail. The ultimate root mean square ( RMS) variation of time synchronization accuracy is sub-26 ps and the time deviation can be reduced to as low as 1.2 ps at 100 s and 0.253 ps at 12 000 s, respectively.

  12. CORRECTING FOR INTERSTELLAR SCATTERING DELAY IN HIGH-PRECISION PULSAR TIMING: SIMULATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Palliyaguru, Nipuni; McLaughlin, Maura [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Stinebring, Daniel [Department of Physics and Astronomy, Oberlin College, 110 North Professor Street, Oberlin, OH 44074 (United States); Demorest, Paul [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, Glenn, E-mail: npalliya@mix.wvu.edu, E-mail: maura.mclaughlin@mail.wvu.edu, E-mail: dan.stinebring@oberlin.edu, E-mail: pdemores@nrao.edu, E-mail: glenn.caltech@gmail.com [Department of Physics, Columbia University, New York, NY 10027 (United States)

    2015-12-20

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.

  13. A Study of the Merits of Precision Time Protocol (IEEE-1588) Across High-Speed Data Networks

    CERN Document Server

    Oliver, David; Neufeld, Niko

    2015-01-01

    By using Precision Time Protocol across high-speed data networks, it is possible to achieve good time synchronisation without requiring the use of custom switches. Even under heavy network loads, the attainable precision far exceeds that which is possible with Network Time Protocol, and is sufficient for many applications. This note explores the attainable precision possible with PTP under various conditions and attempts to provide a measurement of its performance.

  14. Low phase noise high power handling InGaAs photodiodes for precise timing applications

    Science.gov (United States)

    Datta, Shubhashish; Joshi, Abhay; Becker, Don

    2009-05-01

    Time is the most precisely measured physical quantity. Such precision is achieved by optically probing hyperfine atomic transitions. These high Q-factor resonances demonstrate frequency instability of ~10-18 over 1 s observation time. Conversion of such a stable optical clock signal to an electrical clock through photodetection introduces additional phase noise, thereby resulting in a significant degradation in the frequency stability. This excess phase noise is primarily caused by the conversion of optical intensity noise into electrical phase noise by the phase non-linearity of the photodetector, characterized by its power-to-phase conversion factor. It is necessary to minimize this phase nonlinearity in order to develop the next generation of ultra-high precision electronic clocks. Reduction in excess phase noise must be achieved while ensuring a large output RF signal generated by the photodetector. The phase linearity in traditional system designs that employ a photoreceiver, namely a photodiode followed by a microwave amplifier, is limited by the phase non-linearity of the amplifier. Utilizing high-power handling photodiodes eliminates the need of microwave amplifiers. In this work, we present InGaAs p-i-n photodiodes that display a power-to-phase conversion factor RF output amplitude of 2 V. In comparison, the photodiode coupled to a transimpedance amplifier demonstrates >44 rad/W at a peak-to-peak RF output amplitude of 0.5 V. These results are supported by impulse response measurements at 1550 nm wavelength at 1 GHz repetition rate. These photodiodes are suitable of applications such as optical clock distribution networks, photonic analog-to-digital converters, and phased array radars.

  15. Test of feasibility of a novel high precision test of time reversal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Deepak

    2007-07-01

    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A{sub y,xz} with an accuracy of 10{sup -6} in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A{sub y,y} in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A{sub y,y} in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  16. High precision electric gate for time-of-flight ion mass spectrometers

    Science.gov (United States)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  17. Astrometric meaning and interpretation of high-precision time delay integration CCD data

    Science.gov (United States)

    Bastian, U.; Biermann, M.

    2005-08-01

    We investigate the astrometric content of CCD charge images of stars collected in time delay integration (TDI) mode with a scanning (rotating) telescope. We focus on the ESA astrometric space mission Gaia, but the results are valid for other scanning telescopes too. The physical attitude of the telescope is shown to be unobservable. Instead, an effective astrometric attitude is observed which represents an average over the TDI exposure time. The effective astrometric attitudes “seen” by different instruments (in case of Gaia: Astro, Spectro, Astro with gates) differ in a non-trivial way. If e.g. the high-precision Astro attitude would be used for the astrometric exploitation of the Spectro data, the Spectro CCDs would be “seen” to float around on the focal plane by several milli-arcseconds. In addition we find that the TDI mode produces an attitude jitter with the period of TDI clocking. We prove that this is negligibly small in the case of Gaia. We point out that the effective instant of observation is not the instant of charge read-out from the CCDs, but about half an exposure time (i.e. up to a few seconds) earlier. This is particularly important for the astrometry of solar-system objects and for the photometry of rapidly varying objects. It is also relevant for all other objects because of the time dependence of aberration. It is not clear whether the differences between the astrometric attitudes of different instruments require separate attitude reconstructions, but an approximate transformation from Astro to Spectro probably will be sufficient.

  18. HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. E.; Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Ferdman, R. D.; Lyne, A. G. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester, M13 9PL (United Kingdom); Freire, P. C. C.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Nice, D. J. [Physics Department, Lafayette College, Easton, PA 18042 (United States); Demorest, P. B.; Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hobbs, G.; Manchester, R. N., E-mail: gonzalez@phas.ubc.ca1 [Australia Telescope National Facility, CSIRO, Epping, NSW 1710 (Australia)

    2011-12-20

    We present high-precision timing of five millisecond pulsars (MSPs) carried out for more than seven years; four pulsars are in binary systems and one is isolated. We are able to measure the pulsars' proper motions and derive an estimate for their space velocities. The measured two-dimensional velocities are in the range 70-210 km s{sup -1}, consistent with those measured for other MSPs. We also use all the available proper motion information for isolated and binary MSPs to update the known velocity distribution for these populations. As found by earlier works, we find that the velocity distribution of binary and isolated MSPs are indistinguishable with the current data. Four of the pulsars in our observing program are highly recycled with low-mass white dwarf companions and we are able to derive accurate binary parameters for these systems. For three of these binary systems, we are able to place initial constraints on the pulsar masses with best-fit values in the range 1.0-1.6 M{sub Sun }. The implications of the results presented here to our understanding of binary pulsar evolution are discussed. The updated parameters for the binary systems studied here, together with recently discovered similar systems, allowed us to update previous limits on the violation of the strong equivalence principle through the parameter |{Delta}| to 4.6 Multiplication-Sign 10{sup -3} (95% confidence) and the violation of Lorentz invariance/momentum conservation through the parameter |{alpha}-hat3| to 5.5 Multiplication-Sign 10{sup -20} (95% confidence).

  19. Progress in Bathymetric Surveys: Combining High Precision Positioning in Real Time with a Continuous Vertical Datum in Remote Areas

    Science.gov (United States)

    Lévesque, S.; Robin, C. M. I.; MacLeod, K.; Fadaie, K.

    2014-12-01

    For most of its bathymetric survey activities, the Canadian Hydrographic Service (CHS) requires high precision, three dimensional positioning. As part of a pilot project, one of its launches was equipped with a GNSS receiver processing a high precision correction service in real time (HP-GPS*C) via the internet using satellite telecommunication. This service was provided by Natural Resources Canada/Canadian Geodetic Survey (NRCan/CGS). The bathymetric data from a survey in eastern Hudson Bay performed by CHS in Fall 2013 was post -processed using different standard methods. This resulted in high precision positions that were compared with positions corrected with the real-time precise point positioning (PPP) service (HP-GPS*C) from NRCan/CGS. CHS bathymetric surveys must be referred to chart datum, the hydrographical vertical datum defined for use on nautical charts. In the Canadian north, another limitation to high precision bathymetric work is the availability of tide observations and/or predictions. The territory is vast and tide data is limited in space and in time while predicted tides are not always accurate. This makes reductions of bathymetric soundings to Chart datum difficult. To address this problem, CHS and NRCan/CGS have collaborated to produce a Continuous Vertical Datum for Canadian Waters (CVDCW), which incorporates data from NRCan's geoid model, tide gauge and GPS data, satellite altimetry, and ocean models. Thus high precision positioning provides ellipsoidal heights for the bathymetric depths, and the CVDCW allows to correct these ellipsoidal heights to chart datum. Comparisons of the bathymetry from the pilot survey corrected for tide data versus the bathymetry referred to its ellipsoidal height corrected to chart datum with the CVDCW are given to demonstrate the relative changes to the depths. This also illustrates the advantage of a continuous vertical datum with its potential to be combined with real-time high precision positioning.

  20. Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Peter, E-mail: porel@hawaii.edu; Varner, Gary S.; Niknejadi, Pardis

    2017-06-11

    Vertex detectors provide space–time coordinates for the traversing charged particle decay products closest to the interaction point. Resolving these increasingly intense particle fluences at high luminosity particle colliders, such as SuperKEKB, is an ever growing challenge. This results in a non-negligible occupancy of the vertex detector using existing low material budget techniques. Consequently, new approaches are being studied that meet the vertexing requirements while lowering the occupancy. In this paper, we introduce a novel vertex detector architecture. Its design relies on an asynchronous digital pixel matrix in combination with a readout based on high precision time-of-flight measurement. Denoted the Timing Vertex Detector (TVD), it consists of a binary pixel array, a transmission line for signal collection, and a readout ASIC. The TVD aims to have a spatial resolution comparable to the existing Belle2 vertex detector. At the same time it offers a reduced occupancy by a factor of ten while decreasing the channel count by almost three orders of magnitude. Consequently, reducing the event size from about 1 MB/event to about 5.9 kB/event.

  1. Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders

    Science.gov (United States)

    Orel, Peter; Varner, Gary S.; Niknejadi, Pardis

    2017-06-01

    Vertex detectors provide space-time coordinates for the traversing charged particle decay products closest to the interaction point. Resolving these increasingly intense particle fluences at high luminosity particle colliders, such as SuperKEKB, is an ever growing challenge. This results in a non-negligible occupancy of the vertex detector using existing low material budget techniques. Consequently, new approaches are being studied that meet the vertexing requirements while lowering the occupancy. In this paper, we introduce a novel vertex detector architecture. Its design relies on an asynchronous digital pixel matrix in combination with a readout based on high precision time-of-flight measurement. Denoted the Timing Vertex Detector (TVD), it consists of a binary pixel array, a transmission line for signal collection, and a readout ASIC. The TVD aims to have a spatial resolution comparable to the existing Belle2 vertex detector. At the same time it offers a reduced occupancy by a factor of ten while decreasing the channel count by almost three orders of magnitude. Consequently, reducing the event size from about 1 MB/event to about 5.9 kB/event.

  2. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  3. A time projection chamber for high accuracy and precision fission cross-section measurements

    Science.gov (United States)

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  4. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement

    Science.gov (United States)

    Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.

    2017-08-01

    In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.

  5. Ultrafast, high precision gated integrator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.

    1995-01-01

    An ultrafast, high precision gated integrator has been developed by introducing new design approaches that overcome the problems associated with earlier gated integrator circuits. The very high speed is evidenced by the output settling time of less than 50 ns and 20 MHz input pulse rate. The very high precision is demonstrated by the total output offset error of less than 0.2mV and the output droop rate of less than 10{mu}V/{mu}s. This paper describes the theory of this new gated integrator circuit operation. The completed circuit test results are presented.

  6. A new high precision 14CO2 time series for North American continental air

    Science.gov (United States)

    Turnbull, Jocelyn C.; Lehman, Scott J.; Miller, John B.; Sparks, Rodger J.; Southon, John R.; Tans, Pieter P.

    2007-06-01

    We develop a high precision Δ14CO2 measurement capability in 2-5 L samples of whole air for implementation within existing greenhouse gas flask sampling networks. The long-term repeatability of the measurement is 1.8‰ (1-sigma), as determined from repeated analyses of quality control standards and replicate extraction and measurement of authentic field samples. In a parallel effort, we have begun a Δ14CO2 measurement series from NOAA/ESRL's (formerly NOAA/CMDL) surface flask sampling site at Niwot Ridge, Colorado, USA (40.05°N, 105.58°W, 3475 masl) in order to monitor the isotopic composition of carbon dioxide in relatively clean air over the North American continent. Δ14CO2 at Niwot Ridge decreased by 5.7‰/yr from 2004 to 2006, with a seasonal amplitude of 3-5‰. A comparison with measurements from the free troposphere above New England, USA (41°N, 72°W) indicates that the Δ14CO2 series at the two sites are statistically similar at timescales longer than a few days to weeks (i.e., those of synoptic scale variations in transport), suggesting that the Niwot Ridge measurements can be used as a proxy for North American free tropospheric air in future carbon cycle studies.

  7. Proposal for an MRPC system with high-precision timing in the LVD structure

    CERN Document Server

    Zichichi, A

    2012-01-01

    The purpose of this paper is to present a project in order to verify -without the need of knowing the distance CERN-Gran Sasso- the discovery made by the OPERA Collaboration concerning the speed of the CERN neutrinos. The project consists of two parts. A simple one and a less simple one. Both have the great advantage of being totally independent of the knowledge of the distance, 732 km, between the two Labs, CERN and LNGS, where the neutrinos are produced and detected, respectively. The simple version of this project is based on the high-energy horizontal cosmic muons, which traverse LVD and OPERA detectors, thus allowing to cross-calibrate the timing systems of both experiments in a way which is totally independent of the TOF measurements of CNGS. This component of the project is being studied in collaboration with the OPERA group, as the time stabilities of both experiments are needed. In fact it is since a long time that the two groups are engaged with this problem. In this paper we will present and discus...

  8. A High-Precision Control for a ZVT PWM Soft-Switching Inverter to Eliminate the Dead-Time Effect

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2016-07-01

    Full Text Available Attributing to the advantages of high efficiency, low electromagnetic interference (EMI noise and closest to the pulse-width-modulation (PWM converter counterpart, zero-voltage-transition (ZVT PWM soft-switching inverters are very suitable for high-performance applications. However, the conventional control algorithms intended for high efficiency generally results in voltage distortion. Thus, this paper, for the first time, proposes a high-precision control method to eliminate the dead-time effect through controlling the auxiliary current in the auxiliary resonant snubber inverter (ARSI, which is a typical ZVT PWM inverter. The dead-time effect of ARSI is analyzed, which is distinguished from hard-switching inverters. The proposed high-precision control is introduced based on the investigation of dead-time effect. A prototype was developed to verify the effectiveness of the proposed control. The experimental results shows that the total harmonic distortion (THD of the output current of the ARSI can be reduced compared with that of the hard-switching inverter, because the blanking delay error is eliminated. The quality of the output current and voltage can be further improved by utilizing the proposed control method.

  9. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    Energy Technology Data Exchange (ETDEWEB)

    Currás, Esteban, E-mail: ecurrasr@cern.ch [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Fernández, Marcos [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Gallrapp, Christian [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Gray, Lindsey [Fermilab, Wilson Street and Kirk Road, Batavia, IL 60510-5011, Illinois (United States); Mannelli, Marcello [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Meridiani, Paolo [Istituto Nazionale Di Fisica Nucleare – Sezione di Roma, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Moll, Michael [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Nourbakhsh, Shervin [University of Minnesota, Minneapolis, MN 55455 (United States); Scharf, Christian [Hamburg University, Notkestraße 85, 22607 Hamburg (Germany); Silva, Pedro [CERN, Organisation europnne pour la recherche nucleaire, CH-1211 Genéve 23 (Switzerland); Steinbrueck, Georg [Hamburg University, Notkestraße 85, 22607 Hamburg (Germany); Fatis, Tommaso Tabarelli de [Istituto Nazionale di Fisica Nucleare – Sezione di Milano-Bicocca Piazza della Scienza 3, 20126 Milano (Italy); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb{sup −1} per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm{sup 2} and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb{sup −1}, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 10{sup 16} neq/cm{sup 2}. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×10{sup 16} neq/cm{sup 2} is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  10. The NANOGrav Observing Program: High-precision Millisecond Pulsar Timing and the Search for Nanohertz Gravitational Waves

    Science.gov (United States)

    Nice, David; NANOGrav

    2018-01-01

    The North American Observatory for Nanohertz Gravitational Waves (NANOGrav) collaboration is thirteen years into a program of long-term, high-precision millisecond pulsar timing, undertaken with the goal of detecting and characterization nanohertz gravitational waves (i.e., gravitational waves with periods of many years) by measuring their effect on observed pulse arrival times. Our primary instruments are the Arecibo Observatory, used to observe 37 pulsars with declinations between 0 and 39 degrees; and the Green Bank Telescope, used for 24 pulsars, of which 22 are outside the Arecibo range, and 2 are overlaps with the Arecibo source list. Additional observations are made with the VLA and (soon) CHIME.Most pulsars in our program are observed at intervals of three to four weeks, and seven are observed weekly. Observations of each pulsar are made over a wide range of radio frequencies at each epoch in order to measure and mitigate effects of the ionized interstellar medium on the pulse arrival times. Our targets are pulsars for which we can achieve timing precision of 1 microsecond or better in at each epoch; we achieve precision better than 100 nanoseconds in the best cases. Observing a large number of pulsars will allow for robust measurements of gravitational waves by analyzing correlations in the timing of pairs of pulsars depending on their separation on the sky. Our data are pooled with data from telescopes worldwide via the International Pulsar Timing Array (IPTA) collaboration, further increasing our sensitivity to gravitational waves.We release data at regular intervals. We will describe the NANOGrav 5-, 9- and 11-year data sets and give a status report on the NANOGrav 12.5-year data set.

  11. Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability

    Czech Academy of Sciences Publication Activity Database

    Kodet, J.; Pánek, Petr; Procházka, I.

    2016-01-01

    Roč. 53, č. 1 (2016), s. 18-26 ISSN 0026-1394 Institutional support: RVO:67985882 Keywords : TWOTT * Time transfer * Optical fiber Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.411, year: 2016

  12. GPS Precision Timing at CERN

    CERN Document Server

    Beetham, C G

    1999-01-01

    For the past decade, the Global Positioning System (GPS) has been used to provide precise time, frequency and position co-ordinates world-wide. Recently, equipment has become available specialising in providing extremely accurate timing information, referenced to Universal Time Co-ordinates (UTC). This feature has been used at CERN to provide time of day information for systems that have been installed in the Proton Synchrotron (PS), Super Proton Synchrotron (SPS) and the Large Electron Positron (LEP) machines. The different systems are described as well as the planned developments, particularly with respect to optical transmission and the Inter-Range Instrumentation Group IRIG-B standard, for future use in the Large Hadron Collider (LHC).

  13. Gravity effects obtained from global hydrology models in comparison with high precision gravimetric time series

    Science.gov (United States)

    Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin

    2010-05-01

    Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.

  14. Broadband THz waveguiding and high-precision broadband time-resolved spectroscopy

    DEFF Research Database (Denmark)

    Cooke, David; Iwaszczuk, Krzysztof; Nielsen, Kristian

    2009-01-01

    , have tailored dispersion and may be bent into sharp bends. Due to the confinement of the THz field in the core of the fibers they are ideal for stable guiding of THz light in confined environments, and may serve as a useful basis for a wealth of fiber-based photonic components in the THz range......We demonstrate optical fibers designed for the THz frequency range, fabricated in a low-loss polymer. The polymer fibers display a broadband loss of 0.4 dB/cm over the 0.1-1 THz range, with a minimum loss of 0.1 dB/cm in the region near 500 GHz. The fibers, based on endlessly single-mode design......, particularly in spectroscopic applications where tight confinement of the THz field is required. We further demonstrate a new spectroscopic technique for ultrafast time-resolved THz time-domain spectroscopy which simultaneously acquires both reference and sample data. By using this scheme we show...

  15. Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    CERN Document Server

    Curras Rivera, Esteban

    2016-01-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering about 250 fba-1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 30 layers of silicon detectors totalling 600m^2. The sensors will be realized as pad detectors with cell sizes of between 0.5-1.0 cm^2 and an active thickness between 100 um and 300 um depending on their location in the endcaps the thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fba-1, the electromagnetic calorimetry will sustain integ...

  16. Radiation hardness and precision timing study of Silicon detectors for the CMS High Granularity Calorimeter (HGC)

    CERN Document Server

    Curras, E; Gallrapp, C; Gray, L; Mannelli, M; Meridiani, P; Moll, M; Nourbakhsh, S; Scharf, C; Silva, P; Steinbrueck, G; Tabarelli de Fatis, T; Vila, I

    2016-01-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb^−1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm^2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb^−1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 10^16 neq/cm^2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μ...

  17. PRECISION TIME-DELAY GENERATOR

    Science.gov (United States)

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  18. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context

    Science.gov (United States)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2015-04-01

    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  19. Real-time analysis of δ13C- and δD-CH4 by high precision laser spectroscopy

    Science.gov (United States)

    Eyer, Simon; Emmenegger, Lukas; Tuzson, Béla; Fischer, Hubertus; Mohn, Joachim

    2014-05-01

    Methane (CH4) is the most important non-CO2 greenhouse gas (GHG) contributing 18% to total radiative forcing. Anthropogenic sources (e.g. ruminants, landfills) contribute 60% to total emissions and led to an increase in its atmospheric mixing ratio from 700 ppb in pre-industrial times to 1819 ± 1 ppb in 2012 [1]. Analysis of the most abundant methane isotopologues 12CH4, 13CH4 and 12CH3D can be used to disentangle the various source/sink processes [2] and to develop target oriented reduction strategies. High precision isotopic analysis of CH4 can be accomplished by isotope-ratio mass-spectrometry (IRMS) [2] and more recently by mid-infrared laser-based spectroscopic techniques. For high precision measurements in ambient air, however, both techniques rely on preconcentration of the target gas [3]. In an on-going project, we developed a fully-automated, field-deployable CH4 preconcentration unit coupled to a dual quantum cascade laser absorption spectrometer (QCLAS) for real-time analysis of CH4 isotopologues. The core part of the rack-mounted (19 inch) device is a highly-efficient adsorbent trap attached to a motorized linear drive system and enclosed in a vacuum chamber. Thereby, the adsorbent trap can be decoupled from the Stirling cooler during desorption for fast desorption and optimal heat management. A wide variety of adsorbents, including: HayeSep D, molecular sieves as well as the novel metal-organic frameworks and carbon nanotubes were characterized regarding their surface area, isosteric enthalpy of adsorption and selectivity for methane over nitrogen. The most promising candidates were tested on the preconcentration device and a preconcentration by a factor > 500 was obtained. Furthermore analytical interferants (e.g. N2O, CO2) are separated by step-wise desorption of trace gases. A QCL absorption spectrometer previously described by Tuzson et al. (2010) for CH4 flux measurements was modified to obtain a platform for high precision and simultaneous

  20. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua

    2017-04-01

    Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.

  1. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    Science.gov (United States)

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. High-Precision Computation and Mathematical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2008-11-03

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  3. High-precision real-time 3D shape measurement using a bi-frequency scheme and multi-view system.

    Science.gov (United States)

    Tao, Tianyang; Chen, Qian; Feng, Shijie; Hu, Yan; Da, Jian; Zuo, Chao

    2017-05-01

    High-speed and high-precision 3D shape measurement plays a central role in diverse applications such as automatic online inspection, robotics control, and human-computer interaction. Conventional multi-frame phase-shifting-based fringe projection profilometry techniques face inherent trade-offs between the speed and measurement precision, which are fundamentally limited by the fringe density and extra pattern projections used for de-ambiguity of fringe orders. Increasing the frequency of the projection fringes can obviously improve the measurement precision; however, it creates difficulties in the subsequent phase unwrapping. For this reason, to date, the frequency of the fringes in typical real-time 3D shape measurement techniques is generally less than 30 to guarantee a reasonable reliability of phase unwrapping. To overcome this limitation, a bi-frequency phase-shifting technique based on a multi-view fringe projection system is proposed, which significantly enhances the measurement precision without compromising the measurement speed. Based on the geometric constraints in a multi-view system, the unwrapped phase of the low-frequency (10-period) fringes can be obtained directly, which serves as a reference to unwrap the high-frequency phase map with a total number of periods of up to 160. Besides, the proposed scheme with 10-period and 160-period fringes is suitable for slightly defocusing projection, allowing a higher projection rate and measurement speed. Experiments on both static and dynamic scenes are performed, verifying that our method can achieve high-speed and high-precision 3D measurement at 300 frames per second with a precision of about 50 μm.

  4. The Synchrosqueezing Algorithm Based on Generalized S-transform for High-Precision Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2017-07-01

    Full Text Available In this paper, a new time-frequency analysis method—Synchrosqueezing Generalized S-transform (SSGST—is proposed to meet the needs of high-resolution seismic signal processing and interpretation. The basic wavelet of the generalized S-transform (GST in the paper is a modulated harmonic wave with four undetermined parameters that can be constructed by adjusting the four parameters to make the GST more suitable for seismic signals processing. The SSGST method squeezes and reconstructs the complex coefficient spectra of GST results along the frequency direction so that the energy distributions on the time-frequency spectra are concentrated around the real instantaneous frequency of the signal; thus, the time-frequency resolution can be improved. Based on mathematical theory, the basic principle of the new transformation method is given, and the mathematical expressions of the positive transformation and lossless inverse transformation of the method are strictly deduced. The experimental results of numerical signals illustrate that the proposed method can correctly decompose signals with different spectral characteristics into a high time-frequency resolution spectrum and can recovery the original signal from the time-frequency spectrum with satisfying reconstructing accuracy. Application on field seismic data shows the superiority of the new method in seismic time-frequency analysis for hydrocarbon detection.

  5. A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development

    Directory of Open Access Journals (Sweden)

    Sun Bao-Hua

    2016-01-01

    Full Text Available The time-of-flight (TOF mass spectrometry (MS, a high-resolution magnetic spectrometer equipped with a fast particle tracking system, is well recognized by its ability in weighing the most exotic nuclei. Currently such TOF-MS can achieve a mass resolution power of about 2×10−4. We show that the mass resolution can be further improved by one order of magnitude with augmented timing and position detectors. We report the progress in developing ultra-fast detectors to be used in TOF-MS.

  6. Movements, timing and precision of drummers

    DEFF Research Database (Denmark)

    Dahl, Sofia

    2017-01-01

    Percussion instruments vary a great deal in material properties and characteristics of the interaction. Most drums, however, produce sounds with well defined onsets and contact time between player and instrument can be very brief. Players of percussion need to have precise control of timing and s...

  7. High-precision timing of millisecond pulsars. II - Astrometry, orbital evolution, and eclipses of PSR 1957 + 20

    Science.gov (United States)

    Ryba, M. F.; Taylor, J. H.

    1991-01-01

    Pulse time-of-arrival measurements have been acquired for PSR 1957 + 20 on 61 days over a 2.7 yr interval, including the times of 44 eclipse disappearance or reappearance events. The timing data provide a reliable measurement of the pulsar's proper motion, 29 +/- 3 mas/yr, at position angle 216 +/- 6 deg; this direction is in excellent agreement with that suggested by the cometlike shape of a surrounding optical emission nebula. The rate of change of the orbital period has been measured: a surprisingly large (-3.9 +/- 0.9) x 10 exp -11, implying that significant orbital evolution must take place on a time scale of 30 Myr. Finally, the present observations extend the eclipse measurements to higher frequencies and provide better statistics for these highly variable phenomena. The eclipse data are used to compute a column-density profile of free electrons in the outer parts of the eclipsing region, and thereby provide an important glimpse into the material being ablated from the companion star.

  8. Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition

    Science.gov (United States)

    Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji

    2010-04-01

    Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.

  9. Precisely timing dissipative quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Kastoryano, Michael; Eisert, Jens [FU Berlin (Germany); Wolf, Michael [TU Muenchen (Germany)

    2013-07-01

    Dissipative engineering constitutes a framework within which quantum information processing protocols are powered by system-environment interaction rather than by unitary dynamics alone. This framework embraces noise as a resource, and consequently, offers a number of advantages compared to one based on unitary dynamics alone, e.g., that the protocols are typically independent of the initial state of the system. However, the time independent nature of this scheme makes it difficult to imagine precisely timed sequential operations, conditional measurements or error correction. In this work, we provide a path around these challenges, by introducing basic dissipative gadgets which allow us to precisely initiate, trigger and time dissipative operations, while keeping the system Liouvillian time-independent. These gadgets open up novel perspectives for thinking of timed dissipative quantum information processing. As an example, we sketch how measurement based computation can be simulated in the dissipative setting.

  10. Study on a High-frequency Multi-GNSS Real-time Precise Clock Estimation Algorithm and Application in GNSS Augment System

    Directory of Open Access Journals (Sweden)

    CHEN Liang

    2017-05-01

    Full Text Available GNSS satellite-based differential augment system is based on real-time orbit and clock augment message. The multi-GNSS real-time precise clock error estimation model is studied, and then the parameters estimated in traditional un-difference model are optimized and a high-efficient real-time clock simplified model is proposed and realized. The real-time orbit data processing based on PANDA is also analyzed. The results indicate that the real-time orbit radial accuracy of GPS, BeiDou MEO and Galileo is 1~5 cm, and the radial accuracy of the BeiDou GEO/IGSO satellite is about 10 cm. It is found that the optimized real-time clock simplified model is more efficient in one epoch than un-difference model and can be applied to high-frequency (such as 1 Hz updating of real-time clock augment message. The results show that the real-time clock error obtained by this model is absolute value and there is no constant bias. Based on the real-time orbit, the GPS real-time clock precision of the simplified model is about 0.24 ns, BeiDou GEO is about 0.50 ns, IGSO/MEO is about 0.22 ns and Galileo is about 0.32 ns. Using the multi-GNSS real-time data stream in GFZ, a multi-GNSS real-time augment prototype system is built and the real-time augment message is being broadcasted on the Internet. The real-time PPP centimeter-level service and meter-level navigation service based on pseudorange are realized based on this prototype system.

  11. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  12. TORCH — an Innovative High-Precision Time-of-Flight PID Detector for the LHCb Upgrade

    CERN Document Server

    Fohl, Klaus

    2015-01-01

    TORCH is a Cherenkov time-of-flight detector being developed as a particle identification system for the upgraded LHCb experiment. The DIRC-type detector is located at 10m distance from the interaction point with an area of 30m$^2$ and is formed from 10mm thick synthetic amorphous fused silica plates. In this Cherenkov radiator the photons that propagate by total internal reflection to the plate edge are focussed onto an array of position-sensitive micro-channel plate sensors. Combining the photon timings the goal is to achieve a $\\sigma$ = 15 ps timing resolution per particle, yielding 3$\\sigma$ pion-kaon separation up to 10 GeV/c or better. Requirements for the photon detectors are presented together with preliminary prototype results. Preparations for the upcoming test beam are discussed. Optical design studies have been performed for using one of the available bar boxes of the BaBar DIRC detector containing assembled quartz radiator bars in a future test beam experiment.

  13. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology

    Science.gov (United States)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel

    2016-04-01

    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.

  14. Precision mass measurements of highly charged ions

    Science.gov (United States)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  15. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism

    Science.gov (United States)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.

    2012-12-01

    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data

  16. Precision Pulsar Timing at the DSN

    Science.gov (United States)

    Majid, Walid A.

    2016-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We have developed and are now commissioning a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system is capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations scheduled over the next few years.

  17. Nuclear explosion locations at the Balapan, Kazakhstan, nuclear test site: the effects of high-precision arrival times and three-dimensional structure

    Science.gov (United States)

    Thurber, Clifford; Trabant, Chad; Haslinger, Florian; Hartog, Renate

    2001-04-01

    We have investigated the potential contributions of improved arrival times (using waveform cross-correlation) and the use of three-dimensional (3-D) velocity models for seismic event location capability. Our analyses are applied to a dataset of nuclear explosions at Balapan, Kazakhstan, for which ground-truth locations and some absolute origin times are available. This ground-truth information allows us to determine excellent origin time estimates for the remaining explosions. The combination of excellent ground-truth location information and high-quality origin time estimates permits us to (1) carry out a detailed examination of the quality of ISC picks, (2) identify probable timing errors in the digital data, (3) evaluate relative and absolute location capability using data from a sparse network, (4) assess the influence of event signal-to-noise ratio (SNR) on relative location accuracy, (5) utilize the Balapan events as a source array for 3-D tomography beneath the test site, and (6) test the influence of 3-D structure (local and global) on relative location accuracy and precision in a "controlled" situation. Our principal finding is that improved arrival times are the primary contributor to improved locations. Joint and individual relocations of Balapan events using the full digital dataset result in average mislocations of less than 1 km and 95% confidence regions of a compatible size. To mimic a CTBT scenario more realistically, we also carry out relocations using very few stations (4-10 observations). Location accuracy degrades somewhat, but the high-quality picks generally result in mislocations less than 10 km, even for events with very large azimuthal gaps. Uncertainty is generally underestimated in these cases. Tests with artificially degraded SNR show that mislocation increases slowly as SNR decreases. 3-D velocity structure makes a smaller contribution to relative location accuracy than accurate time picks. Travel time variations due to global 3-D

  18. Construction and operation of a high-speed, high-precision eye tracker for tight stimulus synchronization and real-time gaze monitoring in human and animal subjects

    Directory of Open Access Journals (Sweden)

    Reza Farivar

    2016-09-01

    Full Text Available Measurements of the fast and precise movements of the eye—critical to many vision, oculomotor, and animal behaviour studies—can be made non-invasively by video oculography. The protocol here describes the construction and operation of a research-grade video oculography system with 0.1° precision over the full typical viewing range at over 450Hz with tight synchronization with stimulus onset. The protocol consists of three stages: (1 system assembly, (2 calibration for both cooperative and for minimally cooperative subjects (e.g., animals or infants, and (3 gaze monitoring and recording.

  19. High precision x ray lithographic masks

    Science.gov (United States)

    Pease, R. F.; Browning, R.

    1992-09-01

    This contract period was first concerned with winding up the projects on the embedded X-ray Mask structure and on the 'quantum lithography' idea. As a result of developments elsewhere it became clear that among the most critical issues in achieving high precision X-ray masks were those associated with achieving high precision in both feature size and feature placement in electron beam lithography. Most of the effort in this reporting period was aimed at achieving precision in feature size; notably an attack on the problem of proximity effects. There were two approaches: (1) A short term approach aimed at correcting effects in existing electron beam pattern generators (notably the ETEC MEBES 3 and 4) for feature sizes down 500 nm; and (2) A long term approach aimed at avoiding proximity effects by employing low energy electron exposure for feature size below 500 nm.

  20. High Precision Pressure Measurement with a Funnel

    Science.gov (United States)

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  1. Surface texture metrology for high precision surfaces

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Gasparin, Stefania; Tosello, Guido

    2010-01-01

    This paper introduces some of the challenges related to surface texture measurement of high precision surfaces. The paper is presenting two case studies related to polished tool surfaces and micro part surfaces. In both cases measuring instrumentation, measurement procedure and the measurement re...

  2. High precision detector robot arm system

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  3. Millisecond precision spike timing shapes tactile perception.

    Science.gov (United States)

    Mackevicius, Emily L; Best, Matthew D; Saal, Hannes P; Bensmaia, Sliman J

    2012-10-31

    In primates, the sense of touch has traditionally been considered to be a spatial modality, drawing an analogy to the visual system. In this view, stimuli are encoded in spatial patterns of activity over the sheet of receptors embedded in the skin. We propose that the spatial processing mode is complemented by a temporal one. Indeed, the transduction and processing of complex, high-frequency skin vibrations have been shown to play an important role in tactile texture perception, and the frequency composition of vibrations shapes the evoked percept. Mechanoreceptive afferents innervating the glabrous skin exhibit temporal patterning in their responses, but the importance and behavioral relevance of spike timing, particularly for naturalistic stimuli, remains to be elucidated. Based on neurophysiological recordings from Rhesus macaques, we show that spike timing conveys information about the frequency composition of skin vibrations, both for individual afferents and for afferent populations, and that the temporal fidelity varies across afferent class. Furthermore, the perception of skin vibrations, measured in human subjects, is better predicted when spike timing is taken into account, and the resolution that predicts perception best matches the optimal resolution of the respective afferent classes. In light of these results, the peripheral representation of complex skin vibrations draws a powerful analogy with the auditory and vibrissal systems.

  4. Upgrades for the Precision Proton Spectrometer at the LHC: Precision Timing and Tracking Detectors

    CERN Document Server

    Gallinaro, Michele

    2017-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately $\\pm$210~m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25~ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  5. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  6. High-precision positioning of radar scatterers

    Science.gov (United States)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  7. Precision Timing with Silicon Sensors for Use in Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bornheim, A. [Caltech; Ronzhin, A. [Fermilab; Kim, H. [Chicago U.; Bolla, G. [Fermilab; Pena, C. [Caltech; Xie, S. [Caltech; Apresyan, A. [Caltech; Los, S. [Fermilab; Spiropulu, M. [Caltech; Ramberg, E. [Fermilab

    2017-11-27

    The high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN is expected to provide instantaneous luminosities of 5 × 1034 cm-2 s-1. The high luminosities expected at the HL-LHC will be accompanied by a factor of 5 to 10 more pileup compared with LHC conditions in 2015, causing general confusion for particle identification and event reconstruction. Precision timing allows to extend calorimetric measurements into such a high density environment by subtracting the energy deposits from pileup interactions. Calorimeters employing silicon as the active component have recently become a popular choice for the HL- LHC and future collider experiments which face very high radiation environments. We present studies of basic calorimetric and precision timing measurements using a prototype composed of tungsten absorber and silicon sensor as the active medium. We show that for the bulk of electromagnetic showers induced by electrons in the range of 20 GeV to 30 GeV, we can achieve time resolutions better than 25 ps per single pad sensor.

  8. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence...

  9. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision....

  10. Analysis of the Precision of Pulsar Time Clock Model

    Science.gov (United States)

    Zhao, C. S.; Tong, M. L.; Gao, Y. P.; Yang, T. G.

    2017-05-01

    Millisecond pulsars have high rotation stability, which can be applied to many research fields, such as the establishment of the pulsar time standard, detection of gravitational wave, spacecraft navigation by using X-ray pulsars and so on. In this paper, we employ two millisecond pulsars PSR J0437-4715 and J1713+0743 which are observed by International Pulsar Timing Array (IPTA), to analyze the precision of pulsar clock parameter and the prediction accuracy of pulse time of arrival (TOA). It is found that the uncertainty of spin frequency is 10-15 Hz, the uncertainty of the first derivative of spin frequency is 10-23 s-2, and the precision of measured rotational parameters increases by one order of magnitude with the accumulated observational data every 4-5 years. In addition, the errors of 4.8 yr TOAs which are predicted by the clock model established by the 10 yr data of J0437-4715 are less than 1 μs. Therefore, one can use the pulsar time standard to calibrate the atomic clock, which can make atomic time deviate from TT (Terrestrial Time) less than 1 μs within 4.8 yr.

  11. High precision kinematic surveying with laser scanners

    Science.gov (United States)

    Gräfe, Gunnar

    2007-12-01

    The kinematic survey of roads and railways is becoming a much more common data acquisition method. The development of the Mobile Road Mapping System (MoSES) has reached a level that allows the use of kinematic survey technology for high precision applications. The system is equipped with cameras and laser scanners. For high accuracy requirements, the scanners become the main sensor group because of their geometric precision and reliability. To guarantee reliable survey results, specific calibration procedures have to be applied, which can be divided into the scanner sensor calibration as step 1, and the geometric transformation parameter estimation with respect to the vehicle coordinate system as step 2. Both calibration steps include new methods for sensor behavior modeling and multisensor system integration. To verify laser scanner quality of the MoSES system, the results are regularly checked along different test routes. It can be proved that a standard deviation of 0.004 m for height of the scanner points will be obtained, if the specific calibrations and data processing methods are applied. This level of accuracy opens new possibilities to serve engineering survey applications using kinematic measurement techniques. The key feature of scanner technology is the full digital coverage of the road area. Three application examples illustrate the capabilities. Digital road surface models generated from MoSES data are used, especially for road surface reconstruction tasks along highways. Compared to static surveys, the method offers comparable accuracy at higher speed, lower costs, much higher grid resolution and with greater safety. The system's capability of gaining 360 profiles leads to other complex applications like kinematic tunnel surveys or the precise analysis of bridge clearances.

  12. High precision laser photometer for laser optics

    Science.gov (United States)

    Zhao, Yuan'an; Hu, Guohang; Cao, Zhen; Liu, Shijie; Zhu, Meiping; Shao, Jianda

    2017-06-01

    Development of laser systems requires optical components with high performance, and a high-precision double-beam laser photometer was designed and established to measure the optical performance at 1064nm. Double beam design and lock-in technique was applied to decrease the impact of light energy instability and electric noise. Pairs of samples were placed symmetrically to eliminate beam displacement, and laser scattering imaging technique was applied to determine the influence of surface defect on the optical performance. Based on the above techniques, transmittance and reflection of pairs of optics were obtained, and the measurement precision was improved to 0.06%. Different types of optical loss, such as total loss, volume loss, residual reflection and surface scattering loss, were obtained from the transmittance and reflection measurement of samples with different thickness. Comparison of optical performance of the test points with and without surface defects, the influence of surface defects on optical performance was determined. The optical performance of Nd-glass at 1064nm were measured as an example. Different types of optical loss and the influence of surface defects on the optical loss was determined.

  13. Data Processing in Precise Time and Frequency Applications

    CERN Document Server

    Desaintfuscien, Michel

    2007-01-01

    Physical processes, involving atomic phenomena, allow more and more precise time and frequency measurements. This progress is not possible without convenient processing of the respective raw data. The book describes the data processing at various levels: design of the time and frequency references, characterization of the time and frequency references, applications involving precise time and/or frequency references. The metrological properties stability, accuracy and reproducibility are defined and the processes leading to their characterization are shown. The various aspects of the variance of the frequency fluctuations are discussed and compared and their significance is given. Some major applications of the best frequency and time standards are finally discussed. The way the extreme precision of these sources is used to obtain precise time and position information is shown: - Time scales, used to describe every human and physical activities, such as astronomy, physical laws, etc. - Positioning systems, suc...

  14. High precision innovative micropump for artificial pancreas

    Science.gov (United States)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  15. Radiation Tolerant Low Power Precision Time Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of small, low power atomic clocks is now a reality for ground-based and airborne navigation systems. Kernco's Low Power Precision Time Source...

  16. High precision laser forming for micro actuation

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Huis in 't Veld, Bert; Nakata, Yoshiki; Xu, Xianfan; Roth, Stephan; Neuenschwander, Beat

    2014-01-01

    For assembly of micro-devices, such as photonic devices, the precision alignment of components is often critical for their performance. Laser forming, also known as laser-adjusting, can be used to create an integrated microactuator to align the components with sub-micron precision after bonding. In

  17. Variation in the mantle sources of the northern Izu arc with time and space — Constraints from high-precision Pb isotopes

    Science.gov (United States)

    Ishizuka, Osamu; Taylor, Rex N.; Milton, J. Andy; Nesbitt, Robert W.; Yuasa, Makoto; Sakamoto, Izumi

    2006-09-01

    We present new ages and geochemical data for back-arc lavas from the northern Izu Bonin arc 33 35° N including high-precision double-spike Pb isotope measurements. The northern part of the Izu Bonin arc is distinct from the rest of the arc as it lacks active rifting behind the volcanic front but it does have Quaternary volcanoes (e.g. Niijima). However, in common with the rest of the arc the northern section has back-arc seamount chains and NE SW volcanic ridges. 40Ar/39Ar dating of volcanic rocks has revealed that Quaternary volcanism is limited to within 40 km of the volcanic front. Miocene and Pliocene volcanism extended as far as 120 km west of the current volcanic front along the back-arc seamounts and ridges. The chemical characteristics of back-arc volcanism are significantly different in the Pliocene Quaternary compared to the Miocene. Opx cpx andesite and hornblende andesite are dominant in Miocene volcanic centres, while Pliocene and Quaternary centres are characterized by basalt and rhyolite. Miocene volcanic centres show a marked correlation between Th/Ce and Pb and Nd isotopes. Generally, these lavas have higher Δ7/4 and lower 143Nd/144Nd with increasing Th/Ce. In contrast, the Pliocene and Quaternary lavas show little, if any, Th enrichment relative to potential mantle sources and no correlation with isotopes. These correlations suggest that partial melt of sediment from the subducting slab was an important component in the Miocene, whereas, the Pliocene Quaternary volcanic centres show little evidence of sediment melt and are restricted to a contribution of fluid from altered oceanic crust and fluid from sediment. Quaternary volcanoes at similar distances from the volcanic front are calculated to have similar compositions and amounts of slab-derived fluid in their sources. However, on Pb Pb isotope plots, they lie closer to the NHRL towards south (i.e., Δ8/4 decreases towards south). Almost parallel but distinct trends on Pb Pb plots imply

  18. High-precision multi-node clock network distribution

    Science.gov (United States)

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10-15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  19. Precision timing detectors with cadmium-telluride sensor

    Science.gov (United States)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  20. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  1. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  2. Precise Time and Time Interval Applications to Electric Power Systems

    Science.gov (United States)

    1991-12-01

    instability problems in a power system are really system problerx~s. [23] These researchers found that the Pdst~st and most global indicators of irnmi...14s [39]. 1 constructed a similar system [3]. For their work on stability assessment and global relaying, Hansen and Ddpiaz initially selected the...100, No. 1 1, November 1981, pp. 4428-4434. 38. G. Missout, J . Bkland, P. Lebd, G. Bkdard, P. Bussi &res, "Time Transfer by IRIG-B Time Code Via

  3. High-precision U-Pb zircon age from the Anfiteatro de Ticó Formation: Implications for the timing of the early angiosperm diversification in Patagonia

    Science.gov (United States)

    Perez Loinaze, Valeria S.; Vera, Ezequiel I.; Passalia, Mauro G.; Llorens, Magdalena; Friedman, Richard; Limarino, Carlos O.; Césari, Silvia N.

    2013-12-01

    The Baqueró Group is one of the most relevant units regarding the study of the early diversification of angiosperms in South America. Whereas the age of the upper part of the Group, namely the Punta del Barco Formation, has been recently dated at 114.67 ± 0.18 Ma, the rest of the unit still lacks precise dating. In this contribution a CA-TIMS U-Pb zircon age of 118.23 ± 0.09 Ma for a tuff interlayered with fossiliferous rocks of the Anfiteatro de Ticó Formation (lower part of the Baqueró Group) is reported. This age constrains the duration of deposition of the Baqueró Group to approximately 4 Ma and provides new evidence for the age interpretation of the previously described angiosperm flora and associated pollen assemblages from this unit, until now interpreted as early Aptian or possibly Barremian in age. The Aptian age of the Baqueró Group allows a better comparison between the paleofloras from this southernmost region.

  4. Synchronization and phonological skills: precise auditory timing hypothesis (PATH

    Directory of Open Access Journals (Sweden)

    Adam eTierney

    2014-11-01

    Full Text Available Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel 2011, 2012, 2014. There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The precise auditory timing hypothesis predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.

  5. High precision mass measurements for wine metabolomics

    Science.gov (United States)

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe

    2014-11-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.

  6. High precision mass measurements for wine metabolomics

    Directory of Open Access Journals (Sweden)

    Chloé eRoullier-Gall

    2014-11-01

    Full Text Available An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir and white (Chardonnay wines from various geographic origins in Burgundy.

  7. High-Precision Computation: Mathematical Physics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  8. A simple high-precision Jacob's staff design for the high-resolution stratigrapher

    Science.gov (United States)

    Elder, W.P.

    1989-01-01

    The new generation of high-resolution stratigraphic research depends upon detailed bed-by-bed analysis to enhance regional correlation potential. The standard Jacob's staff is not an efficient and precise tool for measuring thin-bedded strata. The high-precision Jacob's staff design presented and illustrated in this paper meets the qualifications required of such an instrument. The prototype of this simple design consists of a sliding bracket that holds a Brunton-type compass at right angles to a ruled-off staff. This instrument provides rapid and accurate measurement of both thick- or thin-bedded sequences, thus decreasing field time and increasing stratigraphic precision. -Author

  9. Key techniques of the high precision gravity field system

    Science.gov (United States)

    Xu, Weimin; Chen, Shi; Lu, Hongyan; Shi, Lei

    2017-04-01

    Ground-based gravity time series provide a direct method to monitor all sources of mass changes from local to global scale. But the effectively infinite spatial sensitivity of gravity measurements make it difficult to isolate the signal of interest. The high precision gravity field system is an alternative approach of modeling mass changes under-ground. The field system, consists of absolute gravity, gravity and gravity gradient, GNSS, leveling and climate hydrology measurements, can improve the signal-to-noise ratio for many applications by removing contributions of unwanted signal from elevation changes, air pressure changes, local hydrology, and others. The networks of field system combination, such as field-profile in more than 100 kilometers, can be used in critical zone with high seismic risk for monitoring earth dynamics, volcanic and seismic phenomena. The system is constituted by 9 typical observation stations in 3*3 array (or 4 in 2*2 array) in 60 square meters field, each station is designed for integrated measurements, including absolute gravity, gravity gradient, elevation changes, air pressure and hydrology. Time-lapse gravity changes resulting from absolute gravimeter (FG5 or A10) with standard deviation less than 2 μGal, without the contributions of Earth tides, loading and polar motion. Additional measurements such as air pressure change, local hydrology and soil moisture are indispensable. The elevation changes resulting from GNSS (on the base station) and leveling (between stations) with precision less than 10 mm. The gravity gradient is the significant measurement for delimiting the location of the related mass changes underground the station, which is measured by Scintrex CG-5 gravimeters in different height (80cm in the test field), with precision less than 10 E. It is necessary to improve the precision of gravity gradient measurements by certain method in field experiment for the high precision measurement system. Acknowledgment: This

  10. High precision target center determination from a point cloud

    Directory of Open Access Journals (Sweden)

    K. Kregar

    2013-10-01

    Full Text Available Many applications of terrestrial laser scanners (TLS require the determination of a specific point from a point cloud. In this paper procedure of high precision planar target center acquisition from point cloud is presented. The process is based on an image matching algorithm but before we can deal with raster image to fit a target on it, we need to properly determine the best fitting plane and project points on it. The main emphasis of this paper is in the precision estimation and propagation through the whole procedure which allows us to obtain precision assessment of final results (target center coordinates. Theoretic precision estimations – obtained through the procedure were rather high so we compared them with the empiric precision estimations obtained as standard deviations of results of 60 independently scanned targets. An χ2-test confirmed that theoretic precisions are overestimated. The problem most probably lies in the overestimated precisions of the plane parameters due to vast redundancy of points. However, empirical precisions also confirmed that the proposed procedure can ensure a submillimeter precision level. The algorithm can automatically detect grossly erroneous results to some extent. It can operate when the incidence angles of a laser beam are as high as 80°, which is desirable property if one is going to use planar targets as tie points in scan registration. The proposed algorithm will also contribute to improve TLS calibration procedures.

  11. "Bubble-on-demand" generator with precise adsorption time control.

    Science.gov (United States)

    Zawala, J; Niecikowska, A

    2017-09-01

    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  12. "Bubble-on-demand" generator with precise adsorption time control

    Science.gov (United States)

    Zawala, J.; Niecikowska, A.

    2017-09-01

    The paper presents the principles of our new single bubble generator, which allows a precise control of bubble formation in pure liquids and surfactant solutions, i.e., their detachment frequency and the adsorption time at their motionless surface. We show that the bubbles with equilibrium size can be produced at the capillaries of various orifice diameters (0.022-0.128 mm) on demand and with outstanding reproducibility. Moreover, it is shown that a fully automatized and programmable bubble trap, synchronized with bubble detachment frequency, can be used to (i) control the radius of the released bubble and (ii) precisely adjust the initial adsorption coverage over the surface of detaching bubble, and hence to study the influence of adsorption coverage degree on kinetics of dynamic adsorption layer formation at the rising bubble surface.

  13. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  14. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  15. What can we learn from high precision measurements of neutrino ...

    Indian Academy of Sciences (India)

    Many experiments are being planned to measure the neutrino mixing angles more precisely. In this note, the theoretical significance of a high precision measurement of these parameters is discussed. It is emphasized that they can provide crucial information about different ways to understand the origin of large atmospheric ...

  16. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  17. Precise timing calibration for MoNA and LISA detectors

    Science.gov (United States)

    Garrett, Sierra; Barker, Alyson; Taylor, Nathaniel; Rogers, Warren F.; MoNA Collaboration

    2013-10-01

    The Modular Neutron Array (MoNA) and the Large multi-Institutional Scintillator Array (LISA), working in conjunction with the Sweeper Magnet and Detector Chamber at the NSCL, MSU, are used to determine the properties of neutron-unbound ground and excited states of neutron-rich nuclei. In order to determine the decay energy, precise energy and trajectory for both the charged fragment and the neutron need to be determined. This requires very precise time calibration for each of the 288 scintillator detectors in the two neutron arrays. Initial timing calibrations for all bars in a vertical layer are achieved using muons passing through all 16 detectors, taking into account the muon transit time from bar to bar. Vertical layers are then ``tied'' to one another using the arrival times of gamma rays originating from the target during production runs. In the LISA commissioning experiment, prompt gamma rays from the contaminant beam 29Na were used instead of those from the 26F production beam since they constituted 98% of the beam intensity (compared with the 26F production beam). Results for the LISA commissioning experiment will be presented. Work supported by NSF grant PHY-1101745.

  18. Precision Pulsar Timing with NASA's Deep Space Network

    Science.gov (United States)

    Teitelbaum, Lawrence; Majid, Walid; Franco, Manuel M.; Hoppe, Daniel J.; Horiuchi, Shinji; Lazio, T. Joseph W.

    Millisecond pulsars (MSPs) are a class of radio pulsars with extremely stable rotation. Their excellent timing stability can be used to study a wide variety of astrophysical phenomena. In particular, a large sample of these pulsars can be used to detect low-frequency gravitational waves. We have developed a precision pulsar timing backend for the NASA Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to time pulses from an ensemble of MSPs. The DSN operates clusters of large dish antennas (up to 70-m in diameter), located roughly equidistant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for future observations over the next few years.

  19. Applied Augmented Reality for High Precision Maintenance

    Science.gov (United States)

    Dever, Clark

    Augmented Reality had a major consumer breakthrough this year with Pokemon Go. The underlying technologies that made that app a success with gamers can be applied to improve the efficiency and efficacy of workers. This session will explore some of the use cases for augmented reality in an industrial environment. In doing so, the environmental impacts and human factors that must be considered will be explored. Additionally, the sensors, algorithms, and visualization techniques used to realize augmented reality will be discussed. The benefits of augmented reality solutions in industrial environments include automated data recording, improved quality assurance, reduction in training costs and improved mean-time-to-resolution. As technology continues to follow Moore's law, more applications will become feasible as performance-per-dollar increases across all system components.

  20. Multiple-Stage Converter Topology for High-Precision High-Current Pulsed Sources

    CERN Document Server

    Wassinger, N; Benedetti, M; Carrica, D; Retegui, R G; Cravero, J M

    2011-01-01

    A new high-current, low-rise-time, and high-precision pulse generator is presented. The topology is based on the use of different stages, each one specific for a particular operation range in terms of power and switching frequency. This approach allows to accomplish current, voltage, and precision requirements with standard semiconductors. Moreover, the proposed topology provides an independent and flexible adjustment of the pulse parameters (rise and fall times, flat-top duration, pulse amplitude, etc.). Experimental results are provided to validate the control of the proposed topology.

  1. Precision probes of QCD at high energies

    Science.gov (United States)

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.

    2017-07-01

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.

  2. Design and High Precision Monitoring of Detector Structures at CERN

    CERN Document Server

    Lackner, Friedrich; Riegler, Werner

    2007-01-01

    Situated on the outskirts of Geneva, CERN is the leading center for particle physics in the world. The Large Hadron Collider (LHC) with its 27 km ringshaped accelerator, which is currently under construction and will be operational in 2008, will begin a new era in high energy physics by revealing the basic constituents of the universe. One of the experiments is ALICE (A Large Ion - Colliding - Experiment), a detector consisting of multiple layers of sub detectors around the collision point to detect dierent types and properties of particles created in the collisions. Those particles are identified via their energy, momentum, track and decay products, and it is therefore important to align the various sub detectors very precisely to each other and monitor their position. The monitoring systems have to operate for an extended period of time under extreme conditions (e.g. high radiation) and must not absorb too many of the particles created in the collisions. This dissertation describes monitoring systems develo...

  3. Ionospheric corrections to precise time transfer using GPS

    Science.gov (United States)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of

  4. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  5. Characterization of a Precision Pulsar Timing Gravitational Wave Detector

    Science.gov (United States)

    Lam, Michael T.

    2017-01-01

    We aim to construct a Galactic-scale detector comprised of an array of pulsars distributed across the sky in an effort to detect low-frequency (nanohertz) gravitational waves. Even without a detection, observations of pulsar timing arrays have allowed us to begin to place impactful astrophysical constraints on dynamical processes occurring during galaxy mergers. Understanding the detector is necessary for improving our sensitivity to gravitational waves and making a detection. Therefore, our goal is to characterize the entire propagation path through the pulsar timing array detector. To do so, we must understand: what intrinsic noise processes occur at the pulsar, what effects the interstellar medium has on pulsed radio emission, and what errors we introduce when measuring the incident electromagnetic radiation at our observatories.In this work, we observed of one of the most spin-stable objects known for 24 hours to understand the fundamental limits of precision pulsar timing. We investigated the effect of non-simultaneous, multi-frequency sampling of pulsar dispersion measures on timing and analyzed the cause of deterministic and stochastic temporal variations seen in dispersion measure time series. We analyzed errors in pulse arrival times and determined the white noise budget for pulsars on the timescale of a single observation. Finally, we measured the excess noise beyond the white noise model in pulsar timing residuals and incorporated our results into a global model over all pulsar populations to improve excess noise scaling relations.

  6. Developing and implementing a high precision setup system

    Science.gov (United States)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  7. A broad-application microchannel-plate detector system for advanced particle or photon detection tasks large area imaging, precise multi-hit timing information and high detection rate

    CERN Document Server

    Jagutzki, O; Mergel, V; Schmidt-Böcking, H; Spielberger, L; Spillmann, U; Ullmann-Pfleger, K

    2002-01-01

    New applications for single particle and photon detection in many fields require both large area imaging performance and precise time information on each detected particle. Moreover, a very high data acquisition rate is desirable for most applications and eventually the detection and imaging of more than one particle arriving within a microsecond is required. Commercial CCD systems lack the timing information whereas other electronic microchannel plate (MCP) read-out schemes usually suffer from a low acquisition rate and complicated and sometimes costly read-out electronics. We have designed and tested a complete imaging system consisting of an MCP position readout with helical wire delay-lines, single-unit amplifier box and PC-controlled time-to-digital converter (TDC) readout. The system is very flexible and can detect and analyse position and timing information at single particle rates beyond 1 MHz. Alternatively, multi-hit events can be collected and analysed at about 20 kHz rate. We discuss the advantage...

  8. French Meteor Network for High Precision Orbits of Meteoroids

    Science.gov (United States)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  9. A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission

    OpenAIRE

    Vanderburg, Andrew; Johnson, John Asher

    2014-01-01

    The original Kepler mission achieved high photometric precision thanks to ultra-stable pointing enabled by use of four reaction wheels. The loss of two of these reaction wheels reduced the telescope's ability to point precisely for extended periods of time, and as a result, the photometric precision has suffered. We present a technique for generating photometric light curves from pixel-level data obtained with the two-wheeled extended Kepler mission, K2. Our photometric technique accounts for...

  10. Developing Precision Pulsar Timing Capability for the DSN

    Science.gov (United States)

    Majid, Walid A.; Kuiper, T. B.; Lazio, J.; Monroe, R.; Preston, R. A.; Spolaor, S.; Teitelbaum, L.; Trinh, J.

    2014-01-01

    Millisecond pulsars are a class of radio pulsars with extremely stable rotations. The excellent timing stability of millisecond pulsars can be used to study a wide variety of astrophysical phenomena. In particular, observations of a large sample of these pulsars can be used to detect the presence of low-frequency gravitational waves. We are currently developing a precision pulsar timing backend for the Deep Space Network (DSN), which will allow the use of short gaps in tracking schedules to observe and time pulses from an ensemble of millisecond pulsars. The NASA Deep Space Network (DSN) operates clusters of large dish antennas (up to 70-m in diameter), located roughly equi-distant around the Earth, for communication and tracking of deep-space spacecraft. The backend system will be capable of removing entirely the dispersive effects of propagation of radio waves through the interstellar medium in real-time. We will describe our development work, initial results, and prospects for pilot observations scheduled later this year. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under the Research and Technology Development Program, under a contract with the National Aeronautics and Space Administration.

  11. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  12. A cost-precision model for marine environmental monitoring, based on time-integrated averages.

    Science.gov (United States)

    Båmstedt, Ulf; Brugel, Sonia

    2017-07-01

    Ongoing marine monitoring programs are seldom designed to detect changes in the environment between different years, mainly due to the high number of samples required for a sufficient statistical precision. We here show that pooling over time (time integration) of seasonal measurements provides an efficient method of reducing variability, thereby improving the precision and power in detecting inter-annual differences. Such data from weekly environmental sensor profiles at 21 stations in the northern Bothnian Sea was used in a cost-precision spatio-temporal allocation model. Time-integrated averages for six different variables over 6 months from a rather heterogeneous area showed low variability between stations (coefficient of variation, CV, range of 0.6-12.4%) compared to variability between stations in a single day (CV range 2.4-88.6%), or variability over time for a single station (CV range 0.4-110.7%). Reduced sampling frequency from weekly to approximately monthly sampling did not change the results markedly, whereas lower frequency differed more from results with weekly sampling. With monthly sampling, high precision and power of estimates could therefore be achieved with a low number of stations. With input of cost factors like ship time, labor, and analyses, the model can predict the cost for a given required precision in the time-integrated average of each variable by optimizing sampling allocation. A following power analysis can provide information on minimum sample size to detect differences between years with a required power. Alternatively, the model can predict the precision of annual means for the included variables when the program has a pre-defined budget. Use of time-integrated results from sampling stations with different areal coverage and environmental heterogeneity can thus be an efficient strategy to detect environmental differences between single years, as well as a long-term temporal trend. Use of the presented allocation model will then

  13. Preparing polished crystal slices with high precision orientation

    DEFF Research Database (Denmark)

    Mathiesen, S. Ipsen; Gerward, Leif; Pedersen, O.

    1974-01-01

    A polishing procedure is described which utilizes a high precision Laue technique for crystal orientation. Crystal slices with their final polished surfaces parallel to a crystallographic plane within 0.02° can be prepared. ©1974 The American Institute of Physics......A polishing procedure is described which utilizes a high precision Laue technique for crystal orientation. Crystal slices with their final polished surfaces parallel to a crystallographic plane within 0.02° can be prepared. ©1974 The American Institute of Physics...

  14. Design and control of a high precision drive mechanism

    Science.gov (United States)

    Pan, Bo; He, Yongqiang; Wang, Haowei; Zhang, Shuyang; Zhang, Donghua; Wei, Xiaorong; Jiang, Zhihong

    2017-01-01

    This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.

  15. Evaluation of High-Precision Sensors in Structural Monitoring

    Science.gov (United States)

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  16. Evaluation of High-Precision Sensors in Structural Monitoring

    Directory of Open Access Journals (Sweden)

    Bihter Erol

    2010-12-01

    Full Text Available One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA. Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.

  17. Evaluation of high-precision sensors in structural monitoring.

    Science.gov (United States)

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.

  18. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka.

    Science.gov (United States)

    Giaccio, Biagio; Hajdas, Irka; Isaia, Roberto; Deino, Alan; Nomade, Sebastien

    2017-04-06

    The Late Pleistocene Campanian Ignimbrite (CI) super-eruption (Southern Italy) is the largest known volcanic event in the Mediterranean area. The CI tephra is widely dispersed through western Eurasia and occurs in close stratigraphic association with significant palaeoclimatic and Palaeolithic cultural events. Here we present new high-precision 14C (34.29 ± 0.09 14C kyr BP, 1σ) and 40Ar/39Ar (39.85 ± 0.14 ka, 95% confidence level) dating results for the age of the CI eruption, which substantially improve upon or augment previous age determinations and permit fuller exploitation of the chronological potential of the CI tephra marker. These results provide a robust pair of 14C and 40Ar/39Ar ages for refining both the radiocarbon calibration curve and the Late Pleistocene time-scale at ca. 40 ka. In addition, these new age constraints provide compelling chronological evidence for the significance of the combined influence of the CI eruption and Heinrich Event 4 on European climate and potentially evolutionary processes of the Early Upper Palaeolithic.

  19. Low Somatic Sodium Conductance Enhances Action Potential Precision in Time-Coding Auditory Neurons.

    Science.gov (United States)

    Yang, Yang; Ramamurthy, Bina; Neef, Andreas; Xu-Friedman, Matthew A

    2016-11-23

    Auditory nerve fibers encode sounds in the precise timing of action potentials (APs), which is used for such computations as sound localization. Timing information is relayed through several cell types in the auditory brainstem that share an unusual property: their APs are not overshooting, suggesting that the cells have very low somatic sodium conductance (gNa). However, it is not clear how gNa influences temporal precision. We addressed this by comparing bushy cells (BCs) in the mouse cochlear nucleus with T-stellate cells (SCs), which do have normal overshooting APs. BCs play a central role in both relaying and refining precise timing information from the auditory nerve, whereas SCs discard precise timing information and encode the envelope of sound amplitude. Nucleated-patch recording at near-physiological temperature indicated that the Na current density was 62% lower in BCs, and the voltage dependence of gNa inactivation was 13 mV hyperpolarized compared with SCs. We endowed BCs with SC-like gNa using two-electrode dynamic clamp and found that synaptic activity at physiologically relevant rates elicited APs with significantly lower probability, through increased activation of delayed rectifier channels. In addition, for two near-simultaneous synaptic inputs, the window of coincidence detection widened significantly with increasing gNa, indicating that refinement of temporal information by BCs is degraded by gNa Thus, reduced somatic gNa appears to be an adaption for enhancing fidelity and precision in time-coding neurons. Proper hearing depends on analyzing temporal aspects of sounds with high precision. Auditory neurons that specialize in precise temporal information have a suite of unusual intrinsic properties, including nonovershooting action potentials and few sodium channels in the soma. However, it was not clear how low sodium channel availability in the soma influenced the temporal precision of action potentials initiated in the axon initial segment

  20. Overview of the JYFLTRAP mass measurements and high-precision ...

    Indian Academy of Sciences (India)

    Abstract. The JYFLTRAP Penning trap set-up at the University of Jyväskylä, Finland, is a Penning trap facility that has provided high-precision atomic mass values for short-lived nuclides since 2003. Until now, masses of more than 250 short-lived nuclides have been measured. Since JYFLTRAP is coupled to the chemically ...

  1. HIGH PRECISION TEXTURE RECONSTRUCTION FOR 3D SCULPTURE MODEL

    Directory of Open Access Journals (Sweden)

    F. Zhang

    2012-07-01

    Full Text Available High precision 3D sculpture model can take the accurate records of the shape, material and color on the surface of the sculpture. It is an important foundation work of digital documentation, preservation, archaeological research and analysis for the sculpture types of cultural heritage. Constructing high precision 3D sculpture model includes two aspects: geometry modeling and texture reconstruction. But, there are many urgent problems still existing in the method of high precision texture reconstruction. This paper discussed a method of high precision texture reconstruction based on non-rigid transformation for 3D sculpture model. First, coarse registration of texture image to geometrical model is conducted with direct linear transformation (DLT method. Then, the registration is optimized with thin plane spline (TPS function to reduce local matching errors between texture image and geometrical model. Finally, texture mapping is implemented with optimized registration result. The experiments based on the sculpture in Dunhuang Mogao Grottoes of China are conducted, and the efficiency and feasibility of the proposed methods are proved.

  2. High-precision, large-volume, particle tracking

    CERN Document Server

    Bratzler, U

    1998-01-01

    Muon measurement in the ATLAS detector at the Large Hadron Collider (LHC) to be built at the European Center for Particle Physics, CERN, requires a tracking precision of 50 mu m along particle trajectories of typical path lengths of $9 5-20 m. The overall active area to be covered by the tracking devices, so-called Monitored Drift Tube Chambers, is 5,500 m/sup 2/. Requirements on fabrication, chamber alignment and operation are, in many respects, unprecedented and $9 can only be met by a combination of novel optical monitoring devices and a high-precision chamber construction technique. (1 refs).

  3. High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses

    Science.gov (United States)

    Barmes, Itan; Witte, Stefan; Eikema, Kjeld S. E.

    2013-07-01

    An experimental realization of high-precision direct frequency comb spectroscopy using counterpropagating femtosecond pulses on two-photon atomic transitions is presented. The Doppler broadened background signal, hampering precision spectroscopy with ultrashort pulses, is effectively eliminated with a simple pulse shaping method. As a result, all four 5S-7S two-photon transitions in a rubidium vapor are determined with both statistical and systematic uncertainties below 10-11, which is an order of magnitude better than previous experiments on these transitions.

  4. Fabrication and metrology of high-precision freeform surfaces

    Science.gov (United States)

    Supranowitz, Chris; Dumas, Paul; Nitzsche, Tobias; DeGroote Nelson, Jessica; Light, Brandon B.; Medicus, Kate; Smith, Nathan

    2013-09-01

    Freeform applications are growing and include helmet-mounted displays, conformal optics (e.g. windows integrated into airplane wings), and those requiring the extreme precision of EUV. These non-rotationally symmetric surfaces pose challenges to optical fabrication, mostly in the areas of polishing and metrology. The varying curvature of freeform surfaces drives the need for smaller, more "conformal", tools for polishing and reference beams for interferometry. In this paper, we present fabrication results of a high-precision freeform surface. We will discuss the total manufacturing process, including generation, pre-polishing, MRF®, and metrology, highlighting the capabilities available in today's optical fabrication companies.

  5. Nucleosynthesis Predictions and High-Precision Deuterium Measurements

    Directory of Open Access Journals (Sweden)

    Signe Riemer-Sørensen

    2017-05-01

    Full Text Available Two new high-precision measurements of the deuterium abundance from absorbers along the line of sight to the quasar PKS1937–1009 were presented. The absorbers have lower neutral hydrogen column densities (N(HI ≈ 18 cm − 2 than for previous high-precision measurements, boding well for further extensions of the sample due to the plenitude of low column density absorbers. The total high-precision sample now consists of 12 measurements with a weighted average deuterium abundance of D/H = 2 . 55 ± 0 . 02 × 10 − 5 . The sample does not favour a dipole similar to the one detected for the fine structure constant. The increased precision also calls for improved nucleosynthesis predictions. For that purpose we have updated the public AlterBBN code including new reactions, updated nuclear reaction rates, and the possibility of adding new physics such as dark matter. The standard Big Bang Nucleosynthesis prediction of D/H = 2 . 456 ± 0 . 057 × 10 − 5 is consistent with the observed value within 1.7 standard deviations.

  6. Flight Test Performance of a High Precision Navigation Doppler Lidar

    Science.gov (United States)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  7. Dual absolute and relative high precision laser metrology

    Science.gov (United States)

    Ergenzinger, Klaus; Schuldt, Thilo; Berlioz, Philippe; Braxmaier, Claus; Johann, Ulrich

    2017-11-01

    Design, integration, test setup, test results, and lessons-learnt of a high precision laser metrology demonstrator for dual absolute and relative laser distance metrology are presented. The different working principles are described and their main subsystems and performance drivers are presented. All subsystems have strong commonalities with flight models as of LTP on LISA Pathfinder and laser communication missions, and different pathways to flight models for varying applications and missions are presented. The setup has initially been realized within the ESA project "High Precision Optical Metrology (HPOM)", originally initiated for DARWIN formation flying optical metrology, though now serves as demonstrator for a variety of future applications. These are sketched and brought into context (PROBA-3, IXO onboard metrology, laser gravimetry earth observation missions, fundamental science missions like LISA and Pioneer anomaly).

  8. High precision {sup 14}C AMS at CIRCE

    Energy Technology Data Exchange (ETDEWEB)

    Terrasi, Filippo [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy)], E-mail: filippo.terrasi@unina2.it; De Cesare, Nicola [Dipartimento di Scienze della Vita, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); D' Onofrio, Antonio; Lubritto, Carmine; Marzaioli, Fabio [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); Passariello, Isabella [CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); Rogalla, Detlef [Institut fuer Experimentalphysik III, Ruhr-Universitaet Bochum, Bochum D-44780 (Germany); Sabbarese, Carlo [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); Borriello, Gianluca; Casa, Giovanni; Palmieri, Antonio [Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy)

    2008-05-15

    The CIRCE AMS system started operation in March 2005. The measurement of isotopic ratios {sup 14}C/{sup 12}C in samples of archaeological and environmental interest has rapidly attained high precision and accuracy levels in routine operation. The results of the intercomparison campaign in the framework of the VIRI program, as well as the outcome of a statistical analysis of the about 200 control measurements performed with standard samples, have shown the capability of the whole system for high precision measurements ({delta}R/R < 0.3%), allowing systematic investigations in both archaeological and environmental sciences. {sup 26}Al AMS has been implemented for the measurement of the astrophysically relevant {sup 25}Mg(p,{gamma}){sup 26}Al reaction cross section, while a beam line is under construction for the measurement of actinides isotopic ratios.

  9. High precision frequency estimation for harpsichord tuning classification

    OpenAIRE

    Tidhar, D.; Mauch, M.; Dixon, S

    2010-01-01

    We present a novel music signal processing task of classifying the tuning of a harpsichord from audio recordings of standard musical works. We report the results of a classification experiment involving six different temperaments, using real harpsichord recordings as well as synthesised audio data. We introduce the concept of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient for our task if combined with conservative transcription. In...

  10. High precision tide spectroscopy. [using the superconducting gravimeter

    Science.gov (United States)

    Goodkind, J. M.

    1978-01-01

    Diurnal and long period earth tides were measured to high accuracy and precision with the superconducting gravimeter. The results provide new evidence on the geophysical questions which have been attacked through earth tide measurements in the past. In addition, they raise new questions of potential interest. Slow fluctuations in gravity of order 10 micron gal over periods of 3 to 5 months were observed and are discussed.

  11. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses

    OpenAIRE

    Das, Jayajit

    2016-01-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early time T cell signaling. I show usin...

  12. High precision ray tracing in cylindrically symmetric electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards Jr, David, E-mail: dej122842@gmail.com

    2015-11-15

    Highlights: • High precision ray tracing is formulated using power series techniques. • Ray tracing is possible for fields generated by solution to laplace's equation. • Spatial and temporal orders of 4–10 are included. • Precisions in test geometries of hemispherical deflector analyzer of ∼10{sup −20} have been obtained. • This solution offers a considerable extension to the ray tracing accuracy over the current state of art. - Abstract: With the recent availability of a high order FDM solution to the curved boundary value problem, it is now possible to determine potentials in such geometries with considerably greater accuracy than had been available with the FDM method. In order for the algorithms used in the accurate potential calculations to be useful in ray tracing, an integration of those algorithms needs to be placed into the ray trace process itself. The object of this paper is to incorporate these algorithms into a solution of the equations of motion of the ray and, having done this, to demonstrate its efficacy. The algorithm incorporation has been accomplished by using power series techniques and the solution constructed has been tested by tracing the medial ray through concentric sphere geometries. The testing has indicated that precisions of ray calculations of 10{sup −20} are now possible. This solution offers a considerable extension to the ray tracing accuracy over the current state of art.

  13. The precision of time registration with Danjon astrolabe

    Directory of Open Access Journals (Sweden)

    Perović G.

    1998-01-01

    Full Text Available During 1988 at the Munich, Vienna and Graz stations selected stars were observed for the purpose of determining difference in the longitudes. The measurements were performed with Danjon astrolabe by using the method of equal zenith distances. In the present paper the authors analyze the registration precision of 1604 star transits over a given almucantar. They estimate the variance of registration of star transits over a fictive thread as function of declination and parallactic angle before and after elimination of gross errors.

  14. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  15. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  16. High precision systems require high precision "blueprints": a new view regarding the formation of connections in the Mammalian visual system.

    Science.gov (United States)

    Chalupa, L M; Dreher, B

    1991-01-01

    Abstract It is well established that early in development interconnections within the mammalian visual system are often more widespread and less precise than at maturity. The literature dealing with the formation of visual connections has largely ignored differences in developmental specificity among species differing in their phylogenetic status and/or the visual ecological niche that they occupy. Based on a review of the available evidence, we have formulated an hypothesis to account for the varying degrees of developmental specificity that characterize different visual systems. It is suggested that extremely precise systems required for high-acuity binocular vision exhibit fewer presumed developmental errors than do visual systems characterized by poorer acuity and relatively crude depth perception. The developmental implications of the hypothesis are considered, and specific experiments are proposed to further test its validity.

  17. A High-Precision Registration Technology Based on Bundle Adjustment in Structured Light Scanning System

    Directory of Open Access Journals (Sweden)

    Jianying Yuan

    2014-01-01

    Full Text Available The multiview 3D data registration precision will decrease with the increasing number of registrations when measuring a large scale object using structured light scanning. In this paper, we propose a high-precision registration method based on multiple view geometry theory in order to solve this problem. First, a multiview network is constructed during the scanning process. The bundle adjustment method from digital close range photogrammetry is used to optimize the multiview network to obtain high-precision global control points. After that, the 3D data under each local coordinate of each scan are registered with the global control points. The method overcomes the error accumulation in the traditional registration process and reduces the time consumption of the following 3D data global optimization. The multiview 3D scan registration precision and efficiency are increased. Experiments verify the effectiveness of the proposed algorithm.

  18. High precision fundamental constants at the TeV scale

    CERN Document Server

    Moch, S.; Alekhin, S.; Blumlein, J.; de la Cruz, L.; Dittmaier, S.; Dowling, M.; Erler, J.; Espinosa, J.R.; Fuster, J.; Garcia i Tormo, X.; Hoang, A.H.; Huss, A.; Kluth, S.; Mulders, M.; Papanastasiou, A.S.; Piclum, J.; Rabbertz, K.; Schwinn, C.; Schulze, M.; Shintani, E.; Uwer, P.; Zerf, N.

    2014-01-01

    This report summarizes the proceedings of the 2014 Mainz Institute for Theoretical Physics (MITP) scientific program on "High precision fundamental constants at the TeV scale". The two outstanding parameters in the Standard Model dealt with during the MITP scientific program are the strong coupling constant $\\alpha_s$ and the top-quark mass $m_t$. Lacking knowledge on the value of those fundamental constants is often the limiting factor in the accuracy of theoretical predictions. The current status on $\\alpha_s$ and $m_t$ has been reviewed and directions for future research have been identified.

  19. High-precision micro/nano-scale machining system

    Science.gov (United States)

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  20. Shock timing on the National Ignition Facility: The first precision tuning series

    Directory of Open Access Journals (Sweden)

    Robey H.F.

    2013-11-01

    Full Text Available Ignition implosions on the National Ignition Facility (NIF [Lindl et al., Phys. Plasmas 11, 339 (2004] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT layered capsule implosions by measurement of fuel areal density (ρR, which show the highest fuel compression (ρR ∼ 1.0 g/cm2 measured to date.

  1. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  2. A Future Vertex Locator with Precise Timing for the LHCb Experiment

    CERN Multimedia

    Mitreska, Biljana

    2017-01-01

    The LHCb experiment is designed to perform high precision measurements of matter-antimatter asymmetries and searches for rare and forbidden decays, with the aim of discovering new and unexpected particles and forces. In 2030 the LHC beam intensity will increase by a factor of 50 compared to current operations. This means increased samples of the particles we need to study, but it also presents experimental challenges. In particular, with current technology it becomes impossible to differentiate the many (>50) separate proton-proton collisions which occur for each bunch crossing. A Monte Carlo simulation was developed to model the operation of a silicon pixel vertex detector surrounding the collision region at LHCb, under the conditions expected after 2030, after the second upgrade of the Vertex Locator (VELO). The main goal was studying the effect of adding '4D' detectors which save high-precision timing information, in addition to the usual three spatial coordinates, as charged particles pass through them. W...

  3. High precision ages from the Torres del Paine Intrusion, Chile

    Science.gov (United States)

    Michel, J.; Baumgartner, L.; Cosca, M.; Ovtcharova, M.; Putlitz, B.; Schaltegger, U.

    2006-12-01

    The upper crustal bimodal Torres del Paine Intrusion, southern Chile, consists of the lower Paine-Mafic- Complex and the upper Paine-Granite. Geochronologically this bimodal complex is not well studied except for a few existing data from Halpern (1973) and Sanchez (2006). The aim of this study is to supplement the existing data and to constrain the age relations between the major magmatic pulses by applying high precision U-Pb dating on accessory zircons and 40Ar/39Ar-laser-step-heating-ages on biotites from the Torres del Paine Intrusion. The magmatic rocks from mafic complex are fine to medium-grained and vary in composition from quartz- monzonites to granodiorites and gabbros. Coarse-grained olivine gabbros have intruded these rocks in the west. The granitic body is represented by a peraluminous, biotite-orthoclase-granite and a more evolved leucocratic granite in the outer parts towards the host-rock. Field observations suggest a feeder-zone for the granite in the west and that the granite postdates the mafic complex. Two granite samples of the outermost margins in the Northeast and South were analyzed. The zircons were dated by precise isotope-dilution U-Pb techniques of chemically abraded single grains. The data are concordant within the analytical error and define weighted mean 206/238U ages of 12.59 ± 0.03 Ma and 12.58 ± 0.01 Ma for the two samples respectively. A 40Ar/39Ar-age for the second sample yield a date of 12.37 ± 0.11 Ma. Three 40Ar/39Ar -ages of biotites were obtained for rocks belonging to the mafic complex. A hbl-bio- granodiorite from the central part, approximately 150 m below the subhorizontal contact with the granite, gives an age of 12.81 ± 0.11 Ma. A hbl-bio-granodiorite and an olivine-gabbro west of the feeder-zone date at 12.42 ± 0.14 Ma and 12.49 ± 0.11 Ma, respectively. The obtained older age of 12.81 Ma for the granodiorite in the central part is consistent with structural relationships of brittle fracturing of the mafic

  4. A solution of High-precision WLAN positioning based on TDOA and PTP

    Directory of Open Access Journals (Sweden)

    Zhou Junjie

    2016-01-01

    Full Text Available For indoor WLAN positioning it is difficult to achieve decimeter or centimeter-level precision questions, to IEEE1588v2 (PTP precision network clock synchronization technology and the arrival time difference principle (TDOA, combined with non line of sight (NLOS error mitigation techniques ranging research and design a set based on the existing WLAN (IEEE802.11x series of standards device with high precision realtime location solutions. First, build a high-performance software-defined radio network communications platform, for accurate measurement of the radio signal arrival time and is calculated based on TDOA location. Secondly, the use of high-precision clock IEEE1588v2 standard equipment PTPGrand-2100 as a network clock source, through the integrated application of multi-hop latency compensation and asymmetric compensation algorithm to ensure nanosecond clock synchronization between the various WLAN access points (AP accuracy(Experiments show that 1 nanosecond time synchronization error is equivalent to 10 to 30 cm of positioning error. Finally, based NLOS error becomes stability principle, filtered NLOS error and pre-positioned before the data, eliminate the influence of the greatest degree of NLOS error, the time domain error control in wireless ranging 5ns or less to achieve decimeter or more accurately estimate the position. The case can be widely used in mobile Internet, logistics management, mineral exploration, health and other needs of the precise location services (LBS in other industry sectors.

  5. Time response model of ER fluids for precision control of motors

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Ken' ichi [Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama (Japan)], E-mail: koyanagi@pu-toyama.ac.jp

    2009-02-01

    For improvement of control performance or new control demands of mechatronics devices using particle type ER fluids, it will be needed to further investigate a response time of the fluids. It is commonly said around 5-mili seconds, however, the formula structure of that delay has not been clear. This study aims to develop a functional damper (attenuators), that can control its viscous characteristics in real time using ER fluids as its working fluid. ER dampers are useful to accomplish high precision positioning not to prevent high speed movement of the motor. To realize the functional damper that can be manipulated according to situations or tasks, the modeling and control of ER fluids are necessary. This paper investigates time delay affects of ER fluids and makes an in-depth dynamic model of the fluid by utilizing simulation and experiment. The mathematical model has a dead-time and first ordered delays of the fluid and the high voltage amplifier for the fluid.

  6. The high-precision Penning trap mass spectrometer PENTATRAP

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas; Bekker, Hendrik; Blaum, Klaus; Goncharov, Mikhail; Hoekel-Schmoeger, Christian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Boehm, Christine [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Extreme Matter Institute EMMI, Helmholtz Gemeinschaft, Darmstadt (Germany); Crespo Lopez-Urrutia, Jose; Eliseev, Sergey; Repp, Julia; Roux, Christian; Sturm, Sven [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Novikov, Yuri [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ulmer, Stefan [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama (Japan)

    2013-07-01

    Currently, the high-precision Penning trap mass spectrometer PENTATRAP is being built up at the Max-Planck-Institut fuer Kernphysik, Heidelberg, Germany. It aims at mass-ratio measurements of medium- to high-Z elements with uncertainties of a few parts in 10{sup 12}. Mass-ratios will be determined by the measurement of cyclotron frequency-ratios in the strong magnetic field of the trap. The experiment will host five identical cylindrical Penning traps and will allow for simultaneous cyclotron frequency determinations in all measurement traps. It will feature access to highly charged ions provided by EBITs. Measurements at PENTATRAP will contribute to various fields of physics. For example, input parameters for neutrino mass determinations will be provided with measurements of Q-values of relevant β-transitions. The current status of the experiment will be outlined in the talk.

  7. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  8. Real-time precision measuring device of tree diameter growth

    Science.gov (United States)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  9. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  10. High precision measurements on fission-fragment de-excitation

    Science.gov (United States)

    Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas

    2017-11-01

    In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.

  11. High-Precision Floating-Point Arithmetic in ScientificComputation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.

    2004-12-31

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required: some of these applications require roughly twice this level; others require four times; while still others require hundreds or more digits to obtain numerically meaningful results. Such calculations have been facilitated by new high-precision software packages that include high-level language translation modules to minimize the conversion effort. These activities have yielded a number of interesting new scientific results in fields as diverse as quantum theory, climate modeling and experimental mathematics, a few of which are described in this article. Such developments suggest that in the future, the numeric precision used for a scientific computation may be as important to the program design as are the algorithms and data structures.

  12. Upgrades for the Precision Proton Spectrometer at the LHC: Fast Timing and Tracking Detectors

    CERN Document Server

    Gallinaro, Michele

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately $\\pm$210~m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25~ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  13. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles

    Science.gov (United States)

    Sponberg, S.; Daniel, T. L.

    2012-01-01

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272

  14. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles.

    Science.gov (United States)

    Sponberg, S; Daniel, T L

    2012-10-07

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.

  15. High Precision Renormalization Group Study of the Roughening Transition

    CERN Document Server

    Hasenbusch, M; Pinn, K

    1994-01-01

    We confirm the Kosterlitz-Thouless scenario of the roughening transition for three different Solid-On-Solid models: the Discrete Gaussian model, the Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with standard (cosine) action. The method is based on a matching of the renormalization group flow of the candidate models with the flow of a bona fide KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are performed using efficient cluster algorithms. We obtain high precision estimates for the critical couplings and other non-universal quantities. For the XY model with cosine action our critical coupling estimate is $\\beta_R^{XY}=1.1197(5)$. For the roughening coupling of the Discrete Gaussian and the Absolute-Value-Solid-On-Solid model we find $K_R^{DG}=0.6645(6)$ and $K_R^{ASOS}=0.8061(3)$, respectively.

  16. Time Resolved Precision Differential Photometry with OAFA's Double Astrograph

    Science.gov (United States)

    González, E. P. A.; Podestá, F.; Podestá, R.; Pacheco, A. M.

    2018-01-01

    For the last 50 years, the Double Astrograph located at the Carlos U. Cesco station of the Observatorio Astronómico Félix Aguilar (OAFA), San Juan province, Argentina, was used for astrometric observations and research. The main programs involved the study of asteroid positions and proper motions of stars in the Southern hemisphere, being the latter a long time project that is near completion from which the SPM4 catalog is the most recent version (Girard et al. 2011). In this paper, new scientific applications in the field of photometry that can be accomplished with this telescope are presented. These first attempts show the potential of the instrument for such tasks.

  17. TORCH: A Large-Area Detector for Precision Time-of-Flight Measurements at LHCb

    CERN Document Server

    Harnew, N

    2012-01-01

    The TORCH (Time Of internally Reflected CHerenkov light) is an innovative high-precision time-of-flight detector which is suitable for large areas, up to tens of square metres, and is being developed for the upgraded LHCb experiment. The TORCH provides a time-of-flight measurement from the imaging of photons emitted in a 1 cm thick quartz radiator, based on the Cherenkov principle. The photons propagate by total internal reflection to the edge of the quartz plane and are then focused onto an array of Micro-Channel Plate (MCP) photon detectors at the periphery of the detector. The goal is to achieve a timing resolution of 15 ps per particle over a flight distance of 10 m. This will allow particle identification in the challenging momentum region up to 20 GeV/c. Commercial MCPs have been tested in the laboratory and demonstrate the required timing precision. An electronics readout system based on the NINO and HPTDC chipset is being developed to evaluate an 8×8 channel TORCH prototype. The simulated performance...

  18. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  19. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    Science.gov (United States)

    Hadas, T.; Kaplon, J.; Bosy, J.; Sierny, J.; Wilgan, K.

    2013-05-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed.

  20. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  1. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  2. Precision Measurement of Time-Reversal Symmetry Violation with Laser-Cooled Polyatomic Molecules

    Science.gov (United States)

    Kozyryev, Ivan; Hutzler, Nicholas R.

    2017-09-01

    Precision searches for time-reversal symmetry violating interactions in polar molecules are extremely sensitive probes of high energy physics beyond the standard model. To extend the reach of these probes into the PeV regime, long coherence times and large count rates are necessary. Recent advances in laser cooling of polar molecules offer one important tool—optical trapping. However, the types of molecules that have been laser cooled so far do not have the highly desirable combination of features for new physics searches, such as the ability to fully polarize and the existence of internal comagnetometer states. We show that by utilizing the internal degrees of freedom present only in molecules with at least three atoms, these features can be attained simultaneously with molecules that have simple structure and are amenable to laser cooling and trapping.

  3. Mg{sup +}-He{sup +} mixed crystals for high precision spectroscopy in the XUV

    Energy Technology Data Exchange (ETDEWEB)

    Knuenz, Sebastian; Hermann, Maximilian; Batteiger, Valentin; Ozawa, Akira; Udem, Thomas; Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Zhu, Feng; Schuessler, Hans [Department of Physics, Texas A and M University, College Station, Texas (United States)

    2008-07-01

    The 1s-2s two photon transition of singly ionized hydrogen-like helium at 60 nm is an interesting candidate for precision tests of bound state QED. Rapid progress in the development of high-power XUV frequency combs lets high resolution spectroscopy of this transition come in sight for the first time. We report on important steps towards this goal. In our novel 6-rod RF trap, we generated and analyzed cold mixed crystals.

  4. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    Science.gov (United States)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  5. Electron bunch timing with femtosecond precision in a superconducting free-electron laser.

    Science.gov (United States)

    Löhl, F; Arsov, V; Felber, M; Hacker, K; Jalmuzna, W; Lorbeer, B; Ludwig, F; Matthiesen, K-H; Schlarb, H; Schmidt, B; Schmüser, P; Schulz, S; Szewinski, J; Winter, A; Zemella, J

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  6. High-precision timeline for Earth's most severe extinction.

    Science.gov (United States)

    Burgess, Seth D; Bowring, Samuel; Shen, Shu-zhong

    2014-03-04

    The end-Permian mass extinction was the most severe loss of marine and terrestrial biota in the last 542 My. Understanding its cause and the controls on extinction/recovery dynamics depends on an accurate and precise age model. U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Mya, an interval of 60 ± 48 ka. Onset of a major reorganization of the carbon cycle immediately precedes the initiation of extinction and is punctuated by a sharp (3‰), short-lived negative spike in the isotopic composition of carbonate carbon. Carbon cycle volatility persists for ∼500 ka before a return to near preextinction values. Decamillenial to millennial level resolution of the mass extinction and its aftermath will permit a refined evaluation of the relative roles of rate-dependent processes contributing to the extinction, allowing insight into postextinction ecosystem expansion, and establish an accurate time point for evaluating the plausibility of trigger and kill mechanisms.

  7. Real-time multi-GNSS single-frequency precise point positioning

    NARCIS (Netherlands)

    de Bakker, P.F.; Tiberius, C.C.J.M.

    2017-01-01

    Precise Point Positioning (PPP) is a popular Global Positioning System (GPS) processing strategy, thanks to its high precision without requiring additional GPS infrastructure. Single-Frequency PPP (SF-PPP) takes this one step further by no longer relying on expensive dual-frequency GPS receivers,

  8. Closed loop high precision position control system with optical scale

    Science.gov (United States)

    Ge, Cheng-liang; Liao, Yuan; He, Zhong-wu; Luo, Zhong-xiang; Huang, Zhi-wei; Wan, Min; Hu, Xiao-yang; Fan, Guo-bin; Liang, Zheng

    2008-03-01

    With the developments of science of art, there are more and more demands on the high resolution control of position of object to be controlled, such as lathe, product line, elements in the optical resonant cavity, telescope, and so on. As one device with high resolution, the optical scale has more and more utility within the industrial and civil applications. With one optical scale and small DC servo motor, one closed loop high resolution position control system is constructed. This apparatus is used to control the position of the elements of optical system. The optical scale is attached on the object or reference guide way. The object position is sampled by a readhead of non-contact optical encoder. Control system processes the position information and control the position of object through the motion control of servo DC motor. The DC motor is controlled by one controller which is connected to an industrial computer. And the micro frictionless slide table does support the smooth motion of object to be controlled. The control algorithm of system is PID (Proportional-Integral-Differential) methods. The PID control methods have well ROBUST. The needed data to control are position, velocity and acceleration of the object. These three parameters correspond to the PID characters respectively. After the accomplishments of hardware, GUI (Graphical user interface), that is, the software of control system is also programmed. The whole system is assembled by specialized worker. Through calibration experiments, the coefficients of PID are obtained respectively. And then the precision of position control of the system is about 0.1μm.

  9. High precision refractometry based on Fresnel diffraction from phase plates.

    Science.gov (United States)

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  10. A portable laser system for high precision atom interferometry experiments

    CERN Document Server

    Schmidt, Malte; Giorgini, Antonio; Tino, Guglielmo M; Peters, Achim

    2010-01-01

    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for the portable gravimeter GAIN, an atom interferometer that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is designed to be compact, mobile and robust, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19" rack and emits light at five different wavelengths simultaneously on up to 12 fibre ports at a total output power of 800 mW. These wavelengths can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked Raman lasers with a phase noise spectral density of less than 1 \\mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.

  11. High-Precision Direct Mass Determination of Unstable Isotopes

    CERN Multimedia

    2002-01-01

    The extension of systematic high-precision measurements of the nuclear mass to nuclei far from the valley of $\\beta$ stability is of great interest in nuclear physics and astrophysics. The mass, or binding energy, is a fundamental gross property and a key input parameter for nuclear matter calculations. It is also a sensitive probe for collective and single-particle effects in nuclear structure. \\\\ \\\\ For such purposes, nuclear masses need to be known to an accuracy of about 10$^{-7}$ (i.e. $\\Delta$M~$\\leq$~10~keV for A~=~100). To resolve a particular mass from its nuclear isomers and isobars, resolving power of 10$^6$ are often required. To achieve this, the ions delivered by the on-line mass separator ISOLDE are confined in a Penning quadrupole trap. This trap is placed in the very homogeneous and stable magnetic field of a superconducting magnet. Here, the cyclotron frequency and hence the mass are determined. \\\\ \\\\ The first measurements using this new technique have been completed for a long chain of Cs ...

  12. High Precision 40K/39K Ratio Determination

    Science.gov (United States)

    Naumenko, M. O.; Mezger, K.; Nagler, T. F.; Villa, I. M.

    2012-12-01

    Potassium is one of the eight most abundant chemical elements in the Earth's crust and a major element in many rock-forming minerals. The isotope 40K is radioactive and undergoes β- decay to 40Ca (ca. 89.3%) and electron capture to 40Ar (ca. 10.7%). Both decays can potentially be used as dating systems. The most commonly used branch is the decay of 40K to 40Ar because it can yield highly precise ages. Both decay schemes rely on the knowledge of the 40K branching ratio and the natural 40K abundance. A 40K abundance of 0.011672±41 % was measured on terrestrial material [1]. The relative uncertainty of 0.35 % has not been improved since. Recent improvements in the precision of mass spectrometric measurements have led to the situation that the uncertainties on the K decay constant and the abundance of 40K are a major source of uncertainty on the measured ages. A more precise definition of the 40K decay constant was attempted by different research groups within the last decade [2-9] but the goal of obtaining 0.1 % relative uncertainty on K-Ar ages for geological materials, as requested by the EARTHtime initiative, has not been achieved yet. In order to improve on this situation we studied the abundances of the K isotopes in terrestrial standards. A ThermoFischer Triton+ thermal ionisation mass spectrometer was used for K isotope ratio measurements of the NIST SRM 918b K standard loaded on Ta filaments with 0.1M phosphoric acid. Three techniques were applied: (A) dynamic measurement with in-run normalisation to the IUPAC value 41K/39K=0.072168; (B) a simple total evaporation procedure; (C) the "NBL-modified" total evaporation [10]. The 40K ion beam was measured in a Faraday cup with a 1E12 Ω resistor; 39K and 41K were collected in Faraday cups with 1E11 Ω resistors. Amplifier gains were intercalibrated by supplying fixed voltages off-line. Different measurement techniques were combined with different loading procedures. We also tested ionisation yields for the

  13. A Low-Cost, High-Precision Navigator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop and demonstrate a prototype low-cost precision navigation system using commercial-grade gyroscopes and accelerometers....

  14. Interferometric Star Tracker for High Precision Pointing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to adapt the precision star tracker it is currently developing under several DoD contracts for deep space lasercom beam...

  15. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  16. Automated, Real-Time Targeting and Guidance Software for Lunar Descent and Precision Landing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — he objective of this proposal is to research, design and develop an automated real-time targeting and guidance (ARTGUID) software for precision lunar landing and...

  17. HYDRA: High Speed Simulation Architecture for Precision Spacecraft Formation Flying

    Science.gov (United States)

    Martin, Bryan J.; Sohl, Garett A.

    2003-01-01

    This viewgraph presentation describes HYDRA, which is architecture to facilitate high-fidelity and real-time simulation of formation flying missions. The contents include: 1) Motivation; 2) Objective; 3) HYDRA-Description and Overview; 4) HYDRA-Hierarchy; 5) Communication in HYDRA; 6) Simulation Specific Concerns in HYDRA; 7) Example application (Formation Acquisition); and 8) Sample Problem Results.

  18. Parton distributions from high-precision collider data

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D.; Del Debbio, Luigi; Groth-Merrild, Patrick [University of Edinburgh, The Higgs Centre for Theoretical Physics, Edinburgh (United Kingdom); Bertone, Valerio; Hartland, Nathan P.; Rojo, Juan [VU University, Department of Physics and Astronomy, Amsterdam (Netherlands); Nikhef Theory Group, Amsterdam (Netherlands); Carrazza, Stefano [CERN, Theoretical Physics Department, Geneva (Switzerland); Forte, Stefano [Universita di Milano, Tif Lab, Dipartimento di Fisica, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Guffanti, Alberto [Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Kassabov, Zahari [Universita di Milano, Tif Lab, Dipartimento di Fisica, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Latorre, Jose I. [Universitat de Barcelona, Departament de Fisica Quantica i Astrofisica, Barcelona (Spain); National University of Singapore, Center for Quantum Technologies, Singapore (Singapore); Nocera, Emanuele R.; Rottoli, Luca; Slade, Emma [University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford (United Kingdom); Ubiali, Maria [University of Cambridge, Cavendish Laboratory, HEP Group, Cambridge (United Kingdom); Collaboration: NNPDF Collaboration

    2017-10-15

    We present a new set of parton distributions, NNPDF3.1, which updates NNPDF3.0, the first global set of PDFs determined using a methodology validated by a closure test. The update is motivated by recent progress in methodology and available data, and involves both. On the methodological side, we now parametrize and determine the charm PDF alongside the light-quark and gluon ones, thereby increasing from seven to eight the number of independent PDFs. On the data side, we now include the D0 electron and muon W asymmetries from the final Tevatron dataset, the complete LHCb measurements of W and Z production in the forward region at 7 and 8 TeV, and new ATLAS and CMS measurements of inclusive jet and electroweak boson production. We also include for the first time top-quark pair differential distributions and the transverse momentum of the Z bosons from ATLAS and CMS. We investigate the impact of parametrizing charm and provide evidence that the accuracy and stability of the PDFs are thereby improved. We study the impact of the new data by producing a variety of determinations based on reduced datasets. We find that both improvements have a significant impact on the PDFs, with some substantial reductions in uncertainties, but with the new PDFs generally in agreement with the previous set at the one-sigma level. The most significant changes are seen in the light-quark flavor separation, and in increased precision in the determination of the gluon. We explore the implications of NNPDF3.1 for LHC phenomenology at Run II, compare with recent LHC measurements at 13 TeV, provide updated predictions for Higgs production cross-sections and discuss the strangeness and charm content of the proton in light of our improved dataset and methodology. The NNPDF3.1 PDFs are delivered for the first time both as Hessian sets, and as optimized Monte Carlo sets with a compressed number of replicas. (orig.)

  19. Parton distributions from high-precision collider data

    Science.gov (United States)

    Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Groth-Merrild, Patrick; Guffanti, Alberto; Hartland, Nathan P.; Kassabov, Zahari; Latorre, José I.; Nocera, Emanuele R.; Rojo, Juan; Rottoli, Luca; Slade, Emma; Ubiali, Maria

    2017-10-01

    We present a new set of parton distributions, NNPDF3.1, which updates NNPDF3.0, the first global set of PDFs determined using a methodology validated by a closure test. The update is motivated by recent progress in methodology and available data, and involves both. On the methodological side, we now parametrize and determine the charm PDF alongside the light-quark and gluon ones, thereby increasing from seven to eight the number of independent PDFs. On the data side, we now include the D0 electron and muon W asymmetries from the final Tevatron dataset, the complete LHCb measurements of W and Z production in the forward region at 7 and 8 TeV, and new ATLAS and CMS measurements of inclusive jet and electroweak boson production. We also include for the first time top-quark pair differential distributions and the transverse momentum of the Z bosons from ATLAS and CMS. We investigate the impact of parametrizing charm and provide evidence that the accuracy and stability of the PDFs are thereby improved. We study the impact of the new data by producing a variety of determinations based on reduced datasets. We find that both improvements have a significant impact on the PDFs, with some substantial reductions in uncertainties, but with the new PDFs generally in agreement with the previous set at the one-sigma level. The most significant changes are seen in the light-quark flavor separation, and in increased precision in the determination of the gluon. We explore the implications of NNPDF3.1 for LHC phenomenology at Run II, compare with recent LHC measurements at 13 TeV, provide updated predictions for Higgs production cross-sections and discuss the strangeness and charm content of the proton in light of our improved dataset and methodology. The NNPDF3.1 PDFs are delivered for the first time both as Hessian sets, and as optimized Monte Carlo sets with a compressed number of replicas.

  20. Present status and future prospects for ionospheric propagation corrections for precise time transfer using GPS

    Science.gov (United States)

    Klobuchar, John A.

    1992-01-01

    The ionosphere can be the greatest variable source of error in precise time transfer using Global Positioning System (GPS) satellites. For single frequency GPS users, the ionospheric correction algorithm can provide an approximate 50 percent r.m.s. correction to the time delay, but users who desire a more complete correction must make actual measurements of ionospheric time delay along the path to the GPS satellite. Fortunately, at least three commercial GPS receivers, specifically designed to measure and correct for ionospheric time delay, are now, or soon will be, available. Initial operation with two different types of GPS ionospheric receivers demonstrated a high degree of accuracy in measuring the ionospheric group delay. Results of these measurements are presented. For those who use a model to correct for ionospheric time delay, it is tempting to use daily values of solar 10.7 cm radio flux to correct a monthly average ionospheric time delay model for each day's operation. The results of correlation of daily maximum ionospheric time delay against solar radio flux values show a poor correlation will be obtained by this procedure. Prospects for improving ionospheric corrections during the declining phase of the present solar cycle are discussed.

  1. Studies on fast triggering and high precision tracking with Resistive Plate Chambers

    CERN Document Server

    Aielli, G.

    2013-01-01

    We report on studies of fast triggering and high-precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV muon beam at CERN using RPCs with gas gaps of 1.00 or 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores simultaneously precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 um using charge information and 287 um using timing information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position wit...

  2. Overview of the JYFLTRAP mass measurements and high-precision ...

    Indian Academy of Sciences (India)

    of the cases the QEC values were already precisely determined (see compilation by. Hardy and Towner [27]) prior to Penning trap measurements. The QEC value of. 46V was first found out to be clearly off from the previously adopted values by the. Canadian Penning trap group [28]. This was later confirmed by JYFLTRAP ...

  3. High-precision QEC -value measurements for superallowed decays

    Science.gov (United States)

    Eronen, T.; Hardy, J. C.

    2012-04-01

    The superallowed β -decay Q_EC -value measurement program at JYFLTRAP has been very fruitful with 14 Q_EC values of outstanding precision measured between 2005 and 2010, when the IGISOL and JYFLTRAP facilities were shut down for relocation.

  4. An Elementary Algorithm to Evaluate Trigonometric Functions to High Precision

    Science.gov (United States)

    Johansson, B. Tomas

    2018-01-01

    Evaluation of the cosine function is done via a simple Cordic-like algorithm, together with a package for handling arbitrary-precision arithmetic in the computer program Matlab. Approximations to the cosine function having hundreds of correct decimals are presented with a discussion around errors and implementation.

  5. Goverment R&D unit create new chip to gauge time. Japan Toshiba co-develops new precision system chip

    CERN Multimedia

    2002-01-01

    In Japan, the Toshiba Corp and the state-affiliated High Energy Accelerator Research Organisation have developed a new precision system chip that features a time-measurement function. CERN plans to use it in the LHC (1/2 page).

  6. A Comparison of three high-precision quadrature schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Li, Xiaoye S.

    2003-07-01

    The authors have implemented three numerical quadrature schemes, using the new Arbitrary Precision (ARPREC) software package, with the objective of seeking a completely ''automatic'' arbitrary precision quadrature facility, namely one that does not rely on a priori information of the function to be integrated. Such a facility is required, for example, to permit the experimental identification of definite integrals based on their numerical values. The performance and accuracy of these three quadrature schemes are compared using a suite of 15 integrals, ranging from continuous, well-behaved functions on finite intervals to functions with vertical derivatives and integrable singularities at endpoints, as well as several integrals on an infinite interval.

  7. ADVANCED DESIGN SOLUTIONS FOR HIGH-PRECISION WOODWORKING MACHINES

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucisano

    2016-03-01

    Full Text Available With the aim at performing the highest precision during woodworking, a mix of alternative approaches, fruitfully integrated in a common design strategy, is essential. This paper represents an overview of technical solutions, recently developed by authors, in design of machine tools and their final effects on manufacturing. The most advanced solutions in machine design are reported side by side with common practices or little everyday expedients. These design actions are directly or indirectly related to the rational use of materials, sometimes very uncommon, as in the case of magnetorheological fluids chosen to implement an active control in speed and force on the electro-spindle, and permitting to improve the quality of wood machining. Other actions are less unusual, as in the case of the adoption of innovative anti-vibration supports for basement. Tradition or innovation, all these technical solutions contribute to the final result: the highest precision in wood machining.

  8. A high-precision algorithm for axisymmetric flow

    Directory of Open Access Journals (Sweden)

    A. Gokhman

    1995-01-01

    Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.

  9. High precision photometry for K2 campaigns 10-13

    Science.gov (United States)

    Yu, Liang; Seager, Sara; Crossfield, Ian; Gaudi, B. Scott; Huang, Xu; Latham, David; Petigura, Erik; Rappaport, Saul; Vanderburg, Andrew; Zhou, George

    2018-01-01

    NASA's K2 mission has promised and delivered many planet candidates around bright, nearby stars. However, the reduced pointing precision of K2 compared to Kepler makes the data reduction more challenging. We present our cosine filter and Gaussian process-based pipeline for K2 light curve detrending and planet finding, and highlight some candidates discovered in campaigns 10-13 along with ground-based followup results.

  10. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  11. Interacting sources for high-precision atom interferometry - a theoretical study

    Science.gov (United States)

    Posso Trujillo, Katerine; Ahlers, Holger; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst; Gaaloul, Naceur

    2014-05-01

    We theoretically study the possibilities to use binary quantum mixtures as sources for high-precision atom interferometers with interferometry times ranging over several seconds. Such schemes are of timely interest in the context of inertial navigation or fundamental physics laws tests. The mixture expansion dynamics are solved by integrating a set of two coupled Gross-Pitaevskii equations. In order to satisfy the severe requirements of a precise differential interferometer, a common delta-kick cooling stage is applied to the two ensembles simultaneously to induce ultra-slow expansion (~ 50 pk regime). Other systematic effects are analysed and mitigation strategies identified. To illustrate this study, we consider the case of three mixtures of 87Rb/85Rb, 87Rb/39Kand87Rb/41K widely used in atom interferometry measurements. The advantages and drawbacks of every pair are highlighted and discussed. K. Posso-Trujillo. thanks the German Academic Exchange Service - DAAD (research grant No. A/10/74250).

  12. Adaptation of firing rate and spike-timing precision in the avian cochlear nucleus.

    Science.gov (United States)

    Kuznetsova, Marina S; Higgs, Matthew H; Spain, William J

    2008-11-12

    Adaptation is commonly defined as a decrease in response to a constant stimulus. In the auditory system such adaptation is seen at multiple levels. However, the first-order central neurons of the interaural time difference detection circuit encode information in the timing of spikes rather than the overall firing rate. We investigated adaptation during in vitro whole-cell recordings from chick nucleus magnocellularis neurons. Injection of noisy, depolarizing current caused an increase in firing rate and a decrease in spike time precision that developed over approximately 20 s. This adaptation depends on sustained depolarization, is independent of firing, and is eliminated by alpha-dendrotoxin (0.1 microM), implicating slow inactivation of low-threshold voltage-activated K+ channels as its mechanism. This process may alter both firing rate and spike-timing precision of phase-locked inputs to coincidence detector neurons in nucleus laminaris and thereby adjust the precision of sound localization.

  13. Computational time reduction for sequential batch solutions in GNSS precise point positioning technique

    Science.gov (United States)

    Martín Furones, Angel; Anquela Julián, Ana Belén; Dimas-Pages, Alejandro; Cos-Gayón, Fernando

    2017-08-01

    Precise point positioning (PPP) is a well established Global Navigation Satellite System (GNSS) technique that only requires information from the receiver (or rover) to obtain high-precision position coordinates. This is a very interesting and promising technique because eliminates the need for a reference station near the rover receiver or a network of reference stations, thus reducing the cost of a GNSS survey. From a computational perspective, there are two ways to solve the system of observation equations produced by static PPP either in a single step (so-called batch adjustment) or with a sequential adjustment/filter. The results of each should be the same if they are both well implemented. However, if a sequential solution (that is, not only the final coordinates, but also those observed in previous GNSS epochs), is needed, as for convergence studies, finding a batch solution becomes a very time consuming task owing to the need for matrix inversion that accumulates with each consecutive epoch. This is not a problem for the filter solution, which uses information computed in the previous epoch for the solution of the current epoch. Thus filter implementations need extra considerations of user dynamics and parameter state variations between observation epochs with appropriate stochastic update parameter variances from epoch to epoch. These filtering considerations are not needed in batch adjustment, which makes it attractive. The main objective of this research is to significantly reduce the computation time required to obtain sequential results using batch adjustment. The new method we implemented in the adjustment process led to a mean reduction in computational time by 45%.

  14. High Precision Assembly of Thin Mirror X-ray Telescopes

    Science.gov (United States)

    Schattenburg, Mark

    Lightweight high resolution x-ray telescope optics are one of the key technologies under development for next-generation x-ray telescopes. The ultimate goal of this effort is to realize optics with spatial resolution rivaling Chandra (glass mirrors which were epoxied into place around a spindle structure. While very light weight, this process resulted in ~1 arc min resolution. We want to achieve ~100 times better with similar mass. A group at NASA GSFC has recently demonstrated an alternative thin-glass assembly procedure that has achieved ~7 arc sec resolution with x-ray tests. Further progress towards 1 arc-sec will require mirrors with improved figure, lower stress coatings, improved alignment, better metrology, and low stress bonding. Many of the difficulties with current mirror assembly practice stem from the use of epoxy as a bonding agent. Epoxy has many disadvantages, including high shrinkage, large CTE and creep, resin aging effects, water absorption, outgassing, low tensile strength, exothermicity, and requiring large amounts of time and/or heat to cure. These effects can cause errors that become â€oefrozen in― to the bond with no possibility of correction. We propose to investigate replacing epoxy with low temperature, low shrinkage solder alloys. We use these solders in conjunction with high power, millisec-long pulses from a fiber IR laser to deliver controlled amounts of heat into the bond area. We have demonstrated that laser pulses can be used to actuate carefully designed bonds by permanently compressing or expanding a very thin and brief surface melt in the solder by amounts controlled in the nanoscale range, allowing post assembly correction of the mirror mount points. We believe this technology will be one of the keys to realize a sub-1 arc-sec thin-glass x-ray telescope.

  15. Real-time, autonomous precise satellite orbit determination using the global positioning system

    Science.gov (United States)

    Goldstein, David Ben

    2000-10-01

    The desire for autonomously generated, rapidly available, and highly accurate satellite ephemeris is growing with the proliferation of constellations of satellites and the cost and overhead of ground tracking resources. Autonomous Orbit Determination (OD) may be done on the ground in a post-processing mode or in real-time on board a satellite and may be accomplished days, hours or immediately after observations are processed. The Global Positioning System (GPS) is now widely used as an alternative to ground tracking resources to supply observation data for satellite positioning and navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an excellent choice for autonomous systems. In an effort to estimate precise satellite ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) created the GPS Enhanced OD Experiment (GEODE) flight navigation software. This dissertation offers alternative methods and improvements to GEODE to increase on board autonomy and real-time total position accuracy and precision without increasing computational burden. First, GEODE is modified to include a Gravity Acceleration Approximation Function (GAAF) to replace the traditional spherical harmonic representation of the gravity field. Next, an ionospheric correction method called Differenced Range Versus Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize DMC forcing noise parameters. Application of GAAF, DRVID and DMC improved GEODE's position estimates by 28.3% when applied to GPS/MET data collected in the presence of Selective Availability (SA), 17.5% when SA is removed from the GPS

  16. High precision survey and alignment techniques in accelerator construction

    CERN Document Server

    Gervaise, J

    1974-01-01

    Basic concepts of precision surveying are briefly reviewed, and an historical account is given of instruments and techniques used during the construction of the Proton Synchrotron (1954-59), the Intersecting Storage Rings (1966-71), and the Super Proton Synchrotron (1971). A nylon wire device, distinvar, invar wire and tape, and recent automation of the gyrotheodolite and distinvar as well as auxiliary equipment (polyurethane jacks, Centipede) are discussed in detail. The paper ends summarizing the present accuracy in accelerator metrology, giving an outlook of possible improvement, and some aspects of staffing for the CERN Survey Group. (0 refs).

  17. Some aspects of improving Multi-GNSS real-time precise point positioning services

    Science.gov (United States)

    Liu, Yang; Ge, Maorong; Li, Xingxing; Schuh, Harald

    2016-04-01

    Multi-GNSS is expected to achieve a real-time precise point positioning service with better accuracy and reliability than GPS-only service. In this contribution, we address several critical challenges in implementing a GPS+GLONASS+BeiDou+Galileo service to provide global users with centimeter-level positioning in real-time based on the software system developed at GFZ. The specific issues of improving GLONASS orbit quality by resolving ambiguity over long baselines, estimation of inter-system/frequency biases, ambiguity resolution in real-time clock estimation and positioning, and computation efficiency are discussed and investigated in detail. Experimental validation is carried out based on the data streams of the IGS/MGEX network. The real-time orbit and clock products are assessed by comparison with the IGS/MGEX final products, and orbits are also assessed by overlapping day boundaries and satellite laser ranging. The phase bias (uncalibrated phase delay) products are evaluated by comparison with the post-processing results. It is demonstrated that multi-GNSS can contribute significantly to improving the global real-time precise point positioning service in terms of convergence time and accuracy. Keywords: Multi-GNSS, Real-Time, Precise Orbit Determination, Precise Point Positioning, Ambiguity Resolution, Inter-System/Frequency Bias, Algorithm Efficiency

  18. Intelligent technologies in process of highly-precise products manufacturing

    Science.gov (United States)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  19. High Precision Half-Life Measurement of ^38Ca

    Science.gov (United States)

    Park, H. I.; Hardy, J. C.; Iacob, V. E.; Chen, L.; Goodwin, J.; Horvat, V.; Nica, N.; Trache, L.; Tribble, R. E.

    2010-02-01

    The measured ft values for superallowed 0^+ -> 0^+ nuclear β decay can be used to test the Conserved Vector Current (CVC) hypothesis and the unitarity of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. One of the essential elements of this test is the calculated radiative and isospin-symmetry breaking corrections that must be applied to experimental data [1]. Some of these corrections depend on nuclear structure and their uncertainties can, in principle, be reduced by improving the precision of the experimental ft values. The case of ^38Ca is particularly interesting since its structure-dependent correction is calculated to be one of the largest in the sd shell. The QEC value of the ^38Ca decay is already well measured [2] and we have now measured its half-life to better than 0.1% precision. Preliminary results will be presented.[4pt] [1] I.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008).[0pt] [2] R. Ringle et al., Phys. Rev. C 75, 055503 (2007). )

  20. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  1. Measurement of high-mass dilepton production with the CMS-TOTEM Precision Proton Spectrometer

    CERN Document Server

    Shchelina, Ksenia

    2017-01-01

    The measurements of dilepton production in photon-photon fusion with the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are presented. For the first time, exclusive dilepton production at high masses have been observed in the CMS detector while one or two outgoing protons are measured in CT-PPS using around 10~${\\rm fb}^{-1}$ of data accumulated in 2016 during high-luminosity LHC operation. These first results show a good understanding, calibration and alignment of the new CT-PPS detectors installed in 2016.

  2. Real Time Precise Point Positioning: Preliminary Results for the Brazilian Region

    Science.gov (United States)

    Marques, Haroldo; Monico, João.; Hirokazu Shimabukuro, Milton; Aquino, Marcio

    2010-05-01

    GNSS positioning can be carried out in relative or absolute approach. In the last years, more attention has been driven to the real time precise point positioning (PPP). To achieve centimeter accuracy with this method in real time it is necessary to have available the satellites precise coordinates as well as satellites clocks corrections. The coordinates can be used from the predicted IGU ephemeris, but the satellites clocks must be estimated in a real time. It can be made from a GNSS network as can be seen from EUREF Permanent Network. The infra-structure to realize the PPP in real time is being available in Brazil through the Brazilian Continuous Monitoring Network (RBMC) together with the Sao Paulo State GNSS network which are transmitting GNSS data using NTRIP (Networked Transport of RTCM via Internet Protocol) caster. Based on this information it was proposed a PhD thesis in the Univ. Estadual Paulista (UNESP) aiming to investigate and develop the methodology to estimate the satellites clocks and realize PPP in real time. Then, software is being developed to process GNSS data in the real time PPP mode. A preliminary version of the software was called PPP_RT and is able to process GNSS code and phase data using precise ephemeris and satellites clocks. The PPP processing can be accomplished considering the absolute satellite antenna Phase Center Variation (PCV), Ocean Tide Loading (OTL), Earth Body Tide, among others. The first order ionospheric effects can be eliminated or minimized by ion-free combination or parameterized in the receiver-satellite direction using a stochastic process, e.g. random walk or white noise. In the case of ionosphere estimation, a pseudo-observable is introduced in the mathematical model for each satellite and the initial value can be computed from Klobuchar model or from Global Ionospheric Map (GIM). The adjustment is realized in the recursive mode and the DIA (Detection Identification and Adaptation) is used for quality control. In

  3. High-precision comparison of the antiproton-to-proton charge-to-mass ratio

    CERN Document Server

    Ulmer, S; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-01-01

    Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available$^{4, 5, 6, 7, 8}$. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H$^−$) carried out in a Penning trap system. From 13,000 frequency measurements we compare th...

  4. Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Directory of Open Access Journals (Sweden)

    M. Richard

    2011-05-01

    Full Text Available This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot.

  5. A high precision, compact electromechanical ground rotation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, V., E-mail: volodya@caltech.edu [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); DeSalvo, R. [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); University of Sannio, C.so Garibaldi 107, Benevento 82100 (Italy); Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street, Pasadena, California 91105 (United States); Oklahoma State University, 219 Student Union, Stillwater, Oklahoma 74074 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205 (United States); Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, New York 10027 (United States); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientifica  1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia); University of Melbourne Grattan Street, Parkville VIC 3010 (Australia); O' Toole, A. [University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Michigan Technological University, 1400 Townsend Dr, Houghton, Michigan 49931 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2014-05-15

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10{sup −11}m/√( Hz ). We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10{sup −9} rad /√( Hz ) at 10 mHz and 6.4 × 10{sup −10} rad /√( Hz ) at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  6. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    Science.gov (United States)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  7. BAM: A metrology device for a high precision astrometric mission

    Science.gov (United States)

    Riva, A.; Gai, M.; Lattanzi, M. G.; Russo, F.; Buzzi, R.

    2014-12-01

    Gaia is ESA next-generation astrometric space mission, that will be launched in December 2013. The main objective of Gaia is to produce an astrometric census of one billion objects down to the 20th magnitude. The level of astrometric precision will be around the 10 microarcseconds. In order to achieve such demanding performances, the complexity of the satellite is huge, and a proper fully automated operation must be adopted. One of the essential parts of the satellite is the BAM instrument, an interferometric device with the task of monitoring the variation of the Basic Angle between the two telescope that compose the payload. In this paper we describe the main features of this sub-instrument and its performances.

  8. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127 francoise.benz@cern.ch

  9. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.

    Science.gov (United States)

    Das, Jayajit

    2016-03-08

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Continuous online field deployable high precision and high resolution water isotope analysis from ice cores

    Science.gov (United States)

    Gkinis, Vasileios; Popp, Trevor; Johnsen, Sigfus; Blunier, Thomas; Stowasser, Christopher; Kettner, Ernesto

    2010-05-01

    One of the most important features of ice cores as climate and atmospheric paleoarchives is their potential for high temporal resolution. The measurement of chemical impurities in ice cores that fully exploits this high resolution has become standard with the advent of Continuous Flow Analysis (CFA) from continuously melted ice core segments, often performed in the field. Meanwhile, the measurement of water stable isotopic composition (deuterium and oxygen-18) continues, for the most part, to be performed offline via discrete sampling with traditional mass spectroscopy. These offline procedures are time consuming, expensive, and do not fully exploit the temporal resolution available in the ice core. Here we describe a new method and the first results for the determination of water isotopic content measured from a continuous melted rod with a commercially available near-infrared cavity ring down spectrometer (CRDS; http://www.picarro.com/) coupled to a CFA system both in the field on the Greenland ice sheet and in the laboratory. For the measurement of water isotopes a carefully controlled fraction of the CFA melt stream is evaporated directly into the laser cavity for simultaneous analysis of both deuterium and oxygen-18 content. The details of the system have been tested with a deployment to the North Greenland Eemian Ice Drilling (NEEM) coupled to the University of Bern CFA system and in the laboratory with NGRIP ice coupled to the University of Copenhagen CFA system. The results show that the system already produces the highest interpretable resolution records that are comparable or somewhat less precise than traditional mass spectroscopy discrete sample methods. The enormous potential of the system is being realized in the density and resolution of the produced records in connection with other highly resolved series (e.g. chemical impurities), and also in the efficiency by which the records can be produced. Among other things, time series from this type of

  11. MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Grampp, S. [California Univ., San Francisco, CA (United States). Musculoskeletal Section and Magnetic Resonance Science Center; Majumdar, S. [California Univ., San Francisco, CA (United States). Musculoskeletal Section and Magnetic Resonance Science Center; Jergas, M. [California Univ., San Francisco, CA (United States). Musculoskeletal Section and Magnetic Resonance Science Center; Lang, P. [California Univ., San Francisco, CA (United States). Musculoskeletal Section and Magnetic Resonance Science Center; Gies, A. [California Univ., San Francisco, CA (United States). Musculoskeletal Section and Magnetic Resonance Science Center; Genant, H.K. [California Univ., San Francisco, CA (United States). Musculoskeletal Section and Magnetic Resonance Science Center

    1995-02-01

    The effective transverse relaxation time T2{sup *} is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2{sup *} in repeated bone marrow measurements. The T2{sup *} measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 . An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2{sup *} and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm{sup 2}) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2{sup *} and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2{sup *} times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm{sup 2} (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis. (orig.)

  12. TEE, an estimator for the precision of eclipse and transit minimum times

    Science.gov (United States)

    Deeg, H. J.; Tingley, B.

    2017-03-01

    Context. Transit or eclipse timing variations have proven to be a valuable tool in exoplanet research. However, no simple way to estimate the potential precision of such timing measures has been presented yet, nor are guidelines available regarding the relation between timing errors and sampling rate. Aims: A timing error estimator (TEE) equation is presented that requires only basic transit parameters as input. With the TEE, estimating timing precision for actual data and for future instruments, such as the TESS and PLATO space missions, is straightforward. Methods: A derivation of the timing error based on a trapezoidal transit shape is given. We also verify the TEE on realistically modelled transits using Monte Carlo simulations and determine its validity range, exploring in particular the interplay between ingress/egress times and sampling rates. Results: The simulations show that the TEE gives timing errors very close to the correct value, as long as the temporal sampling is faster than transit ingress/egress durations and transits with very low S/N are avoided. Conclusions: The TEE is a useful tool for estimating eclipse or transit timing errors in actual and future data sets. In combination with a previously published equation to estimate period-errors, predictions for the ephemeris precision of long-coverage observations are possible as well. The tests for the TEE's validity range also led to implications for instrumental design. Temporal sampling has to be faster than transit ingress or egress durations, or a loss in timing precision will occur. An application to the TESS mission shows that transits close to its detection limit will have timing uncertainties that exceed 1 h within a few months of their acquisition. Prompt follow-up observations will be needed to avoid "losing" their ephemerides.

  13. Modelling the water balance of a precise weighable lysimeter for short time scales

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot; Rock, Gerhard

    2015-04-01

    lysimeter has been calculated by adding lysimeter mass and the leachate tank mass for every minute. Based on the resolution of the scales and an evaluation of noise in periods without precipitation and evaporation a dmin-value of 0.002 to filter the leachate tank measurements and a dmin-value of 0.012 was used to filter the lysimeter weight data and the upper boundary data. A mandatory requirement for the quantification of P or ET from lysimeter measurements is that in a reasonably small time interval, either P or ET is negligible. With this assumption, every increase in upper boundary data is interpreted as P. Every increase of seepage mass is interpreted as L, every decrease as C. ΔS is evaluated from filtered lysimeter mass. ET is calculated using the water balance equation. The evaluation results are given as water balance components time series on a minute scale. P measured with the lysimeter for the two years 2010 and 2011 is 105 % of precipitation measured with a standard tipping bucket gauge 100 m beside the lysimeter. While P during the summer season (April to September) is very close to standard precipitation measurement, P during the winter season is more than 120 % of tipping bucket precipitation. Meissner et al. (2007) showed that P includes precipitation of dewfall and rime. A detailed evaluation of the HYDRO-Lysimeter in Wagna showed, that precipitation in the night and not recognized with the standard tipping bucket (interpreted as dew or rime) is about 1 % of P, the highest monthly sums (> 1 mm) are recognized from August to November. Klammler, G. and Fank, J.: Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Science of the Total Environment 499 (2014) 448-462. Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., and Borg, H.: Measurement of dew, fog, and rime with a high-precision gravitation lysimeter, J. Plant Nutr. Soil Sci. 2007, 170, 335-344. Peters, A., Nehls, T., Schonsky, H

  14. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tastu, J.; Pinson, P.; Madsen, Henrik

    2013-09-01

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)

  15. Deficits in Coordinative Bimanual Timing Precision in Children with Specific Language Impairment

    Science.gov (United States)

    Vuolo, Janet; Goffman, Lisa; Zelaznik, Howard N.

    2017-01-01

    Purpose: Our objective was to delineate components of motor performance in specific language impairment (SLI); specifically, whether deficits in timing precision in one effector (unimanual tapping) and in two effectors (bimanual clapping) are observed in young children with SLI. Method: Twenty-seven 4- to 5-year-old children with SLI and 21…

  16. White Rabbit Precision Time Protocol on Long-Distance Fiber Links

    NARCIS (Netherlands)

    Dierikx, E.F.; Dierikx, A.E.; Fordell, T.; Myyry, J.; Koponen, P.; Merimaa, M.; Pinkert, T.J.; Koelemeij, J.C.J.; Peek, H.Z.; Smets, R.

    2016-01-01

    The application of White Rabbit precision time protocol (WR-PTP) in long-distance optical fiber links has been investigated. WR-PTP is an implementation of PTP in synchronous Ethernet optical fiber networks, originally intended for synchronization of equipment within a range of 10 km. This paper

  17. 77 FR 1708 - Cooperative Research and Development Agreement: Technology To Provide Wireless Precise Time...

    Science.gov (United States)

    2012-01-11

    ..., disadvantages, performance, costs, and other issues associated with using alternative wireless time technology... SECURITY Coast Guard Cooperative Research and Development Agreement: Technology To Provide Wireless Precise... Agreements (CRADAs), are authorized by the Federal Technology Transfer Act of 1986 (Pub. L. 99- 502, codified...

  18. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of anomaly parameter of |α − 1| < 8.7 × 10(-7).

  19. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications.

    Science.gov (United States)

    Subramaniam, E T; Jain, Mamta; Bhowmik, R K; Tripon, Michel

    2008-10-01

    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2(")x0.51(")) and exhibiting excellent integral nonlinearity (< or = +/-2 mV or +/-0.02% full scale reading) and differential nonlinearity (< or = +/-1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.

  20. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  1. High precision Hugoniot measurements of D2 near maximum compression

    Science.gov (United States)

    Benage, John; Knudson, Marcus; Desjarlais, Michael

    2015-11-01

    The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  3. A robot for verifying the precision of total reaction time measurement

    Directory of Open Access Journals (Sweden)

    Tânia Brusque Crocetta

    2015-03-01

    Full Text Available The level of variability in psychomotor behavior and the use of several distinct sets of equipments in Reaction Time (RT assessments might jeopardize the validity and reliability of such measures. This study presents the development and verification of Emboici Robot-a robot capable of performing accurate RT assessments consisting of response to a visual stimulus by pressing a button-whose purpose is to measure the accuracy of RT assessments. We evaluated the accuracy and precision on four different days, each providing 300 measurements. These assessments generated a RT of 46.95ms (+6.04. No significant effects were found in the RTs obtained and, as a result, there is evidence that the Emboici Robotis stable, reliable, and precise. The robot can be a viable solution for verifying precision and accuracy of any given software with simple RT assessments with visual stimulus requiring as response the pressing of a button or key.

  4. Program to make remote time measurement on the new precise clock system on totem

    CERN Document Server

    Martin, David

    2016-01-01

    For my project at CERN, I worked in the TOTEM team with Michele Quinto and Francesco Cafagna as supervisors. Their team is currently working on an update on TOTEM that includes a module able to measure precisely the time of flight of particles emitted from the collision at CMS. With this additional data, TOTEM will be able to reconstruct precisely the point of the collision in CMS. The main problem posed for this new module is to provide a precise synchronized clock signal to both the TOTEM detectors situated 200 meters after and before CMS. In fact, due to some external parameters, as temperature, the length of the optical fiber guiding the clock signal can vary yielding thus a unwanted phase difference of the clock between the two detectors. The idea is to get rid of the noisy phase difference to make very precise time of flight measurement of the order of the picosecond. This is achieved by continuously measuring the phase difference and correcting the time measurements according to the current phase diffe...

  5. High precision dispersion measurement with a multi-loop Mach-Zehnder interferometer

    Science.gov (United States)

    Kohn, J.; Ryser, M.; Scheffold, F.; Stefanov, A.

    2017-07-01

    We present a dispersion measurement method based on an enhanced Mach-Zehnder white light interferometer. Different optical path lengths are superposed in the reference arm by introducing multiple delay loops in the beam path. This improvement speeds up by a factor of 5 the measurement time of high dispersion fiber Bragg gratings compared to standard Mach Zehnder interferometers. Furthermore we implement a correction of the dispersion data based on the residuals of single mode fibers dispersion measurements. This calibration leads to a precision for low dispersion fiber Bragg gratings of 0.1%.

  6. Precise Model Analysis for 3-phase High Power Converter using the Harmonic State Space Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    This paper presents about the generalized multi-frequency modeling and analysis methodology, which can be used in control loop design and stability analysis. In terms of the switching frequency of high power converter, there can be harmonics interruption if the voltage source converter has a low....... The modeling procedure shows the precision in the analysis of the stability as well as the controller design. The overall results are validated by using not only the non-linear time domain simulation, but also the analytical model....

  7. Computational Calorimetry: High-Precision Calculation of Host-Guest Binding Thermodynamics.

    Science.gov (United States)

    Henriksen, Niel M; Fenley, Andrew T; Gilson, Michael K

    2015-09-08

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van't Hoff equation. Excellent agreement between the direct and van't Hoff methods is demonstrated for both host-guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design.

  8. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    Science.gov (United States)

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  9. A high precision position sensor design and its signal processing algorithm for a maglev train.

    Science.gov (United States)

    Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen

    2012-01-01

    High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.

  10. Algorithms for High-speed Generating CRC Error Detection Coding in Separated Ultra-precision Measurement

    Science.gov (United States)

    Zhi, Z.; Tan, J. B.; Huang, X. D.; Chen, F. F.

    2006-10-01

    In order to solve the contradiction between error detection, transmission rate and system resources in data transmission of ultra-precision measurement, a kind of algorithm for high-speed generating CRC code has been put forward in this paper. Theoretical formulae for calculating CRC code of 16-bit segmented data are obtained by derivation. On the basis of 16-bit segmented data formulae, Optimized algorithm for 32-bit segmented data CRC coding is obtained, which solve the contradiction between memory occupancy and coding speed. Data coding experiments are conducted triumphantly by using high-speed ARM embedded system. The results show that this method has features of high error detecting ability, high speed and saving system resources, which improve Real-time Performance and Reliability of the measurement data communication.

  11. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The CMS Electromagnetic Calorimeter is made of scintillating lead tungstate crystals, using avalanche photodiodes (APD) as photo-detectors in the barrel part. The high voltage system, consisting of 1224 channels, biases groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  12. Challenging the Standard Model: High-Precision Comparisons of the Fundamental Properties of Protons and Antiprotons

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Baryon Antibaryon Symmetry Experiment (BASE-CERN) at CERN’s antiproton decelerator facility is aiming at high-precision comparisons of the fundamental properties of protons and antiprotons, such as charge-to-mass ratios, magnetic moments and lifetimes. Such experiments provide sensitive tests of the fundamental charge-parity-time invariance in the baryon sector. BASE was approved in 2013 and has measured since then, utilizing single-particle multi-Penning-trap techniques, the antiproton-to-proton charge-to-mass ratio with a fractional precision of 69 p.p.t. [1], as well as the antiproton magnetic moment with fractional precisions of 0.8 p.p.m. and 1.5 p.p.b., respectively [2]. At our matter companion experiment BASE-Mainz, we have performed proton magnetic moment measurements with fractional uncertainties of 3.3 p.p.b. [3] and 0.3 p.p.b. [4]. By combining the data of both experiments we provide a baryon-magnetic-moment based CPT test gpbar/gp = 1.000 000 000 2(15), which improves the uncertainty of p...

  13. Development of a High Precision Oxygen, Carbon Dioxide, and Water Monitor for Fast Plume and Eddy Flux Measurements

    Science.gov (United States)

    Zahniser, Mark; Nelson, David; Roscioli, Rob; Herndon, Scott; Jervis, Dylan; McManus, Barry; Yacovitch, Tara

    2017-04-01

    A central concept of the carbon cycle is the inverted relationship between CO2 and O2 , which provides detailed information about CO2 sources and sinks. For example, Keeling was able to use very precise O2 and CO2 measurements to understand oceanic vs terrestrial carbon sinks. It has been a long-standing challenge to measure both species with enough precision and response time to understand the CO2 /O2 exchange on a local scale. Such a capability would allow for detailed measurements of ecosystem exchange, fossil fuel burning processes, and emissions from carbon sequestration sites. Here we report on recent advances using near-infrared direct absorption spectroscopy to measure CO2 , O2 , and H2 O on timescales of 0.1 to 1 second and at high precision, for eddy flux quantification of ecosystem exchange. O2 is quantified using the A-band electronic absorption at 763 nm, yielding a 1 s precision of 6 ppm and 100 s precision of 1 ppm (30 and 5 per meg fractional precision, respectively). CO2 and H2 O are quantified using overtone transitions at 2 micron, providing 1 s precisions of cell with a time response is <0.3 s at 3 SLPM flow rate. We present long-term O2 and CO2 rooftop measurements, revealing multiple combustion sources contributing to the local CO2 enhancement.

  14. Pointing Control System for a High Precision Flight Telescope

    Energy Technology Data Exchange (ETDEWEB)

    BENTLEY,ANTHONY E.; WILCOXEN,JEFFREY LEE

    2000-12-01

    A pointing control system is developed and tested for a flying gimbaled telescope. The two-axis pointing system is capable of sub-microradian pointing stability and high accuracy in the presence of large host vehicle jitter. The telescope also has high agility--it is capable of a 50-degree retarget (in both axes simultaneously) in less than 2 seconds. To achieve the design specifications, high-accuracy, high-resolution, two-speed resolvers were used, resulting in gimbal-angle measurements stable to 1.5 microradians. In addition, on-axis inertial angle displacement sensors were mounted on the telescope to provide host-vehicle jitter cancellation. The inertial angle sensors are accurate to about 100 nanoradians, but do not measure low frequency displacements below 2 Hz. The gimbal command signal includes host-vehicle attitude information, which is band-limited. This provides jitter data below 20 Hz, but includes a variable latency between 15 and 25 milliseconds. One of the most challenging aspects of this design was to combine the inertial-angle-sensor data with the less perfect information in the command signal to achieve maximum jitter reduction. The optimum blending of these two signals, along with the feedback compensation were designed using Quantitative Feedback Theory.

  15. Manufacturing of high precision aspherical and freeform optics

    NARCIS (Netherlands)

    Hoogstrate, A.M.; Drunen, C. van; Venrooy, B.W.H. van; Henselmans, R.

    2012-01-01

    Aspherical and freeform optical elements have a large potential in reducing optical aberrations and to reduce the number of elements in complex high performance optical systems. However, manufacturing a single piece or a small series of aspherical and freeform optics has for long been limited by the

  16. In-plane laser forming for high precision alignment

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Huis in 't Veld, Bert

    2014-01-01

    Laser microforming is extensively used to align components with submicrometer accuracy, often after assembly. While laser-bending sheet metal is the most common laser-forming mechanism, the in-plane upsetting mechanism is preferred when a high actuator stiffness is required. A three-bridge planar

  17. Precise terrestrial time: A means for improved ballistic missile guidance analysis

    Science.gov (United States)

    Ehrsam, E. E.; Cresswell, S. A.; Mckelvey, G. R.; Matthews, F. L.

    1978-01-01

    An approach developed to improve the ground instrumentation time tagging accuracy and adapted to support the Minuteman ICBM program is desired. The Timing Insertion Unit (TIU) technique produces a telemetry data time tagging resolution of one tenth of a microsecond, with a relative intersite accuracy after corrections and velocity data (range, azimuth, elevation and range rate) also used in missile guidance system analysis can be correlated to within ten microseconds of the telemetry guidance data. This requires precise timing synchronization between the metric and telemetry instrumentation sites. The timing synchronization can be achieved by using the radar automatic phasing system time correlation methods. Other time correlation techniques such as Television (TV) Line-10 and the Geostationary Operational Environmental Satellites (GEOS) terrestial timing receivers are also considered.

  18. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research

    Science.gov (United States)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.

    2016-09-01

    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  19. A high precision method for quantitative measurements of reactive oxygen species in frozen biopsies.

    Directory of Open Access Journals (Sweden)

    Kirsti Berg

    Full Text Available OBJECTIVE: An electron paramagnetic resonance (EPR technique using the spin probe cyclic hydroxylamine 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH was introduced as a versatile method for high precision quantification of reactive oxygen species, including the superoxide radical in frozen biological samples such as cell suspensions, blood or biopsies. MATERIALS AND METHODS: Loss of measurement precision and accuracy due to variations in sample size and shape were minimized by assembling the sample in a well-defined volume. Measurement was carried out at low temperature (150 K using a nitrogen flow Dewar. The signal intensity was measured from the EPR 1st derivative amplitude, and related to a sample, 3-carboxy-proxyl (CP• with known spin concentration. RESULTS: The absolute spin concentration could be quantified with a precision and accuracy better than ±10 µM (k = 1. The spin concentration of samples stored at -80°C could be reproduced after 6 months of storage well within the same error estimate. CONCLUSION: The absolute spin concentration in wet biological samples such as biopsies, water solutions and cell cultures could be quantified with higher precision and accuracy than normally achievable using common techniques such as flat cells, tissue cells and various capillary tubes. In addition; biological samples could be collected and stored for future incubation with spin probe, and also further stored up to at least six months before EPR analysis, without loss of signal intensity. This opens for the possibility to store and transport incubated biological samples with known accuracy of the spin concentration over time.

  20. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  1. Convergence Time and Positioning Accuracy Comparison between BDS and GPS Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    ZHANG Xiaohong

    2015-03-01

    Full Text Available BDS/GPS data from MGEX were processed by TriP 2.0 software developed at Wuhan University. Both static and kinematic float PPP are tested by adopting precise satellite orbits and clocks provided by Research Center of GNSS, Wuhan University. The results show that the convergence time of BDS static PPP is about 80min while kinematic PPP is about 100min. For 3h observations, static positioning accuracy of 5 cm and kinematic positioning accuracy of 8 cm in horizontal, about 12 cm in vertical can be achieved. Similar to GPS PPP, precision in east component is worse than north. At present, BDS PPP needs longer convergence time than GPS PPP to reach an absolute positioning accuracy of cm~dm due to the lack of global tracking stations and the limited accuracy of orbit and clock products.

  2. Commissioning and proof of functionality of the OPERA precision tracker, especially of the time measuring system; Inbetriebnahme und Funktionsnachweis des OPERA Precision Trackers insbesondere des Zeitmesssystems

    Energy Technology Data Exchange (ETDEWEB)

    Janutta, Benjamin

    2008-10-15

    The commissioning and the proof of functionality of the Precision Tracker of the OPERA experiment is subject of this thesis. The timing system of the precision tracker is of major concern here. At first the time.resolution of the timing electronics was characterized additionally general running parameters were studied. Afterwards the installation and commissioning were carried out. The precision tracker is supposed to determine the momentum of throughgoing myons with an accuracy of {delta}p/p<0.25 as well as the sign of their charge. The commissioning is finished by now and it was shown, that the data acquisition system runs very reliable and only 1.5% show an slightly higher number of hits. The nominal spatial track resolution of {sigma}<600 {mu}m was also reached. (orig.)

  3. High-precision pointing with the Sardinia Radio Telescope

    Science.gov (United States)

    Poppi, Sergio; Pernechele, Claudio; Pisanu, Tonino; Morsiani, Marco

    2010-07-01

    We present here the systems aimed to measure and minimize the pointing errors for the Sardinia Radio Telescope: they consist of an optical telescope to measure errors due to the mechanical structure deformations and a lasers system for the errors due to the subreflector displacement. We show here the results of the tests that we have done on the Medicina 32 meters VLBI radio telescope. The measurements demonstrate we can measure the pointing errors of the mechanical structure, with an accuracy of about ~1 arcsec. Moreover, we show the technique to measure the displacement of the subreflector, placed in the SRT at 22 meters from the main mirror, within +/-0.1 mm from its optimal position. These measurements show that we can obtain the needed accuracy to correct also the non repeatable pointing errors, which arise on time scale varying from seconds to minutes.

  4. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe

    2016-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  5. A high precision calorimeter for the SOX experiment

    Science.gov (United States)

    Papp, L.; Agostini, M.; Altenmüller, K.; Appel, S.; Caminata, A.; Cereseto, R.; Di Noto, L.; Farinon, S.; Musenich, R.; Neumair, B.; Oberauer, L.; Pallavicini, M.; Schönert, S.; Testera, G.; Zavatarelli, S.

    2016-07-01

    The SOX (Short distance neutrino Oscillations with BoreXino) experiment is being built to discover or reject eV-scale sterile neutrinos by observing short baseline oscillations of active-to-sterile neutrinos [1]. For this purpose, a 100 kCi 144Ce-144Pr antineutrino generator (CeSOX) will be placed under the BOREXINO detector at the Laboratori Nazionali del Gran Sasso. Thanks to its large size and very low background, BOREXINO is an ideal detector to discover or reject eV-scale sterile neutrinos. To reach the maximal sensitivity, we aim at determining the neutrino flux emitted by the antineutrino generator with a < 1 % accuracy. With this goal, TU München and INFN Genova are developing a vacuum calorimeter, which is designed to measure the source-generated heat with high accuracy.

  6. Calibration, registration, and synchronization for high precision augmented reality haptics.

    Science.gov (United States)

    Harders, Matthias; Bianchi, Gérald; Knoerlein, Benjamin; Székely, Gábor

    2009-01-01

    In our current research we examine the application of visuo-haptic augmented reality setups in medical training. To this end, highly accurate calibration, system stability, and low latency are indispensable prerequisites. These are necessary to maintain user immersion and avoid breaks in presence which potentially diminish the training outcome. In this paper we describe the developed calibration methods for visuo-haptic integration, the hybrid tracking technique for stable alignment of the augmentation, and the distributed framework ensuring low latency and component synchronization. Finally, we outline an early prototype system based on the multimodal augmented reality framework. The latter allows colocated visuo-haptic interaction with real and virtual scene components in a simplified open surgery setting.

  7. Precision high energy liner implosion experiments PHELIX [1

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  8. A Fast and High-precision Orientation Algorithm for BeiDou Based on Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    ZHAO Jiaojiao

    2015-05-01

    Full Text Available A fast and high-precision orientation algorithm for BeiDou is proposed by deeply analyzing the constellation characteristics of BeiDou and GEO satellites features.With the advantage of good east-west geometry, the baseline vector candidate values were solved by the GEO satellites observations combined with the dimensionality reduction theory at first.Then, we use the ambiguity function to judge the values in order to obtain the optical baseline vector and get the wide lane integer ambiguities. On this basis, the B1 ambiguities were solved. Finally, the high-precision orientation was estimated by the determinating B1 ambiguities. This new algorithm not only can improve the ill-condition of traditional algorithm, but also can reduce the ambiguity search region to a great extent, thus calculating the integer ambiguities in a single-epoch.The algorithm is simulated by the actual BeiDou ephemeris and the result shows that the method is efficient and fast for orientation. It is capable of very high single-epoch success rate(99.31% and accurate attitude angle (the standard deviation of pitch and heading is respectively 0.07°and 0.13°in a real time and dynamic environment.

  9. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    Science.gov (United States)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  10. High-performance Atomic Clock Modeling and Its Application in Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    ZHANG Xiaohong

    2015-04-01

    Full Text Available Presently, many IGS tracking stations have been equipped with high performance atomic clocks. In this paper, the modified Allan variance method is used to analyze the time-domain characterization of random noise of receiver clocks from different IGS tracking stations. Then, we not only evaluate the short-term stability of different types of receiver clock and the feasibility of clock modeling, but also take advantage of the observational data of Active Hydrogen Maser from IGS station in order to constrain random variation of receiver clock offset by implementing short-term clock modeling in precise point positioning(PPP algorithm and improve positioning performance of PPP. The experiment results show that the method of clock modeling reduces the correlation between the height component, the zenith path delay and receiver clock offset parameter, the accuracy of height component can be improved by 50%. The proposed method can improve the PPP performance in crustal deformation monitoring, LEO satellite orbit determination, GNSS methodology and many other high precise GNSS geoscience fields when a high-performance atomic clock is deployed.

  11. Biocompatible, high precision, wideband, improved Howland current source with lead-lag compensation.

    Science.gov (United States)

    Tucker, A S; Fox, R M; Sadleir, R J

    2013-02-01

    The Howland current pump is a popular bioelectrical circuit, useful for delivering precise electrical currents. In applications requiring high precision delivery of alternating current to biological loads, the output impedance of the Howland is a critical figure of merit that limits the precision of the delivered current when the load changes. We explain the minimum operational amplifier requirements to meet a target precision over a wide bandwidth. We also discuss effective compensation strategies for achieving stability without sacrificing high frequency output impedance. A current source suitable for Electrical Impedance Tomography (EIT) was simulated using a SPICE model, and built to verify stable operation. This current source design had stable output impedance of 3.3 MΩ up to 200 kHz, which provides 80 dB precision for our EIT application. We conclude by noting the difficulty in measuring the output impedance, and advise verifying the plausibility of measurements against theoretical limitations.

  12. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  13. Development of precision casting in high speed steel; Seimitsu chuzo haisu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, H.; Fujii, T. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-07-25

    As to the high speed steel manufactured by precision casting process, effect of decarbonization technology and low temperature casting, and difference between the characteristics of a steel and a high speed steel were examined. The high speed steel was cast by vacuum casing process using a mold manufactured by the lost wax process. Effect of superheating in casting on the product structure and the bending strength was examined. Decarbonization can be prevented by the vacuum casting process. By low temperature casting, the high speed steel structure becomes fine, and the bending strength or toughness is improved; 80% of the T-direction bending strength of the steel can be secured in the high speed steel. The high speed steel exceeds the steel by a little bit in abrasion resistance. When the high speed steel was applied to a spiral cutter, the high speed steel product exceeded 1.2 times the machined steel in the tool life. In the high speed steel, the cutting process is drastically reduced, and reduction of the material cost is also possible compared with the machined steel. The high speed steel is considered to show good results because of excellent abrasion resistance since the tool life depended more on abrasion than on toughness because of the machining conditions. 4 refs., 8 figs., 2 tabs.

  14. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Massironi, Andrea

    2017-01-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO$_4$ crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO$_4$ crystals with different photosensors and readout electronics will be shown.

  15. Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH).

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2014-01-01

    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.

  16. Fourier transform ion cyclotron resonance versus time of flight for precision mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, R.T.

    1993-02-01

    Both Fourier Transform Ion Cyclotron Resonance and ICR Time-of-Flight mass spectroscopy (FTICR-MS and ICR-TOF-MS, respectively) have been applied to precision atomic mass measurements. This paper reviews the status of these approaches and compares their limitations. Comparisons are made of FTICR-MS and ICR-TOF-MS for application to precision atomic mass measurements of stable and unstable nuclei, where the relevant scale is an accuracy of 1 keV and where halflives are longer than 10 milliseconds (optimistically). The atomic mass table is built up from mass chains, and ICR-MS brings a method of producing new types of mass chains to the mass measurement arena.

  17. Proceedings of the 30th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

    Science.gov (United States)

    1999-01-01

    la Armada (ROA). ROA is connected to the Spanish R&D network (RedIRIS) through the Red Informatica de Andalucia (RICA) using a point-to-point...Teddington, Section Time and Frequency Corso Montecucco 95 Middlesex, TWl 1 01W London 654 P.O. Box Torino 10141 United Kingdom Delft 2600 AR Italy Tel

  18. High precision laser direct microstructuring system based on bursts of picosecond pulses

    Science.gov (United States)

    Mur, Jaka; Petelin, Jaka; Osterman, Natan; Petkovšek, Rok

    2017-08-01

    We have developed an efficient, high precision system for direct laser microstructuring using fiber laser generated bursts of picosecond pulses. An advanced opto-mechanical system for beam deflection and sample movement, precise pulse energy control, and a custom built fiber laser with the pulse duration of 65 ps have been combined in a compact setup. The setup allows structuring of single-micrometer sized objects with a nanometer resolution of the laser beam positioning due to a combination of acousto-optical laser beam deflection and tight focusing. The precise synchronization of the fiber laser with the pulse burst repetition frequency of up to 100 kHz allowed a wide range of working parameters, including a tuneable number of pulses in each burst with the intra-burst repetition frequency of 40 MHz and delivering exactly one burst of pulses to every chosen position. We have demonstrated that tightly focused bursts of pulses significantly increase the ablation efficiency during the microstructuring of a copper layer and shorten the typical processing time compared to the single pulse per spot regime. We have used a simple short-pulse ablation model to describe our single pulse ablation data and developed an upgrade to the model to describe the ablation with bursts. Bursts of pulses also contribute to a high quality definition of structure edges and sides. The increased ablation efficiency at lower pulse energies compared to the single pulse per spot regime opens a window to utilize compact fiber lasers designed to operate at lower pulse energies, reducing the overall system complexity and size.

  19. High precision tune and coupling measurements and tune/coupling feedback in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schulthiess, C.; Wilinski, M.

    2010-08-01

    Precision measurement and control of the betatron tunes and betatron coupling in RHIC are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  20. High precision X-ray spectroscopy in hydrogen-like fermionic and bosonic atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Borchert, G.L.; Anagnostopoulos, D.; Augsburger, M.; Belmiloud, D.; Castelli, C.; Chatellard, D.; Daum, M.; Egger, J.P.; El-Khoury, P.; Elble, M.; Frosch, R.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O.W.B. (and others)

    1998-11-15

    Some time after its formation an exotic atom may be considered a hydrogen-like system consisting of a nucleus and an exotic particle in a bound state. In this situation it is an ideal tool to study cascade properties, while for the innermost orbits it can be used to probe the interaction with the nucleus. From an extended series of experiments using high resolution X-ray spectroscopy for both aspects typical examples are reported and preliminary results are given: 1. To determine the complex scattering length in p-barH the 3D{yields}2P hyperfine transitions have been measured. 2. To determine the pion mass the 5 {yields} 4 transitions in {pi}{sup 14}N have been studied. In all cases a major contribution to the uncertainty originates from the calibration. Therefore a new method is proposed that will establish a universal set of high precision calibration lines for pionic, muonic and electronic systems.

  1. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  2. Development of precision numerical controlled high vacuum electron beam welding machine

    CERN Document Server

    Li Shao Lin

    2002-01-01

    The structure, main technical parameters and characteristics of the precision numerical controlled high vacuum electron beam welding machine are introduced. The design principle, some features and solutions to some key technique problems of this new type machine are described

  3. High-precision predictions for the light CP-even Higgs boson mass of the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, T.; Hollik, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Rzehak, H. [Freiburg Univ. (Germany). Physikalisches Inst.; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2014-03-15

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minimal Supersymmetric SM (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, M{sub h}, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for M{sub h} in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.

  4. New Models of the Milky Way's Dark Matter Distribution for the Era of High Precision Astrometry

    Science.gov (United States)

    Besla, Gurtina

    2017-08-01

    Understanding the assembly history and dark matter distribution of our Milky Way (MW) is a major challenge for astrophysics. Thanks to the unique capabilities of HST, proper motions of satellite galaxies, globular clusters and stellar streams have been measured with accuracies of order 0.05 mas/yr ( 10 km/s) at distances of 50-300 kpc. When combined with detailed models of the MW's halo potential, such measurements become high-precision tools to constrain the dark matter mass profile of the MW and compute accurate orbital histories of satellites. However, the MW hosts a pair of massive dwarf galaxies, the LMC and SMC, that contribute to its dark matter distribution and change the shape of the potential in a non-symmetrical, time evolving manner. To date, these effects have not been accounted for in existing models of the MW halo. We propose to develop high resolution simulations to quantify the time evolving structure of the MW's dark matter halo owing to the influence of the LMC and SMC. These novel models will enable rapid orbital integration of halo objects (satelllites, globular clusters, stellar streams), using high accuracy HST proper motions, while also capturing the complex halo potential resulting from the LMC-SMC-MW interaction. The era of high-precision astrometry has arrived, yet we do not currently have an appropriate theoretical framework to study the assembly history of MW-like galaxies in the presence of massive satellite perturbers. Our proposed program is thus critical to ongoing HST programs and all efforts to understand the structure and evolution of the dark matter halo of our Galaxy and analogous systems like M31 and its massive satellite, M33.

  5. On the Mitigation of Solar Index Variability for High Precision Orbit Determination in Low Earth Orbit

    Science.gov (United States)

    2016-09-16

    causing increased difficulty in achieving and maintaining high precision orbit predictions for satellites operating in low Earth orbit . In particular, the...Geodetic satellites with high precision satellite laser ranging data are used as test cases for the Naval Research Laboratory’s Orbit Covariance Estimation...forces imparted upon a satellite . For satellites in Low Earth Orbit (LEO), atmospheric drag forces are typically the largest source of force modeling error

  6. SOLARIS 3-axis high load, low profile, high precision motorized positioner

    Energy Technology Data Exchange (ETDEWEB)

    Acome, Eric; Van Every, Eric; Deyhim, Alex, E-mail: adc@adc9001.com [ADC USA Inc. 126 Ridge Road Lansing NY, 14882 (United States); Zajac, Marcin [National Synchrotron Radiation Centre Solaris Jagiellonian University ul. Czerwone Maki 98/p.3.03 0-392 Krakow (Poland)

    2016-07-27

    A 3-axis optical table, shown in Figure 1, was designed, fabricated, and assembled for the SOLARIS synchrotron facility at the Jagiellonian University in Krakow, Poland. To accommodate the facility, the table was designed to be very low profile, as seen in Figure 2, and bear a high load. The platform has degrees of freedom in the vertical (Z) direction as well as horizontal transversal (X and Y) directions. The table is intended to sustain loads as large as 1500 kg which will be sufficient to support a variety of equipment to measure and facilitate synchrotron radiation. After assembly, the table was tested and calibrated to find its position error in the vertical direction. ADC has extensive experience designing and building custom complex high precision motion systems [1,2].

  7. Automated drop-on-demand system with real-time gravimetric control for precise dosage formulation.

    Science.gov (United States)

    Sahay, A; Brown, M; Muzzio, F; Takhistov, Paul

    2013-04-01

    Many of the therapies for personalized medicine have few dosage options, and the successful translation of these therapies to the clinic is significantly dependent on the drug/formulation delivery platform. We have developed a lab-scale integrated system for microdosing of drug formulations with high accuracy and precision that is capable of feedback control. The designed modular drug dispensing system includes a microdispensing valve unit and is fully automated with a LabVIEW-controlled computer interface. The designed system is capable of dispensing drug droplets with volumes ranging from nanoliters to microliters with high accuracy (relative standard deviation gravimetric control.

  8. Precise and accurate train run data: Approximation of actual arrival and departure times

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    possible with the present systems. GPS data from a major Danish Railway Undertaking is used as an alternate data source with more accurate arrival and departure times. The offset is based on the median of the time difference between these two sources. Factors taken into consideration when constructing......On the most intensively used parts of the Danish railway network, registration of arrivals and departure times are based on occupation of main track circuits and block sections. These measurements are precise. However, due to the nature of track circuits, they do not register the actual time when...... trains have come to a halt nor when trains have set in motion again. Thus the measurements are inaccurate and do not express the experience of the passengers. A commonly accepted method to make this measurement possible is to construct a correction function to the track circuit based measurement...

  9. Impact of Machine Virtualization on Timing Precision for Performance-critical Tasks

    Science.gov (United States)

    Karpov, Kirill; Fedotova, Irina; Siemens, Eduard

    2017-07-01

    In this paper we present a measurement study to characterize the impact of hardware virtualization on basic software timing, as well as on precise sleep operations of an operating system. We investigated how timer hardware is shared among heavily CPU-, I/O- and Network-bound tasks on a virtual machine as well as on the host machine. VMware ESXi and QEMU/KVM have been chosen as commonly used examples of hypervisor- and host-based models. Based on statistical parameters of retrieved distributions, our results provide a very good estimation of timing behavior. It is essential for real-time and performance-critical applications such as image processing or real-time control.

  10. Reaching a few picosecond timing precision with the 16-channel digitizer and timestamper SAMPIC ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Delagnes, E., E-mail: eric.delagnes@cea.fr [CEA/IRFU/SEDI, Saclay (France); Breton, D. [Laboratoire de L’accélérateur Linéaire from CNRS/IN2P3, Centre scientifique d’Orsay, Bâtiment 200, 91898, Orsay, Cedex (France); Grabas, H. [CEA/IRFU/SEDI, Saclay (France); Maalmi, J.; Rusquart, P. [Laboratoire de L’accélérateur Linéaire from CNRS/IN2P3, Centre scientifique d’Orsay, Bâtiment 200, 91898, Orsay, Cedex (France)

    2015-07-01

    SAMPIC is a Time and Waveform to Digital Converter (TWDC) multichannel chip. It integrates 16 channels each including DLL-based TDC providing a raw time associated with an ultra-fast analog memory sampling the signal used for precise timing measurements as well as other parameters of the pulse. Every channel also integrates a discriminator that can trigger it independently or participate to a more complex trigger. After triggering, the analog samples are digitized by on-chip ADCs and are sent serially to the acquisition. The paper describes the architecture of SAMPIC and reports the main performance measured on the first prototype chip with a focus on timing resolution in the range of 15 ps RMS using raw data improved to less than 5 ps RMS after a simple calibration.

  11. Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases

    Science.gov (United States)

    Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla

    2016-04-01

    An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (automated preconcentration unit yielding an up to 500 times concentration increase and the capability to separate the target gas from spectral interferants by se-quential desorption 3. Here, we review our recent developments on high precision isotope ratio analysis of greenhouse gases, with special focus on the isotopic species of N2O and CH4. Furthermore, we show environ-mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B., Henne, S. & Emmenegger, L. Tracking isotopic signatures of CO2 at the high

  12. CLASSIFICATION OF LIDAR DATA FOR GENERATING A HIGH-PRECISION ROADWAY MAP

    Directory of Open Access Journals (Sweden)

    J. Jeong

    2016-06-01

    Full Text Available Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  13. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    Directory of Open Access Journals (Sweden)

    Aurélie Kapusta

    2011-04-01

    Full Text Available During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs, each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs, which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ, are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new

  14. Project GeoWSN: High precision but low-cost GNSS landslide monitoring in Austria

    Science.gov (United States)

    Koch, Daniel; Brandstätter, Michael; Kühtreiber, Norbert

    2014-05-01

    At present, GNSS monitoring of landslides is an accepted and approved method to detect movements of slopes at risk in the sub-centimetre level. However, high-precision geodetic GNSS-receivers are expensive, therefore this monitoring method is not widely applied. Recently low-cost GNSS-receivers are conquering the geodetic market and are well suited for a cost effective and yet precise GNSS-monitoring. During the project GeoWSN, which was funded by the Austrian Research Promotion Agency (FFG), an applicable low-cost monitoring system was developed at Graz University of Technology. The system is based on a so-called Wireless Sensor Network (WSN) consisting of low-cost GNSS-receivers, temperature and humidity sensors and inertial measurement units. Additionally energy-harvesting technologies and power-saving algorithms provide that the system is energy- autarkic. For real-time applications, a communication link between the sensor nodes is implemented. The relative positioning method RTK (Real Time Kinematic) is applied to reach the highest possible accuracy. The GeoWSN sensor nodes enable the detection of possible movements in the real-time processed positions of the sensor nodes. To ensure a real-time evaluation and interpretation of the data, the current status of the slope can be acquired by a local warning centre. Therefore, affected people can be warned within a short latency. Several test-scenarios have shown the acceptance of the system at the warning centre of Styria, Austria. This contribution should give an overview of the main idea of a low-cost warning system and results of the project GeoWSN.

  15. Lake Erie Yellow perch age estimation based on three structures: Precision, processing times, and management implications

    Science.gov (United States)

    Vandergoot, C.S.; Bur, M.T.; Powell, K.A.

    2008-01-01

    Yellow perch Perca flavescens support economically important recreational and commercial fisheries in Lake Erie and are intensively managed. Age estimation represents an integral component in the management of Lake Erie yellow perch stocks, as age-structured population models are used to set safe harvest levels on an annual basis. We compared the precision associated with yellow perch (N = 251) age estimates from scales, sagittal otoliths, and anal spine sections and evaluated the time required to process and estimate age from each structure. Three readers of varying experience estimated ages. The precision (mean coefficient of variation) of estimates among readers was 1% for sagittal otoliths, 5-6% for anal spines, and 11-13% for scales. Agreement rates among readers were 94-95% for otoliths, 71-76% for anal spines, and 45-50% for scales. Systematic age estimation differences were evident among scale and anal spine readers; less-experienced readers tended to underestimate ages of yellow perch older than age 4 relative to estimates made by an experienced reader. Mean scale age tended to underestimate ages of age-6 and older fish relative to otolith ages estimated by an experienced reader. Total annual mortality estimates based on scale ages were 20% higher than those based on otolith ages; mortality estimates based on anal spine ages were 4% higher than those based on otolith ages. Otoliths required more removal and preparation time than scales and anal spines, but age estimation time was substantially lower for otoliths than for the other two structures. We suggest the use of otoliths or anal spines for age estimation in yellow perch (regardless of length) from Lake Erie and other systems where precise age estimates are necessary, because age estimation errors resulting from the use of scales could generate incorrect management decisions. ?? Copyright by the American Fisheries Society 2008.

  16. Reference satellite selection method for GNSS high-precision relative positioning

    Directory of Open Access Journals (Sweden)

    Xiao Gao

    2017-03-01

    Full Text Available Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.

  17. Precision ring rolling technique and application in high-performance bearing manufacturing

    Directory of Open Access Journals (Sweden)

    Hua Lin

    2015-01-01

    Full Text Available High-performance bearing has significant application in many important industry fields, like automobile, precision machine tool, wind power, etc. Precision ring rolling is an advanced rotary forming technique to manufacture high-performance seamless bearing ring thus can improve the working life of bearing. In this paper, three kinds of precision ring rolling techniques adapt to different dimensional ranges of bearings are introduced, which are cold ring rolling for small-scale bearing, hot radial ring rolling for medium-scale bearing and hot radial-axial ring rolling for large-scale bearing. The forming principles, technological features and forming equipments for three kinds of precision ring rolling techniques are summarized, the technological development and industrial application in China are introduced, and the main technological development trend is described.

  18. Development of a practical method of estimating electric power from various photovoltaic technologies with high precision

    Science.gov (United States)

    Ishii, Tetsuyuki; Sato, Ritsuko; Choi, Sungwoo; Chiba, Yasuo; Masuda, Atsushi

    2017-08-01

    The purpose of this study is to develop a method of estimating the electric power from various photovoltaic technologies with high precision. The actual outdoor performance of eight kinds (12 types) of photovoltaic (PV) modules has been measured since January 2012 in order to verify the precision of the method. Using ambient climatic datasets including solar irradiance, module temperature, and solar spectrum, the performance of these PV modules is corrected to the performance under standard test conditions (STC), which should be constant ideally. The results indicate that the performance of bulk crystalline silicon (c-Si) and copper indium gallium diselenide (CIGS) PV modules can be estimated with high precision (approximately less than ±2%). However, the estimation precision of thin-film Si and cadmium telluride (CdTe) PV modules is low because of the initial light-induced degradation and seasonal variation due to metastability.

  19. The High Precision Vibration Signal Data Acquisition System Based on the STM32

    Directory of Open Access Journals (Sweden)

    Zhu Hui-Ling

    2014-06-01

    Full Text Available Vibrating wire sensors are a class of sensors that are very popular used for strain measurements of structures in buildings and civil infrastructures. The use of frequency, rather than amplitude, to convey the signal means that vibrating wire sensors are relatively resistant signal degradation from electrical noise, long cable runs, and other changes in cable resistance. This paper proposed a high precision vibration signal acquisition with storage function based on STM32 microcontroller in order to promote safety in engineering construction. The instrument designed in this paper not only can directly collect vibrating signals, but also store data into SD card and communicate with computer so as to realize the real-time monitoring from point to point.

  20. Laboratory precision photometry test results for the High-speed Imaging Photometer for Occultations (HIPO)

    Science.gov (United States)

    Zangari, A. M.; Dunham, E.; Mandushev, G.; Person, M. J.; Collins, P.; Bida, T.; Taylor, B.; Zoonematkermani, S.

    2011-10-01

    We present the results of several laboratory precision photometry tests using the High-speed Imaging Photometer for Occultations (HIPO), one of seven first generation instruments of the Stratospheric Observatory For Infrared Astronomy (SOFIA). Using artificial stars illuminated by an integrating sphere, we have tested the stability of the photometry in the laboratory against variations in chip temperature, controller temperature, and power supply temperature. We find that changes in the controller temperature and the chip temperature correlate with millimag-level changes in differential photometry and sub-pixel changes in the centroid location of the artificial stars. We find that data can be averaged for up to 10 minutes and 0.1 millimag during times of temperature fluctuations if a single amplifier is used to take data without effecting the results. We make operating recommendations based on the test results and discuss the suitability of HIPO for research beyond occultations, such as exoplanet transits.

  1. Modified hybrid control of robot manipulators for high precision assembly operations

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy

    1988-01-01

    This paper is concerned with applications of robot manipulators in high precision assembly tasks that can be successfully performed by employing a hybrid control scheme that independently controls force and position. A traditional hybrid control scheme is implemented in Cartesian space. In the modified hybrid control scheme introduced in this paper, the error driven control signals are expressed in joint space. This paper studies the implementation of the modified hybrid control scheme on a two-degree-of-freedom robot manipulator with a closed-kinematic chain mechanism. The performance of the traditional and modified hybrid control schemes is comparatively evaluated by computer simulation in terms of computation time and accuracy for several study cases.

  2. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  3. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  4. Top-quark pair-production and decay at high precision

    Science.gov (United States)

    Gao, Jun; Papanastasiou, Andrew S.

    2017-09-01

    We present a fully differential and high-precision calculation of top-quark pair-production and decay at the LHC, providing predictions for observables constructed from top-quark leptonic and b -flavored jet final states. The calculation is implemented in a parton-level Monte Carlo and includes an approximation to the next-to-next-to-leading-order (NNLO) corrections to the production and, for the first time, the exact NNLO corrections to the decay subprocesses. The corrections beyond NLO are sizable, and including them is crucial for an accurate description of the cross section constrained by experimental phase-space restrictions. We compare our predictions to published ATLAS and CMS measurements at the LHC, finding improved agreement compared with lower orders in the perturbative expansion.

  5. A High Precision Feature Based on LBP and Gabor Theory for Face Recognition

    Directory of Open Access Journals (Sweden)

    Peng Ouyang

    2013-04-01

    Full Text Available How to describe an image accurately with the most useful information but at the same time the least useless information is a basic problem in the recognition field. In this paper, a novel and high precision feature called BG2D2LRP is proposed, accompanied with a corresponding face recognition system. The feature contains both static texture differences and dynamic contour trends. It is based on Gabor and LBP theory, operated by various kinds of transformations such as block, second derivative, direct orientation, layer and finally fusion in a particular way. Seven well-known face databases such as FRGC, AR, FERET and so on are used to evaluate the veracity and robustness of the proposed feature. A maximum improvement of 29.41% is achieved comparing with other methods. Besides, the ROC curve provides a satisfactory figure. Those experimental results strongly demonstrate the feasibility and superiority of the new feature and method.

  6. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  7. High precision series solutions of differential equations: Ordinary and regular singular points of second order ODEs

    Science.gov (United States)

    Noreen, Amna; Olaussen, Kåre

    2012-10-01

    A subroutine for a very-high-precision numerical solution of a class of ordinary differential equations is provided. For a given evaluation point and equation parameters the memory requirement scales linearly with precision P, and the number of algebraic operations scales roughly linearly with P when P becomes sufficiently large. We discuss results from extensive tests of the code, and how one, for a given evaluation point and equation parameters, may estimate precision loss and computing time in advance. Program summary Program title: seriesSolveOde1 Catalogue identifier: AEMW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 991 No. of bytes in distributed program, including test data, etc.: 488116 Distribution format: tar.gz Programming language: C++ Computer: PC's or higher performance computers. Operating system: Linux and MacOS RAM: Few to many megabytes (problem dependent). Classification: 2.7, 4.3 External routines: CLN — Class Library for Numbers [1] built with the GNU MP library [2], and GSL — GNU Scientific Library [3] (only for time measurements). Nature of problem: The differential equation -s2({d2}/{dz2}+{1-ν+-ν-}/{z}{d}/{dz}+{ν+ν-}/{z2})ψ(z)+{1}/{z} ∑n=0N vnznψ(z)=0, is solved numerically to very high precision. The evaluation point z and some or all of the equation parameters may be complex numbers; some or all of them may be represented exactly in terms of rational numbers. Solution method: The solution ψ(z), and optionally ψ'(z), is evaluated at the point z by executing the recursion A(z)={s-2}/{(m+1+ν-ν+)(m+1+ν-ν-)} ∑n=0N Vn(z)A(z), ψ(z)=ψ(z)+A(z), to sufficiently large m. Here ν is either ν+ or ν-, and Vn(z)=vnz. The recursion is initialized by A(z)=δzν,for n

  8. High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts

    Science.gov (United States)

    Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.

    measuring, by analogue FOS, has been ˜ 10-4 %. Substantially accessible values are yet worse on 2-3 order. The reason of poor precise performances of measurers on the basis of analogue FOS is metrologically poor quality of a stream of optical radiation carrying out role of the carrier and receptor of the information. It is a high level of photon noise and a small blanket intensity level. First reason reflects the fact of discreteness of flow of high-energy photons, and it is consequence of second one - smallness, on absolute value, of inserted power into OF from available radiation sources (RS). Works on improvement of FO elements are carrying out. Certainly, it will be created RS allow to insert enough of power into standard OF. But simple increasing of optical flow power in measuring path of FOS will not be able to decide radically the problem of increasing of measuring prices: with raising of power in proportion of square root of its value there is raising a power of photon noises - 1000-times increase of power promises only 30-times increase of measuring precise; insertion into OF more large power (˜ 1 W for standard silicon OF) causes an appearance of non-linear effects in it, which destroying an operating principle of analogue FOS. Thus, it is needed to constatate impossibility of building, at that time, measurers of analogue FOS, concurated with traditional (electrical) measurers on measuring precise. At that all, advantages of FO, as basis of building of FO MD requires to find ways for decision of these problems. Analysis of problem of sensitivity of usual (analogue) FOS has brought us to conclusion about necessity of reviewing of principles of information signal forming in FOS and principles its next electronic processing. For radical increasing of accuracy of measurements with using FOS it is necessary to refuse analogue modulation of optical flow and to transfer to discreet its modulations, entering thus in optical flow new, non-optical, parameters, which will

  9. Reference satellite selection method for GNSS high-precision relative positioning

    OpenAIRE

    Xiao Gao; Wujiao Dai; Zhiyong Song; Changsheng Cai

    2017-01-01

    Selecting the optimal reference satellite is an important component of high-precision relative positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection ...

  10. High-precision half-life measurement for the superallowed Fermi β+ emitter 22Mg

    Science.gov (United States)

    Dunlop, M. R.; Svensson, C. E.; Ball, G. C.; Leslie, J. R.; Andreoiu, C.; Bernier, N.; Bidaman, H.; Bildstein, V.; Bowry, M.; Burbadge, C.; Caballero-Folch, R.; Varela, A. Diaz; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Jigmeddorj, B.; Leach, K. G.; MacLean, A. D.; Olaizola, B.; Measures, J.; Natzke, C.; Saito, Y.; Smith, J. K.; Turko, J.; Zidar, T.

    2017-10-01

    A high-precision half-life measurement for the superallowed Fermi β+ emitter 22Mg was performed at the TRIUMF-ISAC facility using a 4 π proportional gas counter. The result of T1 /2=3.87400 ±0.00079 s is a factor of 3 more precise than the previously adopted world average and resolves a discrepancy between the two previously published 22Mg half-life measurements.

  11. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    OpenAIRE

    Shipulya, N.D.; Konakov, S.A.; Krzhizhanovskaya, V.V.

    2016-01-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the "etching in microchannel" technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction ...

  12. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    Science.gov (United States)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.

    2017-11-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of cost

  13. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    Science.gov (United States)

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  14. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

    Science.gov (United States)

    Witt, Annette; Palmigiano, Agostina; Neef, Andreas; El Hady, Ahmed; Wolf, Fred; Battaglia, Demian

    2013-01-01

    Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of non-linear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them) and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations—either spontaneously or as an effect of continuous optogenetic driving—we show that precisely-timed photostimulation pulses can be used to shift the phase of oscillation, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the

  15. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

    Directory of Open Access Journals (Sweden)

    Annette eWitt

    2013-04-01

    Full Text Available Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of nonlinear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs.Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations —either spontaneously or as an effect of continuous optogenetic driving—, we show that precisely-timed photostimulation pulses can be used to shift phase, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the two

  16. Modelling and mitigating refractive propagation effects in precision pulsar timing observations

    Science.gov (United States)

    Shannon, R. M.; Cordes, J. M.

    2017-01-01

    To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.

  17. An investigation into the performance of real-time GPS+GLONASS Precise Point Positioning (PPP) in New Zealand

    Science.gov (United States)

    Harima, Ken; Choy, Suelynn; Rizos, Chris; Kogure, Satoshi

    2017-09-01

    This paper presents an investigation into the performance of real-time Global Navigation Satellite Systems (GNSS) Precise Point Positioning (PPP) in New Zealand. The motivation of the research is to evaluate the feasibility of using PPP technique and a satellite based augmentation system such as the Japanese Quasi-Zenith Satellite System (QZSS) to deliver a real-time precise positioning solution in support of a nation-wide high accuracy GNSS positioning coverage in New Zealand. Two IGS real-time correction streams are evaluated alongside with the PPP correction messages transmitted by the QZSS satellite known as MDC1. MDC1 corrections stream is generated by Japan Aerospace Exploration Agency (JAXA) using the Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) software and are currently transmitted in test mode by the QZSS satellite. The IGS real-time streams are the CLK9B real-time corrections stream generated by the French Centre National D'études Spatiales (CNES) using the PPP-Wizard software, and the CLK81 real-time corrections stream produced by GMV using their MagicGNSS software. GNSS data is collected from six New Zealand CORS stations operated by Land Information New Zealand (LINZ) over a one-week period in 2015. GPS and GLONASS measurements are processed in a real-time PPP mode using the satellite orbit and clock corrections from the real-time streams. The results show that positioning accuracies of 6 cm in horizontal component and 15 cm in vertical component can be achieved in real-time PPP. The real-time GPS+GLONASS PPP solution required 30 minutes to converge to within 10 cm horizontal positioning accuracy.

  18. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    Directory of Open Access Journals (Sweden)

    Liviu Viman

    2016-03-01

    Full Text Available This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.

  19. Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA

    Science.gov (United States)

    Donovan, J.; Singer, J.; Armstrong, J. T.

    2016-12-01

    Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.

  20. High Throughput, High Precision Hot Testing Tool for HBLED Wafer Level Testing

    Energy Technology Data Exchange (ETDEWEB)

    Solarz, Richard [KLA-Tencor Corporation, Milpitas, CA (United States); McCord, Mark [KLA-Tencor Corporation, Milpitas, CA (United States)

    2015-12-31

    The Socrates research effort developed an in depth understanding and demonstrated in a prototype tool new precise methods for teh characterization of color characteristics and flux from individual LEDs for the production of uniform quality lighting. This effort was focused on improving the color quality and consistency of solid state lighting and potentially reducing characterization costs for all LED product types. The patented laser hot testing method was demonstrated to be far more accurate than all current state of the art color and flux characterization methods in use by the solid state lighting industry today. A seperately patented LED grouping method (statistical binning) was demonstrated to be a useful approach to improving utilization of entire lots of large color and flux distributions of manufactured LEDs for high quality color solid-state lighting. At the conclusion of the research in late 2015 the solid-state lighting industry was however generally satisfied with its existing production methods for high quality color products for the small segment of customers that demand it, albeit with added costs.

  1. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning.

    Science.gov (United States)

    Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald

    2017-04-03

    Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased.

  2. High accuracy and precision micro injection moulding of thermoplastic elastomers micro ring production

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Elsborg, René

    2016-01-01

    /product monitoring and metrology. The study represent a new concept yet to be developed with great potential for high precision mass-manufacturing of highly functional 3D multi-material (i.e. including metal/soft polymer) micro components. The activities related to HINMICO project objectives proves the importance...

  3. Fully automatic and precise data analysis developed for time-of-flight mass spectrometry.

    Science.gov (United States)

    Meyer, Stefan; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Wurz, Peter

    2017-09-01

    Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time-of-flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time-of-flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time-of-flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal-to-noise ratio (SNR) of 10 4 . We show that the accuracy of isotope ratios is in fact proportional to SNR -1 . Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s 0.5 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN

    2014-05-01

    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  6. Estimation of Aeolian Dune Migration Over Martian Surface Employing High Precision Photogrammetric Measurements

    Science.gov (United States)

    Kim, J.

    2017-07-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has been rarely successful due to the technical difficulties to quantitatively observe expected small surface migrations. Therefore, we developed a generic procedure to measure the migration of dune fields employing a high-accuracy photogrammetric processor and sub-pixel image correlator on the 25-cm resolution High Resolution Imaging Science Experiment (HiRISE). The established algorithms have been tested over a few Martian dune fields. Consequently, migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database. Only over some Martian dune fields, such as Kaiser crater, meaningful migration speeds (> 1m/year) considering photogrammetric error residual have been detected. Currently a technically improved processor to compensate error residual using time series observation is under development and expected to produce the long term migration speed over Martian dune fields where constant HiRISE image acquisitions are available.

  7. High precision cross-correlated imaging in few-mode fibers

    Science.gov (United States)

    Muliar, Olena; Usuga Castaneda, Mario A.; Kristensen, Torben; Tanggaard Alkeskjold, Thomas; Rottwitt, Karsten; Lægsgaard, Jesper

    2017-01-01

    The trend of increasing data traffic in conventional communication systems demands utilizing new methods for data transmission, which in combination with traditional techniques, enable overcoming the predicted capacity limit. Mode division multiplexing (MDM), where higher-order modes (HOMs) in a few-mode fiber (FMF) are used as multiple spatial communication channels, comes in this context as a viable approach to enable the optimization of high-capacity links. From this perspective, it becomes highly necessary to possess a diagnostic tool for the precise modal characterization of FMFs. Among existing approaches for modal content analysis, several methods as S2, C2 in time and frequency domain are available. In this contribution we will present an improved time-domain cross-correlated (C2) imaging technique for the experimental evaluation of modal properties in HOM fibers over a broad range of wavelengths. Our modified setup makes it possible to adjust the time resolution of the system according to the needs of the required fiber measurement. We show that by tuning the spectral shape of the source (SuperK EXTREME filtered by SuperK Select), we enhance the time resolution of the system, which allows us to distinguishing differential time delays between HOMs in the picosecond timescale. Broad wavelength scanning in combination with spectral shaping, allows us to estimate the modal behavior of FMF without prior knowledge of the fiber parameters. We performed our demonstration at wavelengths from 850nm to 1100nm which can be easily extended to other wavelengths of interest just by replacing components with the appropriate coating. The method presented here aims to serve as flexible diagnostic tool that can be implemented in MDM systems for judicious evaluation of modal dispersion in FMFs.

  8. Challenges in mold manufacturing for high precision molded diffractive optical elements

    Science.gov (United States)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  9. Towards high precision measurements of nuclear g-factors for the Be isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Takamine, A., E-mail: icot@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Okada, K. [Department of Physics, Sophia University, Chiyoda Ward, Tokyo (Japan); Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Schury, P.; Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Katayama, I. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Imamura, K. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Department of Physics, Meiji University, Kawasaki City, Kanagawa (Japan); Ichikawa, Y.; Ueno, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Department of Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States); Schuessler, H.A. [Department of Physics, Texas A& M University, College Station, TX (United States)

    2016-06-01

    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of {sup 11}Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  10. Towards high precision measurements of nuclear g-factors for the Be isotopes

    Science.gov (United States)

    Takamine, A.; Wada, M.; Okada, K.; Ito, Y.; Schury, P.; Arai, F.; Katayama, I.; Imamura, K.; Ichikawa, Y.; Ueno, H.; Wollnik, H.; Schuessler, H. A.

    2016-06-01

    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of 11Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  11. Pb and Sr isotope measurements by inductively coupled plasma mass spectrometer: efficient time management for precision improvement

    Science.gov (United States)

    Monna, F.; Loizeau, J.-L.; Thomas, B. A.; Guéguen, C.; Favarger, P.-Y.

    1998-08-01

    One of the factors limiting the precision of inductively coupled plasma mass spectrometry is the counting statistics, which depend upon acquisition time and ion fluxes. In the present study, the precision of the isotopic measurements of Pb and Sr is examined. The time of measurement is optimally shared for each isotope, using a mathematical simulation, to provide the lowest theoretical analytical error. Different algorithms of mass bias correction are also taken into account and evaluated in term of improvement of overall precision. Several experiments allow a comparison of real conditions with theory. The present method significantly improves the precision, regardless of the instrument used. However, this benefit is more important for equipment which originally yields a precision close to that predicted by counting statistics. Additionally, the procedure is flexible enough to be easily adapted to other problems, such as isotopic dilution.

  12. A modular multiple use system for precise time and frequency measurement and distribution

    Science.gov (United States)

    Reinhardt, V. S.; Adams, W. S.; Lee, G. M.; Bush, R. L.

    1978-01-01

    A modular CAMAC based system is described which was developed to meet a variety of precise time and frequency measurement and distribution needs. The system was based on a generalization of the dual mixer concept. By using a 16 channel 100 ns event clock, the system can intercompare the phase of 16 frequency standards with subpicosecond resolution. The system has a noise floor of 26 fs and a long term stability on the order of 1 ps or better. The system also used a digitally controlled crystal oscillator in a control loop to provide an offsettable 5 MHz output with subpicosecond phase tracking capability. A detailed description of the system is given including theory of operation and performance. A method to improve the performance of the dual mixer technique is discussed when phase balancing of the two input ports cannot be accomplished.

  13. Super high precision 200 ppi liquid crystal display series; Chokoseido 200 ppi ekisho display series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In mobile equipment, in demand is a high precision liquid crystal display (LCD) having the power of expression equivalent to printed materials like magazines because of the necessity of displaying a large amount of information on a easily potable small screen. In addition, with the spread and high-quality image of digital still cameras, it is strongly desired to display photographed digital image data in high quality. Toshiba Corp., by low temperature polysilicone (p-Si) technology, commercialized the liquid crystal display series of 200 ppi (pixels per inch) precision dealing with the rise of the high-precision high-image quality LCD market. The super high precision of 200 ppi enables the display of smooth beautiful animation comparable to printed sheets of magazines and photographs. The display series are suitable for the display of various information services such as electronic books and electronic photo-viewers including internet. The screen sizes lined up are No. 4 type VGA (640x480 pixels) of a small pocket notebook size and No. 6.3 type XGA (1,024x768 pixels) of a paperback size, with a larger screen to be furthered. (translated by NEDO)

  14. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

    Directory of Open Access Journals (Sweden)

    Hu Ke-bin

    2015-02-01

    Full Text Available Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR images. The autofocus Back Projection (BP algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

  15. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  16. High Precision Measurement of the differential W and Z boson cross-sections

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at a center-of-mass energies of 8TeV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of several systematic effects and allows therefore for a high precision comparison to the theory predictions.

  17. Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness.

    Science.gov (United States)

    Correa-Pérez, María E; López-Miguel, Alberto; Miranda-Anta, Silvia; Iglesias-Cortiñas, Darío; Alió, Jorge L; Maldonado, Miguel J

    2012-04-06

    This study was intended to assess the reliability of central corneal thickness (CCT) measurements using Cirrus high-definition optical coherence tomography (HD-OCT) in healthy subjects and its accuracy compared with ultrasonic pachymetry. Seventy-seven consecutive subjects were recruited for evaluating repeatability, and agreement between two examiners. To analyze repeatability, one examiner measured 77 eyes four times in succession. To study agreement between two observers, a second independently trained examiner obtained another CCT measurement. We also measured eyes in a subgroup of 20 patients using standard ultrasonic pachymetry. Within-subject standard deviation (S(w)), coefficient of variation (CV), limits of agreement (LoA), and intraclass correlation coefficient (ICC) data were obtained. For repeatability, the S(w) and precision (1.96 × S(w)) were 4.86 and 9.52 μm, respectively. Intraobserver CV was 0.89% and the ICC was 0.98 (95% confidence interval [CI], 0.97-0.99). For agreement between two examiners, the S(w) and precision were 7.58 and 14.85 μm, respectively; the CV was 1.40%. The mean difference between observers was -0.13 μm (95% CI, -1.85 to 1.58; P = 0.87). The width of the LoA was 29.64 μm. Median difference between Cirrus HD-OCT and ultrasound CCT measurements was -4.5 μm (interquartile range, -7.0-0.0; P = 0.04). Cirrus HD-OCT provides repeatable CCT measurements, good agreement between two independently trained examiners, and its systematic bias compared to ultrasonic pachymetry is clinically negligible. Therefore, research laboratories and eye clinics using Cirrus HD-OCT as a diagnostic imaging method, can also benefit from a reliable noncontact pachymeter when counseling patients with glaucoma and those undergoing corneal and refractive surgeries.

  18. SU-F-I-56: High-Precision Gamma-Ray Analysis of Medical Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, N; Chillery, T; Chowdhury, P; Lister, C [University of Massachusetts-Lowell, Lowell, MA (United States); McCutchan, E [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY (United States); Smith, C [BLIP Facility, Brookhaven National Laboratory, Upton, NY (United States)

    2016-06-15

    Purpose: Advanced, time-resolved, Compton-suppressed gamma-ray spectroscopy with germanium detectors is implemented for assaying medical isotopes to study the radioactive decay process leading to a more accurate appraisal of the received dose and treatment planning. Lowell’s Array for Radiological Assay (LARA), a detector array that is comprised of six Compton-suppressed high-purity germanium detectors, is currently under development at UMass-Lowell which combines Compton-suppression and time-and-angle correlations to allow for highly efficient and highly sensitive measurements. Methods: Two isotopes produced Brookhaven Linac Isotope Producer (BLIP) were investigated. {sup 82}Sr which is the parent isotope for producing {sup 82}Rb is often used in cardiac PET. {sup 82}Sr gamma-ray spectrum is dominated by the 511keV photons from positron annihilation which prevent precise measurement of co-produced contaminant isotopes. A second project was to investigate the production of platinum isotopes. Natural platinum was bombarded with protons from 53MeV to 200MeV. The resulting spectrum was complicated due to the large number of stable platinum isotopes in the target, the variety of open reaction channels (p,xn), (p,pxn), (p,axn). Results: By using face-to-face NaI(Tl) counters 90-degrees to the Compton-suppressed germaniums to detect the 511keV photons, a much cleaner and more sensitive measurement of {sup 85}Sr and other contaminants was obtained. For the platinum target, we identified the production of {sup 188–189–191–195}Pt, {sup 191–192–193–194–195–196}Au and {sup 186–188–189–190–192–194–189–190–192–194}Ir. For example, at the lower energies (53 and 65MeV), we measured {sup 191}Pt production cross-sections of 144mb and 157mb. Considerable care was needed in following the process of dissolving and diluting the samples to get consistent results. The new LARA array will help us better ascertain the absolute efficiency of the counting

  19. HPMSS(High Precision Magnetic Survey System) and InterRidge

    Science.gov (United States)

    Isezaki, N.; Sayanagi, K.

    2012-12-01

    From the beginning of 1990s to the beginning of 2000s, the Japanese group of IntreRidge conducted many cruises for three component magnetic survey using Shipboard Three Component Magnetometer (STCM) and Deep Towed Three Component Magnetometer (DTCM) in the world wide oceans. We have been developing HPMSS during this time with support of Dr.Tamaki(the late representative of InterRidge Japan) who understood the advantages of three component geomagnetic anomalies (TCGA). TCGA measured by STCM determines the direction of geomagnetic anomaly lineations precisely at every point where TCGA were observed, which playes the important role in magnetic anomaly lineation analysis. Even in the beginning of 2000s, almost all marine magnetic scientists believed that the total intensity anomly (TIA) is the better data than TCGA for analysis because the scalar magnetometers (e.g. proton precession magnetometer) have the better accuracy than any other magnetometers (e.g.flux gate magnetometer (FGM)). We employed the high accrate gyroscope (e.g.ring lase gyroscope (RLG)/optical fiber gyroscope (OFG)) to improve the accuracy of STCM/DTCM equipped with FGM. Moreover we employed accurate and precise FGM which was selected among the market. Finally we developed the new magnetic survey system with high precision usable as airborn, shipboard and dee-ptowed magnetometers which we call HPMSS(High Precision Magnetic Survey System). As an optional equipment, we use LAN to communicate between a data aquisiitin part and a data logging part, and GPS for a position fix. For the deep-towed survey, we use the acoustic position fix (super short base line method) and the acoustic communication to monitor the DTCM status. First we used HPMSS to obtain the magnetization structure of the volcanic island, Aogashima located 300km south of Tokyo using a hellcopter in 2006 and 2009. Next we used HPMSS installed in DTCM in 2010,2011 and 2012 using R/V Bosei-maru belonging to Tokai University. Also we used

  20. High Precision Testbed to Evaluate Ethernet Performance for In-Car Networks

    DEFF Research Database (Denmark)

    Revsbech, Kasper; Madsen, Tatiana Kozlova; Schiøler, Henrik

    2012-01-01

    Validating safety-critical real-time systems such as in-car networks often involves a model-based performance analysis of the network. An important issue performing such analysis is to provide precise model parameters, matching the actual equipment. One way to obtain such parameters is to derive...... them by measurements of the equipment. In this work we describe the design of a testbed enabling active measurements on up to 1 [Gb=Sec] Copper based Ethernet Switches. By use of the testbed it self, we conduct a series of tests where the precision of the testbed is estimated. We find a maximum error...

  1. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    Science.gov (United States)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-22

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  2. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  3. Extended Traffic Crash Modelling through Precision and Response Time Using Fuzzy Clustering Algorithms Compared with Multi-layer Perceptron

    Directory of Open Access Journals (Sweden)

    Iman Aghayan

    2012-11-01

    Full Text Available This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error and response time (t. The highest R-value was obtained for the multi-layer perceptron (0.89, demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second, 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.

  4. [Research on a novel high-precision methane concentration detection system].

    Science.gov (United States)

    Song, Lin-li; Zhou, Han-chang; Zhang, Zhi-jie

    2014-12-01

    In the gas concentration detection process using the characteristic spectrum absorption method, in order to improve the detection accuracy of the gas concentration, it often has to use the high-quality narrowband modulated laser and modulate wavelength to align with the characteristic absorption peaks of measured gas. But by this way, the cost of the laser and system requirements will be greatly increased. To use the existing portable, low-cost semiconductor laser conditions, at the same time it can obtain higher precision, conversion window differential absorption optical structure and the algorithm of differential characteristic absorption ratio was designed. Selection reason of position of the wavelength characteristic was analyzed, and steps to implement the processing algorithm were given. Systematically utilizing the combination method of conversion window and absorption gas chamber, by the method for calculating the ratio of the light intensity response, the light intensity from non-characteristic absorption peak position was divided out. So it achieved a similar detecting effect was achieved that used a narrow-band laser aligned to the feature absorption peak position. Experiments adopted MW-IR-1650 infrared laser, type SSM17-2 stepper motor control module, C30659 infrared detectors, and other devices. In the experiments, different concentrations of methane gas were tested, and experimental results show that the relative error of measurement was less than 2.0% within the range from 200 to 5000 ppm. In summary, it's proved that the system has high accuracy and stability.

  5. Novel High Precision Optoelectronic Device Fabrication Technique Using Guided Fluidic Assembly

    Science.gov (United States)

    Singh, Brahm Pal; Onozawa, Kazutoshi; Yamanaka, Kazuhiko; Tojo, Tomaki; Ueda, Daisuke

    High precision assembly of laser diodes (LDs) on silicon wafer substrates for use in advanced optoelectronic devices is an important issue from a mass production point of view. An acceptable alternative to replace an obsolete pick and place flip chip bonding robotic technology with a simple, low cost and high speed technique is desired for industrial applications. We have investigated a novel assembling technique with micrometer order accuracy for LDs and other microchips. Its feasibility for rapidly assembling a large number of high power edge emitting LDs is practically demonstrated. A 150 mUm thick nickel metal mask is used to confine as well as guide the unassembled LDs into the recesses by its restricted displacements. This technique is based on guiding the LDs within a suitable fluidic medium and the assembling process is performed in two steps: (i) coarse precision with a confinement mask to bring LDs near the recesses to achieve high assembling efficiency and (ii) fine precision due to the electrode patterns on the base surface of LDs, under fluidic as well as gravitational force. The assembly of 80 red LDs of the same size and of 40 pairs of red and infrared LDs of two different sizes is successfully demonstrated within less than ±2 mUm precision and 100% efficiency in a few seconds after transferring them into a confinement mask region.

  6. Use of silicon microstrip detectors for precise measurement of high momenta

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.A.; Beusch, W.; French, B.R.; Goldschmidt-Clermont, Y.; Jacholkowski, A.; Quercigh, E.; Redaelli, N.; Rossi, L.; Bloodworth, I.J.; Carney, J.N.

    1989-01-01

    The WA76 experiment performed at the facility at CERN required a high precision measurement of the forward produced particle whose momentum was close to 300 GeV/c. A telescope made of 12 silicon microstrip detectors has been built and operated for such a purpose.

  7. High-precision photometry by telescope defocusing - I. The transiting planetary system WASP-5

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Jørgensen, U. G.

    2009-01-01

    We present high-precision photometry of two transit events of the extrasolar planetary system WASP-5, obtained with the Danish 1.54-m telescope at European Southern Obseratory La Silla. In order to minimize both random and flat-fielding errors, we defocused the telescope so its point spread...

  8. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    contribution of the work is the characterization of magnetic forces by using two different experimental approaches. Such approaches are investigated and described in detail. A special test rig is designed where the 4 pole - AMB is able to generate forces up to 1900 N. The high precision characterization...

  9. Herschel-PACS high-precision FIR fluxes of NEAs and MBAs

    Science.gov (United States)

    Müller, T.; Kiss, C.; Ali-Lagoa, V.

    2017-09-01

    We present unique and high-precision Herschel-PACS photometer far-IR observations of near-Earth and main-belt asteroids. These measurements are used for radiometric studies of unprecedented accuracy, resulting in sizes, albedos, thermal inertias, emissivities, and surface roughness for six important NEAs and more than 20 large MBAs.

  10. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    NARCIS (Netherlands)

    Shipulya, N.D.; Konakov, S.A.; Krzhizhanovskaya, V.V.

    2016-01-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry.

  11. High Precision Optical Observations of Space Debris in the Geo Ring from Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    We present preliminary results to demonstrate that our method for detection and location of Space Debris (SD) in the geostationary Earth orbit (GEO) ring, based on observations at the OAN of Venezuela is of high astrometric precision. A detailed explanation of the method, its validation and first results is available in (Lacruz et al. 2017).

  12. Characterization of precision of a handling system in high performance transfer press for micro forming

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Arentoft, Mogens

    2014-01-01

    Multi-step micro bulk forming is characterized by complex processes and high precision requirements. In particular the demands regarding handling accuracy between different forming steps are of the order of a few mm. The paper introduces a methodology for the analysis and characterization of this...... inside the forming press is obtained. © 2014 CIRP....

  13. A real-time artifact reduction algorithm based on precise threshold during short-separation optical probe insertion in neurosurgery

    Directory of Open Access Journals (Sweden)

    Weitao Li

    2017-01-01

    Full Text Available During neurosurgery, an optical probe has been used to guide the micro-electrode, which is punctured into the globus pallidus (GP to create a lesion that can relieve the cardinal symptoms. Accurate target localization is the key factor to affect the treatment. However, considering the scattering nature of the tissue, the “look ahead distance (LAD” of optical probe makes the boundary between the different tissues blurred and difficult to be distinguished, which is defined as artifact. Thus, it is highly desirable to reduce the artifact caused by LAD. In this paper, a real-time algorithm based on precise threshold was proposed to eliminate the artifact. The value of the threshold was determined by the maximum error of the measurement system during the calibration procession automatically. Then, the measured data was processed sequentially only based on the threshold and the former data. Moreover, 100μm double-fiber probe and two-layer and multi-layer phantom models were utilized to validate the precision of the algorithm. The error of the algorithm is one puncture step, which was proved in the theory and experiment. It was concluded that the present method could reduce the artifact caused by LAD and make the real boundary sharper and less blurred in real-time. It might be potentially used for the neurosurgery navigation.

  14. Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V., E-mail: vincent.motto-ros@univ-lyon1.fr [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Negre, E. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); CRITT Matériaux Alsace, 19, rue de St Junien, 67305 Schiltigheim (France); Pelascini, F. [CRITT Matériaux Alsace, 19, rue de St Junien, 67305 Schiltigheim (France); Panczer, G.; Yu, J. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France)

    2014-02-01

    Improving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R{sup 2} = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated. - Highlights: • Automated alignment of the collection fiber by real-time plasma imaging • High level control of experimental parameters in LIBS experiments • Improvement of the short and long term stability in LIBS

  15. High precision measurement of the differential $W$ and $Z$ boson production cross sections

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of $W$ and $Z/\\gamma^*$ bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7 TeV. The measurements are performed for $W^+$, $W^-$ and $Z/\\gamma^*$ bosons integrated and as a function of the boson or lepton rapidity and the $Z/\\gamma^*$ mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Slides for DIS 2017 in Birmingham

  16. Precision Time Protocol support hardware for ATCA control and data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Miguel, E-mail: miguelfc@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Sousa, Jorge; Carvalho, Bernardo B.; Santos, Bruno; Carvalho, Paulo F.; Rodrigues, António P.; Combo, Álvaro M.; Pereira, Rita C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • ATCA based control and data acquisition subsystem has been developed at IPFN. • PTP and time stamping were implemented with VHDL and PTP daemon (PTPd) codes. • The RTM (…) provides PTP synchronization with an external GMC. • The main advantage is that timestamps are generated closer to the Physical Layer at the GMII. • IPFN's upgrade consistently exhibited jitter values below 25 ns RMS. - Abstract: An in-house, Advanced Telecom Computing Architecture (ATCA) based control and data acquisition (C&DAQ) subsystem has been developed at Instituto de Plasmas e Fusão Nuclear (IPFN), aiming for compliance with the ITER Fast Plant System Controller (FPSC). Timing and synchronization for the ATCA modules connects to ITER Control, Data Access and Communication (CODAC) through the Timing Communication Network (TCN), which uses IEEE 1588-2008 Precision Time Protocol (PTP) to synchronize devices to a Grand Master Clock (GMC). The TCN infrastructure was tested for an RMS jitter under the limit of 50 ns. Therefore, IPFN's hardware, namely the ATCA-PTSW-AMC4 hub-module, which is in charge of timing and synchronization distribution for all subsystem endpoints, shall also perform within this jitter limit. This paper describes a relevant upgrade, applied to the ATCA-PTSW-AMC4 hardware, to comply with these requirements – in particular, the integration of an add-on module “RMC-TMG-1588” on its Rear Transition Module (RTM). This add-on is based on a commercial FPGA-based module from Trenz Electronic, using the ZHAW “PTP VHDL code for timestamping unit and clock”, which features clock offset and drift correction and hardware-assisted time stamping. The main advantage is that timestamps are generated closer to the Physical Layer, at the Gigabit Ethernet Media Independent Interface (GMII), avoiding the timing uncertainties accumulated through the upper layers. PTP code and user software run in a MicroBlaze™ soft-core CPU with Linux in the

  17. Method of curved surface abnormal holes vision measurement based on high precision turntable

    Science.gov (United States)

    Lyu, Laipeng; Bi, Chao; Fang, Jianguo; Zhu, Yong; Wang, Liping

    2015-10-01

    For solving the difficult problem that there is no effective way to measure abnormal holes located at blade erection loop of aero-engine case, an image measurement system based on high precision air-bearing turntable is established in this paper. The issue that monocular vision can't measure curved surface has overcome by using high precision turntable to make sure high positioning accuracy of the surface abnormal holes and high-resolution microscope lens which is used to image local tiny features. Besides, an algorithm of determining the boundary points of a trailing edge on the contour of abnormal hole is proposed to achieve a rapid fitting and accuracy. After experiments and analysis, results show that the system can be used to measure local tiny features on curved surfaces validly and efficiently.

  18. Development of Heavy-Duty and High-Precision Hydraulic Manipulator for Inspection, Maintenance and Decommission of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Seo, Yong-chil; Jung, Kyung Min; Kim, Chang-hoi; Choi, Byung-seon; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robotic manipulators have been used for inspection, maintenance and decommission of nuclear power plants because nuclear power plants have high radiation and human workers cannot easily access the plants. And also, to inspecting, maintaining and decommissioning nuclear power plants require various manipulators. Only one manipulator cannot response to many required tasks. The existing manipulators that was used at nuclear power plants can only operate only focused specific task and cannot be used at several tasks. The actuators used at manipulators are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of manipulator is time consuming and expensive. The essential item of a manipulator is an actuator module. If actuator module is standardized, it’s easier to develop a manipulator and also maintain a manipulator. Recently, manipulator having high-radiation, high-duty and high-precision is necessary to inspection, maintain and decommissioning of nuclear power plants. Hydraulic actuator has been used to development high-duty manipulator. But control performance of a hydraulic actuator is not better than that of an electric actuator so that hydraulic manipulator cannot easily satisfy the required precision. In this paper, we developed high-duty and high-precision actuator modules and hydraulic manipulator using the developed actuator modules. The developed hydraulic manipulator have a payload of 250kg and a precision of ±1mm. Four modularized hydraulic actuator modules were developed for inspection, maintenance and decommission. Using the developed actuator modules, the manipulator for decommissioning is easily developed. And also, various manipulators having different kinematic structure for specific tasks will be easily developed by using hydraulic modules.

  19. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage......-correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of n = 645), it is shown that accounting for space-time effects is crucial for generating skilful...

  20. Real-Time Genome Sequencing of Resistant Bacteria Provides Precision Infection Control in an Institutional Setting.

    Science.gov (United States)

    Mellmann, Alexander; Bletz, Stefan; Böking, Thomas; Kipp, Frank; Becker, Karsten; Schultes, Anja; Prior, Karola; Harmsen, Dag

    2016-12-01

    The increasing prevalence of multidrug-resistant (MDR) bacteria is a serious global challenge. Here, we studied prospectively whether bacterial whole-genome sequencing (WGS) for real-time MDR surveillance is technical feasible, returns actionable results, and is cost-beneficial. WGS was applied to all MDR isolates of four species (methicillin-resistant Staphylococcus aureus [MRSA], vancomycin-resistant Enterococcus faecium, MDR Escherichia coli, and MDR Pseudomonas aeruginosa) at the University Hospital Muenster, Muenster, Germany, a tertiary care hospital with 1,450 beds, during two 6-month intervals. Turnaround times (TAT) were measured, and total costs for sequencing per isolate were calculated. After cancelling prior policies of preemptive isolation of patients harboring certain Gram-negative MDR bacteria in risk areas, the second interval was conducted. During interval I, 645 bacterial isolates were sequenced. From culture, TATs ranged from 4.4 to 5.3 days, and costs were €202.49 per isolate. During interval II, 550 bacterial isolates were sequenced. Hospital-wide transmission rates of the two most common species (MRSA and MDR E. coli) were low during interval I (5.8% and 2.3%, respectively) and interval II (4.3% and 5.0%, respectively). Cancellation of isolation of patients infected with non-pan-resistant MDR E. coli in risk wards did not increase transmission. Comparing sequencing costs with avoided costs mostly due to fewer blocked beds during interval II, we saved in excess of €200,000. Real-time microbial WGS in our institution was feasible, produced precise actionable results, helped us to monitor transmission rates that remained low following a modification in isolation procedures, and ultimately saved costs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. High precision mobile location framework and its service based on virtual reference station of GPS

    Science.gov (United States)

    Liu, Chun; Sun, Liangyu; Yao, Lianbi

    2008-10-01

    The wireless communication technology and space technology are synchronously developed in recent years, which bring up the development of location based service (LBS). At present, many location technology methods were developed. However, all these methods can only provide a relative poor location precision and depend on high cost. The technology of Virtual Reference Station (VRS) of GPS is then involved in this paper. One of the objective in this paper is aim to give the LBS position structure to improve the mobile location position when a mobile position instrument is connected with VRS network. The cheaper GPS built-in Personal Designer Aid (PDA) is then used to achieve a higher precision by using RTCM data from existing VRS network. In order to obtain a high precision position when using the low-cost GPS receiver as a rover, the infrusture of the mobile differential correction system is then put forward. According to network transportation of RTCM via internet protocol (NTRIP), the message is communicated through wireless network, such as GPRS, CDMA and so on. The rough coordinate information is sent to VRS control center continuously, and then the VRS correction information is replied to rover in the data format of RTCM3.1. So the position will be updated based on mathematic solution after the decoding of RTCM3.1 data. The thought of LBS position can improve the precision, and can speed the LBS.

  2. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    Science.gov (United States)

    Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.

  3. Physics of Eclipsing Binaries: Modelling in the new era of ultra-high precision photometry

    Science.gov (United States)

    Bloemen, S.; Degroote, P.; Conroy, K.; Hambleton, K. M.; Giammarco, J. M.; Pablo, H.; Prša, A.

    2013-02-01

    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when a star moves towards the satellite and a decrease in flux when it moves away. Similarly, Rømer delays, or light travel time effects, also have to taken into account when modelling the supreme quality data that is now available. The detection of offsets between primary and secondary eclipse phases in binaries with extreme mass ratios, and the observation of Rømer delays in the signals of pulsators in binary stars, have allowed us to determine the orbits of several binaries without the need for spectroscopy. A third example of a small-scale effect that has to be taken into account when modelling specific binary systems, are lensing effects. A new binary light curve modelling code, PHOEBE 2.0, that takes all these effect into account is currently being developed.

  4. Measuring the Deceleration of a Supernova Remnant Shock Wave using High-Precision Astrometry

    Science.gov (United States)

    Williams, Brian

    2017-08-01

    We propose a third epoch of HST imaging of the NW filament of the remnant of SN 1006. Proper motions have been measured for this remnant in multiple wavelengths, and are nearly 0.3 per year in the NW filament, the only part of the remnant that is bright at optical wavelengths. A first epoch observation with HST was done in 2006, with a second epoch completed in 2013. We propose for a third epoch, with which we will measure, for the first time, the change in the velocity of the shock wave of a supernova remnant. Doing this will require high-precision astrometry, as we will need to measure the proper motions to an accuracy of a few tenths of a milliarcsecond per year. This is achievable with HST, and members of our group have made measurements even more accurate than this in recent years on other astronomical sources. A direct deceleration measurement would avoid the sources of uncertainty that are encountered by indirect inferences. This measurement would add an additional constraint to hydrodynamic simulations of the evolution of SN 1006, as well as serve as a diagnostic on the density of the interstellar medium that the shock wave is sweeping up. Only Hubble has the capabilities of performing a measurement like this, and a measurement of the deceleration of this shock wave would open a new window into SNR evolution for SN 1006 and other remnants with fast shock waves.

  5. High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method. However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.

  6. Establishment of high-precision navigation system in the Republic of Armenia

    Directory of Open Access Journals (Sweden)

    Manukyan Larisa Vladimirovna

    2015-04-01

    Full Text Available Medium-Earth orbit satellite systems make it possible to provide services on time coordination and navigation support for a wide range of consumers. At present, there are global navigation satellite systems GLONASS (Russia and GPS (USA. Users of these systems have an opportunity to determine their location accurately with the given characteristics of their navigation devices. In all developed countries the progress of geodesy and cartography is closely related to the implementation of advanced new technologies in both scientific and industrial areas. The introduction of new technologies and equipment in production is essential for the development of geodesy and cartography, bringing the existing geodetic networks and cartographic materials to modern condition. In the Republic of Armenia there are also plans on introduction of the systems for monitoring and management of vehicles for various purposes, as well as it is proposed to establish and implement an effective satellite navigation system to monitor and control traffic on the basis of advanced satellite technology. The article describes the basic steps to create the network of reference stations, GPS, aerial photography of much of the territory of Armenia, the creation of digital terrain model and the new maps by orthophotoplans. The analysis of the materials were carried out, on the basis of which in the Republic in 2015 a high-precision navigation system will be created. Due to the hard work of surveyors, cartographers and topographers the Republic was brought to European states level.

  7. High-precision, accurate optical frequency reference using a Fabry-Perót diode laser

    Science.gov (United States)

    Chang, Hongrok; Myneni, Krishna; Smith, David D.; Liaghati-Mobarhan, Hassan R.

    2017-06-01

    We show that the optical output of a temperature and current-tuned Fabry-Perót diode laser system, with no external optical feedback and in which the frequency is locked to Doppler-free hyperfine resonances of the 87Rb D2 line, can achieve high frequency stability and accuracy. Experimental results are presented for the spectral linewidth, frequency stability, and frequency accuracy of the source. Although our optical source is limited by a short-term spectral linewidth greater than 2 MHz, beat signal measurements from two such sources demonstrate a frequency stability of 1.1 kHz, or minimum Allan deviation of 4 ×1 0-12, at an integration time τ =15 s and with a frequency accuracy of 60 kHz at τ =300 s. We demonstrate the use of the optical source for the precision measurement of hyperfine level frequency spacings in the 5 P3 /2 excited state of 87Rb and provide an accurate frequency scale for optical spectroscopy.

  8. A High Precision Measurement Of The Neutron Magnetic Form Factor Using The Clas Detector

    CERN Document Server

    Lachniet, J D

    2005-01-01

    The neutron magnetic form factor GnM has been extracted from the ratio of quasi-elastic e-n to e-p scattering from a deuterium target using the CLAS detector. The measurement covers the range 0.5 to 4.5 (GeV/c)2 in four-momentum transfer squared. High precision was achieved by use of the ratio technique, with which many uncertainties cancel. A dual- cell target was used, featuring a deuterium cell and a hydrogen cell, which allowed a simultaneous in- situ calibration of the neutron detection efficiency. Neutrons were detected using the CLAS Time- of-Flight system and the Forward Electromagnetic Calorimeter. Data was taken at two different electron beam energies, allowing up to four semi-independent measurements of GnM to be made at each value of Q2. The data is compared to previous measurements, and with several theoretical and phenomenological models. It is found that for Q2 > 1 (GeV/c)2 the standard dipole parametrization gives a good representation of the data over a wide range of Q 2.

  9. A high precision method for normalization of cross sections; Un metodo de alta precision para normalizacion de secciones eficaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Vega C, J.J.; Martinez Q, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Kolata, J.J. [University of Notre Dame, Indiana 46556 (United States)

    1988-08-15

    It was developed a system of 4 monitors and a program to eliminate, in the process of normalization of cross sections, the dependence of the alignment of the equipment and those condition of having centered of the beam. It was carried out a series of experiments with the systems {sup 27} Al + {sup 70,} {sup 72,} {sup 74,} {sup 76} Ge, {sup 35} Cl + {sup 58} Ni, {sup 37} Cl + {sup 58,} {sup 60,} {sup 62,} {sup 64} Ni and ({sup 81} Br, {sup 109} Rh) + {sup 60} Ni. For these experiments the typical precision of 1% was obtained in the normalization. It is demonstrated theoretical and experimentally the advantage of this method on those that use 1 or 2 monitors. (Author)

  10. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  11. Automatically high precision manufacturing technology for micro-optic subgroups; Techical Digest

    Science.gov (United States)

    Sure, Thomas; Guyenot, Volker; Gerhardt, Michael

    2005-05-01

    To realize the image quality of high end objectives, e. g. high NA microscope objectives working in the DUV spectral region the subgroups have to be manufactured with a mechanical precision which is difficult to achieve cost effectively. For high end microscope objectives the accuracy of the diameter of the lens mount must be within 1 µm, the run-out must be met within 1 µm and the distance of the lens vertex relative to the shoulder of the mount must fit within 1 µm. To realize the required precision, today various measurement techniques and production processes are used. Picking up the subgroups on different machining tools and measurement systems will loosen the accuracy. Here, we present the concept and the layout of a new manufacturing tool where we implemented the different measurement techniques in one CNC machining center.

  12. Prospects for a precision timing upgrade of the CMS PbWO$_{4}$ crystal electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies on the timing properties of PbWO crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies on the timing performance of PbWO$_{4}$ crystals with various photosensors and readout electronics will be shown.

  13. Synthetic biosensors for precise gene control and real-time monitoring of metabolites.

    Science.gov (United States)

    Rogers, Jameson K; Guzman, Christopher D; Taylor, Noah D; Raman, Srivatsan; Anderson, Kelley; Church, George M

    2015-09-03

    Characterization and standardization of inducible transcriptional regulators has transformed how scientists approach biology by allowing precise and tunable control of gene expression. Despite their utility, only a handful of well-characterized regulators exist, limiting the complexity of engineered biological systems. We apply a characterization pipeline to four genetically encoded sensors that respond to acrylate, glucarate, erythromycin and naringenin. We evaluate how the concentration of the inducing chemical relates to protein expression, how the extent of induction affects protein expression kinetics, and how the activation behavior of single cells relates to ensemble measurements. We show that activation of each sensor is orthogonal to the other sensors, and to other common inducible systems. We demonstrate independent control of three fluorescent proteins in a single cell, chemically defining eight unique transcriptional states. To demonstrate biosensor utility in metabolic engineering, we apply the glucarate biosensor to monitor product formation in a heterologous glucarate biosynthesis pathway and identify superior enzyme variants. Doubling the number of well-characterized inducible systems makes more complex synthetic biological circuits accessible. Characterizing sensors that transduce the intracellular concentration of valuable metabolites into fluorescent readouts enables high-throughput screening of biological catalysts and alleviates the primary bottleneck of the metabolic engineering design-build-test cycle. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space

    Science.gov (United States)

    Nothnagel, Axel

    2013-04-01

    Reference systems are an indispensable component for the description of the geometry and the kinematics of the Earth and other objects in space. Since the determination of geometrical properties of these objects has gained more and more relevance, the issues of the appropriate reference systems became even more important. For these reasons, a group of scientists in Germany, Austria and Switzerland is being funded by the German Science Foundation (DFG) since early 2012 to develop integrative methods and procedures for a consistent definition and realization of reference systems on Earth and in space. Although many realizations of reference systems exist already, they are used independently and suffer from inconsistencies. In an environment of ever increasing observing capabilities as well as of social and scientific needs, a framework of reference systems will be produced which are linked consistently with an appropriate level of accuracy to guarantee a solid basis for measuring geometric effects of Global Change and for high-precision navigation near Earth and in deep space.

  15. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Directory of Open Access Journals (Sweden)

    Wenwei Zuo

    2018-01-01

    Full Text Available Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS/Global Positioning System (GPS positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API of the original standard Global Navigation Satellite System (GNSS to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to

  16. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning.

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-10

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  17. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    Science.gov (United States)

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Why precision?

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2012-05-15

    Precision measurements together with exact theoretical calculations have led to steady progress in fundamental physics. A brief survey is given on recent developments and current achievements in the field of perturbative precision calculations in the Standard Model of the Elementary Particles and their application in current high energy collider data analyses.

  19. Mathematical model for CO2 laser high precision ablation of fused silica

    Science.gov (United States)

    He, Ting; Shao, Jianda; Wei, Chaoyang; Jiang, Zhigang; Zhao, Jiaoling

    2017-08-01

    Optics manufactured by mechanical grinding and polishing inevitably will bring surface/subsurface damages and defects during the machining process. Laser polishing has been demonstrated as a technique capable of achieving ultra-smooth surface with no damage and low-defects, but by far optics polished by this technology are only sufficient for illumination applications. To achieve high quality optics, high precision laser ablation has been proved to be a promising technology for shape correction. With pulsed CO2 laser, high precision laser ablation can be performed by direct evaporation of unwanted surface asperities. To acquire nanometer scale high precision ablation, an accurate control and meticulous adjustment of temperature should be needed. Herein, a mathematical model has been established to assist the understanding of the thermal mechanism of CO2 laser ablation and subsequently a series of simulations have been extended to investigate the phase change of evaporation. The temperature of fused silica irradiated by CO2 laser can be controlled via laser power and pulse duration. To achieve nanometer ablation depth, a gentle evaporation regime at low laser intensity is necessary. The results indicated that the ablation depth linearly depend on laser fluence and depth control levels of nanometer are obtainable with the control of laser fluence.

  20. High-Precision Superallowed Fermi β Decay Measurements at TRIUMF-ISAC

    Science.gov (United States)

    Svensson, C. E.

    2016-09-01

    High-precision measurements of the ft -values for superallowed Fermi β decays between nuclear isobaric analogue states provide demanding tests of the electroweak Standard Model, including confirmation of the Conserved Vector Current hypothesis at the level of 1 . 2 ×10-4 , the most stringent limits on weak scalar currents, and the most precise determination of the Vud element of the CKM quark-mixing matrix. The Isotope Separator and Accelerator (ISAC) facility at TRIUMF produces high-quality beams of several of the superallowed emitters with world-record intensities and hosts a suite of state-of-the-art spectrometers for the measurement of superallowed half-lives, branching ratios, QEC values, and charge-radii. Recent highlights from the superallowed program at ISAC, including high-precision half-life measurements for the light superallowed emitters 10C, 14O, 18Ne, and 26mAl and branching-ratio measurements for the heavy superallowed emitters 62Ga and 74Rb will be presented. The impact of these measurements on tests of the Standard Model, and future developments in the superallowed program at ISAC with the new high-efficiency GRIFFIN γ - ray spectrometer, will be discussed. Research supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canada Research Chairs Program. TRIUMF receives federal funding via the National Research Council of Canada.

  1. High-Precision Half-Life Measurement for the Superallowed β+ Emitter 22Mg

    Science.gov (United States)

    Dunlop, Michelle

    2017-09-01

    High precision measurements of the Ft values for superallowed Fermi beta transitions between 0+ isobaric analogue states allow for stringent tests of the electroweak interaction. These transitions provide an experimental probe of the Conserved-Vector-Current hypothesis, the most precise determination of the up-down element of the Cabibbo-Kobayashi-Maskawa matrix, and set stringent limits on the existence of scalar currents in the weak interaction. To calculate the Ft values several theoretical corrections must be applied to the experimental data, some of which have large model dependent variations. Precise experimental determinations of the ft values can be used to help constrain the different models. The uncertainty in the 22Mg superallowed Ft value is dominated by the uncertainty in the experimental ft value. The adopted half-life of 22Mg is determined from two measurements which disagree with one another, resulting in the inflation of the weighted-average half-life uncertainty by a factor of 2. The 22Mg half-life was measured with a precision of 0.02% via direct β counting at TRIUMF's ISAC facility, leading to an improvement in the world-average half-life by more than a factor of 3.

  2. In-Orbit Performance Evaluation of a Spaceborne High Precision Fiber Optic Gyroscope.

    Science.gov (United States)

    Jin, Jing; Zhang, Ting; Kong, Linghai; Ma, Kun

    2018-01-01

    An in-orbit experiment was launched to evaluate the performance of the spaceborne high precision fiber optic gyroscopes (FOG). The three-axis in-orbit data of the FOG were analyzed using wavelet analysis method. Features of low frequency period terms and glitch noise were demonstrated. In addition, a method to extract the random noise from the in-orbit data is proposed based on the first-order difference method and the Pauta criterion. In addition, the random walk coefficient (RWC) of the FOG was calculated with the Allan variance method. Compared the ground test results, the in-orbit performance evaluation of Spaceborne High Precision Fiber Optic Gyroscope was verified.

  3. The Inchworm as a precision translator in a high magnetic field and uhv environment

    Energy Technology Data Exchange (ETDEWEB)

    Becker, P.; Becker, St.; Bollen, G.; Kluge, H.-J.; Savard, G.; Stampp, W.; Stolzenberg, H. (Mainz Univ. (Germany, F.R.). Inst. fuer Physik European Organization for Nuclear Research, Geneva (Switzerland))

    1990-01-01

    A new set-up has been designed and tested for on-line, high-precision mass measurements of short-lived radioactive isotopes via a determination of the ion cyclotron resonance. Ions delivered by the on-line isotope separator ISOLDE at CERN/Geneva are stored in a Penning trap installed in a superconducting solenoid. Due to severe space limitations in the bore of the solenoid, it is impossible to use conventional mechanical feedthroughs for the necessary manipulations inside the uhv chamber. Instead, a number of inchworms, a high-precision positioning device based on the piezo-electric effect are employed. This publication reports on the first application of this device in a uhv environment at a magnetic field of nearly 6 T. (author).

  4. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  5. Geometrical aspects of laser-drilled high precision holes for flow control applications

    Science.gov (United States)

    Giedl, Roswitha; Helml, H.-J.; Wagner, F. X.; Wild, Michael J.

    2003-11-01

    Laser drilling has become a valuable tool for the manufacture of high precision micro holes in a variety of materials. Laser drilled precision holes have applications in the automotive, aerospace, medical and sensor industry for flow control applications. The technology is competing with conventional machining micro electro-discharge machining in the field of fuel injection nozzle for combustion engines. Depending on the application, laser and optics have to be chosen which suits the requirements. In this paper, the results achieved with different lasers and drilling techniques will be compared to the hole specifications in flow control applications. The issue of geometry control of high aspect ratio laser drilled holes in metals will be investigated. The comparison of flow measurement results to microscopic hole dimension measurement show that flow characteristics strongly depend on cavitation number during flow.

  6. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Weiping Jiang

    2014-10-01

    Full Text Available A high-precision image-aided inertial navigation system (INS is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF. Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level and attitude (half-degree-level-integrated solutions can be achieved in a global reference.

  7. Determination of the half-life of 213Fr with high precision

    Science.gov (United States)

    Fisichella, M.; Musumarra, A.; Farinon, F.; Nociforo, C.; Del Zoppo, A.; Figuera, P.; La Cognata, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Strano, E.

    2013-07-01

    High-precision measurement of half-life and Qα value of neutral and highly charged α emitters is a major subject of investigation currently. In this framework, we recently pushed half-life measurements of neutral emitters to a precision of a few per mil. This result was achieved by using different techniques and apparatuses at Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud (INFN-LNS) and GSI Darmstadt. Here we report on 213Fr half-life determination [T1/2(213Fr) = 34.14±0.06 s] at INFN-LNS, detailing the measurement protocol used. Direct comparison with the accepted value in the literature shows a discrepancy of more than three sigma. We propose this new value as a reference, discussing previous experiments.

  8. High-precision measurement of tidal current structures using coastal acoustic tomography

    Science.gov (United States)

    Zhang, Chuanzheng; Zhu, Xiao-Hua; Zhu, Ze-Nan; Liu, Wenhu; Zhang, Zhongzhe; Fan, Xiaopeng; Zhao, Ruixiang; Dong, Menghong; Wang, Min

    2017-07-01

    A high-precision coastal acoustic tomography (CAT) experiment for reconstructing the current variation in Dalian Bay (DLB) was successfully conducted by 11 coastal acoustic tomography systems during March 7-8, 2015. The horizontal distributions of tidal currents and residual currents were mapped well by the inverse method, which used reciprocal travel time data along 51 successful sound transmission rays. The semi-diurnal tide is dominant in DLB, with a maximum speed of 0.69 m s-1 at the eastern and southwestern parts near the bay mouth that gradually decreases toward the inner bay with an average velocity of 0.31 m s-1. The residual current enters the observational domain from the two flanks of the bay mouth and flows out in the inner bay. One anticyclone and one cyclone were noted inside DLB as was one cyclone at the bay mouth. The maximum residual current in the observational domain reached 0.11 m s-1, with a mean residual current of 0.03 m s-1. The upper 15-m depth-averaged inverse velocities were in excellent agreement with the moored Acoustic Doppler Current Profiler (ADCP) at the center of the bay, with a root-mean-square difference (RMSD) of 0.04 m s-1 for the eastward and northward components. The precision of the present tomography measurements was the highest thus far owing to the largest number of transmission rays ever recorded. Sensitivity experiments showed that the RMSD between CAT and moored-ADCP increased from 0.04 m s-1 to 0.08 m s-1 for both the eastward and northward velocities when reducing the number of transmission rays from 51 to 11. The observational accuracy was determined by the spatial resolution of acoustic ray in the CAT measurements. The cost-optimal scheme consisted of 29 transmission rays with a spatial resolution of acoustic ray of 2.03 √{ km2 / ray numbers } . Moreover, a dynamic analysis of the residual currents showed that the horizontal pressure gradient of residual sea level and Coriolis force contribute 38.3% and 36

  9. A 24 hr global campaign to assess precision timing of the millisecond pulsar J1713+0747

    Energy Technology Data Exchange (ETDEWEB)

    Dolch, T.; Lam, M. T.; Cordes, J.; Chatterjee, S. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Bassa, C.; Hessels, J. W. T.; Janssen, G.; Kondratiev, V. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Bhattacharyya, B.; Jordan, C.; Keith, M. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Champion, D. J.; Karuppusamy, R.; Kramer, M.; Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Cognard, I. [Laboratoire de Physique et Chimie de l' Environnement et de l' Espace, LPC2E UMR 6115 CNRS, F-45071 Orléans Cedex 02, and Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Crowter, K. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Demorest, P. B. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Jenet, F. A. [Center for Advanced Radio Astronomy, University of Texas, Rio Grande Valley, Brownsville, TX 78520 (United States); Jones, G., E-mail: tdolch@astro.cornell.edu [Columbia Astrophysics Laboratory, Columbia University, NY 10027 (United States); and others

    2014-10-10

    The radio millisecond pulsar J1713+0747 is regarded as one of the highest-precision clocks in the sky and is regularly timed for the purpose of detecting gravitational waves. The International Pulsar Timing Array Collaboration undertook a 24 hr global observation of PSR J1713+0747 in an effort to better quantify sources of timing noise in this pulsar, particularly on intermediate (1-24 hr) timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Effelsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio telescopes. The combined pulse times-of-arrival presented here provide an estimate of what sources of timing noise, excluding DM variations, would be present as compared to an idealized √N improvement in timing precision, where N is the number of pulses analyzed. In the case of this particular pulsar, we find that intrinsic pulse phase jitter dominates arrival time precision when the signal-to-noise ratio of single pulses exceeds unity, as measured using the eight telescopes that observed at L band/1.4 GHz. We present first results of specific phenomena probed on the unusually long timescale (for a single continuous observing session) of tens of hours, in particular interstellar scintillation, and discuss the degree to which scintillation and profile evolution affect precision timing. This paper presents the data set as a basis for future, deeper studies.

  10. Three years of high precision gravity measurements at the gravimetric station of Brasimone - Italy

    Directory of Open Access Journals (Sweden)

    G. Casula

    1998-06-01

    Full Text Available From August 1995 up to now, at the Enea Research Center of Brasimone, in the Italian Apennines between Bologna and Florence (Italy: 44º07'N, 11º.07'E, 890 m height, the superconducting gravimeter GWR model TT70 number T015 has been continuously recording the variation of the local gravity field, in the frame of the Global Geodynamics Project. The gravimetric laboratory, being a room of the disused nuclear power plant of Brasimone, is a very stable site, free from noise due to human activities. Data blocks of several months of continuous gravity records have been collected over a time span of three years, together with the meteorological data. The gravimeter has been calibrated at relative accuracy better than 0.3% with the aid of a mobile mass system, by imposed perturbations of the local gravity field and recording the gravimeter response. The results of this calibration technique were checked by two comparison experiments with absolute gravimeters performed during this period: the first, in May 1994 with the aid of the symmetrical rise and fall gravimeter of the Institute of Metrology Colonnetti of Turin, and the second in October 1997 involving an FG5 absolute gravimeter of the Institute de Physique du Globe of Strasbourg. The gravimeter signal was analysed to compute a high precision tidal model for Brasimone site. Starting from a set of gravimetric and atmospheric pressure data of high quality, relative to 46 months of observation, we performed the tidal analysis using Eterna 3.2 software to compute amplitudes, gravimetric factors and phases of the main waves of the Tamura catalogue. Finally a comparison experiment between two of the STS-1/VBB broadband seismometers of the MedNet project network and the gravity records relative to the Balleny Islands earthquake (March 25, 1998 were analysed to look for evidence of normal modes due to the free oscillations of the Earth.

  11. Derivation of Parabolic Current Control with High Precision, Fast Convergence and Extended Voltage Control Application

    OpenAIRE

    Zhang, Lanhua

    2016-01-01

    Current control is an important topic in modern power electronics system. For voltage source inverters, current control loop ensures the waveform quality at steady state and the fast response at transient state. To improve the current control performance, quite a few nonlinear control strategies have been presented and one well-known strategy is the hysteresis current control. It achieves fast response without stability issue and it has high control precision. However, for voltage source inve...

  12. Development of a monoenergetic ultraslow antiproton beam source for high-precision investigation

    Directory of Open Access Journals (Sweden)

    N. Kuroda

    2012-02-01

    Full Text Available The ASACUSA collaboration developed an ultraslow antiproton beam source, monoenergetic ultraslow antiproton source for high-precision investigation (MUSASHI, consisting of an electromagnetic trap with a liquid He free superconducting solenoid and a low energy antiproton beam transport line. The MUSASHI was capable of trapping and cooling more than 1×10^{7} antiprotons and extracting them as an ultraslow antiproton beam with energy of 150–250 eV.

  13. The honeycomb strip chamber: A two coordinate and high precision muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Tolsma, H.P.T.

    1996-04-19

    This thesis describes the construction and performance of the Honeycomb Strip Chamber (HSC). The HSC offers several advantages with respect to classical drift chambers and drift tubes. The main features of the HSC are: -The detector offers the possibility of simultaneous readout of two orthogonal coordinates with approximately the same precision. - The HSC technology is optimised for mass production. This means that the design is modular (monolayers) and automisation of most of the production steps is possible (folding and welding machines). - The technology is flexible. The cell diameter can easily be changed from a few millimetres to at least 20 mm by changing the parameters in the computer programme of the folding machine. The number of monolayers per station can be chosen freely to the demands of the experiment. -The honeycomb structure gives the detector stiffness and makes it self supporting. This makes the technology a very transparent one in terms of radiation length which is important to prevent multiple scattering of high energetic muons. - The dimensions of the detector are defined by high precision templates. Those templates constrain for example the overall tolerance on the wire positions to 20 {mu}m rms. Reproduction of the high precision assembly of the detector is thus guaranteed. (orig.).

  14. Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Minaya Ramirez, E., E-mail: E.Minaya@gsi.de [Helmholtz-Institut Mainz, 55099 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Ackermann, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Blaum, K. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Ruprecht-Karls-Universität, 69120 Heidelberg (Germany); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Droese, C. [Ernst-Moritz-Arndt-Universität, 17487 Greifswald (Germany); Düllmann, Ch. E. [Johannes Gutenberg-Universität, 55099 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Eibach, M. [Ruprecht-Karls-Universität, 69120 Heidelberg (Germany); Johannes Gutenberg-Universität, 55099 Mainz (Germany); Eliseev, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Haettner, E. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Justus-Liebig-Universität, 35392 Gießen (Germany); Herfurth, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Heßberger, F.P. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); and others

    2013-12-15

    Highlights: • Direct high-precision mass measurements of No and Lr isotopes performed. • High-precision mass measurements with a count rate of 1 ion/hour demonstrated. • The results provide anchor points for a large region connected by alpha-decay chains. • The binding energies determine the strength of the deformed shell closure N = 152. • Technical developments and new techniques will pave the way towards heavier elements. -- Abstract: Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further extend mass measurements to the region of superheavy elements, new technical developments are required to increase the performance of our setup. The sensitivity will increase through the implementation of a new detection method, where observation of one single ion is sufficient. Together with the use of a more efficient gas stopping cell, this will us allow to significantly enhance the overall efficiency of SHIPTRAP.

  15. A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine".

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing

    2016-11-29

    In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.

  16. In situ precise electrospinning of medical glue fibers as nonsuture dural repair with high sealing capability and flexibility

    Science.gov (United States)

    Lv, Fu-Yan; Dong, Rui-Hua; Li, Zhao-Jian; Qin, Chong-Chong; Yan, Xu; He, Xiao-Xiao; Zhou, Yu; Yan, Shi-Ying; Long, Yun-Ze

    2016-01-01

    Purpose In this work, we propose an in situ precise electrospinning of medical glue fibers onto dural wound for improving sealing capability, avoiding tissue adhesion, and saving time in dural repair. Methods N-octyl-2-cyanoacrylate, a commercial tissue adhesive (medical glue), can be electrospun into ultrathin fibrous film with precise and homogeneous deposition by a gas-assisted electrospinning device. Results The self-assembled N-octyl-2-cyanoacrylate film shows high compactness and flexibility owing to its fibrous structure. Simulation experiments on egg membranes and goat meninges demonstrated that this technology can repair small membrane defects quickly and efficiently. Conclusion This method may have potential application in dural repair, for example, working as an effective supplementary technique for conventional dura suture. PMID:27621616

  17. High-precision 40Ar/39Ar age for the Jehol Biota

    Science.gov (United States)

    Chang, S.; Zhang, H.; Renne, P. R.; Fang, Y.

    2008-12-01

    Abundant fossils of the terrestrial Jehol Biota, including plants, insects, dinosaurs, birds, mammals and freshwater invertebrates, were discovered from the Yixian Formation and the overlying Jiufotang Formation in Inner Mongolia, Hebei Province and Liaoning Province, northeastern China. Because of the exceptional preservation of fossils, the Jehol Biota is one of the most important Mesozoic fossil outcrops and referred to as a "Mesozoic Pompeii". The Jehol Biota has provided a rare opportunity to address questions about the origin of birds, the evolution of feathers and flight, the early diversification of angiosperms and the timing of the radiation of placental mammals. The Tuchengzi Formation, which lies unconformably just below the Yixian Formation and consists mainly of variegated sandstones, is less fossiliferous than the two overlying formations. However, dinosaur tracks, silicified wood and compressed plants are found in this formation. A systematic 40Ar/39Ar dating of the Yixian and the Jiufotang formations was undertaken to provide a framework for understanding the timing and duration of the Jehol Biota and evolutionary events represented within it. Furthermore, determining the absolute age of the Tuchengzi Formation provides information to interpret abundant dinosaur tracks within and provide better age constrains for the beginning of the Jehol Biota. Here we present robust high-precision 40Ar/39Ar data for six tuff samples and two basalt samples collected from the Tuchengzi, the Yixian and the Jiufotang formations near the classic outcrops in western Liaoning, NE China. We obtain an age of 139.5 ± 1.0 Ma for the uppermost Tuchengzi Formation, an age of 129.7 ± 0.5 Ma for a basaltic lava from the bottom of the Yixian Formation and an age of 122.1 ± 0.3 Ma for a tuff from the base of the overlying Jiufotang Formation. Our data indicate that the Yixian Formation was deposited during the Early Cretaceous, the Barremian to early Aptian, within a time span

  18. Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy.

    Science.gov (United States)

    Churnside, Allison B; Sullan, Ruby May A; Nguyen, Duc M; Case, Sara O; Bull, Matthew S; King, Gavin M; Perkins, Thomas T

    2012-07-11

    Force drift is a significant, yet unresolved, problem in atomic force microscopy (AFM). We show that the primary source of force drift for a popular class of cantilevers is their gold coating, even though they are coated on both sides to minimize drift. Drift of the zero-force position of the cantilever was reduced from 900 nm for gold-coated cantilevers to 70 nm (N = 10; rms) for uncoated cantilevers over the first 2 h after wetting the tip; a majority of these uncoated cantilevers (60%) showed significantly less drift (12 nm, rms). Removing the gold also led to ∼10-fold reduction in reflected light, yet short-term (0.1-10 s) force precision improved. Moreover, improved force precision did not require extended settling; most of the cantilevers tested (9 out of 15) achieved sub-pN force precision (0.54 ± 0.02 pN) over a broad bandwidth (0.01-10 Hz) just 30 min after loading. Finally, this precision was maintained while stretching DNA. Hence, removing gold enables both routine and timely access to sub-pN force precision in liquid over extended periods (100 s). We expect that many current and future applications of AFM can immediately benefit from these improvements in force stability and precision.

  19. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    Parameter identification procedures and model validation are major steps toward intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... contribution of the work is the characterization of magnetic forces by using two different experimental approaches. Such approaches are investigated and described in detail. A special test rig is designed where the four pole AMB is able to generate forces up to 1900 N. The high-precision characterization...... of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  20. Towards a high-precision measurement of the antiproton magnetic moment

    CERN Document Server

    Smorra, C.; Franke, K.; Matsuda, Y.; Mooser, A.; Nagahama, H.; Ospelkaus, C.; Quint, W.; Schneider, G.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2014-01-01

    The recent observation of single spins flips with a single proton in a Penning trap opens the way to measure the proton magnetic moment with high precision. Based on this success, which has been achieved with our apparatus at the University of Mainz, we demonstrated recently the first application of the so called double Penning-trap method with a single proton. This is a major step towards a measurement of the proton magnetic moment with ppb precision. To apply this method to a single trapped antiproton our collaboration is currently setting up a companion experiment at the antiproton decelerator of CERN. This effort is recognized as the Baryon Antibaryon Symmetry Experiment (BASE). A comparison of both magnetic moment values will provide a stringent test of CPT invariance with baryons.

  1. Design and Manufacturing of a High-Precision Sun Tracking System Based on Image Processing

    Directory of Open Access Journals (Sweden)

    Kianoosh Azizi

    2013-01-01

    Full Text Available Concentration solar arrays require greater solar tracking precision than conventional photovoltaic arrays. This paper presents a high precision low cost dual axis sun tracking system based on image processing for concentration photovoltaic applications. An imaging device is designed according to the principle of pinhole imaging, making sun rays to be received on a screen through pinhole and to be a sun spot. The location of the spot is used to adjust the orientation of the solar panel. A fuzzy logic controller is developed to achieve this goal. A prototype was built, and experimental results have proven the good performance of the proposed system and low error of tracking. The operation of this system is independent of geographical location, initial calibration, and periodical regulations.

  2. High-precision ultra-distal Holocene tephrochronology in North America

    Science.gov (United States)

    Pyne-O'Donnell, Sean D. F.; Hughes, Paul D. M.; Froese, Duane G.; Jensen, Britta J. L.; Kuehn, Stephen C.; Mallon, Gunnar; Amesbury, Matthew J.; Charman, Dan J.; Daley, Tim J.; Loader, Neil J.; Mauquoy, Dmitri; Street-Perrott, F. Alayne; Woodman-Ralph, Jonathan

    2012-10-01

    Far-travelled volcanic ashes (tephras) from Holocene eruptions in Alaska and the Pacific northwest have been traced to the easternmost extent of North America, providing the basis for a new high-precision geochronological framework throughout the continent through tephrochronology (the dating and correlation of tephra isochrons in sedimentary records). The reported isochrons are geochemically distinct, with seven correlated to documented sources in Alaska and the Cascades, including the Mazama ash from Oregon (˜7600 years old) and the eastern lobe of the White River Ash from Alaska (˜1150 years old). These findings mark the beginning of a tephrochronological framework of enhanced precision across North America, with applications in palaeoclimate, surface process and archaeological studies. The particle travel distances involved (up to ˜7000 km) also demonstrate the potential for continent-wide or trans-Atlantic socio-economic disruption from similar future eruptions.

  3. Determination of Precision Fusion Cross Sections Using a High Efficiency Superconducting Solenoidal Separator

    Science.gov (United States)

    Bezzina, L. T.; Simpson, E. C.; Carter, I. P.; Dasgupta, M.; Ebadi, T.; Hinde, D. J.; Rafferty, D. C.

    2017-11-01

    A novel fusion product separator based on a gas-filled superconducting solenoid has been developed at the Australian National University. Though the transmission efficiency of the solenoid is very high, precision cross sections measurements require this efficiency to be estimated accurately. A Monte Carlo simulation for the effciency can be performed, but in turn requires knowledge of the angular distribution of the evaporation residues. We have developed a method to deduce the angular distribution of the evaporation residues from the laboratory-frame velocity distribution σexp(vl) of the evaporation residues measured after the solenoid. The method will be discussed, focussing on the example of 34S+89Y, where the angular distribution has been independently measured using a velocity filter [1]. The establishment of this method now allows the novel solenoidal separator to be used to obtain the most reliable, precision fusion cross-sections.

  4. Evaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia

    Science.gov (United States)

    Ding, Wenwu; Tan, Bingfeng; Chen, Yongchang; Teferle, Felix Norman; Yuan, Yunbin

    2018-02-01

    The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.

  5. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections

    Directory of Open Access Journals (Sweden)

    Tao Geng

    2016-12-01

    Full Text Available In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS of clock errors of geostationary Earth orbits (GEO is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO and medium Earth orbits (MEO are about 0.2–0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.

  6. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections.

    Science.gov (United States)

    Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan

    2016-12-20

    In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2-0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.

  7. A new, highly precise measurement technology for the in vitro evaluation of the accuracy of digital imaging data.

    Science.gov (United States)

    von Wilmowsky, Cornelius; Bergauer, Bastian; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Neuhuber, Winfried; Lell, Michael; Keller, Andrea; Eitner, Stephan; Matta, Ragai-Edward

    2015-10-01

    Three-dimensional radiological imaging data play an increasingly role in planning, simulation, and navigation in oral and maxillofacial surgery. The aim of this study was to establish a new, highly precise, in vitro measurement technology for the evaluation of the geometric accuracy down to the micrometric range of digital imaging data. A macerated human mandible was scanned optically with an industrial, non-contact, white light scanner, and a three-dimensional (3D) model was obtained, which served as a master model. The mandible was then scanned 10 times by cone beam computed tomography (CBCT), and the generated 3D surface bone model was virtually compared with the master model. To evaluate the accuracy of the CBCT scans, the standard deviation and the intraclass coefficient were determined. A total of 19 measurement points in 10 CBCT scans were investigated, and showed an average value of 0.2676 mm with a standard deviation of 0.0593 mm. The standard error of the mean was 0.0043 mm. The intraclass correlation coefficient (ICC) within the 10 CBCT scans was 0.9416. This highly precise measuring technology was demonstrated to be appropriate for the evaluation of the accuracy of digital imaging data, down to the micrometric scale. This method is able to exclude human measurement errors, as the software calculates the superimposition and deviation. Thus inaccuracies caused by measurement errors can be avoided. This method provides a highly precise determination of deviations of different CBCT parameters and 3D models for surgical, navigational, and diagnostic purposes. Thus, surgical procedures and the post-operative outcomes can be precisely simulated to benefit the patient. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. High-precision Gravity Measurements of the Superconducting Gravimeter 057 at Lhasa Station

    Science.gov (United States)

    Chen, X. D.; Sun, H. P.; Xu, H. Z.; Xu, J. Q.; Hao, X. H.

    2012-04-01

    Among more than thirty superconducting gravimeters (SGs) all over the world, the superconducting gravimeter 057 (SG057) at Lhasa station is the unique one installed at the Tibetan Plateau, the highest plateau in the world. In the study, the new calibration factor of the SG057 is computed for the first time using gravity data recorded by LCR-ET20 gravimeter at the same station. The determined scale value of SG057 is -77.5585±0.0136 microgals / Volt, and the relative accuracy is about 5‰ . Because there are almost 1 year recordings of the LCR-ET20 gravimeter at Wuhan superconducting gravimeter station before it is installed at Lhasa station, the scale value of the LCR-ET20 gravimeter is recalibrated with the Wuhan international gravitational tidal benchmark values before it is used at Lhasa station. In this way, the gravity tidal observations recorded at Lhasa station can be unified to the Wuhan international gravitational tidal benchmark values. With the determined new scale value, the gravity tidal recordings of SG057 are calibrated and harmonic analysis is carried out with the calibrated data. Then, high-precision tidal parameters are obtained. Accurate tidal gravity correction is achieved in the Tibet area. After the gravity influence of the station air pressure is corrected, the gravity residual of SG057 is calculated. Further considering the absolute gravity measurements, the gravity residual of SG057 is expected to show the detailed behavior of the gravity variation caused by the uplift of the Tibetan plateau.

  9. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study

    DEFF Research Database (Denmark)

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L

    2007-01-01

    BACKGROUND: In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years...... underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. RESULTS: We found narrow confidence intervals, indicating high precision of the conventional marker system and model...

  10. Lightweight Metal Matrix Composite Segmented for Manufacturing High-Precision Mirrors

    Science.gov (United States)

    Vudler, Vladimir

    2012-01-01

    High-precision mirrors for space applications are traditionally manufactured from one piece of material, such as lightweight glass sandwich or beryllium. The purpose of this project was to develop and test the feasibility of a manufacturing process capable of producing mirrors out of welded segments of AlBeMet(Registered Trademark) (AM162H). AlBeMet(Registered Trademark) is a HIP'd (hot isostatic pressed) material containing approximately 62% beryllium and 38% aluminum. As a result, AlBeMet shares many of the benefits of both of those materials for use in high performance mirrors, while minimizing many of their weaknesses.

  11. Perception of odors linked to precise timing in the olfactory system.

    Directory of Open Access Journals (Sweden)

    Michelle R Rebello

    2014-12-01

    Full Text Available While the timing of neuronal activity in the olfactory bulb (OB relative to sniffing has been the object of many studies, the behavioral relevance of timing information generated by patterned activation within the bulbar response has not been explored. Here we show, using sniff-triggered, dynamic, 2-D, optogenetic stimulation of mitral/tufted cells, that virtual odors that differ by as little as 13 ms are distinguishable by mice. Further, mice are capable of discriminating a virtual odor movie based on an optically imaged OB odor response versus the same virtual odor devoid of temporal dynamics-independently of the sniff-phase. Together with studies showing the behavioral relevance of graded glomerular responses and the response timing relative to odor sampling, these results imply that the mammalian olfactory system is capable of very high transient information transmission rates.

  12. Application of a Compact High-Definition Exoscope for Illumination and Magnification in High-Precision Surgical Procedures.

    Science.gov (United States)

    Krishnan, Kartik G; Schöller, Karsten; Uhl, Eberhard

    2017-01-01

    The basic necessities for surgical procedures are illumination, exposure, and magnification. These have undergone transformation in par with technology. One of the recent developments is the compact magnifying exoscope system. In this report, we describe the application of this system for surgical operations and discuss its advantages and pitfalls. We used the ViTOM exoscope mounted on the mechanical holding arm. The following surgical procedures were conducted: lumbar and cervical spinal canal decompression (n = 5); laminotomy and removal of lumbar migrated disk herniations (n = 4); anterior cervical diskectomy and fusion (n = 1); removal of intraneural schwannomas (n = 2); removal of an acute cerebellar hemorrhage (n = 1); removal of a parafalcine atypical cerebral hematoma caused by a dural arteriovenous fistula (n = 1); and microsutures and anastomoses of a nerve (n = 1), an artery (n = 1), and veins (n = 2). The exoscope offered excellent, magnified, and brilliantly illuminated high-definition images of the surgical field. All surgical operations were successfully completed. The main disadvantage was the adjustment and refocusing using the mechanical holding arm. The time required for the surgical operation under the exoscope was slightly longer than the times required for a similar procedure performed using an operating microscope. The magnifying exoscope is an effective and nonbulky tool for surgical procedures. In visualization around the corners, the exoscope has better potential than a microscope. With technical and technologic modifications, the exoscope might become the next generation in illumination, visualization, exposure, and magnification for high-precision surgical procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging.

    Science.gov (United States)

    Varga-Szemes, Akos; van der Geest, Rob J; Schoepf, U Joseph; Spottiswoode, Bruce S; De Cecco, Carlo N; Muscogiuri, Giuseppe; Wichmann, Julian L; Mangold, Stefanie; Fuller, Stephen R; Maurovich-Horvat, Pal; Merkely, Bela; Litwin, Sheldon E; Vliegenthart, Rozemarijn; Suranyi, Pal

    2017-08-01

    To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI). Fifty-three patients with suspected prior MI underwent 1.5-T cardiac MRI with conventional magnitude (MagIR) and phase-sensitive IR (PSIR) LGE imaging and T1 mapping at 15 min post-contrast. T1-based synthetic MagIR and PSIR images were calculated with a TI ranging from -100 to +150 ms at 5-ms intervals relative to the optimal TI (TI0). LGE was quantified using a five standard deviation (5SD) and full width at half-maximum (FWHM) thresholds. Measurements were compared using one-way analysis of variance. The MagIRsy technique provided precise assessment of LGE area at TIs ≥ TI0, while precision was decreased below TI0. The LGE area showed significant differences at ≤ -25 ms compared to TI0 using 5SD (P T1 map-based PSIRsy images provide precise quantification of MI independent of TI at the investigated time point post-contrast. MagIRsy-based MI quantification is precise at TI0 and at longer TIs while showing decreased precision at TI values below TI0. • Synthetic IR imaging retrospectively generates LGE images at any theoretical TI • Synthetic IR imaging can simulate the effect of TI on LGE quantification • Fifteen minutes post-contrast MagIR sy accurately quantifies infarcts from TI 0 to TI 0   + 150 ms • Fifteen minutes post-contrast PSIR sy provides precise infarct size independent of TI • Synthetic IR imaging has further advantages in reducing operator dependence.

  14. Development of a Manufacturing Process for High-Precision Cu EOS Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bono, M J; Castro, C; Hibbard, R L

    2006-01-12

    This document describes the development of a manufacturing process and the production of Cu EOS targets. The development of a manufacturing process for these targets required a great deal of research, because the specifications for the targets required a level of precision an order of magnitude beyond Target Fabrication's capabilities at the time. Strict limitations on the dimensions of the components and the interfaces between them required research efforts to develop bonding and deposition processes consistent with a manufacturing plan with a dimensional precision on the order of 0.1 {micro}m. Several months into this effort, the specifications for the targets were relaxed slightly as a result of discussions between the Target Fabrication Group and the physicists. The level of precision required for these targets remained an order of magnitude beyond previous capabilities, but the changes made it possible to manufacture targets to the specifications. The development efforts and manufacturing processes described in this document successfully produced a complete Cu EOS target that satisfied all of the fabrication and metrology specifications.

  15. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  16. Precise time-window for the onset of glacial termination found

    Science.gov (United States)

    Lai, C.-C.; Tseng, Y.-H.; Dietrich, D. E.

    2009-04-01

    Following a set of three simple rules, we have found a precise time-window (TW) for each onset of a glacial termination (GT) appeared during the last million years. The onset of GT (OGT) is defined as the year when the following two conditions are met: (1) the benthic delta 18-O is a maximum and greater than 4.5‰ and (2) its value continually drops 1‰ within 5 Ky. We developed the rules based on three hypotheses. We hypothesize that: (H1) The Earth's three orbital parameters (eccentricity, obliquity and precession of equinox) determine the insolation which is the key force to the climate system. (H2) However, only a small fraction of insolation is converted into sensible heat (SH) and chemical energy through photosynthesis (CETP) as influxes to the climate system's main heat capacitors (HCs), namely the world oceans. When insolation increases, both the SH flux and CETP increase. The downward SH flux will only increase the stability of the seawater. Nonetheless, the CETP gets accumulated faster than average. The CETP cascades through the marine food web and bacterial degradation. Finally, it is stored in the simple gas molecules (such as CH4) that form methane hydrate (MH) and other hydrates such as hydrogen sulfide hydrate (HSH) in deep sea sediments after a long time. While hydrates deposit accumulates with time, it also breaks off from the sediments from time to time. Since the density of MH is slightly smaller than average seawater, the MH ascends slowly from deep sea into upper part of ocean. But, HSH is slightly denser than the warm seawater in the upper part of ocean. Over the portion of glacial cycle when insolation is strong, the existence of a residual SH prevents the ascension of hydrates. (H3) Internal forcing - An internal energy converter or a heat generator exists in the oceans. Lai (2007) has found the link between the observed seawater warming at intermediate depth (400 - 750 m) (Barnett et al. 2001) and the dissociation of floating microscopic

  17. A 20 kA Test Bench for High-Precision Current Measurements

    CERN Document Server

    Dahlerup-Petersen, K; Valbuena, R

    1998-01-01

    The d.c. currents in the LHC dipole and quadrupole chains will require settings and adjustments with a precision of a few ppm. For an ultimate current level of 13 kA this represents an unprecedented accuracy. Compared to the requirements of previous accelerators at CERN, such as the LEP, this is a factor of ten better in accuracy at more than twice the current. State-of-the-art, zero-flux current transducers from Industry will be used for the precision measurements. As no existing laboratory would be capable of performing the calibrations of these transducers to the required precision, a major upgrading of the current Standards laboratory at CERN was decided. The paper describes the various phases of the project, from field calculations and design to construction and final commissioning of this unique test bench. The highly automated facility allows determination of off-sets, linearity and drift of transducers up to 20 kA but provides equally the means to study the sensitivity of the transducers to external s...

  18. Design and Analysis of a New High Precision Decoupled XY Compact Parallel Micromanipulator

    Directory of Open Access Journals (Sweden)

    Xigang Chen

    2017-03-01

    Full Text Available With the development of nanotechnology that contains automatic control, precision machinery and precise measurement, etc., micro/nano manipulation has become a new research direction in recent years. This paper presents the design and analysis procedures of a new high precision XY decoupled compact parallel micromanipulator (DCPM for micro scale positioning applications. The DCPM is made up of the decoupler, two-stage amplifier and the piezoelectric translator (PZT actuators, which utilizes the characteristics of flexure hinges. In this paper, firstly, a new two-stage bridge-principle amplifier is proposed by a serial connection of two fundamental bridge amplifiers in order to increase the ratio of amplification. It is pivotal for designing the micromanipulator. Then, the kinematic modeling of the micromanipulator is carried out by resorting to stiffness and compliance analysis via matrix method. Finally, the performance of the micromanipulator is validated by finite-element analysis (FEA which is preliminary job for fabricating the prototype and designing the control system of the XY stage that is expected to be adopted into micro/nano manipulations.

  19. submitter A High Precision 3D Magnetic Field Scanner for Small to Medium Size Magnets

    CERN Document Server

    Bergsma, F; Garnier, F; Giudici, P A

    2016-01-01

    A bench to measure the magnetic field of small to-medium-sized magnets with high precision was built. It uses a small-sized head with three orthogonal Hall probes, supported on a long pole at continuous movement during measurement. The head is calibrated in three dimensions by rotation over the full solid angle in a special device. From 0 to 2.5 T, the precision is ±0.2 mT in all components. The spatial range is 1 × 1 × 2 m with precision of ±0.02 mm. The bench and its controls are lightweight and easy to transport. The head can penetrate through small apertures and measure as close as 0.5 mm from the surface of a magnet. The bench can scan complicated grids in Cartesian or cylindrical coordinates, steered by a simple text file on an accompanying PC. The raw data is online converted to magnetic units and stored in a text file.

  20. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  1. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    Energy Technology Data Exchange (ETDEWEB)

    d' Enterria, David [CERN; Skands, Peter Z. [Monash U.

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  2. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging

    NARCIS (Netherlands)

    Varga-Szemes, Akos; van der Geest, Rob J; Schoepf, U Joseph; Spottiswoode, Bruce S; De Cecco, Carlo N; Muscogiuri, Giuseppe; Wichmann, Julian L; Mangold, Stefanie; Fuller, Stephen R; Maurovich-Horvat, Pal; Merkely, Bela; Litwin, Sheldon E; Vliegenthart, Rozemarijn; Suranyi, Pal

    OBJECTIVES: To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI). METHODS: Fifty-three patients with suspected prior MI underwent

  3. High-precision 27Al/24Mg ratio determination using a modified isotope-dilution approach

    DEFF Research Database (Denmark)

    Paton, Chad; Schiller, Martin; Ulfbeck, David Garf

    2012-01-01

    The precision of the 26Al–26Mg system—one of the most widely used chronometers for constraining the relative timing of events in the early solar system—is presently limited by methods for the determination of 27Al/24Mg ratios, which have seen little improvement in the last decade. We present...... on multiple measurements of a ∼2.7 gram piece of the Ivuna CI chondrite, we present a new estimate for the 27Al/24Mg ratio of this meteorite of 0.09781 ± 0.00029....

  4. Operating a real time high accuracy positioning system

    Science.gov (United States)

    Johnston, G.; Hanley, J.; Russell, D.; Vooght, A.

    2003-04-01

    The paper shall review the history and development of real time DGPS services prior to then describing the design of a high accuracy GPS commercial augmentation system and service currently delivering over a wide area to users of precise positioning products. The infrastructure and system shall be explained in relation to the need for high accuracy and high integrity of positioning for users. A comparison of the different techniques for the delivery of data shall be provided to outline the technical approach taken. Examples of the performance of the real time system shall be shown in various regions and modes to outline the current achievable accuracies. Having described and established the current GPS based situation, a review of the potential of the Galileo system shall be presented. Following brief contextual information relating to the Galileo project, core system and services, the paper will identify possible key applications and the main user communities for sub decimetre level precise positioning. The paper will address the Galileo and modernised GPS signals in space that are relevant to commercial precise positioning for the future and will discuss the implications for precise positioning performance. An outline of the proposed architecture shall be described and associated with pointers towards a successful implementation. Central to this discussion will be an assessment of the likely evolution of system infrastructure and user equipment implementation, prospects for new applications and their effect upon the business case for precise positioning services.

  5. Piezoelectric stepper motor with direct coupling mechanism to achieve high efficiency and precise control of motion.

    Science.gov (United States)

    Glazounov, A E; Wang, S; Zhang, Q M; Kim, C

    2000-01-01

    The paper describes a piezoelectric motor that combines the merits of piezoelectric materials, such as high power density generated at electromechanical resonance, and a precise control of displacement. In the motor, a standing shear wave is excited at the resonance in the piezoelectric tube, and it produces high-frequency torsional vibrations of the stator. The vibrations are converted into unidirectional rotation of a rotor by using a direct coupling mechanism between the stator and the rotor in which a clutch drives the rotor via locking it. The direct coupling makes it possible to transmit the whole power generated in the piezoelectric tube to the rotor, and thus achieve the high efficiency of the motor. It also allows combining two regimes of operation: continuous rotation and a stepwise motion within a 360 degrees interval with a high resolution of angular displacement.

  6. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    Science.gov (United States)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  7. High-precision gas gain and energy transfer measurements in Ar–CO{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: osahin@uludag.edu.tr [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Kowalski, Tadeusz Z. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków (Poland); Veenhof, Rob [Department of Physics, Uludağ University, 16059 Bursa (Turkey); RD51 collaboration, CERN, Genève (Switzerland)

    2014-12-21

    Ar–CO{sub 2} is a Penning mixture since a fraction of the energy stored in Ar 3p{sup 5}3d and higher excited states can be transferred to ionize CO{sub 2} molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO{sub 2} mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO{sub 2} at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×10{sup 5}.

  8. Mechanical optimisation of a high-precision fast wire scanner at CERN

    CERN Document Server

    Samuelsson, Sebastian; Veness, Raymond

    Wire scanners are instruments used to measure the transverse beam prole in particle accelerators by passing a thin wire through the particle beam. To avoid the issues of vacuum leakage through the bellows and wire failure related to current designs of wire scanners, a new concept for a wire scanner has been developed at CERN. This design has all moving parts inside the beam vacuum and has a nominal wire scanning speed of 20 m/s. The demands on the design associated with this together with the high precision requirements create a need for\

  9. High precision measurements of the neutron spin structure in Hall A at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Annand, R M; Cates, G; Cisbani, E; Franklin, G B; Liyanage, N; Puckett, A; Rosner, G; Wojtsekhowski, B

    2012-04-01

    Conclusions of this presentation are: (1) JLab energy upgrade will offer new exciting opportunities to study the nucleon (spin) structure such as high precision, unexplored phase space, flavor decomposition; (2) Large technological efforts is in progress to optimally exploit these opportunities; (3) HallA will be the first hall to get the new beam, first experiment expected to run in 2014; (4) A1n likely one of the first experiments to take data in the new 12 GeV era; and (5) SIDIS exp. will follow in couple of years.

  10. High-precision measurement of the associated strangeness production in proton-proton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jowzaee, S. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Jagellonian University, Institute of Physics, Cracow (Poland); Borodina, E.; Dzhygadlo, R.; Gast, W.; Gillitzer, A.; Grzonka, D.; Kilian, K.; Mertens, M.; Roderburg, E.; Roeder, M.; Sefzick, T.; Wintz, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Clement, H. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Doroshkevich, E.; Ehrhardt, K. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Eyrich, W.; Kober, L.; Krapp, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Hauenstein, F.; Klaja, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Moskal, P.; Smyrski, J. [Jagellonian University, Institute of Physics, Cracow (Poland); Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forces and Matter Experiments (JARA-FAME), Juelich Aachen Research Allianz, Juelich (Germany); Ruhr-Universitaet Bochum, Experimentalphysik I, Bochum (Germany); Schroeder, W. [Forschungszentrum Juelich, Corporate Development, Juelich (Germany); Wuestner, P. [Elektronik und Analytik, Zentralinstitut fuer Engineering, Juelich (Germany); Collaboration: The COSY-TOF Collaboration

    2016-01-15

    A new high-precision measurement of the reaction pp → pK{sup +}Λ at a beam momentum of 2.95 GeV/c with more than 200 000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the NΣ threshold is described with the Flatte formalism and its variation in the Dalitz plot is analyzed. (orig.)

  11. Workshop on High-precision $\\alpha_s$ measurements from LHC to FCC-ee

    CERN Document Server

    S. Alekhin; d'Enterria, David; A. Banfi; S. Bethke; J. Blümlein; K.G. Chetyrkin; D. d’Enterria; G. Dissertori; X. Garcia i Tormo; A. H. Hoang; M. Klasen; T. Klijnsma; S. Kluth; J.-L. Kneur; B.A. Kniehl; D. W. Kolodrubetz; J. Kühn; P. Mackenzie; B. Malaescu; V. Mateu; L. Mihaila; S. Moch; K. Mönig; R. Pérez-Ramos; A. Pich; J. Pires; K. Rabbertz; G. P. Salam; F. Sannino; J. Soto i Riera; M. Srebre; I. W. Stewart

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experiment...

  12. High precision calorimetry to determine the enthalpy of combustion of methane

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Andrew; Lythall, Christopher; Aucott, John; Sayer, Courtnay [Office of Gas and Electricity Markets, Technical Directorate, 3 Tigers Road, South Wigston, LE18 4UX Leicester (United Kingdom)

    2002-01-31

    The enthalpy of combustion of methane is the most important property used in the determination of the calorific value of natural gas. Only two sets of values with high accuracy and precision and measured under appropriate conditions have been published since it was first determined in 1848. These studies were done by Rossini, at the National Bureau of Standards in the USA in 1931, and Pittam and Pilcher, at the University of Manchester in 1972. This report details the design and operation of a high precision constant-pressure gas burning calorimeter, based on the design of those used in the previous studies, to measure the superior enthalpy of combustion of ultra-high purity methane at 25C.The use of modern equipment and automatic data collection leads to a value, traceable to national standards, of 890.61kJmol{sup -1} with a combined standard uncertainty of 0.21kJmol{sup -1}. This is in full accord with the value of 890.63kJmol{sup -1} calculated from the average of Rossini's and Pittam and Pilcher's work (with a random uncertainty based on 1 S.D. of 0.53kJmol{sup -1})

  13. High-precision thermal-insensitive strain sensor based on optoelectronic oscillator.

    Science.gov (United States)

    Fan, ZhiQiang; Su, Jun; Zhang, Tianhang; Yang, Ning; Qiu, Qi

    2017-10-30

    A high-precision and thermal-insensitive strain sensor based on two self-starting optoelectronic oscillators (OEOs) is proposed and experimentally demonstrated. Two OEOs are grouped into a cross-referencing structure by dense wavelength division multiplexing (DWDM); the two OEOs have the same characters and they are placed in the same environment. In this frequency encoded strain sensor, it converts the strain information of the single mode fiber to the frequency information, and the frequency information is acquired by measuring the intermediate frequency (IF) mixed by the two OEOs. The accumulative magnification effect at high-order resonant frequency modes makes the strain sensor achieve high sensitivity, which significantly improves the precision of the measurement strain. The cross-referencing structure of the two OEOs makes the influence of the environment, such as temperature, greatly reduced. In the experiments, measurement errors less than ± 0.3 με at a measurement range of 600 με have been realized, including a drift error due to a variation in the environment such as temperature. Furthermore, a quasi-distributed strain measurement system based on the proposed strain sensor has been designed.

  14. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    Science.gov (United States)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  15. Measurement of different types of optical loss using high-precision laser photometer

    Science.gov (United States)

    Cao, Zhen; Hu, Guohang; He, Hongbo; Zhao, Yuanan; Wang, Yueliang; Peng, Xiaocong

    2017-06-01

    The development of high-power laser systems requires optical components that function at peak performance. Here, a high-precision, double beam, 1064 nm laser photometer setup was developed to measure the following different forms of optical loss from Nd-glass samples: total loss, volume loss, and the residual reflection and surface loss. The double beam design and a lock-in technique were utilized to decrease the impact of light-source instabilities and signal noise, respectively. The stability of the signal was further improved by decreasing the amount of optical absorption along the light path and by increasing the detection responsivity. Paired samples were symmetrically placed to eliminate beam displacement, and a laser scattering imaging technique was used to determine the influence of surface defects on the optical performance. Using the above techniques, multiple measurements of the transmittance and reflection values of the sample were taken, which showed our transmittance measurement to be highly precise, exhibiting a relative standard deviation of less than 0.06%. Different types of optical loss were distinguished and obtained from the transmittance and reflection measurements of samples with different thicknesses. A comparison of the optical performance from test points with and without surface defects allowed us to determine the influence of surface defects on the optical performance.

  16. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Varga-Szemes, Akos; Schoepf, U.J.; De Cecco, Carlo N.; Fuller, Stephen R.; Suranyi, Pal [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Geest, Rob J. van der [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Spottiswoode, Bruce S. [Siemens Medical Solutions, Chicago, IL (United States); Muscogiuri, Giuseppe [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Bambino Gesu Children' s Hospital IRCCS, Department of Imaging, Rome (Italy); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Maurovich-Horvat, Pal; Merkely, Bela [Semmelweis University, MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Budapest (Hungary); Litwin, Sheldon E. [Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Vliegenthart, Rozemarijn [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands)

    2017-08-15

    To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI). Fifty-three patients with suspected prior MI underwent 1.5-T cardiac MRI with conventional magnitude (MagIR) and phase-sensitive IR (PSIR) LGE imaging and T1 mapping at 15 min post-contrast. T1-based synthetic MagIR and PSIR images were calculated with a TI ranging from -100 to +150 ms at 5-ms intervals relative to the optimal TI (TI{sub 0}). LGE was quantified using a five standard deviation (5SD) and full width at half-maximum (FWHM) thresholds. Measurements were compared using one-way analysis of variance. The MagIR{sub sy} technique provided precise assessment of LGE area at TIs ≥ TI{sub 0}, while precision was decreased below TI{sub 0}. The LGE area showed significant differences at ≤ -25 ms compared to TI{sub 0} using 5SD (P < 0.001) and at ≤ -65 ms using the FWHM approach (P < 0.001). LGE measurements did not show significant difference over the analysed TI range in the PSIR{sub sy} images using either of the quantification methods. T1 map-based PSIR{sub sy} images provide precise quantification of MI independent of TI at the investigated time point post-contrast. MagIR{sub sy}-based MI quantification is precise at TI{sub 0} and at longer TIs while showing decreased precision at TI values below TI{sub 0}. (orig.)

  17. Plastic scintillation detectors for precision Time-of-Flight measurements of relativistic heavy ions

    Science.gov (United States)

    Lin, Wen-Jian; Zhao, Jian-Wei; Sun, Bao-Hua; He, Liu-Chun; Lin, Wei-Ping; Liu, Chuan-Ye; Tanihata, Isao; Terashima, Satoru; Tian, Yi; Wang, Feng; Wang, Meng; Zhang, Guang-Xin; Zhang, Xue-Heng; Zhu, Li-Hua; Duan, Li-Min; Hu, Rong-Jiang; Liu, Zhong; Lu, Chen-Gui; Ren, Pei-Pei; Sheng, Li-Na; Sun, Zhi-Yu; Wang, Shi-Tao; Wang, Tao-Feng; Xu, Zhi-Guo; Zheng, Yong

    2017-06-01

    Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of dimensions 50 × 50 × 3t mm3 and 80 × 100 × 3t mm3 have been set up at the External Target Facility (ETF), Institute of Modern Physics (IMP). Their time, energy and position responses are measured with the 18O primary beam at 400 MeV/nucleon. After off-line corrections for walk effect and position, the time resolutions of the two detectors are determined to be 27 ps (σ) and 36 ps (σ), respectively. Both detectors have nearly the same energy resolution of 3.1% (σ) and position resolution of about 3.4 mm (σ). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading the RIBLL2 beam line at IMP as well as for the high energy branch at HIAF. Supported by National Natural Science Foundation of China (11475014,11235002) and National Key Research and Development Program (2016YFA0400500)

  18. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems

    Directory of Open Access Journals (Sweden)

    S. Aßmann

    2011-10-01

    Full Text Available Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH – a key variable of the seawater carbon system – is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a~new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunity and is applicable to the open ocean as well as to coastal waters with a complex matrix and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min−1 with a precision of ±0.0007 pH units, an average offset of +0.0005 pH units to a reference system, and an offset of +0.0081 pH units to a certified standard buffer. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding of the marine carbon system.

  19. Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy.

    Science.gov (United States)

    Thoenes, Sven; Oberfeld, Daniel

    2017-06-01

    Numerous studies have reported that time perception and temporal processing are impaired in schizophrenia. In a meta-analytical review, we differentiate between time perception (judgments of time intervals) and basic temporal processing (e.g., judgments of temporal order) as well as between effects on accuracy (deviation of estimates from the veridical value) and precision (variability of judgments). In a meta-regression approach, we also included the specific tasks and the different time interval ranges as covariates. We considered 68 publications of the past 65years, and meta-analyzed data from 957 patients with schizophrenia and 1060 healthy control participants. Independent of tasks and interval durations, our results demonstrate that time perception and basic temporal processing are less precise (more variable) in patients (Hedges' g>1.00), whereas effects of schizophrenia on accuracy of time perception are rather small and task-dependent. Our review also shows that several aspects, e.g., potential influences of medication, have not yet been investigated in sufficient detail. In conclusion, the results are in accordance with theoretical assumptions and the notion of a more variable internal clock in patients with schizophrenia, but not with a strong effect of schizophrenia on clock speed. The impairment of temporal precision, however, may also be clock-unspecific as part of a general cognitive deficiency in schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Precision isotope shift measurements in Ca$^+$ using highly sensitive detection schemes

    CERN Document Server

    Gebert, Florian; Wolf, Fabian; Angstmann, Christopher N; Berengut, Julian C; Schmidt, Piet O

    2015-01-01

    We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with non-closed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a co-trapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the $^{2}$D$_{3/2}$ $\\rightarrow$ $^{2}$P$_{1/2}$ transition in $^{40}$Ca$^{+}$, resulting in a transition frequency of $f=346\\, 000\\, 234\\, 867(96)$ kHz. Furthermore, we determine the isotope shift of this transition and the $^{2}$S$_{1/2}$ $\\rightarrow$ $^{2}$P$_{1/2}$ transition for $^{42}$Ca$^{+}$, $^{44}$Ca$^{+}$ and $^{48}$Ca$^{+}$ ions relative to $^{40}$Ca$^{+}$ with an accuracy below 100 kHz. Improved field and ...

  1. Interaction between the low altitude atmosphere and clouds by high-precision polarization lidar

    Science.gov (United States)

    Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo

    2012-11-01

    Lidar is a powerful remote sensing tool to monitor the weather changes and the environmental issues. This technique should not been restricted in those fields. In this study, the authors aim to be apply it to the prediction of weather disaster. The heavy rain and the lightning strike are our targets. The inline typed MPL (micro pulse lidar) has been accomplished to grasp the interaction between the low altitude cloud and the atmosphere and to predict the heavy rain, while it was hard to catch the sign of lightning strike. The authors introduced a new algorism to catch the direct sign of the lightning strike. Faraday effect is caused by lightning discharge in the ionized atmosphere. This effect interacts with the polarization of the propagating beam, that is, the polarization plane is rotated by the effect. In this study, high precision polarization lidar was developed to grasp the small rotation angle of the polarization of the propagating beam. In this report, the interaction between the low altitude cloud and the atmosphere was monitored by the high precision polarization lidar. And the observation result of the lightning discharge were analyzed.

  2. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  3. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  4. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy.

    Science.gov (United States)

    Vainio, Markku; Karhu, Juho

    2017-02-20

    A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.

  5. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  6. High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age

    Science.gov (United States)

    Nissen, P. E.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Collet, R.; Grundahl, F.; Slumstrup, D.

    2017-12-01

    Context. A previous study of solar twin stars has revealed the existence of correlations between some abundance ratios and stellar age providing new knowledge about nucleosynthesis and Galactic chemical evolution. Aims: High-precision abundances of elements are determined for stars with asteroseismic ages in order to test the solar twin relations. Methods: HARPS-N spectra with signal-to-noise ratios S/N ≳ 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range - 0.15 LTE iron abundances derived from Fe I and Fe II lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. Results: The abundances of the Kepler stars support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by 0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by 0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions. Based on spectra obtained with HARPS-N@TNG under programme A33TAC_1.Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  7. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment

    Science.gov (United States)

    Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Bol, G. H.; Glitzner, M.; Kotte, A. N. T. J.; van Asselen, B.; de Boer, J. C. J.; Bluemink, J. J.; Hackett, S. L.; Moerland, M. A.; Woodings, S. J.; Wolthaus, J. W. H.; van Zijp, H. M.; Philippens, M. E. P.; Tijssen, R.; Kok, J. G. M.; de Groot-van Breugel, E. N.; Kiekebosch, I.; Meijers, L. T. C.; Nomden, C. N.; Sikkes, G. G.; Doornaert, P. A. H.; Eppinga, W. S. C.; Kasperts, N.; Kerkmeijer, L. G. W.; Tersteeg, J. H. A.; Brown, K. J.; Pais, B.; Woodhead, P.; Lagendijk, J. J. W.

    2017-12-01

    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  8. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment.

    Science.gov (United States)

    Raaymakers, B W; Jürgenliemk-Schulz, I M; Bol, G H; Glitzner, M; Kotte, A N T J; van Asselen, B; de Boer, J C J; Bluemink, J J; Hackett, S L; Moerland, M A; Woodings, S J; Wolthaus, J W H; van Zijp, H M; Philippens, M E P; Tijssen, R; Kok, J G M; de Groot-van Breugel, E N; Kiekebosch, I; Meijers, L T C; Nomden, C N; Sikkes, G G; Doornaert, P A H; Eppinga, W S C; Kasperts, N; Kerkmeijer, L G W; Tersteeg, J H A; Brown, K J; Pais, B; Woodhead, P; Lagendijk, J J W

    2017-11-14

    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  9. Development of a High Precision and Stability Ambient N2O and CO Analyzer

    Science.gov (United States)

    Zhou, Jingang; Hoffnagle, John; Tan, Sze; Dong, Feng; Fleck, Derek; Yiu, John; Huang, Kuan; Leggett, Graham; He, Yonggang

    2016-04-01

    With a global warming potential of nearly 300, N2O is a critically important greenhouse gas, contributing about 5 % of the US total GHG emissions. Agriculture soil management practices are the dominant source of anthropogenic N2O emissions, contributing nearly 75 % of US N2O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N2O. We report here a new mid-infrared laser-based cavity ring-down spectrometer (Picarro G5310) that was recently developed to simultaneously measure sub-ppb ambient concentrations of two key greenhouse gas species, N2O and CO, while measuring H2O as well. It combines a quantum cascade laser with a proprietary 3-mirror optical cavity. The ambient N2O and CO measurement precisions are 0.1ppb (10sec), 0.014ppb (600sec), and 0.006ppb (3000sec); and the measurements could even be averaged down over 3 hours, giving measurement precisions of 0.003ppb. The measurable N2O and CO ranges have been tested up to 2.5ppm. With the high precision and unparalleled stability, G5310 is believed a promising tool for long-term monitoring in atmospheric sciences. The new optical analyzer was set up to monitor N2O and CO (G5310), along with CO2 and CH4(G4301), in ambient air obtained from a 10 meter tower in Santa Clara, California. Evidence of contributions from traffic and a nearby sewage treatment facility were expected in the measurement data.

  10. Highly precise eye length measurements in children aged 3 through 12 years.

    Science.gov (United States)

    Quinn, Graham E; Francis, Ellie L; Nipper, Karen S; Flitcroft, D Ian; Ying, Gui-shuang; Rees, Renee C; Schmid, Gregor F; Maguire, Maureen G; Stone, Richard A

    2003-07-01

    To determine the feasibility, reliability, and validity of using partial coherence interferometry, a noncontact method that detects interference patterns from various layers of the eye, to measure axial length in young children. The right eye of 64 subjects (mean age, 8.4 y; age range, 3.4-12.9 y; best-corrected visual acuity >or=20/30) was measured. Subjects fixated monocularly on the collimated light pattern from a laser diode (the alignment beam) and the operator used a video monitor to align the corneal reflection in the optical path. Axial length was measured during an 0.8-second scan using interference patterns from a collimated short coherence superluminescence diode aligned coaxially with the laser diode. Five series of 16 readings each were obtained. The average axial length for each of the 5 series of readings was calculated. Main Outcome Measure Axial length. Within-subject precision of axial length measurements was high, with an overall SE of measurement of 8 micro m for individual subjects across the 5 sessions (95% confidence interval, +/-16 micro m). Subgroup analysis showed that sex, age, spherical equivalent, and refractive error exerted statistically significant effects on precision, but all of the differences among subgroups were 3 micro m or less and likely to be insignificant clinically. Axial length measured by partial coherence interferometry varied systematically, with factors known to influence eye length (ie, age and refractive error), further validating the measurement method. The partial coherence interferometry technique provides reproducible, extraordinarily precise eye length measurements in young children and should enable novel approaches to study eye growth and refractive development.

  11. Precise Determination of Zero-Field Splitting Parameters of Hemin by High-Field and High-Frequency Electron Paramagnetic Resonance

    Science.gov (United States)

    Okamoto, Tsubasa; Ohmichi, Eiji; Okubo, Susumu; Ohta, Hitoshi

    2018-01-01

    The zero-field splitting (ZFS) parameters of Fe(III) protoporphyrin IX chloride, or hemin, a model substance of hemoproteins, were determined precisely by high-field and high-frequency electron paramagnetic resonance (HFEPR). From multi-frequency measurements up to 700 GHz, multiple EPR absorptions were clearly resolved, and the rhombic component of ZFS was directly determined, for the first time, as |E| = 0.055 ± 0.005 cm-1, in addition to the axial component D = 6.90 ± 0.01 cm-1. This finding indicates the essential role of the rhombic symmetry of excited states in the ZFS parameters.

  12. New high precision data on the differential cross sections of the pion-proton elastic scattering

    Directory of Open Access Journals (Sweden)

    Alekseev I. G.

    2014-01-01

    Full Text Available The EPECUR collaboration presents new high precision data on the pion-proton elastic scattering in the second resonance region. The experiment EPECUR is placed on the universal beam channel of the accelerator ITEP. The setup features 0.1% beam pion momentum tagging system, 25 cm long liquid hydrogen target, placed in mylar container and beryllium outer shell, low material wire drift chambers and high performance DAQ. More than 3 billions of triggers have been collected. The data cover pion beam momentum range 0.8 - 1.3 GeV/c and 40-120 degrees center-of-mass scattering angle range for both positive and negative pions. The measured differential cross section has 2% statistical accuracy in 2 degrees angle and 5 MeV/c momentum intervals.

  13. Fundamental measurement by in-line typed high-precision polarization lidar

    Science.gov (United States)

    Shiina, Tatsuo; Miyamoto, Masakazu; Umaki, Dai; Noguchi, Kazuo; Fukuchi, Tetsuo

    2008-12-01

    An in-line typed new concept lidar system for high precision polarization measurement was developed. A specially designed polarization-independent optical circulator, which was composed by Gran laser prisms and highly transparent Faraday rotators, was developed. Its isolation between the orthogonal polarizations was improved up to more than 30 dB. It is sufficient to detect small rotation of the polarization plane of the propagating beam caused by lightning discharges due to the Faraday effect. The rotation angle of the polarization plane is estimated by the differential detection between the orthogonal polarization components of the lidar echoes. The in-line optics enables near range measurement from the near range of >30 m with the narrow field of view of 0.17 mrad. The fundamental measurements of lidar echoes in near and far fields, and low cloud activities were examined.

  14. Beyond Conventional Patterns: New Electrochemical Lithography with High Precision for Patterned Film Materials and Wearable Sensors.

    Science.gov (United States)

    Zhang, Xiaowei; Guo, Shaojun; Han, Yanchao; Li, Jing; Wang, Erkang

    2017-02-21

    We report a simple, low-cost, and brand-new electrochemical lithography technique for replicating the template pattern with high resolution at ∼2 μm. The developed method is that the electroactive material is first deposited on the patterned conductive template by the electrochemical technique and then peeled by an adhesive tape/material. The resulting film with the precise pattern shows excellent mechanical and electronic properties and promises high prospect in designing flexible electronics. This interesting approach can be performed at ambient conditions and easily generalized to pattern various electroactive materials covering metal, alloy, nonmetal, salt, oxide, and composite on different types of substrates in several seconds to a few minutes, making the mass production of flexible/rigid/stretchable patterned thin films quite possible.

  15. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  16. High-precision soft x-ray polarimeter at Diamond Light Source.

    Science.gov (United States)

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  17. High-precision soft x-ray polarimeter at Diamond Light Source

    Science.gov (United States)

    Wang, H.; Dhesi, S. S.; Maccherozzi, F.; Cavill, S.; Shepherd, E.; Yuan, F.; Deshmukh, R.; Scott, S.; van der Laan, G.; Sawhney, K. J. S.

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B4C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  18. Precision Measurements of the Proton Electromagnetic Form Factors in the Time-Like Region and Vector Meson Spectroscopy

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure with precision the electromagnetic form factors of the proton in the time-like region via the reaction: .ce @*p @A e|+e|- with antiprotons of momenta between 0 and 2 GeV/c. Up to @= 800 MeV/c, a continuous energy scan in @= 2 MeV (@]s) bins will be performed. The form factor !G(E)! and !G(M)! will be determined separately since large statistics can be collected with LEAR antiproton beams, so that angular distributions can be obtained at many momenta.\\\\ \\\\ In addition, e|+e|- pairs produced via the reaction: .ce @*p @A V|0 + neutrals, .ce !@A e|+e|- where the antiprotons are at rest, will be detected allowing the vector meson mass spectrum between @= 1 GeV and @= 1.7 GeV to be obtained with high statistics and in one run. \\\\ \\\\ The proposed apparatus consists of a central detector, surrounded by a gas Cerenkov counter, wire chambers, hodoscopes, and an electromagnetic calorimeter. The central detector consists of several layers of proportional chambers around a liquid-h...

  19. High precision measurement of the {eta} meson mass at COSY-ANKE

    Energy Technology Data Exchange (ETDEWEB)

    Goslawski, Paul

    2013-07-01

    Previous measurements of the {eta} meson mass performed at different experimental facilities resulted in very precise data but differ by up to more than eight standard deviations, i.e., 0.5 MeV/c. Interestingly, the difference seems to be dependent on the measuring method: two missing mass experiments, which produce the {eta} meson in the {sup 3}He{eta} final state, deviate from the recent invariant mass ones. In order to clarify this ambiguous situation a high precision mass measurement was realised at the COSY-ANKE facility. Therefore, a set of deuteron laboratory beam momenta and their associated {sup 3}He centre-of-mass momenta was measured in the dp{yields}{sup 3}HeX reaction near the {eta} production threshold. The {eta} meson was identified by the missing mass peak, whereas its mass was extracted by fixing the production threshold. The individual beam momenta were determined with a relative precision of 3 x 10{sup -5} for values just above 3 GeV/c by using a polarised deuteron beam and inducing an artificial depolarising spin resonance occurring at a well-defined frequency. The final state momenta in the two-body reaction dp{yields}{sup 3}He{eta} were investigated in detail by studying the size of the {sup 3}He momentum sphere with the forward detection system of the ANKE spectrometer. Final alignment and momentum calibration of the spectrometer was achieved by a comprehensive study of the {sup 3}He final state momenta as a function of the centre-of-mass angles, taking advantage of the full geometrical acceptance. The value obtained for the mass at COSY-ANKE m{sub {eta}}=(547.873{+-}0.005{sub stat.}{+-}0.027{sub syst.}) MeV/c{sup 2} is therefore worldwide the most precise one. This mass value is contrary to earlier missing mass experiments but it is consistent and competitive with recent invariant mass measurements, in which the meson was detected through its decay products.

  20. High precision tools for slepton pair production processes at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Thier, Stephan Christoph

    2015-01-20

    In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.

  1. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers☆

    Science.gov (United States)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. PMID:24262358

  2. High-precision radiocarbon dating and historical biblical archaeology in southern Jordan

    Science.gov (United States)

    Levy, Thomas E.; Higham, Thomas; Bronk Ramsey, Christopher; Smith, Neil G.; Ben-Yosef, Erez; Robinson, Mark; Münger, Stefan; Knabb, Kyle; Schulze, Jürgen P.; Najjar, Mohammad; Tauxe, Lisa

    2008-01-01

    Recent excavations and high-precision radiocarbon dating from the largest Iron Age (IA, ca. 1200–500 BCE) copper production center in the southern Levant demonstrate major smelting activities in the region of biblical Edom (southern Jordan) during the 10th and 9th centuries BCE. Stratified radiocarbon samples and artifacts were recorded with precise digital surveying tools linked to a geographic information system developed to control on-site spatial analyses of archaeological finds and model data with innovative visualization tools. The new radiocarbon dates push back by 2 centuries the accepted IA chronology of Edom. Data from Khirbat en-Nahas, and the nearby site of Rujm Hamra Ifdan, demonstrate the centrality of industrial-scale metal production during those centuries traditionally linked closely to political events in Edom's 10th century BCE neighbor ancient Israel. Consequently, the rise of IA Edom is linked to the power vacuum created by the collapse of Late Bronze Age (LB, ca. 1300 BCE) civilizations and the disintegration of the LB Cypriot copper monopoly that dominated the eastern Mediterranean. The methodologies applied to the historical IA archaeology of the Levant have implications for other parts of the world where sacred and historical texts interface with the material record. PMID:18955702

  3. Towards an unbiased filter routine to determine precipitation and evapotranspiration from high precision lysimeter measurements

    Science.gov (United States)

    Peters, Andre; Groh, Jannis; Schrader, Frederik; Durner, Wolfgang; Vereecken, Harry; Pütz, Thomas

    2017-06-01

    Weighing lysimeters are considered to be the best means for a precise measurement of water fluxes at the interface between the soil-plant system and the atmosphere. Any decrease of the net mass of the lysimeter can be interpreted as evapotranspiration (ET), any increase as precipitation (P). However, the measured raw data need to be filtered to separate real mass changes from noise. Such filter routines typically apply two steps: (i) a low pass filter, like moving average, which smooths noisy data, and (ii) a threshold filter that separates significant from insignificant mass changes. Recent developments of these filters have identified and solved some problems regarding bias in the data processing. A remaining problem is that each change in flow direction is accompanied with a systematic flow underestimation due to the threshold scheme. In this contribution, we analyze this systematic effect and show that the absolute underestimation is independent of the magnitude of a flux event. Thus, for small events, like dew or rime formation, the relative error is high and can reach the same magnitude as the flux itself. We develop a heuristic solution to the problem by introducing a so-called "snap routine". The routine is calibrated and tested with synthetic flux data and applied to real measurements obtained with a precision lysimeter for a 10-month period. The heuristic snap routine effectively overcomes these problems and yields an almost unbiased representation of the real signal.

  4. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers.

    Science.gov (United States)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. © 2013 Published by Elsevier B.V.

  5. High-precision high field strength partitioning between garnet, amphibole, and alkaline melt, Kakanui, New Zealand

    NARCIS (Netherlands)

    Fulmer, E.J.; Nebel, O.; van Westrenen, W.

    2010-01-01

    The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients

  6. Shuffle motor: a high force, high precision linear electrostatic stepper motor

    NARCIS (Netherlands)

    Tas, Niels Roelof; Wissink, Jeroen; Sander, A.F.M.; Sander, Louis; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1997-01-01

    The shuffle motor is a electrostatic stepper motor that employs a mechanical transformation to obtain high forces and small steps. A model has been made to calculate the driving voltage, step size and maximum load to pull as well as the optimal geometry. Tests results are an effective step size of

  7. Precise alignment method of time-delayed integration charge-coupled device charge shifting direction in aerial panoramic camera

    Science.gov (United States)

    Zhang, Jian; Ding, Yalin; Zhang, Linghua; Tian, Haiying; Yuan, Guoqin

    2016-12-01

    A time-delayed integration charge-coupled device (TDI CCD) in an aerial panoramic camera compensates the sweep image motion correctly on the premise that the TDI charge shifting direction is coincident with that of the sweep image motion. The coordinate transformation method is used to find out how the included angle between the two directions originated. Then the precise alignment method of the TDI charge shifting direction is proposed to eliminate the included angle. TDI CCD is operated in area mode, nodding the scan mirror, the trajectory of the image point is derived to be a hyperbola, which could be equivalent to an obliquely straight line. The tilt angle of the line is exactly the included angle between the two directions. Meanwhile, the tilt angle can be calculated by the least square method. Then the scan head or the focal plane assembly is precisely rotated to eliminate the included angle between the two directions. The assembling error after precise alignment is calculated at -16.4 s, which could hardly influence the MTF of TDI CCD. The panoramic imaging experiment and the flight test show that the precise alignment method is feasible and completely satisfies the operating requirement of the aerial panoramic camera.

  8. High precision measurement of silicon in naphthas by ICP-OES using isooctane as diluent.

    Science.gov (United States)

    Gazulla, M F; Rodrigo, M; Orduña, M; Ventura, M J; Andreu, C

    2017-03-01

    An analytical protocol for the accurate and precise determination of Si in naphthas is presented by using ICP-OES, optimizing from the sample preparation to the measurement conditions, in order to be able to analyze for the first time silicon contents below 100µgkg(-1) in a relatively short time thus being used as a control method. In the petrochemical industry, silicon can be present as a contaminant in different petroleum products such as gasoline, ethanol, or naphthas, forming different silicon compounds during the treatment of these products that are irreversibly adsorbed onto catalyst surfaces decreasing its time life. The complex nature of the organic naphtha sample together with the low detection limits needed make the analysis of silicon quite difficult. The aim of this work is to optimize the measurement of silicon in naphthas by ICP-OES introducing as an improvement the use of isooctane as diluent. The set up was carried out by optimizing the measurement conditions (power, nebulizer flow, pump rate, read time, and viewing mode) and the sample preparation (type of diluent, cleaning process, blanks, and studying various dilution ratios depending on the sample characteristics). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Extending and refining the mass surface around $^{208}$Pb by high-precision Penning-trap mass spectrometry with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Stora, T; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Herlert, A J; Yamaguchi, T

    We propose high-precision mass spectrometry of nuclides around the doubly magic $^{208}$Pb. On the neutron-rich side, we aim to extend the knowledge of Fr, At, Hg, and Au masses to study the robustness of the N = 126 shell closure and to provide mass data necessary for modeling the rapid-neutron-capture process. On the proton-rich side, we aim at high-resolution mass spectrometry of selected Au, At, and Fr isotopes to verify the predicted existence of very low-lying isomeric states. The proposal will make use of newly-available laser-ionization schemes for Au and At. Finally, the recently implemented multi-reflection time-of-flight mass separator for auxiliary isobaric purification now allows measurements which were not feasible before.

  10. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model.

    Science.gov (United States)

    Hahn, T; Heinemeyer, S; Hollik, W; Rzehak, H; Weiglein, G

    2014-04-11

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FEYNHIGGS.

  11. Probing active-edge silicon sensors using a high precision telescope

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, K. [Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Artuso, M. [Syracuse University, Syracuse, NY (United States); Beveren, V. van; Beuzekom, M. van; Boterenbrood, H. [Nikhef, Amsterdam (Netherlands); Buytaert, J.; Collins, P.; Dumps, R. [CERN, the European Organisation for Nuclear Research, Geneva (Switzerland); Heijden, B. van der [Nikhef, Amsterdam (Netherlands); Hombach, C. [University of Manchester, Manchester, Lancashire (United Kingdom); Hynds, D. [Glasgow University, Glasgow, Lanarkshire (United Kingdom); Hsu, D. [Syracuse University, Syracuse, NY (United States); John, M. [University of Oxford, Oxfordshire (United Kingdom); Koffeman, E. [Nikhef, Amsterdam (Netherlands); Leflat, A. [Lomonosov Moscow State University, Moscow (Russian Federation); Li, Y. [Tsinghua University, Beijing (China); Longstaff, I.; Morton, A. [Glasgow University, Glasgow, Lanarkshire (United Kingdom); Pérez Trigo, E. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Plackett, R. [Diamond Light Source Ltd., Didcot, Oxfordshire (United Kingdom); and others

    2015-03-21

    The performance of prototype active-edge VTT sensors bump-bonded to the Timepix ASIC is presented. Non-irradiated sensors of thicknesses 100–200 μm and pixel-to-edge distances of 50 μm and 100 μm were probed with a beam of charged hadrons with sub-pixel precision using the Timepix telescope assembled at the SPS at CERN. The sensors are shown to be highly efficient up to a few micrometers from the physical edge of the sensor. The distortion of the electric field lines at the edge of the sensors is studied by reconstructing the streamlines of the electric field using two-pixel clusters. These results are supported by TCAD simulations. The reconstructed streamlines are used to study the field distortion as a function of the bias voltage and to apply corrections to the cluster positions at the edge.

  12. High-precision microscopic phase imaging without phase unwrapping for cancer cell identification.

    Science.gov (United States)

    Watanabe, Eriko; Hoshiba, Takashi; Javidi, Bahram

    2013-04-15

    Experiments for cell identification are presented using a high-precision cell phase measurement system that does not require any phase unwrapping. This system is based on a Mach-Zehnder interferometer using a phase-locking technique, and it measures the change in optical path length while the sample is scanned across the optical axis. The spatial resolution is estimated to be less than 1.1 μm. The sensitivity of optical path length difference is estimated to be less than 2 nm. Using experiments, we investigate the potential of this approach for cancer cell identification. In our preliminary experiments, cancer cells were distinguished from normal cells through comparison of optical path length differences.

  13. High precision measurements of arsenic and phosphorous implantation dose in silicon by secondary ion mass spectrometry

    CERN Document Server

    Chi, P H; McKinley, J M; Stevie, F A; Granger, C N

    2002-01-01

    The metrology section of the 1999 International Technology Roadmap for Semiconductors specifies in-line dopant profile concentration precision requirements ranging from a value of 5% in 1999 to a value of 2% in 2008. These values are to be accomplished with ''low systematic error.'' Secondary ion mass spectrometry (SIMS) has demonstrated the capability to meet these requirements for B, As, and P. However, the detailed analytical protocols required to achieve these goals have not been completely specified. This article reports the parameters that must be controlled to make highly repeatable dose measurements of As and P implants in Si with magnetic sector SIMS instruments. Instrument conditions that were investigated include analytical species, matrix ion species, energy bandpass, and sample holder design. With optimized settings, we demonstrate the ability to distinguish As or P implant doses differing by 5%.

  14. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John

    2010-06-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  15. High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978

    Science.gov (United States)

    Schenck, B. E.; Laurila, S. H.

    1978-01-01

    The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu.

  16. High precision and convenient extension simulation platform for satellite attitude and orbit system

    Science.gov (United States)

    Cui, Hongzheng; Han, Chao; Chen, Pei; Luo, Qinqin

    2012-01-01

    In this paper, a high precision and convenient extension simulation platform for satellite attitude and orbit system is developed, to demonstrate the satellite attitude and orbit system for given space mission, and test the new underdeveloped algorithms for attitude/orbit dynamics, attitude determination, orbit navigation, and attitude/orbit control. The simulation platform is based on Matlab/Simulink software, using the technique of Simulink modeling, importing C/Fortran code in Matlab/Simulink, and embedded Matlab function, with beautiful reusability, inheritability and expansibility. The paper orderly presents the background behind the development of the platform, the platform design architecture and capability, the validity of the platform, the inheritability and expansibility of the platform, the platform implementation example for Chinese weather satellite (FY-3), and the future development for the platform.

  17. The high precision measurement of the 144Ce activity in the SOX experiment

    Science.gov (United States)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo—Berguño, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Cereseto, R.; Chepurnov, A.; Choi, K.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, C.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssière, C.; Vivier, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    In order to perform a resolutive measurement to clarify the neutrino anomalies and to observe possible short distance neutrino oscillations, the SOX (Short distance neutrino Oscillations with BoreXino) experiment is under construction. In the first phase, a 100 kCi 144Ce-144Pr antineutrino source will be placed under the Borexino detector at the Laboratori Nazionali del Gran Sasso (LNGS), in center of Italy, and the rate measurement of the antineutrino events, observed by the very low radioactive background Borexino detector, will be compared with the high precision (< 1%) activity measurement performed by two calorimeters. The source will be embedded in a 19 mm thick tungsten alloy shield and both the calorimeters have been conceived for measuring the thermal heat absorbed by a water flow. In this report the design of the calorimeters will be described in detail and very preliminary results will be also shown.

  18. Study on spectral calibration of an ultraviolet Fourier transform imaging spectrometer with high precision

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-01-01

    In this paper, we reported the laboratory spectral calibration of an ultraviolet (UV) Fourier transform imaging spectrometer (FTIS). A short overview of the designed UV-FTIS, which feature with a Cassegrain objective, an Offner relay optics system and a spatial-and-temporal modulation Michelson structure, is given. The experimental setup of spectral calibration is described, including details of the light source and integrating sphere. A high pressure mercury lamp was used to acquire reference spectrum. We calculated the all optical path difference (OPD) to achieve spectral response of every wavelength sample and divided the position of reference peak to subpixel to increase the precision of spectral calibration. The spectrum of spectral calibration show two weakly responded peaks, which was validated by reference spectrum of fiber optic spectrometer. The deviation of wavelength calibration is low to establish a best spectrometer resolution. The results of spectral calibration can meet the requirements of the UV-FTIS application.

  19. A new approach to the BFKL mechanism. Application to high-precision HERA data

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lipatov, L.N. [Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Ross, D.A. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Schulz, O. [Max Planck Institute for Physics, Munich (Germany)

    2017-07-15

    We analyse here in NLO the physical properties of the discrete eigenvalue solution for the BFKL equation. We show that a set of positive ω eigenfunctions together with a small contribution from a continuum of negative ω's provide an excellent description of high-precision HERA F{sub 2} data in the region, x < 0.001, Q{sup 2} > 6 GeV{sup 2}. The phases of the eigenfunctions can be obtained from a simple parametrisation of the pomeron spectrum, which has a natural motivation within BFKL. The data analysis shows that the first eigenfunction decouples or nearly decouples from the proton. This suggests that there exist an additional ground state, which has no nodes.

  20. Upgrade of the SPIRAL identification station for high-precision measurements of nuclear β decay

    Energy Technology Data Exchange (ETDEWEB)

    Grinyer, G.F., E-mail: grinyer@ganil.fr [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Thomas, J.C. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Blank, B. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1, UMR 5797, CNRS/IN2P3, Chemin de Solarium, BP 120, 33175 Gradignan (France); Bouzomita, H. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Austin, R.A.E. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia, Canada B3H 3C3 (Canada); Ball, G.C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 (Canada); Bucaille, F.; Delahaye, P. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Finlay, P. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Frémont, G. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Gibelin, J. [LPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Giovinazzo, J. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1, UMR 5797, CNRS/IN2P3, Chemin de Solarium, BP 120, 33175 Gradignan (France); and others

    2014-03-21

    The low-energy identification station at SPIRAL (Système de Production d'Ions Radioactifs Accélérés en Ligne) has been upgraded for studying the β decays of short-lived radioactive isotopes and to perform high-precision half-life and branching-ratio measurements for superallowed Fermi and isospin T=1/2 mirror β decays. These new capabilities, combined with an existing Paul trap setup for measurements of β–ν angular-correlation coefficients, provide a powerful facility for investigating fundamental properties of the electroweak interaction through nuclear β decays. A detailed description of the design study, construction, and first results obtained from an in-beam commissioning experiment on the β{sup +} decays {sup 14} O and {sup 17}F are presented.

  1. High-precision control of LSRM based X-Y table for industrial applications.

    Science.gov (United States)

    Pan, J F; Cheung, Norbert C; Zou, Yu

    2013-01-01

    The design of an X-Y table applying direct-drive linear switched reluctance motor (LSRM) principle is proposed in this paper. The proposed X-Y table has the characteristics of low cost, simple and stable mechanical structure. After the design procedure is introduced, an adaptive position control method based on online parameter identification and pole-placement regulation scheme is developed for the X-Y table. Experimental results prove the feasibility and its priority over a traditional PID controller with better dynamic response, static performance and robustness to disturbances. It is expected that the novel two-dimensional direct-drive system find its applications in high-precision manufacture area. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping

    DEFF Research Database (Denmark)

    Ziegler, Bent Lindvig; Blanke, Mogens

    2002-01-01

    High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... dimensions with much better accuracy and spatial resolution than ever accomplished. To reach the desired quality of measurements, the satellite must fly in a low Earth orbit where disturbances from atmospheric drag and the Earth's magnetic field will perturb the satellite's motion. These effects...... will compromise measurement accuracy, unless they are accurately compensated by on-board thrusters. The paper concerns the design of a control system to performing such delicate drag compensation. A six degrees-of-freedom model for the satellite is developed with the model including dynamics of the satellite...

  3. High precision measurement of the topological Aharonov-Casher effect with neutrons

    CERN Document Server

    Cimmino, A; Klein, A G; Kaiser, H; Werner, S A

    2000-01-01

    The phase shift predicted by Aharonov and Casher (AC) for a magnetic dipole diffracting around a line charge was first observed by Cimmino et al. using a neutron interferometer. A number of subsequent atom interferometry experiments have been performed to observe this effect. These experiments measured the vxE phase shift due to the magnetic field induced in the rest frame of the atom, with no indication of the topological nature of the AC interaction. We intend to perform a high precision AC experiment with neutrons to improve the accuracy of our previous results and to highlight the topological nature of the effect. Finally, we present a novel geometry to achieve a spin-dependent magnetic phase shift.

  4. Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder

    Directory of Open Access Journals (Sweden)

    Shuoyang Chen

    2016-10-01

    Full Text Available During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as “frame difference” and “optical flow”, may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a “multi-block temporal-analyzing LBP (Local Binary Pattern” algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor and FPGA (Field Programmable Gate Array platforms and the high-precision intelligent holder.

  5. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  6. Influence of sulfur-bearing polyatomic species on high precision measurements of Cu isotopic composition

    Science.gov (United States)

    Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.

    2010-01-01

    An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require

  7. High-precision method of binocular camera calibration with a distortion model.

    Science.gov (United States)

    Li, Weimin; Shan, Siyu; Liu, Hui

    2017-03-10

    A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.

  8. A high precision flat crystal spectrometer compatible for ultra-high vacuum light source

    Science.gov (United States)

    Yang, Y.; Xiao, J.; Lu, D.; Shen, Y.; Yao, K.; Chen, C.; Hutton, R.; Zou, Y.

    2017-11-01

    We report on a flat crystal spectrometer (FCS) featuring a differently pumped rotary feedthrough and double detectors connected to a crystal chamber by extendable bellows built at the Shanghai EBIT Laboratory. It was designed to overcome defects such as oil contamination, little distance from the detector to the crystal and others of an early FCS equipped at the same laboratory, but still keeps a large detectable angle range of detectors and brings new features and functions such as the Bond method measurement and double-crystal measurement which are based on the two-detector and large bellow design. This new FCS could cover an energy range of measurable photons from 570 eV to 10 keV and reach a vacuum better than 6 × 10-10 Torr and thus is compatible for coupling directly to ultra-high vacuum light sources. Off-line tests of the FCS were undertaken where Kα x-rays from solid titanium were measured and analyzed. Measurements of transitions in He-like argon ions were performed when the spectrometer was directly connected to Shanghai EBIT, and the width of the x-ray source was monitored simultaneously using an x-ray slit imaging system. An observed spectral line broadening was 0.869 eV corresponding to a resolving power of 3600, including Doppler broadening of the x-ray source. Taking account of the measured source width, we made simulations using the SHADOW 3 code and got a nominal resolving power of 6500 for the spectrometer. This high nominal resolving power is due to a longer distance from the crystal to the detector, comparing with that in the early FCS.

  9. Correlated Cryo-fluorescence and Cryo-electron Microscopy with High Spatial Precision and Improved Sensitivity

    Science.gov (United States)

    Schorb, Martin; Briggs, John A. G.

    2017-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. PMID:24275379

  10. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity.

    Science.gov (United States)

    Schorb, Martin; Briggs, John A G

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. © 2013 Published by Elsevier B.V.

  11. An LCD Monitor with Sufficiently Precise Timing for Research in Vision.

    Science.gov (United States)

    Wang, Peng; Nikolić, Danko

    2011-01-01

    Until now, liquid crystal display (LCD) monitors have not been used widely for research in vision. Despite their main advantages of continuous illumination and low electromagnetic emission, these monitors had problems with timing and reliability. Here we report that there is at least one new inexpensive 120 Hz model, whose timing and stability is on a par with a benchmark cathode-ray tube monitor, or even better. The onset time was stable across repetitions, 95% confidence interval (the error) of which was LCD monitor seems suitable for many applications in vision research, including the studies that require combined accuracy of timing and intensity of visual stimulation.

  12. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.; /Florida State U.; Batra, P.; /Columbia U.; Bugel, Leonard G.; /Columbia U.; Camilleri, Leslie Loris; /Columbia U.; Conrad, Janet Marie; /MIT; de Gouvea, A.; /Northwestern U.; Fisher, Peter H.; /MIT; Formaggio, Joseph Angelo; /MIT; Jenkins, J.; /Northwestern U.; Karagiorgi, Georgia S.; /MIT; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  13. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    Science.gov (United States)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  14. Field-Effect Modulated Electro-Osmotic Pumps for High Precision Colloid Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to precisely control the position of satellites is a critical enabling technology for space missions involving interferometric arrays. One proposed...

  15. Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons

    Directory of Open Access Journals (Sweden)

    Pierre eBaudot

    2013-12-01

    Full Text Available Synaptic Noise is thought to be a limiting factor for computational efficiency in the Brain. In visual cortex (V1, ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor exploration. We recorded V1 neurons intracellularly in the anaesthetized and paralyzed cat and compared their spiking and synaptic responses to full field natural images animated by simulated eye-movements to those evoked by simpler (grating or higher dimensionality statistics (dense noise. In most cells, natural scene animation was the only condition where high temporal precision (in the 10-20 ms range was maintained during sparse and reliable activity. At the subthreshold level, irregular but highly reproducible membrane potential dynamics were observed, even during long (several 100 ms spike-less periods. We showed that both the spatial structure of natural scenes and the temporal dynamics of eye-movements increase the signal-to-noise ratio by a non linear amplification of the signal combined with a reduction of the subthreshold contextual noise. These data support the view that the sparsening and the time precision of the neural code in V1 may depend primarily on three factors: 1 broadband input spectrum: the bandwidth must be rich enough for recruiting optimally the diversity of spatial and time constants during recurrent processing; 2 tight temporal interplay of excitation and inhibition: conductance measurements demonstrate that natural scene statistics narrow selectively the duration of the spiking opportunity window during which the balance between excitation and inhibition changes transiently and reversibly; 3 signal energy in the lower frequency band: a minimal level of power is needed below 10 Hz to reach consistently the spiking threshold, a situation rarely reached with visual

  16. Contributing to a precise and accurate chronostratigraphic time scale for climatic records: Absolute dating and paleomagnetism in lavas

    Science.gov (United States)

    Sasco, Romain; Guillou, Herve; Kissel, Catherine; Wandres, Camille; Carracedo, Juan-Carlos; Perez Torrado, Francisco Jose

    2014-05-01

    Understanding climatic mechanisms requires a robust and precise timescale allowing long-distance and multi-archives correlations. A unique tool to construct such time scales is provided by the Earth magnetic field (EMF), which is independent from climatic variations and the past evolution of which is recorded in most of the geological/climatic archives. Sedimentary sequences provide continuous records of relative intensities of the EMF on stratigraphic time scales, usually based on orbital tuning. They are transferred onto absolute intensity scale and chronological time scale using robust tie points available for the past ~40 ka. However, for older periods this calibration remains poorly constrained. Our study reports on new tie points over the last 200 ka by combining paleomagnetic and geochronological (K/Ar and 40Ar-39Ar dating) studies on lavas. Based on the K-Ar LSCE age database, a set of 18 lava flows corresponding to potential geomagnetic excursions and/or highs and lows in the paleomagnetic intensity as observed from sediments and occurring in the studied time-window were selected in the Canary Islands (Tenerife, La Palma and Gran Canaria). A total of 205 oriented cores were taken from these 18 lava flows. Rock magnetic experiments include thermomagnetic analyses on each core, hysteresis loop and First Order Reversal Curves. Stepwise thermal demagnetizations in zero-field provided reliable mean-site paleomagnetic direction of the EMF for 15 of the flows. Paleointensity values were determined using the original Thellier and Thellier method. Based on previous experiments, 170 samples were analyzed, among which 51% provided reliable paleointensity values (determined using PICRIT-03 criteria). The geochronological study focused on 40Ar-39Ar dating. Based on preliminary paleomagnetic results, 13 flows were analyzed and 11 provided ages consistent at the 2 sigma level with the already available K-Ar ages. This coupled K/Ar - 40Ar-39Ar results strongly constrain

  17. Electroweak Precision Tests in High-Energy Diboson Processes arXiv

    CERN Document Server

    Franceschini, Roberto; Pomarol, Alex; Riva, Francesco; Wulzer, Andrea

    A promising avenue to perform precision tests of the SM at the LHC is to measure differential cross-sections at high invariant mass, exploiting in this way the growth with the energy of the corrections induced by heavy new physics. We classify the leading growing-with-energy effects in longitudinal diboson and in associated Higgs production processes, showing that they can be encapsulated in four real "high-energy primary" parameters. We assess the reach on these parameters at the LHC and at future hadronic colliders, focusing in particular on the fully leptonic $WZ$ channel that appears particularly promising. The reach is found to be superior to existing constraints by one order of magnitude, providing a test of the SM electroweak sector at the per-mille level, in competition with LEP bounds. Unlike LHC Run-1 bounds, which only apply to new physics effects that are much larger than the SM in the high-energy tail of the distributions, the probe we study applies to a wider class of new physics scenarios where...

  18. Research on controlling middle spatial frequency error of high gradient precise aspheric by pitch tool

    Science.gov (United States)

    Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan; Zhong, Xianyun

    2016-09-01

    Extreme optical fabrication projects known as EUV and X-ray optic systems, which are representative of today's advanced optical manufacturing technology level, have special requirements for the optical surface quality. In synchroton radiation (SR) beamlines, mirrors of high shape accuracy is always used in grazing incidence. In nanolithograph systems, middle spatial frequency errors always lead to small-angle scattering or flare that reduces the contrast of the image. The slope error is defined for a given horizontal length, the increase or decrease in form error at the end point relative to the starting point is measured. The quality of reflective optical elements can be described by their deviation from ideal shape at different spatial frequencies. Usually one distinguishes between the figure error, the low spatial error part ranging from aperture length to 1mm frequencies, and the mid-high spatial error part from 1mm to 1 μm and from1 μm to some 10 nm spatial frequencies, respectively. Firstly, this paper will disscuss the relationship between slope error and middle spatial frequency error, which both describe the optical surface error along with the form profile. Then, experimental researches will be conducted on a high gradient precise aspheric with pitch tool, which aim to restraining the middle spatial frequency error.

  19. Investigation of High Precision Marine Pressure Sensor Based on Silicon-on-Sapphire

    Directory of Open Access Journals (Sweden)

    LI Hong-Zhi

    2016-07-01

    Full Text Available As one of parameter in marine hydrographic survey, seawater pressure plays an important role in marine research, tsunami forecast, and marine engineering equipment. In practical application, many marine parameters are also relative to pressure value, and its value is helpful to provide a complete data model. Therefore, it makes a demand for high performance of pressure sensor. In order to realize a long-term and high precision measurement, a marine pressure sensor based on silicon stain resistance is presented. This sensor applies the sapphire as substrate material to reduce the error caused by inconsistent deformation between sensitive component and substrate. A stress cup structure is designed to improve its sensitivity. By using a series of processing technology and packaging method, the structure of marine pressure sensor has a good mechanical strength and corrosion resistance. Considered that the output signal is affected by temperature drift, a new algorithm compensation is introduced. From experimental results, the output voltage of sensor is almost independent of temperature and the maximum error is controlled within 0.05 %. This high performance pressure sensor could bring a large application in marine detection.

  20. Precise Hugoniot data and EOS properties to 2 Mbars for several high-pressure standards

    Science.gov (United States)

    Mashimo, Tsutomu; Liu, Xun; Fukuno, Taisei; Katsuyama, Tatsuhiro; Zaretsky, Eugene; Nagayama, Kunihito

    2017-06-01

    Pressure calibration in static compression experiments is usually undertaken on the basis of the equation of state (EOS) of materials used as a pressure standard, such as Au, Pt, Ag, Cu, MgO, etc. derived from their Hugoniot-compression curves (Au scale, Pt scale, Ruby scale, etc.). To derive true equations of state (EOS) from these standards, precise Hugoniot data are needed, including material strength in order to drive the isothermal hydrostatic compression curve. To accomplish this objective, we have implemented a high-speed streak camera measurement system consisting of a rotating-mirror type streak camera aBnd a pulsed dye laser combined with a one-stage powder gun and a two-stage light gas gun to obtain Hugoniot curves. We achieved measurement errors for shock and particle velocities of 0.3% and 0.1%-0.2%, respectively, for each shot, which enables us to analyze the influence of shear strength and the Grüneisen parameter. We have obtained highly accurate Hugoniot data for W, Cu, Au, Pt, Ag, MgO up to 2.3 Mbars. We also performed the VISAR experiments to access the strength for several materials. In addition, we initiated a program to measure the Hugoniot data of heated samples to determine the Grüneisen parameter using a high-frequency inductive heating system. Detailed results for W, Cu, Au, etc. will be presented, and the resulting EOS and application as pressure standards will be discussed.

  1. New high precision U-Pb calibration of the late Early-Triassic (Smithian-Spathian Boundary, South China)

    Science.gov (United States)

    Widmann, Philipp; Leu, Marc; Goudemand, Nicolas; Schaltegger, Urs; Bucher, Hugo

    2017-04-01

    Following the Permian-Triassic mass extinction (PTME), the Early Triassic is characterized by large short-lived perturbations of the global carbon cycle associated with radiation and extinction pulses of the biota. More stable conditions resumed in the Middle Triassic (Anisian). The exact ages and duration of these short-lived but intense radiation-extinction events as well as carbon cycle perturbations are poorly constrained and a robust intercalibration of U-Pb dates, biochronozones and carbon isotope fluctuations is still lacking. An accurate and precise time frame is essential in order to quantify the dynamics of the underlying mechanistic processes and to assess the validity of the various explanatory scenarios. The most drastic Early Triassic extinction occurred at the Smithian-Spathian boundary (SSB) and is associated with a globally recognized sharp positive excursion of the marine d13C signal. Based on the most recently published ages for the Permian-Triassic boundary (251.938 ± 0.029 Ma, Baresel et al., 2016) and for the Early-Middle Triassic boundary (247.05 ± 0.16 Ma, Ovtcharova et al., 2015), we know the Early Triassic lasted 4.9 myr. However, neither the position of the SSB nor the durations of the major biotic and abiotic events around the SSB are constrained by radiometric dates. Here, we will present new high precision, chemical abrasion, isotope dilution, thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages from single zircon crystals, sampled from closely spaced volcanic ash layers that bracket the SSB in the Nanpanjiang Basin (Guizhou province, South China). These ash layers are found in a mixed carbonate-siliciclastic, conodont-rich sedimentary succession (Luolou Formation) that is well calibrated biochronologically. We obtained best estimates of the ages of the SSB and associated events by applying Bayesian age modelling. References: Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2016. Precise age

  2. High-precision measurement of strong-interaction effects in pionic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Thomas

    2009-06-30

    The hadronic ground state shift {epsilon}{sub 1s} and width {gamma}{sub 1s} in pionic deuterium were measured with high precision at the pion factory of the Paul Scherrer Institut (PSI), Switzerland (PSI-Experiment R-06.03). In this experiment the {pi}D(3p-1s) X-ray transition of about 3 keV was measured using a high-resolution Bragg crystal spectrometer equipped with a large-area position sensitive CCD detector. The characteristic X-radiation stems from a de-excitation cascade of the pionic atom. In order to produce an intense X-ray source, the cyclotron trap was used to stop pions in a cryogenic D{sub 2} target after winding up the pion beam in a magnetic field. The hadronic shift {epsilon}{sub 1s} is obtained from the measured transition energy by comparison to the pure electromagnetic value, where the determination of the broadening {gamma}{sub 1s} requires the precise knowledge of the spectrometer response, obtained from measurements of narrow X-ray transitions from highly ionised atoms, produced in an electron cyclotron resonance ion trap. As the formation rate is assumed to be density dependent, the {pi}D(3p-1s) X-ray energy was measured at three different D{sub 2} pressures. Another cascade process (Coulomb de-excitation) transforms the energy release of de-excitation steps into kinetic energy of the collision partners leading to a Doppler broadening of subsequent X-ray transitions. The hadronic broadening {gamma}{sub 1s} is only obtained after deconvolution of the spectrometer response function and the contributions from Doppler broadening. No energy dependence of the {pi}D(3p-1s) was found, and it is concluded that radiative de-excitation from molecular states is negligible within the experimental accuracy. Hence, the result for the shift reads {epsilon}{sub 1s} = (-2.325{+-}0.031) eV, corresponding to an accuracy of 1.3% and represents the average of the three measured densities. The uncertainty is dominated by the accuracy of the gallium K{alpha}{sub 2

  3. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Christian; Röbig, Malte [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstraße 49, 52062 Aachen (Germany)

    2016-03-09

    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limits due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.

  4. Precision electronics for a system of custom MCPs in the TORCH Time of Flight detector

    Science.gov (United States)

    Gao, R.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; Van Dijk, M.

    2017-03-01

    The TORCH detector will provide charged particle pi/K/p identification up to 10 GeV/c, combining Time-of-Flight and Cherenkov techniques to achieve a timing resolution of 70 ps for single photons. Based on a scalable design, a Time-of-Flight electronics readout system has been developed to instrument a novel customized 512-channel Micro Channel Plate (MCP) device. A Gigabit Ethernet-based readout scheme that operates the TORCH demonstration unit consisting of ten such MCPs will be reported. The trigger and clock distribution will also be discussed.

  5. A precision test of Lorentz invariance using room-temperature high-finesse optical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, Christian

    2009-10-28

    necessary, since a tilt of the resonators with respect to the local direction of gravitation leads to a shift of the resonance frequencies. Finally, servo systems have been implemented to stabilize the optical power circulating in the resonators and the temperature of the setup. The complete experiment can be actively rotated by means of an high precision air bearing rotation table, which allows for a considerable increase of the rate of data taking as compared to a stationary system. This allows for a comparatively fast reduction of statistical errors. Another advantage of the active rotation is the relaxation of stability demands for long timescales. A high frequency stability is needed on a timescale of half a rotation, here {approx} 45 s, while for stationary systems it would be 12 hours since one has to rely on the rotation of the earth. With the setup just described we have performed measurements between march 2008 and may 2009 yielding {approx} 135000 rotations distributed over the entire timespan. This data was analyzed according to two different test theories, the Robertson-Mansouri-Sexl theory (RMS) and the Standard Modell extension (SME). Within the RMS theory a single parameter combination ({delta} - {beta} + 1/2) describes a possible anisotropy. For an isotropic speed of light it equals zero. We determined an upper limit of ({delta} - {beta} + 1/2) {<=} 8 . 10{sup -12} corresponding to a relative anisotropy of the speed of light below (1)/(2) vertical stroke {delta}c({pi}/2)/c vertical stroke {<=} 6 . 10{sup -18} (1{sigma} bounds). This value is more than one order of magnitude smaller than the values published so far. Within the framework of the SME we could determine 8 parameters describing a possible violation of the Lorentz invariance by photons. Upper limits for these parameters could be improved considerably compared to the experimental predecessor of the setup and to the values determined by other groups. Parts of this thesis have already been published

  6. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    Science.gov (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  7. Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications

    Science.gov (United States)

    Cho, Hyung J.; Sukhatme, Kalyani G.; Mahoney, John C.; Penanen, Konstantin Penanen; Vargas, Rudolph, Jr.

    2010-01-01

    A method allows combining the functions of a heater and a thermometer in a single device, a thermistor, with minimal temperature read errors. Because thermistors typically have a much smaller thermal mass than the objects they monitor, the thermal time to equilibrate the thermometer to the temperature of the object is typically much shorter than the thermal time of the object to change its temperature in response to an external perturbation.

  8. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    Science.gov (United States)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  9. Advanced navigation and guidance for high-precision planetary landing on Mars

    Science.gov (United States)

    Levesque, Jean-Francois

    Several international missions scheduled for years 2011--2013 have as objective a Mars surface sample return to Earth. In order to gather samples of high scientific quality, these missions require precise landing at preselected locations on Mars. Since the previous missions on Mars have flown unguided and highly inaccurate atmospheric entry, a new generation of landing systems must be developed. It was demonstrated by Wolf et al., [2004] that the most efficient way to increase the landing accuracy is achieved during the atmospheric entry by steering the vehicle trajectory in order to eliminate the dispersions caused at entry and accumulated during the hypersonic phase. Thus, the research project proposed here will investigate the problem and bring advances on atmospheric entry navigation, guidance and control techniques applied to atmospheric entry on Mars. The state-of-the-art revealed several limitations on the current techniques such as the lack of proper navigation system and the inability to guide the trajectory efficiently in presence of disturbances and entry conditions uncertainties. On the theoretical side, the nonlinear state estimators required for navigation use algorithms that are a heavy computational burden for the onboard processor. Following these limitations, the research presented in this document is conducted along three paths: estimation theory, entry navigation techniques and entry guidance techniques in order to investigate on advances to achieve high precision landing. After an in-depth investigation of the theoretical background required to understand the atmospheric entry dynamics, a number of issues are addressed and the following substantial contributions regarding Mars atmospheric entry navigation and guidance are achieved. (C1) A theoretical improvement of the unscented Kalman Filter by merging two variants in the literature. The resulting technique has the advantages of both former algorithms. (C2) Four navigation concepts using

  10. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N=40

    Energy Technology Data Exchange (ETDEWEB)

    Guenaut, C.; Audi, G. [CSNSM-IN2P3-CNRS, 91405 Orsay-Campus (France); Beck, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)] (and others)

    2007-01-15

    High-precision mass measurement of more than thirty neutron-rich nuclides around the Z=28 closed proton shell were performed with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN to address the question of a possible neutron shell closure at N=40. The results for {sup 57,60,64-69}Ni, {sup 65-74,76}Cu (Z=29), and {sup 63-65,68-78}Ga (Z=31), have a relative uncertainty of the order of 10{sup -8}. In particular, the masses of {sup 72-74,76}Cu have been measured for the first time. We analyse the resulting mass surface for signs of magicity, comparing the behavior of N=40 to that of known magic numbers and to mid-shell behavior. Contrary to nuclear spectroscopy studies, no indications of a shell or sub-shell closure are found for N=40. (authors)

  11. Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method

    Science.gov (United States)

    Cowan, Nicholas

    2017-04-01

    Uptake (or negative flux) of nitrous oxide (N2O) in agricultural soils is a controversial issue which has proved difficult to investigate in the past due to constraints such as instrumental precision and methodological uncertainties. Using a recently developed high-precision quantum cascade laser gas analyser combined with a closed dynamic chamber, a well-defined detection limit of 4 μgN2O-Nm

  12. Development of Models for High Precision Simulation of the Space Mission Microscope

    Science.gov (United States)

    Bremer, Stefanie; List, Meike; Selig, Hanns; Lämmerzahl, Claus

    MICROSCOPE is a French space mission for testing the Weak Equivalence Principle (WEP). The mission goal is the determination of the Eötvös parameter with an accuracy of 10-15. This will be achieved by means of two high-precision capacitive differential accelerometers, that are built by the French institute ONERA. At the German institute ZARM drop tower tests are carried out to verify the payload performance. Additionally, the mission data evaluation is prepared in close cooperation with the French partners CNES, ONERA and OCA. Therefore a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the WEP violation signal. Currently, the High Performance Satellite Dynamics Simulator (HPS), a cooperation project of ZARM and the DLR Institute of Space Systems, is adapted to the MICROSCOPE mission for the simulation of test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, too. Furthermore detailed modeling of the on-board capacitive sensors is done.

  13. Fast and high precision algorithms for optimization in large-scale genomic problems.

    Science.gov (United States)

    Mester, D I; Ronin, Y I; Nevo, E; Korol, A B

    2004-10-01

    There are several very difficult problems related to genetic or genomic analysis that belong to the field of discrete optimization in a set of all possible orders. With n elements (points, markers, clones, sequences, etc.), the number of all possible orders is n!/2 and only one of these is considered to be the true order. A classical formulation of a similar mathematical problem is the well-known traveling salesperson problem model (TSP). Genetic analogues of this problem include: ordering in multilocus genetic mapping, evolutionary tree reconstruction, building physical maps (contig assembling for overlapping clones and radiation hybrid mapping), and others. A novel, fast and reliable hybrid algorithm based on evolution strategy and guided local search discrete optimization was developed for TSP formulation of the multilocus mapping problems. High performance and high precision of the employed algorithm named guided evolution strategy (GES) allows verification of the obtained multilocus orders based on different computing-intensive approaches (e.g., bootstrap or jackknife) for detection and removing unreliable marker loci, hence, stabilizing the resulting paths. The efficiency of the proposed algorithm is demonstrated on standard TSP problems and on simulated data of multilocus genetic maps up to 1000 points per linkage group.

  14. An approach to segment lung pleura from CT data with high precision

    Science.gov (United States)

    Angelats, E.; Chaisaowong, K.; Knepper, A.; Kraus, T.; Aach, T.

    2008-03-01

    A new approach to segment pleurae from CT data with high precision is introduced. This approach is developed in the segmentation's framework of an image analysis system to automatically detect pleural thickenings. The new technique to carry out the 3D segmentation of lung pleura is based on supervised range-constrained thresholding and a Gibbs-Markov random field model. An initial segmentation is done using the 3D histogram by supervised range-constrained thresholding. 3D connected component labelling is then applied to find the thorax. In order to detect and remove trachea and bronchi therein, the 3D histogram of connected pulmonary organs is modelled as a finite mixture of Gaussian distributions. Parameters are estimated using the Expectation-Maximization algorithm, which leads to the classification of that pulmonary region. As consequence left and right lungs are separated. Finally we apply a Gibbs-Markov random field model to our initial segmentation in order to achieve a high accuracy segmentation of lung pleura. The Gibbs- Markov random field is combined with maximum a posteriori estimation to estimate optimal pleural contours. With these procedures, a new segmentation strategy is developed in order to improve the reliability and accuracy of the detection of pleural contours and to achieve a better assessment performance of pleural thickenings.

  15. A high-precision digital integrator based on the Romberg algorithm

    Science.gov (United States)

    Li, Zhen-Hua; Hu, Wei-Zhong

    2017-04-01

    An integrator is widely used for measurement in the field of power systems, and it is a key technology in signal processing. According to research on the digital integrator based on the traditional Newton-Cotes algorithm, the high-frequency response of the low-order Cotes formula is usually poor and the design of the transfer function introduced by the high-order Cotes formula is too complex. In this paper, we analyze the error between the composite Newton-Cotes algorithm and the ideal transfer function. One signal was sampled using the normal sampling frequency and the other signal was sampled using half the normal sampling frequency. The two signals were weighted based on the Romberg algorithm. Thus, the precision of the digital integrator was improved, and the design difficulty was reduced for algorithms of the same order. The simulation and test results show that the proposed digital integrator has better transient and steady performance, and also has a lower error, which is less than 0.01%.

  16. High Precision Temperature Insensitive Strain Sensor Based on Fiber-Optic Delay

    Directory of Open Access Journals (Sweden)

    Ning Yang

    2017-05-01

    Full Text Available A fiber-optic delay based strain sensor with high precision and temperature insensitivity was reported, which works on detecting the delay induced by strain instead of spectrum. In order to analyze the working principle of this sensor, the elastic property of fiber-optic delay was theoretically researched and the elastic coefficient was measured as 3.78 ps/km·με. In this sensor, an extra reference path was introduced to simplify the measurement of delay and resist the cross-effect of environmental temperature. Utilizing an optical fiber stretcher driven by piezoelectric ceramics, the performance of this strain sensor was tested. The experimental results demonstrate that temperature fluctuations contribute little to the strain error and that the calculated strain sensitivity is as high as 4.75 με in the range of 350 με. As a result, this strain sensor is proved to be feasible and practical, which is appropriate for strain measurement in a simple and economical way. Furthermore, on basis of this sensor, the quasi-distributed measurement could be also easily realized by wavelength division multiplexing and wavelength addressing for long-distance structure health and security monitoring.

  17. Performance of Precision Mobile Drip Irrigation in the Texas High Plains Region

    Directory of Open Access Journals (Sweden)

    Susan A. O’Shaughnessy

    2017-10-01

    Full Text Available Mobile drip irrigation (MDI technology adapts driplines to the drop hoses of moving sprinkler systems to apply water as the drip lines are pulled across the field. There is interest in this technology among farmers in the Texas High Plains region to help sustain irrigated agriculture. However, information on the performance of this system and its benefits relative to common sprinkler application technologies in the region are limited. A two-year study was conducted in 2015 and 2016 to compare grain yields, crop water use (ETc and water use efficiency (WUE of corn (Zea Mays L. irrigated with MDI, low elevation spray application (LESA and low energy precision application (LEPA methods. Irrigation amounts for each application method were based on weekly neutron probe readings. In both years, grain yield and yield components were similar among application treatment methods. Although WUE was similar for the MDI treatment plots compared with LEPA and LESA during the wet growing season (2015, MDI demonstrated improved WUE during the drier year of 2016. Additional studies using crops with less than full canopy cover at maturity (sorghum and cotton are needed to document the performance of MDI in the Texas High Plains region.

  18. Scanning near-field lithography with high precision flexure orientation stage control

    Science.gov (United States)

    Qin, Jin; Zhang, Liang; Tan, Haosen; Wang, Liang

    2017-09-01

    A new design of an orientation stage for scanning near-field lithography is presented based on flexure hinges. Employing flexure mechanisms in place of rigid-body mechanisms is one of the most promising techniques to efficiently implement high precision motion and avoid problems caused by friction. For near-field scanning lithography with evanescent wave, best resolution can be achieved in contact mode. However, if the mask is fixed on a rigid stage, contact friction will deteriorate the lithography surface. To reduce friction while maintaining good contact between the mask and the substrate, the mask should be held with high lateral stiffness and low torsion stiffness. This design can hold the mask in place during the scanning process and achieve passive alignment. Circular flexure hinges, whose parameters are determined by motion requirements based on Schotborgh's equation, are used as the basic unit of the stage to achieve passive alignment by compensating motions from elastic deformation. A finite-element analysis is performed to verify this property of the stage. With the aid of this stage, 21 nm resolution is achieved in static near-field lithography and 18 nm line-width in scanning near-field lithography.

  19. High-precision solution to the moving load problem using an improved spectral element method

    Science.gov (United States)

    Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li

    2017-06-01

    In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

  20. Precise and accurate train run data: Approximation of actual arrival and departure times

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    possible with the present systems. GPS data from a major Danish Railway Undertaking is used as an alternate data source with more accurate arrival and departure times. The offset is based on the median of the time difference between these two sources. Factors taken into consideration when constructing...... the correction function, are location, message type, platform used and train type. The approximated correction values are then analysed to ensure that interquartile range is within the defined criteria. The practical implementation is an additional column in the train run history database tables...