WorldWideScience

Sample records for high precision superconducting

  1. Experimental setup for precise measurement of losses in high-temperature superconducting transformer

    Janu, Z.; Wild, J.; Repa, P.; Jelinek, Z.; Zizek, F.; Peksa, L.; Soukup, F.; Tichy, R.

    2006-10-01

    A simple cryogenic system for testing of the superconducting power transformer was constructed. Thermal shielding is provided by additional liquid nitrogen bath instead of super-insulation. The system, together with use of a precise nitrogen liquid level meter, permitted calorimetric measurements of losses of the 8 kVA HTS transformer with a resolution of the order of 0.1 W.

  2. Experimental setup for precise measurement of losses in high-temperature superconducting transformer

    Janů, Zdeněk; Wild, J.; Řepa, P.; Jelínek, Z.; Žížek, F.; Peksa, L.; Soukup, František; Tichý, Rudolf

    2006-01-01

    Roč. 46, - (2006), s. 759-761 ISSN 0011-2275 R&D Projects: GA ČR GA102/05/0942 Institutional research plan: CEZ:AV0Z10100520 Keywords : superconducting transformer * AC losses * calorimeters Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.927, year: 2006

  3. High-temperature superconductivity

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  4. High temperature interface superconductivity

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  5. High-temperature superconductivity

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  6. High field superconducting magnets

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  7. High gradient superconducting quadrupoles

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  8. Superconductivity at high pressures

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  9. Modern high-temperature superconductivity

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  10. A Superconducting Magnet UCN Trap for Precise Neutron Lifetime Measurements.

    Picker, R; Altarev, I; Bröcker, J; Gutsmiedl, E; Hartmann, J; Müller, A; Paul, S; Schott, W; Trinks, U; Zimmer, O

    2005-01-01

    Finite-element methods along with Monte Carlo simulations were used to design a magnetic storage device for ultracold neutrons (UCN) to measure their lifetime. A setup was determined which should make it possible to confine UCN with negligible losses and detect the protons emerging from β-decay with high efficiency: stacked superconducting solenoids create the magnetic storage field, an electrostatic extraction field inside the storage volume assures high proton collection efficiency. Alongside with the optimization of the magnetic and electrostatic design, the properties of the trap were investigated through extensive Monte Carlo simulation.

  11. Theory of high temperature superconductivity

    Srivastava, C.M.

    1989-01-01

    This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown

  12. Precise Thermometry for Next Generation LHC Superconducting Magnet Prototypes

    Datskov, V; Bottura, L; Perez, J C; Borgnolutti, F; Jenninger, B; Ryan, P

    2013-01-01

    The next generation of LHC superconducting magnets is very challenging and must operate in harsh conditions: high radiation doses in a range between 10 and 50 MGy, high voltage environment of 1 to 5 kV during the quench, dynamic high magnetic field up to 12 T, dynamic temperature range 1.8 K to 300 K in 0.6 sec. For magnet performance and long term reliability it is important to study dynamic thermal effects, such as the heat flux through the magnet structure, or measuring hot spot in conductors during a magnet quench with high sampling rates above 200 Hz. Available on the market cryogenic temperature sensors comparison is given. An analytical model for special electrically insulating thermal anchor (Kapton pad) with high voltage insulation is described. A set of instrumentation is proposed for fast monitoring of thermal processes during normal operation, quenches and failure situations. This paper presents the technology applicable for mounting temperature sensors on high voltage superconducting (SC) cables....

  13. Superconductivity

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  14. Some theories of high temperature superconductivity

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  15. High-Tc superconducting electric motors

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  16. Superconductivity from magnetic elements under high pressure

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  17. Superconductivity

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  18. High current and high power superconducting rectifiers

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  19. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-01-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al 2 O 3 , Cu, MgO, Nb and Si

  20. Superconductivity

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  1. Superconductivity

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  2. High Temperature Superconducting Underground Cable

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  3. Superconductivity

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  4. Gauge Model of High-Tc Superconductivity

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  5. Superconductivity

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  6. Superconducting magnets in high energy physics

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  7. Superconductivity in high energy particle accelerators

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  8. Superconductivity

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  9. Development of high field superconducting magnet

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  10. High precision redundant robotic manipulator

    Young, K.K.D.

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs

  11. High-current applications of superconductivity

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  12. Magnetic and Superconducting Materials at High Pressures

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  13. Use of high-temperature superconducting films in superconducting bearings

    Cansiz, A.

    1999-01-01

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J c , and because HTS films typically have much higher J c than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model

  14. Superconductivity

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  15. High voltage superconducting switch for power application

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  16. Superconductivity of high Tc Scientific revolution?

    Marquina, J.E.; Ridaura, R.; Gomez, R.; Marquina, V.; Alvarez, J.L.

    1997-01-01

    A short history of superconductivity, since its discovery by Bednorz and Muller to the development of new materials with high transition temperatures, is presented. Further evolvements are analyzed in terms of T.s. Kuhn conceptions expressed in his book. The Structure of Scientific Revolutions. (Author) 4 refs

  17. The discovery of high temperature superconductivity

    Muller, K. A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba, La, Cu, O and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed. 30 refs

  18. The discovery of high temperature superconductivity

    Muller, K.A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba La Cu O, and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed [fr

  19. High precision anatomy for MEG.

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-02-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. © 2013. Published by Elsevier Inc. All rights reserved.

  20. High precision anatomy for MEG☆

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-01-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1 mm. Estimates of relative co-registration error were < 1.5 mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6 month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5 mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. PMID:23911673

  1. Mechanisms of conventional and high Tc superconductivity

    Kresin, V.L.; Morawitz, H.; Wolf, S.A.

    1993-01-01

    This book gives a careful and objective review of theories of superconductivity in traditional superconductors, organics, and high Tc cuprates. Of course, the authors do still present their own theories of cuprate superconductivity, but only in the final chapter after other possibilities have been discussed. The book should be especially useful for researchers entering the field of high Tc superconductivity. The reviews of photon mediated pairing and strong coupling theory are very welcome, since much of this material has not been reviewed since the classic 1969 volume edited by Parks. In particular the authors dispel the various myths that phonon mediated pairing leads to upper bounds on Tc. In addition to phonon mediated pairing the book discussed in detail pairing due to exchange of acoustic (demon) plasmons, excitons, or magnetic fluctuations. There have been so many diverse mechanisms based on strong correlation and large U Hubbard models that a book like this can only discuss a limited selection of the main contenders. In particular here the emphasis on Fermi liquid based models no doubt reflects the authors' own point of view. A whole chapter discusses the concepts of induced superconductivity, in the proximity effect, and its application to materials with several different electronic subsystems

  2. Stable superconducting magnet. [high current levels below critical temperature

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  3. Superconductivity

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  4. High precision Standard Model Physics

    Magnin, J.

    2009-01-01

    The main goal of the LHCb experiment, one of the four large experiments of the Large Hadron Collider, is to try to give answers to the question of why Nature prefers matter over antimatter? This will be done by studying the decay of b quarks and their antimatter partners, b-bar, which will be produced by billions in 14 TeV p-p collisions by the LHC. In addition, as 'beauty' particles mainly decay in charm particles, an interesting program of charm physics will be carried on, allowing to measure quantities as for instance the D 0 -D-bar 0 mixing, with incredible precision.

  5. High transition temperature superconducting integrated circuit

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  6. High {Tc} superconductivity: Symmetries and reflections

    Zhang, S.C.

    1999-01-01

    This is a talk given at the Symposium Symmetries and Reflections, dedicated to Prof. C.N. Yang's retirement. In this talk, the author reflects on his personal interaction with Prof. Yang since his graduate career at SUNY Stony Brook, and his profound impact on his understanding of theoretical physics. He also reviews the SO(5) theory of high T c superconductivity and shows how his collaboration with Prof. Yang in 1990 lead to the foundation of this idea

  7. High Accelerating Field Superconducting Radio Frequency Cavities

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  8. Optically activated high Tc superconducting microbolometer

    Yefremenko, V; Gordiyenko, E; Shustakova, G; Bader, S D; Karapetrov, G; Novosad, V

    2006-01-01

    A laser beam, precisely focused on the patterned superconducting structure, was used to nucleate a resistive area that is sensitive to external thermal effects. The electron beam lithography and wet chemical etching were applied as pattern transfer processes in epitaxial Y-Ba-Cu-O films. Two different sensor designs were tested: (i) 3 millimeters long and 40 micrometers wide stripe and (ii) 1.25 millimeters long, and 50 micron wide meander -like structure. It is shown experimentally that scanning the laser beam along the stripe leads to physical displacement of the sensitive area and, therefore may be used as a basis for imaging over a broad spectral range. For example, patterning the superconducting film into a meander structure is equivalent to a two-dimensional detector array. In additional to the simplicity of the detector fabrication sequence (one step mask transfer), a clear advantage of this approach is the simplicity of the read-out process: an image is formed by registering the signal with only two electrical terminals. The proposed approach can be extended for imaging over a wide spectral range

  9. Research briefing on high-temperature superconductivity

    1987-10-01

    The research briefing was prepared in response to the exciting developments in superconductivity in ceramic oxide materials announced earlier in 1987. The panel's specific charge was to examine not only the scientific opportunities in high-temperature superconductivity but also the barriers to commercial exploitation. While the base of experimental knowledge on the superconductors is growing rapidly, there is as yet no generally accepted theoretical explanation of their behavior. The fabrication and processing challenges presented by the materials suggest that the period or precommercial exploration for applications will probably extend for a decade or more. Near term prospects for applications include magnetic shielding, the voltage standard, superconducting quantum interference devices, infrared sensors, microwave devices, and analog signal processing. The panel also identified a number of longer-term prospects in high-field and large-scale applications, and in electronics. The United States' competitive position in the field is discussed, major scientific and technological objectives for research and development identified, and concludes with a series of recommendations.

  10. Aspects of high temperature superconductivity

    Deutscher, G.

    1989-01-01

    We present some remarks on special features that distinguish the phenomenology of the new high T c oxides from that of the conventional superconductors. They include a measurable width of the critical region and a high sensitivity to crystallographic defects. A consistent Landau Ginsburg interpretation is possible, with a short coherence length <15 A and a penetration depth <900 A. The latter is somewhat smaller than the currently accepted value, and implies a broad band scheme

  11. Superconductivity

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  12. High - speed steel for precise cased tools

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  13. Superconducting high frequency high power resonators

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  14. High precision thermal neutron detectors

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  15. High-temperature superconducting conductors and cables

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  16. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    Mazierska, Janina; Ledenyov, Dimitri; Jacob, Mohan V; Krupka, Jerzy

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO 3 post dielectric resonator with DyBa 2 Cu 3 O 7 end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10 -6 . The tested MgO substrates exhibited the average relative permittivity of 9.63 and tanδ from 3.7 x 10 -7 to 2 x 10 -5 at frequency of 10.5 GHz in the temperature range from 14 to 80 K

  17. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    Mazierska, Janina [Institute of Information Sciences and Technology, Massey University, Palmerston North, P. Bag 11222 (New Zealand); Ledenyov, Dimitri [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Jacob, Mohan V [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Krupka, Jerzy [Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej, Koszykowa 75, 00-662 Warsaw (Poland)

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO{sub 3} post dielectric resonator with DyBa{sub 2}Cu{sub 3}O{sub 7} end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10{sup -6}. The tested MgO substrates exhibited the average relative permittivity of 9.63 and tan{delta} from 3.7 x 10{sup -7} to 2 x 10{sup -5} at frequency of 10.5 GHz in the temperature range from 14 to 80 K.

  18. High Tc superconducting energy storage systems

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  19. A study on the development of high Tc superconducting materials

    Won, D. Y.; Hong, G. Y.; Lee, H. G.; Lee, H. J.; Kim, C. J.; Kwon, S. C.; Kim, K. B.; Kang, Y. H.; Chang, I. S.; Choi, M. J.

    1992-01-01

    The major work of this project aims to develop the frictionless superconducting bearing with a high speed. The high magnetization YBaCuO bulk superconductor was prepared by Quasi-melt process. The frictionless superconducting magnetic bearing standed a rotating bar with a speed of 75,000 rpm, which were operated by an electric controller. The low temperature chemical vapor deposition technique was developed. YBaCuO superconducting film showing a superconductivity above 77K was successfully prepared at 650 deg C. Effect of oxygen partial pressure, substrate, deposition temperature on the film properties were also investigated. (Author)

  20. Use of high current density superconducting coils in fusion devices

    Green, M.A.

    1979-11-01

    Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost

  1. Superconductivity

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  2. Overlap junctions for high coherence superconducting qubits

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  3. Permanent magnet design for high-speed superconducting bearings

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  4. Permanent magnet design for high-speed superconducting bearings

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs

  5. Quasiparticles in the superconducting state of high-Tc metals

    Amusia, M.Ya.; Shaginyan, V.R.

    2003-01-01

    The behavior of quasiparticles in the superconducting state of high-T c metals within the framework of the theory of superconducting state based on the fermion condensation quantum phase transition is considered. It is shown that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as Landau-Fermi liquid. These observations are in good agreement with recent experimental facts [ru

  6. High-Precision Computation and Mathematical Physics

    Bailey, David H.; Borwein, Jonathan M.

    2008-01-01

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  7. High temperature superconductivity space experiment (HTSSE)

    Nisenoff, M.; Gubser, D.V.; Wolf, S.A.; Ritter, J.C.; Price, G.

    1991-01-01

    The Naval Research Laboratory (NRL) is exploring the feasibility of deploying high temperature superconductivity (HTS) devices and components in space. A variety of devices, primarily passive microwave and millimeter wave components, have been procured and will be integrated with a cryogenic refrigerator system and data acquisition system to form the space package, which will be launched late in 1992. This Space Experiment will demonstrate that this technology is sufficiently robust to survive the space environment and has the potential to significantly improved space communications systems. The devices for the initial launch (HTSSE-I) have been received by NRL and evaluated electrically, thermally and mechanically and will be integrated into the final space package early in 1991. In this paper the performance of the devices are summarized and some potential applications of HTS technology in space system are outlined

  8. High temperature superconductivity and cold fusion

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  9. High temperature superconducting Maglev equipment on vehicle

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  10. Superconducting niobium cavities with high gradients

    Kneisel, P.; Saito, K.

    1992-01-01

    Present accelerator projects making use of superconducting cavity technology are constructed with design accelerating gradients E acc ranging between 5 MV/m and 8 MV/m and Q-values of several 10 9 . Future plans for upgrades of existing accelerators or for linear colliders call for gradients greater than 15 MV/m corresponding to peak surface electric fields above 30 MV/m. These demands challenge state-of-the-art production technology and require improvements in processing and handling of these cavities to overcome the major performance limitation of field emission loading. This paper reports on efforts to improve the performance of cavities made from niobium from different suppliers by using improved cleaning techniques after processing and ultrahigh vacuum annealing at temperatures of 1400 C. In single cell L-band cavities peak surface electric fields as high as 50 MV/m have been measured without significant field emission loading. (Author) 8 refs., fig

  11. Superconducting magnets for high energy storage rings

    Sampson, W.B.

    1977-01-01

    Superconducting dipole and quadrupole magnets were developed for the proton-proton intersecting storage accelerator ISABELLE. Full size prototypes of both kinds of magnets were constructed and successfully tested. The coils are fabricated from a single layer of wide braided superconductor and employ a low temperature iron core. This method of construction leads to two significant performance advantages; little or no training, and the ability of the coil to absorb its total magnetic stored energy without damage. A high pressure (15 atm) helium gas system is used for cooling. Measurements of the random field errors are compared with the expected field distribution. Three magnets (two dipoles and one quadrupole) were assembled into a segment of the accelerator ring structure (half cell). The performance of this magnet array, which is coupled in series both electrically and cryogenically, is also summarized

  12. High-Density Superconducting Cables for Advanced ACTPol

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  13. High-Density Superconducting Cables for Advanced ACTPol

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; hide

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.

  14. Superconductivity

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  15. High-field superconducting nested coil magnet

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  16. High-speed precision motion control

    Yamaguchi, Takashi; Pang, Chee Khiang

    2011-01-01

    Written for researchers and postgraduate students in Control Engineering, as well as professionals in the Hard Disk Drive industry, this book discusses high-precision and fast servo controls in Hard Disk Drives (HDDs). The editors present a number of control algorithms that enable fast seeking and high precision positioning, and propose problems from commercial products, making the book valuable to researchers in HDDs. Each chapter is self contained, and progresses from concept to technique, present application examples that can be used within automotive, aerospace, aeronautical, and manufactu

  17. Structural alloys for high field superconducting magnets

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  18. High precision, rapid laser hole drilling

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  19. High precision detector robot arm system

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  20. Automatic titrator for high precision plutonium assay

    Jackson, D.D.; Hollen, R.M.

    1986-01-01

    Highly precise assay of plutonium metal is required for accountability measurements. We have developed an automatic titrator for this determination which eliminates analyst bias and requires much less analyst time. The analyst is only required to enter sample data and start the titration. The automated instrument titrates the sample, locates the end point, and outputs the results as a paper tape printout. Precision of the titration is less than 0.03% relative standard deviation for a single determination at the 250-mg plutonium level. The titration time is less than 5 min

  1. A high temperature superconducting impulse generator

    Locker, J.R.; Geers, S.

    1992-01-01

    A mechanism based upon the Superconducting Vector Switch (SVS) effect displays the property of impulse generation. In this paper the principle of operation of this impulse generator is discussed. Experimental results and analytical predictions are presented

  2. Bi-based superconducting fibers with high critical parameters

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  3. High-Tc cuprate superconductivity in a nutshell

    Won, Hyekyung; Haas, Stephan; Parker, David; Maki, Kazumi

    2005-01-01

    Since the discovery of high-T c cuprate superconductivity in 1986 many new experimental techniques and theoretical concepts have been developed. In particular it was shown that the BCS theory of d-wave superconductivity describes semi-quantitatively the high-T c superconductivity. Furthermore, it was demonstrated that Volovik's approach is extremely useful for finding the quasiparticle properties in the vortex state. Here we survey these developments and forecast future directions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. High-T{sub c} cuprate superconductivity in a nutshell

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David; Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States)

    2005-02-01

    Since the discovery of high-T{sub c} cuprate superconductivity in 1986 many new experimental techniques and theoretical concepts have been developed. In particular it was shown that the BCS theory of d-wave superconductivity describes semi-quantitatively the high-T{sub c} superconductivity. Furthermore, it was demonstrated that Volovik's approach is extremely useful for finding the quasiparticle properties in the vortex state. Here we survey these developments and forecast future directions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Introduction to superconductivity and high-Tc materials

    Cyrot, M.; Pavuna, D.

    1991-01-01

    What sets this book apart from other introductions to superconductivity and high-T c materials is its pragmatic approach. In this book the authors describe all relevant superconducting phenomena and rely on the macroscopic Ginzburg-Landau theory to derive the most important results. Examples are chosen from selected conventional superconductors like NbTi and compared to those high-T c materials. The text should be of interest to non-specialists in superconductivity either as a textbook for those entering the field (one semester course) or as researchers in advanced technologies and even some managers of interdisciplinary research projects

  6. Superatom representation of high-TC superconductivity

    Panas, Itai

    2012-01-01

    A “super-atom” conceptual interface between chemistry and physics is proposed in order to assist in the search for higher T C superconductors. The plaquettes generating the checkerboard superstructure in the cuprates, the C 60 molecules in K 3 C 60 , and the Mo 6 S 8 2- clusters in Chevrel phase materials offer such candidate super-atoms. Thus, in the present study high-T C superconductivity HTSC is articulated as the entanglement of two disjoint electronic manifolds in the vicinity of a common Fermi energy. The resulting HTSC ground state couples near-degenerate protected local super-atom states to virtual magnons in an antiferromagnetic AFM embedding. The composite Cooper pairs emerge as the interaction particles for virtual magnons mediated “self-coherent entanglement” of super-atom states. A Hückel type resonating valence bond RVB formalism is employed in order to illustrate the real-space Cooper pairs as well as their delocalization and Bose Einstein condensation BEC on a ring of super-atoms. The chemical potential μ BEC for Cooper pairs joining the condensate is formulated in terms of the super-exchange interaction, and consequently the T C in terms of the Neél temperature. A rationale for the robustness of the HTSC ground state is proposed: achieving local maximum “electron correlation entropy” at the expense of non-local phase rigidity.

  7. Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson Effects and Implications for Precise Measuring of Proposed Gravity Effects

    Noever, David A.; Koczor, Ronald J.

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.

  8. Fiber Scrambling for High Precision Spectrographs

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  9. Design considerations for high-current superconducting ion linacs

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  10. High critical temperature superconducting composite and fabrication process

    Dubots, P.; Legat, D.

    1989-01-01

    The core comprises a high temperature superconducting sintered oxide coated with alumina or barium oxide covered with a first sheath in aluminum, a second sheath in niobium and a third sheath in copper [fr

  11. Leaders in high temperature superconductivity commercialization win superconductor industry award

    2007-01-01

    CERN's Large Hadron Collider curretn leads project head Amalia Ballarino named superconductor industry person of the year 2006. Former high temperature superconductivity program manager at the US Department of energy James Daley wins lifetime achievement award. (1,5 page)

  12. Second international Israeli conference on High Tc Superconductivity

    1993-01-01

    The superconductivity fields covered in this conference are: theory, applications, devices, flux properties high frequencies, Josephson junctions, magnetism, material sciences and physical properties of superconductors, spectroscopy and resonances and thin films

  13. Transmission Level High Temperature Superconducting Fault Current Limiter

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  14. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  15. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M.

    2013-01-01

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  16. On the superconducting phase diagram of high Tc superconductors

    de la Cruz, F.

    1990-01-01

    The tendency of oxide superconductors to show granularity has been pointed out since the beginning of research on superconductivity in this type of materials. Nevertheless, only very recently the full phase diagram and characteristics of the grains have been determined. In this paper, the authors review and discuss the different critical fields and their relation to the transport of superconducting current. The superconducting response of single crystals of High Tc superconductors is discussed. Special attention is devoted to the behavior of the vortex lattice and, in particular, to the recent discovery of the quenching of H c1 in YBaCuO, several degrees below Tc

  17. Superconducting niobium in high rf magnetic fields

    Mueller, G.

    1988-01-01

    The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table

  18. High power density superconducting motor for control applications

    Lopez, J; Granados, X; Lloberas, J; Torres, R; Grau, J; Maynou, R; Bosch, R

    2008-01-01

    A high dynamics superconducting low power motor for control applications has been considered for design. The rotor is cylindrical with machined bulks that generate the field by trapping flux in a four poles configuration. The toothless iron armature is wound by copper, acting iron only as magnetic screen. Details of the magnetic assembling, cryogenics and electrical supply conditioning will be reported. Improvements due to the use of a superconducting set are compared with performances of equivalent conventional motors

  19. Raman scattering and luminescence of high-Tc superconducting oxides

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  20. Alternative designs of high-temperature superconducting synchronous generators

    Goddard, K. F.; Lukasik, B.; Sykulski, J. K.

    2010-01-01

    This paper discusses the different possible designs of both cored and coreless superconducting synchronous generators using high-temperature superconducting (HTS) tapes, with particular reference to demonstrators built at the University of Southampton using BiSCCO conductors. An overview of the electromagnetic, thermal, and mechanical issues is provided, the advantages and drawbacks of particular designs are highlighted, the need for compromises is explained, and practical solutions are offer...

  1. Hall probe for measuring high currents in superconducting coils

    Ferendeci, A.M.

    1986-01-01

    Constructional details of a compact Hall probe for measuring high currents in superconducting coils are given. The Hall probe is easy to assemble and can be inserted or removed from the system without breaking the superconducting loop. Upper current limit of the probe can be increased by using larger magnetic core material. Shielding becomes necessary if the probe holder is to be placed near large current dependent magnetic fields

  2. Recent high precision surveys at PEP

    Sah, R.C.

    1980-12-01

    The task of surveying and aligning the components of PEP has provided an opportunity to develop new instruments and techniques for the purpose of high precision surveys. The new instruments are quick and easy to use, and they automatically encode survey data and read them into the memory of an on-line computer. When measurements of several beam elements have been taken, the on-line computer analyzes the measured data, compares them with desired parameters, and calculates the required adjustments to beam element support stands

  3. Pair Fermi contour and high-temperature superconductivity

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  4. Digitalization of highly precise fluxgate magnetometers

    Cerman, Ales; Kuna, A.; Ripka, P.

    2005-01-01

    This paper describes the theory behind all three known ways of digitalizing the fluxgate magnetometers: analogue magnetometers with digitalized output using high resolution ADC, application of the delta-sigma modulation to the sensor feedback loop and fully digital signal detection. At present time...... the Delta-Sigma ADCs are mostly used for the digitalization of the highly precise fluxgate magnetorneters. The relevant part of the paper demonstrates some pitfalls of their application studied during the design of the magnetometer for the new Czech scientific satellite MIMOSA. The part discussing...... the application of the A-E modulation to the sensor feedback loop theoretically derives the main advantage of this method-increasing of the modulation order and shows its real potential compared to the analog magnetometer with consequential digitalization. The comparison is realized on the modular magnetometer...

  5. High temperature superconductive flux gate magnetometer

    Gershenson, M.

    1991-01-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal

  6. High precision innovative micropump for artificial pancreas

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  7. High precision timing in a FLASH

    Hoek, Matthias; Cardinali, Matteo; Dickescheid, Michael; Schlimme, Soeren; Sfienti, Concettina; Spruck, Bjoern; Thiel, Michaela [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A segmented highly precise start counter (FLASH) was designed and constructed at the Institute for Nuclear Physics in Mainz. Besides determining a precise reference time, a Time-of-Flight measurement can be performed with two identical FLASH units. Thus, particle identification can be provided for mixed hadron beam environments. The detector design is based on the detection of Cherenkov light produced in fused silica radiator bars with fast multi-anode MCP-PMTs. The segmentation of the radiator improves the timing resolution while allowing a coarse position resolution along one direction. Both, the arrival time and the Time-over-Threshold are determined by the readout electronics, which enables walk correction of the arrival time. The performance of two FLASH units was investigated in test experiments at the Mainz Microton (MAMI) using an electron beam with an energy of 855 MeV and at CERN's PS T9 beam line with a mixed hadron beam with momenta between 3-8 GeV/c. Effective Time-walk correction methods based on Time-over-Threshold were developed for the data analysis. The achieved Time-Of-Flight resolution after applying all corrections was found to be 70 ps. Furthermore, the PID and position resolution capabilities are discussed in this contribution.

  8. Towards High Productivity in Precision Grinding

    W. Brian Rowe

    2018-04-01

    Full Text Available Over the last century, substantial advances have been made, based on improved understanding of the requirements of grinding processes, machines, control systems, materials, abrasives, wheel preparation, coolants, lubricants, and coolant delivery. This paper reviews a selection of areas in which the application of scientific principles and engineering ingenuity has led to the development of new grinding processes, abrasives, tools, machines, and systems. Topics feature a selection of areas where relationships between scientific principles and new techniques are yielding improved productivity and better quality. These examples point towards further advances that can fruitfully be pursued. Applications in modern grinding technology range from high-precision kinematics for grinding very large lenses and reflectors through to medium size grinding machine processes and further down to grinding very small components used in micro electro-mechanical systems (MEMS devices. The importance of material issues is emphasized for the range of conventional engineering steels, through to aerospace materials, ceramics, and composites. It is suggested that future advances in productivity will include the wider application of artificial intelligence and robotics to improve precision, process efficiency, and features required to integrate grinding processes into wider manufacturing systems.

  9. High precision neutron polarization for PERC

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  10. A study on the development of high Tc superconducting materials

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1990-01-01

    The microstructure, crystal structure and formation kinetics for the superconducting phases were studied in the lead-doped BiSrCaCuO system. The formation kinetics was also investigated in the samples with different Pb/Bi ratio and it was observed that the 30 % Pb addition is most perferable for the formation of the high T c phase. The formation of the high T c phase was delayed by the excessive addition of Pb. The lattice parameter (c) of the unit cell of both low T c and high T c phases increased with increasing Pb content. Superconducting thin film was sucessfully prepared by chemical vapor deposition (CVD). Film deposited on MgO substrate showed a T c , onset of 85 K and did not reach to zero resistivity down to 77 K. Superconducting 124 phase in Y-system, which is more stable than 123 phase at high temperature showed a T c , onser of 84 K. Additionally, 0.1 mole of Pb, Sn and Ca was substituted for yttrium in 124 phase, respectively. For Pb and Sn-subsituted specimens, 124 phase was formed and for Ca substituted specimen, 124 phase was not formed and revealed no superconductivity down to 77 K. For Sn-substituted specimens, 124 phase was formed but showed no superconductivity down to 77 K. (author)

  11. Modal bifurcation in a high-Tc superconducting levitation system

    Taguchi, D; Fujiwara, S; Sugiura, T

    2011-01-01

    This paper deals with modal bifurcation of a multi-degree-of-freedom high-T c superconducting levitation system. As modeling of large-scale high-T c superconducting levitation applications, where plural superconducting bulks are often used, it can be helpful to consider a system constituting of multiple oscillators magnetically coupled with each other. This paper investigates nonlinear dynamics of two permanent magnets levitated above high-T c superconducting bulks and placed between two fixed permanent magnets without contact. First, the nonlinear equations of motion of the levitated magnets were derived. Then the method of averaging was applied to them. It can be found from the obtained solutions that this nonlinear two degree-of-freedom system can have two asymmetric modes, in addition to a symmetric mode and an antisymmetric mode both of which also exist in the linearized system. One of the backbone curves in the frequency response shows a modal bifurcation where the two stable asymmetric modes mentioned above appear with destabilization of the antisymmetric mode, thus leading to modal localization. These analytical predictions have been confirmed in our numerical analysis and experiments of free vibration and forced vibration. These results, never predicted by linear analysis, can be important for application of high-T c superconducting levitation systems.

  12. Precision laser spectroscopy of highly charged ions

    Kuehl, T.; Borneis, S.; Becker, S.; Dax, A.; Engel, T.; Grieser, R.; Huber, G.; Klaft, I.; Klepper, O.; Kohl, A.; Marx, D.; Meier, K.; Neumann, R.; Schmitt, F.; Seelig, P.; Voelker, L.

    1996-01-01

    Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 10 8 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g. 209 Bi 82+ , and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied. (orig.)

  13. Superconductivity

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  14. Development of high purity niobium material for superconducting cavities

    Umezawa, Hiroaki; Takeuchi, Koichi; Sakita, Kohei; Suzuki, Takafusa; Saito, Kenji; Noguchi, Shuichi.

    1993-01-01

    For the superconducting niobium cavities, issues of thermal quench and field emission have to be solved to achieve a high field gradient (>25MV/m) for TESLA (TeV Energy Superconducting Linear Accelerator). In order to overcome the quench, upgrading of thermal conductivity of niobium material at the low temperature is very important. On the reduction of the field emission not only dust particles but also defect, impurity and inhomogeneity should be considered. Therefore development of high purity niobium material is very important to solve these issues. This paper describes the our latest R and D for high purity niobium material. (author)

  15. A dielectric approach to high temperature superconductivity

    Mahanty, J.; Das, M.P.

    1989-01-01

    The dielectric response of an electron-ion system to the presence of a pair of charges is investigated. From the nature of the dielectric function, it is shown that a strong attractive pair formation is possible depending on the dispersion of the ion branches. The latter brings a reduction to the sound velocity which is used as a criterion for the superconductivity. By solving the BCS equation with the above dielectric function, we obtain a reasonable value of T/sub c/. 17 refs., 1 fig

  16. High-Precision Direct Mass Determination of Unstable Isotopes

    2002-01-01

    The extension of systematic high-precision measurements of the nuclear mass to nuclei far from the valley of $\\beta$ stability is of great interest in nuclear physics and astrophysics. The mass, or binding energy, is a fundamental gross property and a key input parameter for nuclear matter calculations. It is also a sensitive probe for collective and single-particle effects in nuclear structure. \\\\ \\\\ For such purposes, nuclear masses need to be known to an accuracy of about 10$^{-7}$ (i.e. $\\Delta$M~$\\leq$~10~keV for A~=~100). To resolve a particular mass from its nuclear isomers and isobars, resolving power of 10$^6$ are often required. To achieve this, the ions delivered by the on-line mass separator ISOLDE are confined in a Penning quadrupole trap. This trap is placed in the very homogeneous and stable magnetic field of a superconducting magnet. Here, the cyclotron frequency and hence the mass are determined. \\\\ \\\\ The first measurements using this new technique have been completed for a long chain of Cs ...

  17. Contribution to the study of superconducting magnets using high transition temperature superconducting materials

    Lecrevisse, Thibault

    2012-01-01

    The new industrial superconductors using high critical temperature compounds offer new possibilities for superconducting magnetism. Indeed they allow higher magnetic field with the same classical cryogenics at 4.2 K on one hand, and on the other hand they also pave the way for superconducting magnets working between 10 K and 30 K. The high temperature superconductors are then needed in order to produce magnetic fields higher than 16 T (case of HTS dipole insert for Large Hadron Collider at CERN) or to increase the specific density stored in one SMES (Superconducting Magnetic Energy Storage, in the case of the SuperSMES ANR Project).Nevertheless the indisputable assets (critical temperature, critical magnetic field, mechanical stresses) brought by the use of High critical temperature superconductors like YBCO, used in superconducting magnets, require to solve some challenges. Their behavior is still badly understood, especially during the resistive transitions. To succeed in protecting these conductors we need a new reflection on protection schemes designed to avoid the thermal and mechanical damages. The answer to the question: 'Can we use those materials in the long run inside superconducting magnets?' is now inescapable.Some answers are given here. The use of the conductors is approached through various experimental studies to understand the material (electrical characterization and modeling of the critical surface) and to define the key stages of high critical temperature superconducting magnets manufacturing (work on the junctions between conductors and pancakes). This study led to the creation of two coils in order to identify the issues related to the use of YBCO tapes. A numerical thermo-electrical model of the high critical temperature superconductor has been developed and a numerical code based on the CEA software CASTEM (Finish Elements Model) allowed to study the resistive transition (or quench) behavior of those conductor and coil. The code has been

  18. Stability of high field superconducting dipole magnets

    Allinger, J.; Danby, G.; Foelsche, H.; Jackson, J.; Prodell, A.; Stevens, A.

    1977-01-01

    Superconducting dipole magnets of the window-frame type were constructed and operated successfully at Brookhaven National Laboratory. Examples of this type of magnet are the 6 T ''Model T'' magnet, and the 4 T 8 0 superconducting bending magnet. The latter magnet operated reliably since October 1973 as part of the proton beam transport to the north experimental area at the BNL AGS with intensities of typically 8 x 10 12 protons at 28.5 GeV/c passing through the magnet in a curved trajectory with the proton beam center only 2.0 cm from the beam pipe at both ends and the middle of each of the two units comprising the magnet. The energy in the beam is approximately 40 kJ per 3 μsec pulse. Targets were inserted in the beam at locations 2 m and 5.6 m upstream of the first magnet unit to observe the effects of radiation heating. The 8 0 magnet demonstrated ultrastability, surviving 3 μsec thermal pulses delivering up to 1 kJ into the cold magnet at repetition periods as short as 1.3 sec

  19. Superconducting quantum electronics

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  20. Young's moduli of cables for high field superconductive dipole magnet

    Yamada, Shunji; Shintomi, Takakazu.

    1983-01-01

    Superconductive dipole magnets for big accelerators are subjected to enormous electro-magnetic force, when they are operated with high field such as 10 Tesla. They should be constructed by means of superconductive cables, which have high Young's modulus, to obtain good performance. To develop such cables we measured the Young's moduli of cables for practical use of accelerator magnets. They are monolithic and compacted strand cables. We measured also Young's moduli of monolithic copper and brass cables for comparison. The obtained data showed the Young's moduli of 35 and 15 GPa for the monolithic and compacted strand cables, respectively. (author)

  1. Superconducting spoke cavities for high-velocity applications

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  2. System considerations for airborne, high power superconducting generators

    Southall, H.L.; Oberly, C.E.

    1979-01-01

    The design of rotating superconducting field windings in high power generators is greatly influenced by system considerations. Experience with two superconducting generators designed to produce 5 and 20 Mw resulted in a number of design restrictions. The design restrictions imposed by system considerations have not prevented low weight and high voltage power generation capability. The application of multifilament Nb;sub 3;Sn has permitted a large thermal margin to be designed into the rotating field winding. This margin permits the field winding to remain superconducting under severe system operational requirements. System considerations include: fast rotational startup, fast ramped magnetic fields, load induced transient fields and airborne cryogen logistics. Preliminary selection of a multifilament Nb;sub 3;Sn cable has resulted from these considerations. The cable will carry 864 amp at 8.5K and 6.8 Tesla. 10 refs

  3. Review of progress in superconducting high-beta structures

    Sundelin, R.M.

    1992-01-01

    During the past two years, there has been substantial progress in superconducting high-beta cavities in a number of areas. Understanding of the Q-disease, which occurs when a cavity is held for prolonged periods near 100 K, has advanced, and techniques for mitigating this problem have improved. Progress has been made in the use of high peak power processing to suppress field emission. Cell geometries have improved to reduce the ratio of peak surface electric field to accelerating field, and trapped mode behavior has been found to permit use of nine cells for some applications. The operating experience base for cavities installed in accelerators has increased substantially, as has the performance experience base for industrially manufactured cavities, including both solid niobium and sputter-coated copper. Additional applications for superconducting cavities have been identified. Progress has been made toward the design and construction of a Tera-Electron-Volt Superconducting Linear Accelerator (TESLA) test bed. (author). 25 refs., 1 fig

  4. High precision relative position sensing system for formation flying spacecraft

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  5. Superconductivity

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  6. Superconductivity

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  7. Precision mechatronics based on high-precision measuring and positioning systems and machines

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  8. Superconductivity

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  9. Generation of high magnetic fields using superconducting magnets

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  10. High precision spectrophotometric analysis of thorium

    Palmieri, H.E.L.

    1984-01-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium when processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using dissodium ethylenediaminetetraacetate (EDTA) solution and alizarin-S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer programme. Besides the equivalence point, other parameters of titration were determined: the indicator concentration, the absorbance of the metal-indicator complex, and the stability constants of the metal-indicator and the metal-EDTA complexes. (Author) [pt

  11. Thorium spectrophotometric analysis with high precision

    Palmieri, H.E.L.

    1983-06-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using disodium ethylenediaminetetraacetate (EDTA) solution and alizarin S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer program. (author)

  12. Precision axial translator with high stability.

    Bösch, M A

    1979-08-01

    We describe a new type of translator which is inherently stable against torsion and twisting. This concentric translator is also ideally suited for precise axial motion with clearance of the center line.

  13. High intensity neutrino source superconducting solenoid cyrostat design

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  14. Possibility of high temperature superconducting phases in PdH

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-01

    Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.

  15. Possibility of high temperature superconducting phases in PdH

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-15

    Possible new superconducting phases with a high critical transition temperature (T{sub c}) have been found in stable palladium-hydrogen (PdH{sub x}) samples for stoichiometric ratio x=H/Pd{>=}1, in addition to the well-known low critical transition temperature (0{<=}T{sub c}{<=}9) when x is in the range (0.75{<=}x{<=}1.00). Possible new measured superconducting phases with critical temperature in the range 51{<=}T{sub c}{<=}295 K occur. This T{sub c} varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density J{sub c}{>=}6.1x10{sup 4} A cm{sup -2} has been measured at 77 K with H{sub DC}=0 T.

  16. High-energy neutron irradiation of superconducting compounds

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  17. High-temperature superconducting phase in rare earth alloys

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  18. Spin dynamics in high-TC superconducting cuprates

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  19. A commercial tokamak reactor using super high field superconducting magnets

    Schwartz, J.; Bromberg, L.; Cohn, D.R.; Williams, J.E.C.

    1988-01-01

    This paper explores the range of possibilities for producing super high fields with advanced superconducting magnets. Obtaining magnetic fields greater than about 18 T at the coil in a large superconducting magnet system will require advances in many areas of magnet technology. These needs are discussed and potential solutions (advanced superconductors, structural materials and design methods) evaluated. A point design for a commercial reactor with magnetic field at the coil of 24 T and fusion power of 1800 MW is presented. Critical issues and parameters for magnet design are identified. 20 refs., 9 figs., 4 tabs

  20. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    Löhl, F.; Arsov, V.; Felber, M.; Hacker, K.; Jalmuzna, W.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Schulz, S.; Szewinski, J.; Winter, A.; Zemella, J.

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  1. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-01-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  2. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  3. Oxygen stoichiometry and the high Tc superconducting oxides

    Tarascon, J.M.; Bagley, B.G.

    1989-01-01

    Methods for determining the oxygen content in high Tc materials, such as thermogravimetric analysis and chemical analysis, are discussed. Consideration is given to La-based cuprates, Y-based cuprates, and Bi-based cuprates. Superconducting transition temperatures are analyzed as a function of the Cu(1)-O(4) bond lengths for several different compositions in the Y-based system. 28 references

  4. High-$T_c$ superconductivity by phase cloning

    Ilieva, N; Ilieva, Nevena; Thirring, Walter

    2007-01-01

    We consider a BCS-type model in the spin formalism and argue that the structure of the interaction provides a mechanism for control over directions of the spin $\\vect S$ other than $S_z$, which is being controlled via the conventional chemical potential. We also find the conditions for the appearance of a high-$T_c$ superconducting phase.

  5. Critical current of high Tc superconducting Bi223/Ag tapes

    Huang, Y.; ten Haken, Bernard; ten Kate, Herman H.J.

    1998-01-01

    The magnetic field dependence of the critical current of various high Tc superconducting Bi2223/Ag tapes indicates that the transport current is carried through two paths: one is through weakly-linked grain boundaries (Josephson junctions); another is through well-connected grains. The critical

  6. Conventional superconductivity at 203 K at high pressures

    Drozdov, Alexander; Eremets, Mikhail; Troyan, Ivan [Max-Planck-Institut fuer Chemie, Hahn-Meitner-Weg 1, 55128 Mainz (Germany); Ksenofontov, Vadim; Shylin, Sergii [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitet Mainz, Staudingerweg 9, 55099 Mainz (Germany)

    2016-07-01

    A search for high, room temperature conventional superconductivity is promising as the Bardeen-Cooper-Schrieffer (BCS) theory in the Eliashberg formulation puts no apparent limits on T{sub c}. Materials with light elements are especially favorable as they provide high frequencies in the phonon spectrum. However only a moderately high T{sub c} = 39 K has been found in this search in MgB{sub 2}. We systematically studied metallic hydrogen and covalent hydrogen dominant compounds and found the record T{sub c} of 203 K at pressure 140 GPa in sulfur hydride. We proved occurrence of superconductivity by the sharp drop of the resistivity to zero; the decrease of T{sub c} with magnetic field; the pronounce isotope shift of T{sub c} in D{sub 2}S which evidences of a major role of phonons in the superconductivity; and the magnetic susceptibility measurements. The X-ray diffraction data confirmed that the superconductive phase has the predicted bcc structure. This phase can be considered as an atomic hydrogen superconductor stabilized by sulfur.

  7. A high Tc superconducting liquid nitrogen level sensor

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  8. Laser technology for high precision satellite tracking

    Plotkin, H. H.

    1974-01-01

    Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.

  9. Structural features that optimize high temperature superconductivity

    Jorgensen, J.D.; Argonne Nat. Lab., IL; Hinks, D.G.; Argonne Nat. Lab., IL; Chmaissem, O.; Argonne Nat. Lab., IL; Argyriou, D.N.; Argonne Nat. Lab., IL; Mitchell, J.F.; Argonne Nat. Lab., IL; Dabrowski, B.

    1996-01-01

    Studies of a large number of compounds have provided a consistent picture of what structural features give rise to the highest T c 's in copper-oxide superconductors. For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO 2 layers will lower T c and eventually destroy superconductivity. After these requirements are satisfied, the highest T c 's are observed for compounds (such as the HgBa 2 Ca n-1 Cu n O 2n+2+x family) that have flat and square CuO 2 planes and long apical Cu-O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO 2 plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex lines by shortening or ''metallizing'' the blocking layer; and (2) the formation of defects that pin flux. (orig.)

  10. Structural features that optimize high temperature superconductivity

    Jorgensen, J.D.; Hinks, D.G. Chmaissem, O.; Argyriou, D.N.; Mitchell, J.F. [Argonne National Lab., IL (United States); Dabrowski, B. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Physics

    1996-01-01

    For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO{sub 2} layers will lower T{sub c} and eventually destroy superconductivity. After these requirements are satisfied, the highest T{sub c}`s are observed for compounds (such as the HgBa{sub 2}Ca{sub n-1}CuO{sub 2n{plus}2{plus}x} family) that have flat and square CuO{sub 2} planes and long apical Cu-O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO{sub 2} plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex-lines by shortening or ``metallizing`` the blocking layer; and (2) the formation of defects that pin flux.

  11. Structural features that optimize high temperature superconductivity

    Jorgensen, J.D.; Hinks, D.G. Chmaissem, O.; Argyriou, D.N.; Mitchell, J.F.; Dabrowski, B.

    1996-01-01

    For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO 2 layers will lower T c and eventually destroy superconductivity. After these requirements are satisfied, the highest T c 's are observed for compounds (such as the HgBa 2 Ca n-1 CuO 2n+2+x family) that have flat and square CuO 2 planes and long apical Cu-O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO 2 plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex-lines by shortening or ''metallizing'' the blocking layer; and (2) the formation of defects that pin flux

  12. Abstracts of The First Polish-US Conference on High Temperature Superconductivity

    1995-01-01

    The current problems in high temperature superconductivity science have been presented at the conference. The two main topics have been mostly represented: superconducting material research and fundamental physical research on superconductivity mechanisms. Superconducting material preparation, chemical composition, magnetic and electrical properties of different type of high temperature superconductors, material structure and its influence on superconducting properties and related problems were included in the first of the general topics. In the range of second general topic of the two listed above, many theoretical models being applied for explanation of superconductivity mechanism in different systems up and below transition temperature were presented

  13. High-precision positioning of radar scatterers

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  14. Applied superconductivity

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  15. Superconductivity of divalent Chevrel phases at very high pressures

    Yao, Y.S.; Guertin, R.P.; Hinks, D.G.; Jorgensen, J.; Capone II, D.W.

    1988-01-01

    The electrical resistivity and the superconducting transition temperatures were examined for three representative divalent Chevrel phase systems, SnMo 6 S 8 , EuMo 6 S 8 , and BaMo 6 S 8 , as a function of hydrostatic pressure to 2 GPa and in quasihydrostatic pressures to 10 GPa. In all systems, T/sub c/ is depressed to 0 K for sufficiently large pressures. For the Sn- and Eu-based systems, both highly purified samples and samples with controlled oxygen content were used. In an oxygenated SnMo 6 S 8 sample (less than 3% O 2 substituted for the S atoms) the pressure threshold and maximum T/sub c/ are 40% lower than in the pure sample, but for P>3.5 GPa the T/sub c/-P phase diagrams nearly coincide, with T/sub c/ reaching zero at an extrapolated pressure of about 12 GPa. In pure EuMo 6 S 8 , superconductivity appears only above a threshold pressure of about 1 GPa and is depressed to 0 K above 4.5 GPa. In an oxygenated sample the maximum T/sub c/ and the threshold pressure are depressed, and above about 3.5 GPa the T/sub c/-P phase diagrams coincide, as in the Sn-based system, although T/sub c/ is then rapidly depressed to 0 K at about 4.5 GPa. In a highly purified BaMo 6 S 8 sample superconductivity appears above about 2 GPa and is depressed to 0 K at extrapolated pressures above 12 GPa. A full transition to the zero-resistance superconducting state is observed in BaMo 6 S 8 . The data are discussed in terms of a model linking the rhombohedral-to-triclinic structural transition, the superconducting transition temperature, and the role of pressure in suppressing the structural transition

  16. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  17. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  18. Application of RF Superconductivity to High-Current Linac

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  19. The quest for high-gradient superconducting cavities

    Padamsee, H.

    1999-01-01

    Superconducting RF cavities excel in applications requiring continuous waves or long pulse voltages. Since power losses in the walls of the cavity increase as the square of the accelerating voltage, copper cavities become uneconomical as demand for high continuous wave voltage grows with particle energy. For these reasons, RF superconductivity has become an important technology for high energy and high luminosity accelerators. The state of art in performance of sheet metal niobium cavities is best represented by the statistics of more than 300 5-cell, 1.5-GHz cavities built for CEBAF. Key aspects responsible for the outstanding performance of the CEBAF cavities set are the anti-multipactor, elliptical cell shape, good fabrication and welding techniques, high thermal conductivity niobium, and clean surface preparation. On average, field emission starts at the electric field of 8.7 MV/m, but there is a large spread, even though the cavities received nominally the same surface treatment and assembly procedures. In some cavities, field emission was detected as low as 3 MV/m. In others, it was found to be as high as 19 MV/m. As we will discuss, the reason for the large spread in the gradients is the large spread in emitter characteristics and the random occurrence of emitters on the surface. One important phenomenon that limits the achievable RF magnetic field is thermal breakdown of superconductivity, originating at sub-millimeter-size regions of high RF loss, called defects. Simulation reveal that if the defect is a normal conducting region of 200 mm radius, it will break down at 5 MV/m. Producing high gradients and high Q in superconducting cavities demands excellent control of material properties and surface cleanliness. The spread in gradients that arises from the random occurrence of defects and emitters must be reduced. It will be important to improve installation procedures to preserve the excellent gradients now obtained in laboratory test in vertical cryostats

  20. Proceedings of a high temperature superconductivity strategy workshop

    Kurzfeld, A.

    1987-07-01

    The paper contains the proceedings of a high temperature superconductivity strategy workshop, held at the Rutherford Appleton Laboratory, United Kingdom, 1987. The purpose of the meeting was to consider the U.K. strategy to be adopted for the high Tsub(c) superconductors and their application. The notes are presented of five Working Groups examining the following subjects: materials preparation, structural evaluation, physical properties, theoretical studies, and applications. (UK)

  1. High speed data transmission at the Superconducting Super Collider

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  2. Response of high Tc superconducting Josephson junction to nuclear radiation

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  3. Autocalibration of high precision drift tubes

    Bacci, C.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Gauzzi, P.; Lacava, F.; Nisati, A.; Pontecorvo, L.; Rosati, S.; Veneziano, S.; Cambiaghi, M.; Casellotti, G.; Conta, C.; Fraternali, M.; Lanza, A.; Livan, M.; Polesello, G.; Rimoldi, A.; Vercesi, V.

    1997-01-01

    We present the results on MDT (monitored drift tubes) autocalibration studies obtained from the analysis of the data collected in Summer 1995 on the H8B Muon Test Beam. In particular we studied the possibility of autocalibration of the MDT using four or three layers of tubes, and we compared the calibration obtained using a precise external tracker with the output of the autocalibration procedure. Results show the feasibility of autocalibration with four and three tubes and the good accuracy of the autocalibration procedure. (orig.)

  4. Final report: High current capacity high temperature superconducting film based tape for high field magnets

    Ying Xin

    2000-01-01

    The primary goal of the program was to establish the process parameters for the continuous deposition of high quality, superconducting YBCO films on one meter lengths of buffered RABiTS tape using MOCVD and to characterize the potential utility of the resulting tapes in high field magnet applications

  5. Vitaly Ginzburg and high temperature superconductivity: Personal reminiscences

    Mazin, Igor I.

    2008-01-01

    This article is an attempt to give Western readers, as well as young researchers in Russia, a glance at the atmosphere in one of the leading physics institutions in the USSR from 1977-1988, through the eye of a graduate student and later a posdoc in the theory group led by Vitaly Ginzburg, arguably the most enthusiatic proponent of high-temperature superconductivity before the discovery of Bednorz and Muller. This is a very personal narration, wherein the events of my own life and career are inevitably intertwined with scientific events and with my reminiscences of great Russian physicists whom I had the pleasure to meet with while working in the 'High-Temperature Superconductivity Section' at the Lebedev Institute within the aforementioned 12 years

  6. Bec Model of HIGH-Tc Superconductivity in Layered Cuprates

    Lomnitz, M.; Villarreal, C.; de Llano, M.

    2013-11-01

    High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width layers around the CuO2 planes. This yields a closed formula for Tc involving the layer width, the Debye frequency, the pairing energy and the in-plane penetration depth. The new formula has no free parameters and reasonably reproduces empirical values of superconducting Tcs for 11 different layered superconductors over a wide doping regime including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In agreement with the London formalism, the formula also yields a fair description of the Tc dependence of the lower critical magnetic field in highly underdoped YBCO.

  7. A Snapshot View of High Temperature Superconductivity 2002

    Schuller, Ivan K. [Univ. of California, San Diego, CA (United States); Bansil, Arun [Northeastern Univ., Boston, MA (United States); Basov, Dimitri N. [Univ. of California, San Diego, CA (United States)

    2002-04-05

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus, this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity are well illustrated by the Buddhist parable of the blind men trying to describe “experimentally” an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that, independently of any current or future applications, this is a very important area of basic research.

  8. A Snapshot View of High Temperature Superconductivity 2002

    Schuller, Ivan K.; Bansil, Arun; Basov, Dimitri N.

    2002-01-01

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus, this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity are well illustrated by the Buddhist parable of the blind men trying to describe ''experimentally'' an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that, independently of any current or future applications, this is a very important area of basic research.

  9. Developments in the area of high-current-superconductivity in the Kernforschungszentrum Karlsruhe

    Maurer, W.; Arendt, F.; Bruenner, N.; Erb, J.; Fessler, N.; Hartwig, G.; Heinz, W.; Hofmann, A.; Juengst, K.P.; Katheder, H.

    1976-05-01

    In this report the development work is presented which has been done from 1971 to 1975 on High-Current-Superconducticity at the institute IEKP III. The report deals with the development, construction and operation of superconducting magnets, with material investigations and with the pursued applications of superconducting Magnettechnology in research and industry. (orig.) [de

  10. Colloquium: High pressure and road to room temperature superconductivity

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  11. Superconductivity in the unconventional high pressure phase bismuth-III

    Semeniuk, Konstantin; Brown, Philip; Vasiljkovic, Aleksandar; Grosche, Malte [University of Cambridge (United Kingdom)

    2015-07-01

    One of the most surprising developments in high pressure research was the realisation that many elements assume very unexpected high pressure structures, described in terms of extremely large or even infinite unit cells. Elemental bismuth, which has been known to undergo a series of pressure induced structural transitions between 25 kbar and 80 kbar, is an interesting example: the intermediate pressure Bi-III phase has a complex 'host-guest' structure consisting of two incommensurate sublattices. Since the unit cell is infinitely large, the description of electronic and lattice excitations is problematic. Apart from its metallic character and the observation of superconductivity at low temperature, little is known about the electronic structure in this phase. We investigate the electrical resistivity within the metallic Bi-III phase under high hydrostatic pressure and in applied magnetic field using a piston cylinder cell. Superconductivity is observed below 7.1 K, and we extract the temperature dependence of the upper critical field, which exceeds 2 T at low temperature. The normal state resistivity exhibits an approximately linear temperature dependence. This could be attributed to strong scattering from low-lying excitations, as caused by an unusually soft phonon spectrum. The results suggest that strong coupling superconductivity arises within the host-guest structure of Bi-III out of an unusual electronic state.

  12. Superconductivity at high pressure in NbSe3

    Nunez Regueiro, M.; Castello, D.; Mignot, J.M.

    1992-01-01

    We have measured the electrical resistivity of NbSe 3 between 2 K and room temperature up to a pressure of 7.2 GPa. At P 1 = 3.5 GPa we observe the extinction of the high-temperature charge density wave (T 1 -CDW) and the enhancement of the superconducting critical temperature T c to ≅ 5 K. The logarithmic pressure slopes of T 1 (P 1 ) and T c (P > P 1 ) are found to be practically equal. A similar behaviour had been reported previously at lower pressures for T 2 (P 2 ) and T c (P 2 1 ) in the distorted state. We discuss these results in terms of an anisotropic superconducting state in NbSe 3 , with different gaps associated with different types of chains. 10 refs., 2 figs

  13. Superconducting magnets in nuclear and high energy physics

    Hamelin, J.; Parain, J.; Perot, J.; Lesmond, C.

    1976-01-01

    A few examples of superconducting magnets developped at Saclay for high energy physics are presented. The OGA doublet is a large acceptance optical system consisting of two quadrupoles with maximum field gradients of 35 and 23 teslas per meter giving an increase of the beam acceptance by a factor 4. The ALEC dipole is a synchrotron magnet with a length of 1.5 meter and a field of 5 teslas, operating in pulse made at a frequency of 0.1 Hertz and entirely constructed in industry. The ECO project is a demonstration of electrical energy saving by means of superconductors. It consists in the replacement of conventional copper of a classical beam transport magnet by superconducting windings. The use of superconductors for polarized target magnets allows a large variety of configurations to be obtained in order to satisfy the acceptance and space requirements to the detectors around the targets [fr

  14. Correlation mediated superconductivity in a 'High-Tsub(c)' model

    Long, M.W.

    1987-08-01

    A simple model is presented to account for the High-Tsub(c) perovskite superconductors. The superconducting mechanism is purely electronic and comes from local Hubbard correlations. The model comprises a Hubbard model for the copper sites with a single particle oxygen band between the two copper Hubbard bands. The electrons move only between nearest neighbour atoms which are of different types. Using two very different approximation schemes, one related to 'Slave-Boson' mean field theory and the other based on an exact local Fermion transformation, the possibility of copper-oxygen or a mixture of copper-oxygen and oxygen-oxygen pairing is shown. The author believes that the most promising situation for superconductivity is with the Oxygen band over half-filled and closer in energy to the lower Hubbard band. (author)

  15. Design prospect of remountable high-temperature superconducting magnet

    Hashizume, Hidetoshi, E-mail: hidetoshi.hashizume@qse.tohoku.ac.jp; Ito, Satoshi

    2014-10-15

    The remountable (mountable and demountable repeatedly) high-temperature superconducting (HTS) magnet has been proposed for huge and complex superconducting magnets in future fusion reactors to fabricate and repair easily the magnet and access inner structural components. This paper summarizes progress in R and D activities of mechanical joints of HTS conductors in terms of the electrical resistance and heat transfer performance at the joint region. The latest experimental results show the low joint resistance, 4 nΩ under 70 kA current condition using REBCO HTS conductor with mechanical lap joint system, and for the cooling system the maximum heat flux of 0.4 MW/m{sup 2} is removed by using bronze sintered porous media with sub-cooled liquid nitrogen. These values indicate that there is large possibility to design the remountable HTS magnet for fusion reactors.

  16. Design and application consideration of high temperature superconducting current leads

    Wu, J.L.

    1994-01-01

    As a potential major source of heat leak and the resultant cryogen boiloff, cryogenic current leads can significantly affect the refrigeration power requirement of cryogenic power equipment. Reduction of the heat leak associated with current leads can therefore contribute to the development and application of this equipment. Recent studies and tests have demonstrated that, due to their superconducting and low thermal conductivity properties, ceramic high temperature superconductor (HTSC) can be employed in current leads to significantly reduce the heat leak. However, realization of this benefit requires special design considerations pertaining to the properties and the fabrication technology of the relatively new ceramic superconductor materials. Since processing and fabrication technology are continuously being developed in the laboratories, data on material properties unrelated to critical states are quite limited. Therefore, design analysis and experiments have to be conducted in tandem to achieve a successful development. Due to the rather unique combination of superconducting and thermal conductivities which are orders of magnitude lower than copper, ceramic superconductors allow expansion of the operating scenarios of current leads. In addition to the conventional vapor-cooled lead type application, low heat leak conduction-cooled type current leads may be practical and are being developed. Furthermore, a current lead with an intermediate heat leak intercept has been successfully demonstrated in a multiple current lead assembly employing HTSC. These design and application considerations of high temperature superconducting current leads are addressed here

  17. High-Tc superconducting microbolometer for terahertz applications

    Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.

    2002-05-01

    Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.

  18. High field superconducting magnets for accelerators and particle beams

    Allinger, J.; Danby, G.; Jackson, J.

    1975-01-01

    Experience in designing precision superconducting magnets for fields up to 60 kG is described. Realizable construction tolerances and their impact on field accuracy are discussed. For dipole fields up to 60 kG or more, rectangular coil window frame type magnets are compared with circular or elliptical coil designs. In all cases, the same superconductor current density versus maximum field performance is assumed. The comparison will include field quality and correction required as a function of aperture size, stored energy, ampere turns required, and overall magnet size. In quadrupole design the impact of the allowed superconductor current density being roughly inversely proportional to peak field is severe. For gradients up to one Tesla/cm or greater, similar comparisons for different types of quadrupole construction are made. (U.S.)

  19. JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    Shelton, Duane; Gamota, George

    1989-01-01

    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.

  20. High temperature superconducting YBCO microwave filters

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  1. Applications of high-temperature superconductivity

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  2. High precision target center determination from a point cloud

    K. Kregar

    2013-10-01

    Full Text Available Many applications of terrestrial laser scanners (TLS require the determination of a specific point from a point cloud. In this paper procedure of high precision planar target center acquisition from point cloud is presented. The process is based on an image matching algorithm but before we can deal with raster image to fit a target on it, we need to properly determine the best fitting plane and project points on it. The main emphasis of this paper is in the precision estimation and propagation through the whole procedure which allows us to obtain precision assessment of final results (target center coordinates. Theoretic precision estimations – obtained through the procedure were rather high so we compared them with the empiric precision estimations obtained as standard deviations of results of 60 independently scanned targets. An χ2-test confirmed that theoretic precisions are overestimated. The problem most probably lies in the overestimated precisions of the plane parameters due to vast redundancy of points. However, empirical precisions also confirmed that the proposed procedure can ensure a submillimeter precision level. The algorithm can automatically detect grossly erroneous results to some extent. It can operate when the incidence angles of a laser beam are as high as 80°, which is desirable property if one is going to use planar targets as tie points in scan registration. The proposed algorithm will also contribute to improve TLS calibration procedures.

  3. High-temperature superconducting current leads

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  4. Energy storage via high temperature superconductivity (SMES)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  5. High-temperature superconducting fault-current limiter - optimisation of superconducting elements

    2004-01-01

    This report summarises the findings of a study initiated to continue the work of a DTI-LINK Collaborative Research Programme 'Enhancing the Properties of Bulk High Temperature Superconductors and their Potential Application as Fault Current Limiters (FCL). Details are given of computer modelling of the quenching process involving the transition from superconducting to normal conducting states undergone by the material when large currents are present. The design of compound elements, and a multi-element model are described along with FCL design covering distribution bus-coupler, embedded generator connection, larger generator connection, hazardous area safety, and interconnection to fault-prone network. The evaluation of thermal loss, test equipment and schedule, the optimised element, installed cost data, and the UK market are considered

  6. Active vibration isolation of high precision machines

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  7. The study of high precision neutron moisture gauge

    Liu Shengkang; Bao Guanxiong; Sang Hai; Zhu Yuzhen

    1993-01-01

    The principle, structure and calibration experiment of the high precision neutron moisture gauge (insertion type) are described. The gauge has been appraised. The precision of the measuring moisture of coke is lower than 0.5%, and the range of the measuring moisture is 2%-12%. The economic benefit of the gauge application is good

  8. High-precision gauging of metal rings

    Carlin, Mats; Lillekjendlie, Bjorn

    1994-11-01

    Raufoss AS designs and produces air brake fittings for trucks and buses on the international market. One of the critical components in the fittings is a small, circular metal ring, which is going through 100% dimension control. This article describes a low-price, high accuracy solution developed at SINTEF Instrumentation based on image metrology and a subpixel resolution algorithm. The measurement system consists of a PC-plugg-in transputer video board, a CCD camera, telecentric optics and a machine vision strobe. We describe the measurement technique in some detail, as well as the robust statistical techniques found to be essential in the real life environment.

  9. Anomalous superconductivity in black phosphorus under high pressures

    Kawamura, H.; Tachikawa, K.

    1984-01-01

    Pressure induced superconductivity in single crystals of black phosphorus has been studied. Maximum onset Tsub(c) was near 13 K. The anomalous superconductivity may be explained in terms of excitonic mechanism. (author)

  10. Precision probes of QCD at high energies

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.

    2017-07-01

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.

  11. Color superconductivity

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  12. Color superconductivity

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  13. Percolation modelling for highly aligned polycrystalline superconducting tapes

    Rutter, N A; Glowacki, B A; Evetts, J E [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); IRC in Superconductivity, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2000-11-01

    Surface and bulk texture measurements have been carried out on highly aligned NiFe tapes, suitable for use as coated conductor substrates. Data from small-area electron backscatter diffraction measurements are compared with those from bulk x-ray analysis in the development of a two-dimensional percolation model, and the two are shown to give very similar results. No evidence of grain-to-grain correlation is found. The model is then developed to assess how the properties of a superconducting layer grown epitaxially on buffered tapes will depend on parameters such as sample size, grain size and the extent of grain alignment. (author)

  14. Progress in DOE high temperature superconductivity electric power applications program

    Daley, J.G.; Sheahn, T.P.

    1992-01-01

    The Department of Energy (DOE) leads national R and D effort to develop US industry's capability to produce a wide range of advanced energy-efficient electric power products. The immediate need is to make high temperature superconductivity (HTS) wire. Wire developers at the DOE National laboratories are working wit industrial partners toward this objective. In this paper, the authors describe the progress to date, citing both the difficulties associated with making wire from these ceramic materials, and achievements at several organizations. Results for progress over the next five years are stated

  15. High-temperature superconducting passive microwave devices, filters and antennas

    Ohshima, S.

    2000-01-01

    High-temperature superconducting (HTS) passive microwave devices, such as filters and antennas, are promising devices. In particular, HTS filters may be successfully marketed in the near future. Cross-coupled filters, ring filters, and coplanar waveguide filters are good options to reduce filter size. On the other hand, HTS patch antennas which can be cooled by a cryo-cooler are also promising devices as well, since they show higher efficiency than normal antennas. This paper examines the design process and filter properties of HTS filters as well as the gains, directivity, and cooling system of HTS patch antennas. (author)

  16. High temperature superconductivity: Hope of a new technology

    Anon.

    1989-01-01

    Following the sensational report in 1986 from the IBM laboratory in Rueschlikon, Switzerland, that superconductivity - that permanent flow of current at temperatures close to absolute zero - is also possible at higher temperatures, the waves of enthusiasm among scientists at first rose high. They talked of a revolution in electrotechnology, especially since superconductors at room temperature seemed to have almost come within reach. In the meantime their thoughts on the matter are much more down to earth. What are the realistic fields of application for the 'new superconductors'? The questions are discussed by scientists, politicians and engineers. (orig.) [de

  17. Shock-induced synthesis of high temperature superconducting materials

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  18. Understanding and application of superconducting materials

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  19. System and method for high precision isotope ratio destructive analysis

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  20. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  1. Superconductivity of ternary metal compounds prepared at high pressures

    Shirotani, I

    2003-01-01

    Various ternary metal phosphides, arsenides, antimonides, silicides and germanides have been prepared at high temperatures and high pressures. These ternary metal compounds can be classified into four groups: [1] metal-rich compounds MM' sub 4 X sub 2 and [2] MM'X, [3] non-metal-rich compounds MXX' and [4] MM' sub 4 X sub 1 sub 2 (M and M' = metal element; X and X' = non-metal element). We have studied the electrical and magnetic properties of these materials at low temperatures, and found many new superconductors with the superconducting transition temperature (T sub c) of above 10 K. The metal-rich compound ZrRu sub 4 P sub 2 with a tetragonal structure showed the superconducting transition at around 11 K, and had an upper critical field (H sub c sub 2) of 12.2 tesla (T) at 0 K. Ternary equiatomic compounds ZrRuP and ZrRuSi crystallize in two modifications, a hexagonal Fe sub 2 P-type structure [h-ZrRuP(Si)] and an orthorhombic Co sub 2 P-type structure [o-ZrRuP(Si)]. Both h-ZrRuP and h-ZrRuSi have rather h...

  2. Study of superconducting cavities for high power proton accelerators

    Biarrotte, J.L.

    2000-01-01

    The research program on hybrid reactors has started in France in order to study the technologies allowing the transmutation of radioactive wastes thanks to a spallation neutron source supplied by a linear high intensity proton accelerator. The study of the high energy part of this accelerator (superconducting accelerator for hybrid) has started, and its aim is the design of superconducting radiofrequency cavities which make the two different sections of the accelerator (0.47 and 0.65). This thesis presents the advance of the work carried out on this topic since 1997, in particular the design and optimization of the 5-cell cavities which work at the 704.4 MHz frequency. The experimental part of the study has been carried out in parallel with the industrial fabrication (Cerca) of several prototypes of mono-cell cavities. These cavities have shown very good RF performances during the tests in vertical cryostat; the A 102 A cavity, in particular develops a Q0 of 7.10 10 (indicating very low RF losses) and reaches an accelerator field of 25 MV/m, i.e. more than two times the specified value (about 10 MV/V). Finally, a new risk analysis method for the excitation of the upper modes is proposed. This method shows in particular the uselessness of the implementation of HOM couplers on the cavities for a continuous beam use. (J.S.)

  3. Compact high-field superconducting quadrupole magnet with holmium poles

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  4. Study on a Highly Stabilized Power Supply for Hybrid-Magnet Superconducting Outsert

    Wu Jinglin; Long Jiaojiao; Liu Xiaoning

    2014-01-01

    The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm. (fusion engineering)

  5. The DARPA manufacturing initiative in high temperature superconductivity

    Adams, K.R.

    1989-01-01

    The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications

  6. Memory effect in the high-temperature superconducting bulks

    Zhang, Xing-Yi; Zhou, Jun; Zhou, You-He

    2013-01-01

    Highlights: •Effects of temperature cycles on levitation force relaxation are investigated. •Memory effect of the YBCO bulks is observed in experiments. •With an increase of temperature, memory of the superconductor is gradually lost. -- Abstract: We present an experimental investigation of the relaxation of vertical force components in a high-temperature superconducting levitation system with different temperature cycle processes. For a selected ambient temperature (T 1 ) of the system, the experimental results show that the relaxations of the levitation forces are strongly dependent on the initial temperature. When the sample was submitted to temperature jumps around T 1 , the sample temperature was regulated at T 2 , and there were two cases of the experiments, ΔT = T 2 − T 1 0 (positive temperature cycle). It was found that in the case of negative temperature cycle, the superconducting samples have memory effect. And for the positive temperature cycle, with the experimental temperature increase, the memory effect of samples is gradually losing. Additionally, with the increase of temperature, the influences of the negative and positive temperature cycle on the levitation force relaxation are unsymmetrical. All the results are interpreted by using the characteristics of the free energy ‘ground’ plot of the Spin-glasses qualitatively

  7. Upper critical field measurements in high-Tc superconducting oxides

    Ousset, J. C.; Bobo, J. F.; Ulmet, J. P.; Rakoto, H.; Cheggour, N.

    We present upper critical field measurements on the superconducting oxides RE Ba2Cu3O7-δ (RE = Y, Gd) performed in a pulsed magnetic field up to 43 T. Values for Hc2 as high as 52 T and 77 T for Y and Gd respectively, are expected at 77 K. However, in order to observe no resistive behaviour up to 43 T the temperature must be decreased down to 50 K. In the case of oxygen deficient systems the magnetoresistance reveals two superconducting phases wich could be related to two different orders of oxygen vacancies. Nous présentons des mesures de champ critique Hc2 sur les supraconducteurs TR Ba 2Cu3O7-δ (TR = Y, Gd) réalisées en champ magnétique pulsé jusqu'à 43 T. Elles permettent de prévoir des valeurs de H c2 de 52 T et 77 T respectivement pour Y et Gd à 77 K. Cependant, pour ne pas observer de comportement résistif jusqu'au champ maximum, il est nécessaire de refroidir l'échantillon jusqu'à 50 K. Dans le cas des systèmes déficients en oxygène (δ important) nous mettons en évidence l'existence de deux phases supraconductrices qui pourraient être dues à deux ordres différents des lacunes d'oxygène.

  8. High temperature superconducting films by rf magnetron sputtering

    Kadin, A.M.; Ballentine, P.H.

    1989-01-01

    The authors have produced sputtered films of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O by rf magnetron sputtering from an oxide target consisting of loose reacted powder. The use of a large 8-inch stoichiometric target in the magnetron mode permits films located above the central region to be free of negative-ion resputtering effects, and hence yields reproducible, uniform stoichiometric compositions for a wide range of substrate temperatures. Superconducting YBCO films have been obtained either by sputtering at low temperatures followed by an 850 0 C oxygen anneal, or alternatively by depositing onto substrates heated to ∼600 - 650 0 C and cooling in oxygen. Films prepared by the former method on cubic zirconia substrate consist of randomly oriented crystallites with zero resistance above 83 K. Those deposited on zirconia at medium temperatures without the high-temperature anneal contain smooth partially oriented crystallites, with a slightly depressed T/sub c/ ∼75K. Finally, superconducting films have been deposited on MgO using a BiSrCaCu/sub 2/O/sub x/ powder target

  9. High speed superconducting flywheel system for energy storage

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  10. Spin-polarons and high-Tc superconductivity

    Wood, R.F.

    1994-03-01

    The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)

  11. Superconductivity - applications

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  12. Possible universal cause of high-Tc superconductivity in different metals

    Amusia, M.Ya.; Shaginyan, V.R.

    2002-01-01

    Using the theory of the high temperature superconductivity based on the idea of the fermion condensation quantum phase transition (FCQPT) it is shown that neither the d-wave pairing symmetry, nor the pseudogap phenomenon, nor the presence of the Cu-O 2 planes are of decisive importance for the existence of the high-T c superconductivity. The analysis of recent experimental data on this type of superconductivity in different materials is carried out. It is shown that these facts can be understood within the theory of superconductivity based on the FCQPT. The main features of a room-temperature superconductor are discussed [ru

  13. Superconducting magnets in high radiation environments: Design problems and solutions

    St Lorant, S.J.; Tillmann, E.

    1989-11-01

    As part of the Stanford Linear Collider Project, three high-field superconducting solenoid magnets are used to rotate the spin direction of a polarized electron beam. The magnets are installed in a high-radiation environment, where they will receive a dose of approximately 10 3 rad per hour, or 10 8 rad over their lifetimes. This level of radiation and the location in which the magnets are installed, some 10 meters below ground in contiguous tunnels, required careful selection of materials for the construction of the solenoids and their ancillary cryogenic equipment, as well as the development of compatible component designs. This paper describes the materials used and the design of the equipment appropriate for the application. Included are summaries of the physical and mechanical properties of the materials and how they behave when irradiated. 16 refs., 7 figs., 1 tab

  14. Operation and design selection of high temperature superconducting magnetic bearings

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  15. High precision 3D coordinates location technology for pellet

    Fan Yong; Zhang Jiacheng; Zhou Jingbin; Tang Jun; Xiao Decheng; Wang Chuanke; Dong Jianjun

    2010-01-01

    In inertial confinement fusion (ICF) system, manual way has been used to collimate the pellet traditionally, which is time-consuming and low-level automated. A new method based on Binocular Vision is proposed, which can place the prospecting apparatus on the public diagnosis platform to reach relevant engineering target and uses the high precision two dimension calibration board. Iterative method is adopted to satisfy 0.1 pixel for corner extraction precision. Furthermore, SVD decomposition is used to remove the singularity corners and advanced Zhang's calibration method is applied to promote camera calibration precision. Experiments indicate that the RMS of three dimension coordinate measurement precision is 25 μm, and the max system RMS of distance measurement is better than 100 μm, satisfying the system index requirement. (authors)

  16. High-precision thermal and electrical characterization of thermoelectric modules

    Kolodner, Paul

    2014-05-01

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0-10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  17. Radiation Shielding Utilizing A High Temperature Superconducting Magnet

    National Aeronautics and Space Administration — Project objective is to evaluate human radiation protection and architecture utilizing existing superconducting magnet technology while attempting to significantly...

  18. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  19. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  20. Fabrication and characterizations of high-Tc superconducting ceramic/polymer 0--3 composites

    Du, J.; Unsworth, J.

    1994-01-01

    High-T c superconducting ceramic YBa 2 Cu 3 O 7-x /thermosetting plastic 0--3 composites were fabricated. The structure, physical property, magnetic susceptibility, levitation, and mechanical strength of the composites were accessed. The influence of filler content on these properties was also studied. Although the 0--3 composites lack an electrical superconducting path through materials, the intrinsic diamagnetic properties were preserved. The magnetic superconducting transition temperature was not degraded. The values of magnetic susceptibility and levitation force for the composites were basically proportional to the actual volume fraction of superconducting filler. These new composite materials are most suitable for the applications in levitating vehicles and mechanical bearings

  1. Trapped magnetic field of a superconducting bulk magnet in high- Tc RE-Ba-Cu-O

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken; Murakami, Masato

    1999-01-01

    Superconducting magnets made of high-T c superconductors are promising for industrial applications. It is well known that REBa 2 Cu 3 O 7-x and LRE (light rare-earth) Ba 2 Cu 3 O 7-x superconductors prepared by melt processes have a high critical current density, J c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J c in high magnetic fields and a much improved irreversibility field, H irr , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train

  2. High-precision performance testing of the LHC power converters

    Bastos, M; Dreesen, P; Fernqvist, G; Fournier, O; Hudson, G

    2007-01-01

    The magnet power converters for LHC were procured in three parts, power part, current transducers and control electronics, to enable a maximum of industrial participation in the manufacturing and still guarantee the very high precision (a few parts in 10-6) required by LHC. One consequence of this approach was several stages of system tests: factory reception tests, CERN reception tests, integration tests , short-circuit tests and commissioning on the final load in the LHC tunnel. The majority of the power converters for LHC have now been delivered, integrated into complete converter and high-precision performance testing is well advanced. This paper presents the techniques used for high-precision testing and the results obtained.

  3. High current precision long pulse electron beam position monitor

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  4. Application of high temperature superconductivity to electric motor design

    Edmonds, J.S.; Sharma, D.K.; Jordan, H.E.; Edick, J.D.; Schiferl, R.F.

    1992-01-01

    This paper reports on progress made in a joint project conducted by the Electric Power Research Institute and Reliance Electric Company to study the possible application of High Temperature Super Conductors (HTSC), materials to electric motors. Specific applications are identified which can be beneficially served by motors constructed with HTSC materials. A summary is presented of the components and design issues related to HTSC motors designed for these applications. During the course of this development program, a three tier HTSC wire performance specification has evolved. The three specifications and the rationale behind these three levels of performance are explained. A description of a test motor that has been constructed to verify the electromagnetic analytical techniques of HTSC motor design is given. Finally, a DC motor with an HTSC field coil is described. Measured data with the motor running is presented showing that the motor is operating with the field winding in the superconducting state

  5. What is strange about high-temperature superconductivity in cuprates?

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2017-10-01

    Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.

  6. Voltage spike detection in high field superconducting accelerator magnets

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  7. Voltage spike detection in high field superconducting accelerator magnets

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.

    2004-01-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are ∼15mV in magnitude and lasts for ∼30(micro)sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb3Sn magnets at currents up to ∼20KA will also be shown

  8. Many-body problems in high temperature superconductivity

    Yu Lu.

    1991-10-01

    In this brief review the basic experimental facts about high T c superconductors are outlined. The superconducting properties of these superconductors are not very different from those of the ordinary superconductors. However, their normal state properties cannot be described by the standard Fermi liquid (FL) theory. Our current understanding of the strongly correlated models is summarized. In one dimension these systems behave like a ''Luttinger liquid'', very much distinct from the FL. In spite of the enormous efforts made in two-dimensional studies, the question of FL vs non-FL behaviour is still open. The numerical results as well as various approximation schemes are discussed. Both the single hole problem in a quantum antiferromagnet and finite doping regime are considered. (author). 104 refs, 9 figs

  9. Superconducting magnet suspensions in high speed ground transport

    Alston, I A

    1973-08-01

    A technical and economic definition of high speed ground transport systems using magnetic suspensions is given. The full range of common superconducting suspensions and of propulsions are covered with designs produced for speeds ranging from 100 m/s (225 miles/hr) to 250 m/s (560 mile/hr). Technical descriptions of the vehicles, their suspensions, propulsions and tracks are given in some detail and operating costs are presented for all the systems together with details of the breakdown of costs and the capital costs involved. The design assumptions, the costing procedure and a cost sensitivity study are presented. It is concluded that the systems are technically feasible; that they are suited to existing duorail track for low speed running and that, in these circumstances, they would be economically viable over many routes.

  10. Discovery of a Superconducting High-Entropy Alloy

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  11. Unconventional superconductivity in heavy fermionic and high-Tc superconductors

    Volovik, G.E.

    1989-01-01

    Splitting of the superconducting transition and glass spectrum in heavy fermion companies and oxide superconductors are discussed. The multicomponent order parameter leads to splitting of transition due to magnetic field, impurities, orthorhombic distortion, etc... Linear specific heat in oxide superconductors may be explained in terms of the Fermi-surface arising in superconducting state if interband is pairing strong enough

  12. Application of high precision temperature control technology in infrared testing

    Cao, Haiyuan; Cheng, Yong; Zhu, Mengzhen; Chu, Hua; Li, Wei

    2017-11-01

    In allusion to the demand of infrared system test, the principle of Infrared target simulator and the function of the temperature control are presented. The key technology of High precision temperature control is discussed, which include temperature gathering, PID control and power drive. The design scheme of temperature gathering is put forward. In order to reduce the measure error, discontinuously current and four-wire connection for the platinum thermal resistance are adopted. A 24-bits AD chip is used to improve the acquisition precision. Fuzzy PID controller is designed because of the large time constant and continuous disturbance of the environment temperature, which result in little overshoot, rapid response, high steady-state accuracy. Double power operational amplifiers are used to drive the TEC. Experiments show that the key performances such as temperature control precision and response speed meet the requirements.

  13. Weak gravitational lensing towards high-precision cosmology

    Berge, Joel

    2007-01-01

    This thesis aims at studying weak gravitational lensing as a tool for high-precision cosmology. We first present the development and validation of a precise and accurate tool for measuring gravitational shear, based on the shapelets formalism. We then use shapelets on real images for the first time, we analyze CFHTLS images, and combine them with XMM-LSS data. We measure the normalisation of the density fluctuations power spectrum σ 8 , and the one of the mass-temperature relation for galaxy clusters. The analysis of the Hubble space telescope COSMOS field confirms our σ 8 measurement and introduces tomography. Finally, aiming at optimizing future surveys, we compare the individual and combined merits of cluster counts and power spectrum tomography. Our results demonstrate that next generation surveys will allow weak lensing to yield its full potential in the high-precision cosmology era. (author) [fr

  14. The Application of High Temperature Superconducting Materials to Power Switches

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  15. High precision pulsar timing and spin frequency second derivatives

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  16. Numerical solution of High-kappa model of superconductivity

    Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  17. The infinite range Heisenberg model and high temperature superconductivity

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  18. High precision mass measurements in Ψ and Υ families revisited

    Artamonov, A.S.; Baru, S.E.; Blinov, A.E.

    2000-01-01

    High precision mass measurements in Ψ and Υ families performed in 1980-1984 at the VEPP-4 collider with OLYA and MD-1 detectors are revisited. The corrections for the new value of the electron mass are presented. The effect of the updated radiative corrections has been calculated for the J/Ψ(1S) and Ψ(2S) mass measurements [ru

  19. Properties of the proton therapy. A high precision radiotherapy

    Anon.

    2005-01-01

    The proton therapy is a radiotherapy using protons beams. The protons present interesting characteristics but they need heavy technologies to be used, such particles accelerators, radiation protection wall and sophisticated technologies to reach the high precision allowed by their ballistic qualities (planning of treatment, beam conformation and patient positioning). (N.C.)

  20. Layered compression for high-precision depth data.

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.

  1. High-precision multi-node clock network distribution.

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  2. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  3. Pressure and high-Tc superconductivity in sulfur hydrides.

    Gor'kov, Lev P; Kresin, Vladimir Z

    2016-05-11

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  4. Miniaturized high-temperature superconducting multiplexer with cascaded quadruplet structure

    Xu, Zhang; Jingping, Liu; Shaolin, Yan; Lan, Fang; Bo, Zhang; Xinjie, Zhao

    2015-06-01

    In this paper, compact high temperature superconducting (HTS) multiplexers are presented for satellite communication applications. The first multiplexer consists of an input coupling node and three high-order bandpass filters, which is named triplexer. The node is realized by a loop microstrip line instead of conventional T-junction to eliminate the redundant susceptance due to combination of three filters. There are two eight-pole band-pass filters and one ten-pole band-pass filter with cascaded quadruplet structure for realizing high isolation. Moreover, the triplexer is extended to a multiplexer with six channels so as to verify the expansibility of the suggested approach. The triplexer is fabricated using double-sided YBa2Cu3O7 thin films on a 38 × 25 mm2 LaAlO3 substrate. The experimental results, when compared with those ones from the T-junction multiplexer, show that our multiplexer has lower insertion loss, smaller sizes and higher isolation between any two channels. Also, good agreement has been achieved between simulations and measurements, which illustrate the effectiveness of our methods for the design of high performance HTS multiplexers.

  5. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  6. The superconducting bending magnets 'CESAR'

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  7. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  8. Design considerations for a large aperture high field superconducting dipole

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab

  9. Stability analysis of high temperature superconducting coil in liquid hydrogen

    Nakayama, T.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2007-01-01

    Recently, it is expected that hydrogen plays an important role in energy source including electric power in near future. Liquid hydrogen has high potential for cooling down superconducting coil wound with high temperature superconductors (HTS), such as BSCCO, YBCO. In this paper, we study stabilities of the coils wound with BSCCO tapes, which are immersed in the liquid hydrogen, and compare stability results with those cooled by liquid helium. We treat a minimum propagation zone (MPZ) theory to evaluate the coil stability considering boiling heat flux of the liquid hydrogen, and specific heat, heat conduction and resistivity of HTS materials as a function of temperature. It is found that the coil cooled by the liquid hydrogen has higher stability margin than that cooled by the liquid helium. We compare the stability margins of both coils wound with Bi-2223/Ag tape and Bi-2212/Ag tape in liquid hydrogen. As a result, it is found that the stability of Bi-2212 coil is equivalent to that of Bi-2223 coil in low and high magnetic field, while the maximum current of Bi-2212 coil exceeds a little bit that of Bi-2223 coil in both magnetic fields

  10. High temperature superconductivity the road to higher critical temperature

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  11. Design considerations for a large aperture high field superconducting dipole

    Harfoush, F.; Ankenbrandt, C.; Harrison, M.; Kerby, J.; Koepke, K.; Mantsch, P.; Nicol, T.; Riddiford, A.; Theilacker, J.

    1989-03-01

    The final phase of the Fermilab upgrade proposal calls for a new ring of superconducting magnets to be placed in the existing Main Accelerator tunnel. The goal of this design study is to specify a high field dipole (HFD) that is capable of supporting fixed target operation (ramping, resonant extraction) at a field of 6.6T (1.5 Tev) and colliding beam physics at 8.0T (1.8 Tev). The magnetic field quality at high field is set by the large amplitude orbits associated with resonant extraction. The field quality must therefore be at least as good as the existing Tevatron magnets which fulfill these criteria. The high fields and large aperture of this magnet result in large forces on the coil and collar assemblies. Therefore, the cold mass design must be able to sustain these forces while providing sufficient cooling to the coils during 4.2 K fixed target operation, and a minimum heat load during 1.8 K collider operation. The design work is still in progress but a cosine-theta, cold-iron dipole with a 70mm inner diameter coil has been tentatively adopted. This report presents details on the conductor and cable parameters, coil cross-section, projected manufacturing tolerances, iron yoke design, and cold mass assembly. 4 refs., 5 figs., 1 tab.

  12. Superconducting cyclotron deflector conditioning status - an experience with high voltage

    Ghosh, Subhash; Chattopadhyay, Subrata; Bhattacharjee, Tanushyam; De, Anirban; Paul, Santanu; Pal, Gautam; Saha, Subimal; Mallik, C.; Bhandari, R.K.

    2009-01-01

    In this paper we report about the status of the electrostatic deflector which will be used in K500 superconducting cyclotron at VECC, Kolkata. For extraction of beams from superconducting cyclotron we have to achieve 130 kV/cm. Titanium and tungsten are used for anode and septum respectively. The deflector fits within the median plane of the superconducting magnet. We report here the voltage limit, sparking rates, dark current levels and the effects observed on conditioning. For commissioning of the superconducting cyclotron, the plan is to accelerate Neon beam of 50 MeV/n for which the required extraction voltage is 81 kV/cm and we reached up to 110 kV/cm. The conditioning test chamber is maintained at a pressure of 8.0 x 10 -7 mbar. (author)

  13. Exciton interaction: its possible role in high temperature superconductivity

    Little, W.A.

    1987-01-01

    The recent remarkable developments in superconductivity has forced the group of physicists in the main stream of superconductivity research to re-examine the possible role of what has been referred to in the conference as novel mechanisms of superconductivity. The exciton mechanism is one such. While the many studies and developments in this subject are relatively well known to those involved in studies of organic superconductors and superconductors of reduced dimension, it appears that it is not well known to that large body of physicists involved in the more conventional mainstream of superconductivity. The salient features of the mechanism are reviewed and what it can and cannot do is discussed. Remarks are based on the most recent and most comprehensive review of the subject published in 1979, plus a few key papers since that time

  14. Analysis of thermodynamic properties for high-temperature superconducting oxides

    Kushwah, S.S.; Shanker, J.

    1993-01-01

    Analysis of thermodynamic properties such as specific heat, Debye temperature, Einstein temperature, thermal expansion coefficient, bulk modulus, and Grueneisen parameter is performed for rare-earth-based, Tl-based, and Bi-based superconducting copper oxides. Values of thermodynamic parameters are calculated and reported. The relationship between the Debye temperature and the superconducting transition temperature is used to estimate the values of T c using the interaction parameters from Ginzburg. (orig.)

  15. Photoemission and the origin of high temperature superconductivity

    Norman, M. R.; Randeria, M.; Janko, B.; Campuzano, J. C.

    2000-01-01

    The condensation energy can be shown to be a moment of the change in the occupied part of the spectral function when going from the normal to the superconducting state. As a consequence, there is a one to one correspondence between the energy gain associated with forming the superconducting ground state, and the dramatic changes seen in angle resolved photoemission spectra. Some implications this observation has are offered

  16. Influence of pulse electric current on structure and superconducting properties of high temperature superconductor

    Rajchenko, A.I.; Flis, A.A.; Chernenko, L.I.; Kryuchkova, N.I.

    1998-01-01

    The influence of high-density pulse current treatment at room temperature on structure and superconducting properties of HTSC Y Ba 2 Cu 3 O x ceramics is studied. The structures of the samples are found to undergo appreciable changes as the density of pulse current is gradually increased from its minimum value; as a certain threshold value is attained, there occurs a melting-off of coarse grains with a partial destroying of intergrain contact areas followed by superconductivity loss. A further increase in the treatment current density results in a restoration of the superconducting properties probably due to the occurrence of aligned-with-current superconducting bridges between the melted-off grains. The superconducting transition temperature in the samples does not charge but subsequent thermal treatment causes this temperature to increase

  17. Photocathodes inside superconducting cavities. Studies on the feasibility of a superconducting photoelectron source of high brightness. External report

    Michalke, A.

    1992-01-01

    We have done studies and experiments to explore the feasibility of a photoemission RF gun with a superconducting accelerator cavity. This concept promises to provide an electron beam of high brightness in continuous operation. It is thus of strong interest for a free-electron-laser or a linear collider based on a superconducting accelerator. In a first step we studied possible technical solutions for its components, especially the material of the photocathode and the geometrical shape of the cavity. Based on these considerations, we developed the complete design for a prototype electron source. The cathode material was chosen to be alkali antimonide. In spite of its sensitivity, it seems to be the best choice for a gun with high average current due to its high quantum efficiency. The cavity shape was at first a reentrant-type single cell of 500 MHz. It is now replaced by a more regular two-and-half cell shape, an independent half cell added for emittance correction. Its beam dynamics properties are investigated by numerical simulations; we estimated a beam brightness of about 5x10 11 A/(m.rad) 2 . But the mutual interactions between alkali antimonide photocathode and superconducting cavity must be investigated experimentally, because they are completely unkown. (orig.)

  18. Trial manufacture of liquid nitrogen cooling High Temperature Superconductivity Motor

    Sugimoto, H; Nishikawa, T; Tsuda, T; Hondou, Y; Akita, Y; Takeda, T; Okazaki, T; Ohashi, S; Yoshida, Y

    2006-01-01

    We present a new high temperature superconductivity (HTS) synchronous motor using the liquid nitrogen as the refrigerant in this paper. This motor is designed to be used as the propulsion motor in ship. Because we use the liquid nitrogen as the refrigerant, it is possible to simplify the cooling equipments in the motor. And in our design, we apply the axial flux type of motor to simplify the cryostat of the HTS wires used to make the field coils. Here, the fields using the bismuth HTS wire for the HTS coils are fixed. Moreover, the cores used in the fields are separated from cryostat, and the armature applies the core-less structure. According to various the electromagnetic field analysis results, the new motor was designed and produced. The diameter of the motor is 650mm, and the width of the motor is 360mm. The motor's rated output is 8.8kW at 100rpm, while the overload output is 44kW, and the maximum efficiency is 97.7%. Also, in order to further miniaturize the motor, other magnetic field analysis have been done when the high-current-density type HTS wire was used and the permendur was used instead of magnetic steel plates. In this case, the motor's rated output is 12kW, and the overload output is 60kW

  19. Theory of high-T{sub C} superconductivity: transition temperature

    Harshman, Dale R [Physikon Research Corporation, Lynden, WA 98264 (United States); Fiory, Anthony T [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Dow, John D, E-mail: drh@physikon.net [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-07-27

    It is demonstrated that the transition temperature (T{sub C}) of high-T{sub C} superconductors is determined by their layered crystal structure, bond lengths, valency properties of the ions, and Coulomb coupling between electronic bands in adjacent, spatially separated layers. Analysis of 31 high-T{sub C} materials (cuprates, ruthenates, ruthenocuprates, iron pnictides, organics) yields the universal relationship for optimal compounds, k{sub B}T{sub C0} ={beta}/{iota}{zeta}, where {iota} is related to the mean spacing between interacting charges in the layers, {zeta} is the distance between interacting electronic layers, {beta} is a universal constant and T{sub C0} is the optimal transition temperature (determined to within an uncertainty of {+-} 1.4 K by this relationship). Non-optimum compounds, in which sample degradation is evident, e.g. by broadened superconducting transitions and diminished Meissner fractions, typically exhibit reduced T{sub C} < T{sub C0}. It is shown that T{sub C0} may be obtained from an average of the Coulomb interaction forces between the two layers.

  20. High-temperature superconducting nanowires for photon detection

    Arpaia, R. [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Göteborg (Sweden); CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Fisica, Università degli Studi di Napoli ‘Federico II’, I-80125 Napoli (Italy); Ejrnaes, M. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Parlato, L. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Fisica, Università degli Studi di Napoli ‘Federico II’, I-80125 Napoli (Italy); Tafuri, F. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, I-81031 Aversa, CE (Italy); Cristiano, R. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Golubev, D. [Low Temperature Laboratory (OVLL), Aalto University School of Science, P.O. Box 13500, FI-00076 Aalto (Finland); Sobolewski, Roman, E-mail: roman.sobolewski@rochester.edu [Institute of Electron Technology, PL-02668 Warszawa (Poland); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, NY 14627-0231 (United States); Bauch, T.; Lombardi, F. [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Göteborg (Sweden); and others

    2015-02-15

    Highlights: • Homogeneous YBCO nanowires have been fabricated for photon detection applications. • Serial-parallel nanowire configuration leads to a large detector active area. • The YBCO nanowires exhibit critical current densities up to 106 A/cm{sup 2}. • The devices have been excited using a 1550-nm wavelength, pulsed laser irradiation. • Photoresponse signals have been measured and analyzed from 4 K up to the device T{sub c}. - Abstract: The possible use of high-temperature superconductors (HTS) for realizing superconducting nanowire single-photon detectors is a challenging, but also promising, aim because of their ultrafast electron relaxation times and high operating temperatures. The state-of-the-art HTS nanowires with a 50-nm thickness and widths down to 130 nm have been fabricated and tested under a 1550-nm wavelength laser irradiation. Experimental results presenting both the amplitude and rise times of the photoresponse signals as a function of the normalized detector bias current, measured in a wide temperature range, are discussed. The presence of two distinct regimes in the photoresponse temperature dependence is clearly evidenced, indicating that there are two different response mechanisms responsible for the HTS photoresponse mechanisms.

  1. High-precision ground-based photometry of exoplanets

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  2. High Precision Edge Detection Algorithm for Mechanical Parts

    Duan Zhenyun

    2018-04-01

    Full Text Available High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  3. High Precision Edge Detection Algorithm for Mechanical Parts

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  4. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    Watanabe, K; Nishijima, G; Awaji, S; Koyama, K; Takahashi, K; Kobayashi, N; Kiyoshi, T

    2006-01-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet

  5. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  6. NMR initiatives on understanding high-temperature superconductivity

    Kitaoka, Y.; Mukuda, H.; Shimizu, S.; Abe, M.; Iyo, A.; Tanaka, Y.; Kito, H.; Tokiwa, K.; Watanabe, T.

    2007-01-01

    We review a recent progress of NMR studies [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.] on multi-layered cuprates. This work has shed new light to a generic phase diagram of high-temperature superconductivity (HTSC) which suggests a competition between antiferromagnetism (AFM) and superconductivity (SC). The multi-layered cuprates include two types of CuO 2 planes, an outer CuO 2 plane (OP) in a pyramidal coordination and an inner CuO 2 plane (IP) in a square one with no apical oxygen. Remarkable feature of the multi-layered systems is the presence of ideally flat CuO 2 planes that are homogeneously doped. Systematic Cu-NMR studies on the optimally-doped five-layered HgBa 2 Ca 4 Cu 5 O 12+δ (Hg-1245(OPT)) and slightly overdoped Tl-1245(OVD) have revealed the coexistent phase of SC and AFM in a unit cell [H. Kotegawa, et al., Phys. Rev. B 64 (2001) 064515; H. Kotegawa, et al., Phys. Rev. B 69 (2004) 014501.]. The optimally doped two OPs are predominantly superconducting with T c =108 and 100K, whereas the under-doped three IPs show the AFM order below T N =60 and 45K for Hg-1245(OPT) and Tl-1245(OVD), respectively. Recently exciting is the finding of the uniform mixing of AFM and HTSC in a single CuO 2 layer in the under-doped Hg-1245(UD) and the heavily underdoped four-layered Ba 2 Ca 3 Cu 4 O 8 F 2 (0234F(2.0)) that has fluorine ions (F 1- ) as apical ions [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.]. In Hg-1245(UD) with T c =72K and T N =290K, the OPs exhibit the uniform mixing of AFM and HTSC with AFM moment of M AFM (OP)=0.1μ B , whereas the IPs are possibly AFM insulators with a small doping [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001.]. In 0234F(2.0) with T c =55K and T N =100K, the uniform mixing of AFM and HTSC is demonstrated to take place in electron (n)-doped IPs [S. Shimizu, et al., submitted for publication.], thanks to insight

  7. Advanced control scenario of high-performance steady-state operation for JT-60 superconducting tokamak

    Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.

    2004-01-01

    Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)

  8. Are we getting to the point of understanding high-temperature superconductivity?

    Huebener, R.P.; Tsuei, C.C.; Newns, D.M.

    1994-01-01

    The model elaborated by van Hove allows a coherent explanation of various anomalies observed with the phenomenon of high-T c superconductivity, including the cause of T c reaching such a high value, or the materials behaving like marginal Fermi liquids. However, there remain other enigma to be solved before it will be possible to fully explain and understand high-T c superconductivity. (DG) [de

  9. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  10. High-T/sub c/ superconductor and its use in superconducting magnets

    Green, M.A.

    1988-02-01

    Many of the proposed uses for the high-T/sub c/ superconductor involve the creation of a magnetic field using superconducting coils. This report will assess what is known about the high-T/sub c/ superconductors and take a realistic look at their potential use in various kinds of superconducting magnets. Based on what is known about the high-T/sub c/ superconductors, one can make a ''wish list'' of things that will make such materials useful for magnets. Then, the following question is asked. If one had a high-T/sub c/ superconductor with the same properties as modern niobium-titanium superconductor, how would the superconductor work in a magnet environment? Finally, this report will show the potential impact of the ideal high-T/sub c/ superconductor on: 1) accelerator dipole and quadrupole magnets, 2) superconducting magnets for use in space, and 3) superconducting solenoids for magnetic resonance imaging. 78 refs., 11 tabs

  11. Precision crystal alignment for high-resolution electron microscope imaging

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  12. High-precision thickness measurements using beta backscatter

    Heckman, R.V.

    1978-11-01

    A two-axis, automated fixture for use with a high-intensity Pm-147 source and a photomultiplier-scintillation beta-backscatter probe for making thickness measurements has been designed and built. A custom interface was built to connect the system to a minicomputer, and software was written to position the tables, control the probe, and make the measurements. Measurements can be made in less time with much greater precision than by the method previously used

  13. High-precision reflectivity measurements: improvements in the calibration procedure

    Jupe, Marco; Grossmann, Florian; Starke, Kai; Ristau, Detlev

    2003-05-01

    The development of high quality optical components is heavily depending on precise characterization procedures. The reflectance and transmittance of laser components are the most important parameters for advanced laser applications. In the industrial fabrication of optical coatings, quality management is generally insured by spectral photometric methods according to ISO/DIS 15386 on a medium level of accuracy. Especially for high reflecting mirrors, a severe discrepancy in the determination of the absolute reflectivity can be found for spectral photometric procedures. In the first part of the CHOCLAB project, a method for measuring reflectance and transmittance with an enhanced precision was developed, which is described in ISO/WD 13697. In the second part of the CHOCLAB project, the evaluation and optimization for the presented method is scheduled. Within this framework international Round-Robin experiment is currently in progress. During this Round-Robin experiment, distinct deviations could be observed between the results of high precision measurement facilities of different partners. Based on the extended experiments, the inhomogeneity of the sample reflectivity was identified as one important origin for the deviation. Consequently, this inhomogeneity is also influencing the calibration procedure. Therefore, a method was developed that allows the calibration of the chopper blade using always the same position on the reference mirror. During the investigations, the homogeneity of several samples was characterized by a surface mapping procedure for 1064 nm. The measurement facility was extended to the additional wavelength 532 nm and a similar set-up was assembled at 10.6 μm. The high precision reflectivity procedure at the mentioned wavelengths is demonstrated for exemplary measurements.

  14. High precision frequency estimation for harpsichord tuning classification

    Tidhar, D.; Mauch, M.; Dixon, S.

    2010-01-01

    We present a novel music signal processing task of classifying the tuning of a harpsichord from audio recordings of standard musical works. We report the results of a classification experiment involving six different temperaments, using real harpsichord recordings as well as synthesised audio data. We introduce the concept of conservative transcription, and show that existing high-precision pitch estimation techniques are sufficient for our task if combined with conservative transcription. In...

  15. High precision straw tube chamber with cathode readout

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.

    1992-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm straws were made of aluminized mylar strip with transparent longitudinal window. The X coordinate information has been taken from the cathode strips as induced charges and investigated via centroid method. The spatial resolution σ=120 μm has been obtained with signal/noise ratio about 60. The possible ways for improving the signal/noise ratio have been described. 7 refs.; 8 figs

  16. A high precision straw tube chamber with cathode readout

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.; Zubarev, E.V.; Ivanov, A.B.; Lysiakov, V.N.; Makhankov, A.V.; Movchan, S.A.; Peshekhonov, V.D.; Preda, T.

    1993-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm diameter straws were made of aluminized Mylar with transparent longitudinal window. The X-coordinate information has been taken from cathode strips as induced charges and investigated with the centroid method. The spatial resolution σ x =103 μm was obtained at a signal-to-noise ratio of about 70. The possible ways to improve the signal-to-noise ratio are discussed. (orig.)

  17. Method of superconducting joint and its measurement

    Kim, Woo Gon; Lee, Ho Jin; Hong, Gye Won

    1994-04-01

    The development of joint techniques for superconducting wires is essential to fabricate the high quality superconducting magnet. In this report, the various joining methods and their measuring techniques were reviewed. In order to fabricate a precise superconducting magnet, joining and measuring experiment by using the field decay technique carried out. The contact resistance of coupled specimens with joint was measured as 3.0 x 10 -15 ohm at 1 Tesla which is lower than that of the real operating condition of MRI magnet. It is expected that these data can be used to design and fabricate the superconducting magnets successfully. (Author) 12 refs., 20 figs., 2 tabs

  18. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  19. High-Precision Computation: Mathematical Physics and Dynamics

    Bailey, D.H.; Barrio, R.; Borwein, J.M.

    2010-01-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  20. High precision electrostatic potential calculations for cylindrically symmetric lenses

    Edwards, David Jr.

    2007-01-01

    A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10 -10

  1. High-Precision Computation: Mathematical Physics and Dynamics

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  2. High Tc Superconducting Magnet Excited by a Semiconductor Thermoelectric Element

    Kuriyama, T.; Ono, M.; Tabe, S.; Oguchi, A.; Okamura, T.

    2006-04-01

    A high Tc superconducting (HTS) magnet excited by a thermal electromotive force of a thermoelectric element is studied. This HTS magnet has the advantages of compactness, lightweight and continuous excitation in comparison with conventional HTS magnets, because this HTS magnet does not need a large external power source. In this system, a heat input into the cryogenic environment is necessary to excite the thermoelectric element for constant operation. This heat generation, however, causes a rise in temperature of an HTS coil and reduces the system performance. In this paper, a newly designed magnet system which adopted a two-stage GM cryocooler was investigated. It enabled us to control the temperature of a thermoelectric element and that of an HTS coil independently. The temperature of the HTS coil could be kept at 10-20 K at the second stage of the GM cryocooler, while the thermoelectric element could be excited at higher temperature in the range of 50-70 K at the first stage, where the performance of the thermoelectric element was higher. The experimental results on this HTS magnet are shown and the possibility of the thermoelectric element as a main power source of the HTS magnets is discussed.

  3. A novel propulsion method for high- Tc superconducting maglev vehicle

    Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.

  4. High density operation on the HT-7 superconducting tokamak

    Xiang Gao

    2000-01-01

    The structure of the operation region has been studied in the HT-7 superconducting tokamak, and progress on the extension of the HT-7 ohmic discharge operation region is reported. A density corresponding to 1.2 times the Greenwald limit was achieved by RF boronization. The density limit appears to be connected to the impurity content and the edge parameters, so the best results are obtained with very clean plasmas and peaked electron density profiles. The peaking factors of electron density profiles for different current and line averaged densities were observed. The density behaviour and the fuelling efficiency for gas puffing (20-30%), pellet injection (70-80%) and molecular beam injection (40-50%) were studied. The core crash sawteeth and MHD behaviour, which were induced by an injected pellet, were observed and the events correlated with the change of current profile and reversed magnetic shear. The MARFE phenomena on HT-7 are summarized. The best correlation has been found between the total input ohmic power and the product of the edge line averaged density and Z eff . HT-7 could be easily operated in the high density region MARFE-free using RF boronization. (author)

  5. High-Q superconducting niobium cavities for gravitational wave detectors

    De Paula, L A N; Furtado, S R; Aguiar, O D; N F Oliveira Jr, N F Oliveira Jr; Castro, P J; Barroso, J J

    2014-01-01

    The main purpose of this work is to optimize the electric Q-factor of superconducting niobium klystron cavities to be used in parametric transducers of the Mario Schenberg gravitational wave detector. Many cavities were manufactured from niobium with relatively high tantalum impurities (1420 ppm) and they were cryogenically tested to determine their resonance frequencies, unloaded electrical quality factors (Q 0 ) and electromagnetic couplings. These cavities were closed with a flat niobium plate with tantalum impurities below 1000 ppm and an unloaded electrical quality factors of the order of 10 5 have been obtained. AC conductivity of the order of 10 12 S/m has been found for niobium cavities when matching experimental results with computational simulations. These values for the Q-factor would allow the detector to reach the quantum limit of sensitivity of ∼ 10 −22 Hz −1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz. The experimental tests were performed at the laboratories of the National Institute for Space Research (INPE) and at the Institute for Advanced Studies (IEAv - CTA)

  6. High-temperature study of superconducting hydrogen and deuterium sulfide

    Durajski, A.P. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Szczesniak, R. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Institute of Physics, Jan Dlugosz University, Ave. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Pietronero, L. [Sapienza, Universita di Roma, Dip. Fisica, P. le A. Moro 2, 00185 Roma (Italy); Institute of Complex Systems, CNR, Via dei Taurini 19 Roma (Italy); London Institute for Mathematical Sciences, South Street 22, Mayfair London (United Kingdom)

    2016-05-15

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of 203 K in hydrogen sulfide (H{sub 3}S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H{sub 3}S and D{sub 3}S at 150 GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature 203 K and 147 K for H{sub 3}S and D{sub 3}S by using a Coulomb pseudopotential of 0.123 and 0.131, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D{sub 3}S is smaller than for H{sub 3}S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. High precision efficiency calibration of a HPGe detector

    Nica, N.; Hardy, J.C.; Iacob, V.E.; Helmer, R.G.

    2003-01-01

    Many experiments involving measurements of γ rays require a very precise efficiency calibration. Since γ-ray detection and identification also requires good energy resolution, the most commonly used detectors are of the coaxial HPGe type. We have calibrated our 70% HPGe to ∼ 0.2% precision, motivated by the measurement of precise branching ratios (BR) in superallowed 0 + → 0 + β decays. These BRs are essential ingredients in extracting ft-values needed to test the Standard Model via the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, a test that it currently fails by more than two standard deviations. To achieve the required high precision in our efficiency calibration, we measured 17 radioactive sources at a source-detector distance of 15 cm. Some of these were commercial 'standard' sources but we achieved the highest relative precision with 'home-made' sources selected because they have simple decay schemes with negligible side feeding, thus providing exactly matched γ-ray intensities. These latter sources were produced by us at Texas A and M by n-activation or by nuclear reactions. Another critical source among the 17 was a 60 Co source produced by Physikalisch-Technische Bundesanstalt, Braunschweig, Germany: its absolute activity was quoted to better than 0.06%. We used it to establish our absolute efficiency, while all the other sources were used to determine relative efficiencies, extending our calibration over a large energy range (40-3500 keV). Efficiencies were also determined with Monte Carlo calculations performed with the CYLTRAN code. The physical parameters of the Ge crystal were independently determined and only two (unmeasurable) dead-layers were adjusted, within physically reasonable limits, to achieve precise absolute agreement with our measured efficiencies. The combination of measured efficiencies at more than 60 individual energies and Monte Carlo calculations to interpolate between them allows us to quote the efficiency of our

  8. Theory of superconductivity

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  9. High precision capacitive beam phase probe for KHIMA project

    Hwang, Ji-Gwang, E-mail: windy206@hanmail.net [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Yang, Tae-Keun [Korea Institute of Radiological and Medical Sciences, 215–4, Gongneung-dong, Nowon-t, Seoul 139–706 (Korea, Republic of); Forck, Peter [GSI Helmholtz Centre for Ion Research, Darmstadt 64291, German (Germany)

    2016-11-21

    In the medium energy beam transport (MEBT) line of KHIMA project, a high precision beam phase probe monitor is required for a precise tuning of RF phase and amplitude of Radio Frequency Quadrupole (RFQ) accelerator and IH-DTL linac. It is also used for measuring a kinetic energy of ion beam by time-of-flight (TOF) method using two phase probes. The capacitive beam phase probe has been developed. The electromagnetic design of the high precision phase probe was performed to satisfy the phase resolution of 1° (@200 MHz). It was confirmed by the test result using a wire test bench. The measured phase accuracy of the fabricated phase probe is 1.19 ps. The pre-amplifier electronics with the 0.125 ∼ 1.61 GHz broad-band was designed and fabricated for amplifying the signal strength. The results of RF frequency and beam energy measurement using a proton beam from the cyclotron in KIRAMS is presented.

  10. High precision ray tracing in cylindrically symmetric electrostatics

    Edwards Jr, David, E-mail: dej122842@gmail.com

    2015-11-15

    Highlights: • High precision ray tracing is formulated using power series techniques. • Ray tracing is possible for fields generated by solution to laplace's equation. • Spatial and temporal orders of 4–10 are included. • Precisions in test geometries of hemispherical deflector analyzer of ∼10{sup −20} have been obtained. • This solution offers a considerable extension to the ray tracing accuracy over the current state of art. - Abstract: With the recent availability of a high order FDM solution to the curved boundary value problem, it is now possible to determine potentials in such geometries with considerably greater accuracy than had been available with the FDM method. In order for the algorithms used in the accurate potential calculations to be useful in ray tracing, an integration of those algorithms needs to be placed into the ray trace process itself. The object of this paper is to incorporate these algorithms into a solution of the equations of motion of the ray and, having done this, to demonstrate its efficacy. The algorithm incorporation has been accomplished by using power series techniques and the solution constructed has been tested by tracing the medial ray through concentric sphere geometries. The testing has indicated that precisions of ray calculations of 10{sup −20} are now possible. This solution offers a considerable extension to the ray tracing accuracy over the current state of art.

  11. Optimal design of a 7 T highly homogeneous superconducting magnet for a Penning trap

    Wu Wei; He Yuan; Ma Lizhen; Huang Wenxue; Xia Jiawen

    2010-01-01

    A Penning trap system called Lanzhou Penning Trap (LPT) is now being developed for precise mass measurements at the Institute of Modern Physics(IMP). One of the key components is a 7 T actively shielded superconducting magnet with a clear warm bore of 156 mm. The required field homogeneity is 3 x 10 -7 over two 1 cubic centimeter volumes lying 220 mm apart along the magnet axis. We introduce a two-step method which combines linear programming and a nonlinear optimization algorithm for designing the multi-section superconducting magnet. This method is fast and flexible for handling arbitrary shaped homogeneous volumes and coils. With the help of this method an optimal design for the LPT superconducting magnet has been obtained. (authors)

  12. The various correction methods to the high precision aeromagnetic data

    Xu Guocang; Zhu Lin; Ning Yuanli; Meng Xiangbao; Zhang Hongjian

    2014-01-01

    In the airborne geophysical survey, an outstanding achievement first depends on the measurement precision of the instrument, and the choice of measurement conditions, the reliability of data collection, followed by the correct method of measurement data processing, the rationality of the data interpretation. Obviously, geophysical data processing is an important task for the comprehensive interpretation of the measurement results, processing method is correct or not directly related to the quality of the final results. we have developed a set of personal computer software to aeromagnetic and radiometric survey data processing in the process of actual production and scientific research in recent years, and successfully applied to the production. The processing methods and flowcharts to the high precision aromagnetic data were simply introduced in this paper. However, the mathematical techniques of the various correction programes to IGRF and flying height and magnetic diurnal variation were stressily discussed in the paper. Their processing effectness were illustrated by taking an example as well. (authors)

  13. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  14. Approaches to the high Tc superconductivity in β-(BEDT-TTF)2X structure

    Tokumoto, M.; Anzai, H.; Murata, K.; Bando, H.; Kajimura, K.; Morita, S.; Ishiguro, T.; Saito, G.

    1987-01-01

    Experimental strategies to realize a high T c superconductivity comparable with the high-T c state of β-(BEDT-TTF) 2 I 3 by means of modification of the β-(BEDT-TTF) 2 X structure are discussed. Some experimental results related to such trials are presented, including the effect of anion alloying and the effect of solvent used for crystal growth on the superconductivity in β-(BEDT-TTF) 2 I 3 . (orig.)

  15. Strategies for high-precision Global Positioning System orbit determination

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  16. International workshop on advanced materials for high precision detectors. Proceedings

    Nicquevert, B.; Hauviller, C.

    1994-01-01

    These proceedings gather together the contributions to the Workshop on Advanced Materials for High Precision Detectors, which was held from 28-30 September 1994 in Archamps, Haute-Savoie, France. This meeting brought together international experts (researchers, physicists and engineers) in the field of advanced materials and their use in high energy physics detectors or spacecraft applications. Its purpose was to discuss the status of the different materials currently in use in the structures of detectors and spacecraft, together with their actual performances, technological implications and future prospects. Environmental effects, such as those of moisture and radiation, were discussed, as were design and manufacturing technologies. Some case studies were presented. (orig.)

  17. Experimental evaluation of a high performance superconducting torquer

    Goldie, J.H.; Avakian, K.M.; Downer, J.R.; Gerver, M.; Gondhalekar, V.; Johnson, B.G.

    1991-01-01

    SatCon has completed a two-year program to design and build a prototype demonstration of a torque actuator which employs a superconducting field magnet. The program culminated with the successful demonstration of close loop torque control, following a desired double version torque profile to an accuracy of approximately 1% of the peak torque of the profile. The targeted double version possessed a peak torque which matches the torque capacity of the M4500 CMG (controlled moment gyro), the largest Sperry double gimbal CMG. The research provided strong evidence of the feasibility of a SatCon-developed advanced concept CMG, depicted schematically in this paper, which would employ cryoresistive control coils in conjunction with an electromagnetically suspended rotor and superconducting source coil. The cryoresistive coils interact with the superconducting solenoid to develop the desired torque and, in addition, the required suspension forces

  18. Current high-temperature superconducting coils and applications in Japan

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  19. Superconductivity in hydrogen-rich materials at high pressures

    Drozdov, Alexander

    2016-07-01

    A room temperature superconductor is probably one of the most desired systems in solid state physics. The highest critical temperature (T{sub c}) that has been achieved so far is in the copper oxide system: 133 kelvin (K) at ambient pressure ([82]Schilling et al. 1993) and 160 K under pressure ([42]Gao et al. 1994). The nature of superconductivity in the cuprates and in the recently discovered iron-based superconductor family (T{sub c}=57 K) is still not fully understood. In contrast, there is a class of superconductors which is well-described by the Bardeen, Cooper, Schrieffer (BCS) theory - conventional superconductors. Great efforts were spent in searching for high-temperature (T{sub c} > 77 K) conventional superconductor but only T{sub c} = 39 K has been reached in MgB2 ([68]Nagamatsu et al. 2001). BCS theory puts no bounds for T{sub c} as follows from Eliashberg's formulation of BCS theory. T{sub c} can be high, if there is a favorable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. It does not predict however in which materials all three parameters are large. At least it gives a clear indication that materials with light elements are favorable as light elements provide high frequencies in the phonon spectrum. The lightest element is hydrogen, and Ashcroft made a first prediction that metallic hydrogen will be a high-temperature superconductor ([6]Ashcroft 1968). As pressure of hydrogen metallization was too high (about 400-500 GPa) for experimental techniques then he proposed that compounds dominated by hydrogen (hydrides) also might be good high temperature superconductors ([6]Ashcroft 1968; [7]Ashcroft 2004). A lot of the followed calculations supported this idea. T{sub c} in the range of 50-235 kelvin was predicted for many hydrides. Unfortunately, only a moderate T{sub c} of 17 kelvin has been observed experimentally ([27]Eremets et al. 2008) so far. A goal of the present work is to find a

  20. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    Tajima, Tsuyoshi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  1. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    Tajima, Tsuyoshi

    2016-01-01

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e@@@/e@@@ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  2. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  3. Precise muon drift tube detectors for high background rate conditions

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  4. High precision and stable structures for particle detectors

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  5. SKLUST device for high-precision gluing of MWPC

    Amaglobeli, N.S.; Burov, R.V.; Sakandelidze, R.M.; Sakhelashvili, T.M.; Chiladze, B.G.; Glonti, G.L.; Glonti, L.N.

    2005-01-01

    The SKLUST device has been created for gluing precision plane-parallel anode, cathode of spacer bars and integral anode and cathode frames of the MWPCs or flat surfaces of the large-area cathode planes for them in the case that thin copper clad stesalit or glass-cloth-base laminate is used as the cathode, for example, for the CSC chambers. In contrast to usual gluing, in this device the glued components are not pressed to each other. SKLUST allows making high-precision products in laboratory conditions without preliminarily machining its components and receiving a precision article practically for any area at the plane parallelism from ±0.030 up to ±0.006 mm using a non-calibrated sheet of the foiled (or unfoiled) stesalit, glass-cloth-base laminate or other flexible materials to a tolerance for the thickness ±0.2-0.5 mm or worse. On the biggest of the existing devices it is possible to fabricate an article with the maximal sizes 2400x250 mm 2 at the thickness accuracy (6±0.015) mm (maximum deviation). Whereas in the technological cycle machining of blanks to the thickness or application of exact blanks is completely excluded, the manufacturing process becomes simpler, and the price of the articles essentially reduces, especially for mass production

  6. Superatom representation of high-T{sub C} superconductivity

    Panas, Itai, E-mail: itai@chalmers.se [Environmental Inorganic Chemistry, Division of Energy and Materials, Department of Chemistry and Biotechnology, Chalmers University of Technology, S-412 96 Gothenburg (Sweden)

    2012-10-15

    A 'super-atom' conceptual interface between chemistry and physics is proposed in order to assist in the search for higher T{sub C} superconductors. The plaquettes generating the checkerboard superstructure in the cuprates, the C{sub 60} molecules in K{sub 3}C{sub 60}, and the Mo{sub 6}S{sub 8}{sup 2-} clusters in Chevrel phase materials offer such candidate super-atoms. Thus, in the present study high-T{sub C} superconductivity HTSC is articulated as the entanglement of two disjoint electronic manifolds in the vicinity of a common Fermi energy. The resulting HTSC ground state couples near-degenerate protected local super-atom states to virtual magnons in an antiferromagnetic AFM embedding. The composite Cooper pairs emerge as the interaction particles for virtual magnons mediated 'self-coherent entanglement' of super-atom states. A Hueckel type resonating valence bond RVB formalism is employed in order to illustrate the real-space Cooper pairs as well as their delocalization and Bose Einstein condensation BEC on a ring of super-atoms. The chemical potential {mu}{sub BEC} for Cooper pairs joining the condensate is formulated in terms of the super-exchange interaction, and consequently the T{sub C} in terms of the Neel temperature. A rationale for the robustness of the HTSC ground state is proposed: achieving local maximum 'electron correlation entropy' at the expense of non-local phase rigidity.

  7. Infinite-range Heisenberg model and high-temperature superconductivity

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  8. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  9. Processing of flexible high-Tc superconducting wires

    Lee, B.I.; Modi, V.

    1989-01-01

    Wires superconducting at temperatures above 77 K are produced by using YBa 2 Cu 3 O 7 materials. Flexibility was obtained by support from prefabricated fibers or a metallic coating on the extruded YBa 2 Cu 3 O 7 wires. The microstructure, the T c and the critical current densities of the wires were determined. Processing variables and steps are described

  10. Carbon-based superconductors towards high-Tc superconductivity

    Haruyama, Junji

    2014-01-01

    Introduction of Condensed Matter Physics; Spin-state Crossover; Li Ion Battery; Huge Thermoelectric Power; Room-temperature Ferromagnetism; Partially Disordered Antiferromagnetic Transition; Superconductivity; Transport Properties Combined with Charge, Spin, and Orbital; Magnetoresistance and Spin Blocade; Intrinsic Inhomogeneity; Move/diffuse and Charge/discharge Effect.

  11. High-kinetic inductance additive manufactured superconducting microwave cavity

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.

    2017-11-01

    Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.

  12. Improving superconducting RF technology for high energy particle accelerators

    Leconte, P.

    1991-01-01

    A review of the state of the art is given. It shows recent proofs of success of the technology. An important R and D effort remains to be done in order to collect all the expectable benefits of RF superconductivity. (author)

  13. A high efficiency superconducting nanowire single electron detector

    Rosticher, M.; Ladan, F.R.; Maneval, J.P.; Dorenbos, S.N.; Zijlstra, T.; Klapwijk, T.M.; Zwiller, V.; Lupa?cu, A.; Nogues, G.

    2010-01-01

    We report the detection of single electrons using a Nb0.7Ti0.3N superconducting wire deposited on an oxidized silicon substrate. While it is known that this device is sensitive to single photons, we show that it also detects single electrons with kilo-electron-volt energy emitted from the cathode of

  14. Superconducting permanent magnets for high-temperature operation

    Jirsa, Miloš; Muralidhar, M.

    2004-01-01

    Roč. 54, Suppl. D (2004), D441-D444 ISSN 0011-4626. [Czech and Slovak Conference on Magnetism. Košice, 12.07.2004-15.07.2004] Institutional research plan: CEZ:AV0Z1010914 Keywords : superconducting magnets * ternary LRE-123 compounds * mesoscopic defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.292, year: 2004

  15. High-precision micro/nano-scale machining system

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  16. Future high precision experiments and new physics beyond Standard Model

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here

  17. Designing compensator of dual servo system for high precision positioning

    Choi, Hyeun Seok; Song, Chi Woo; Han, Chang Soo; Choi, Tae Hoon; Lee, Nak Kyu; Na, Kyung Hwan

    2003-01-01

    The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism

  18. The power processor of a high temperature superconducting energy storage system

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  19. The origins of macroscopic quantum coherence in high temperature superconductivity

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  20. Precise muon drift tube detectors for high background rate conditions

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  1. High-performance magnetic field sensor based on superconducting quantum interference filters

    Caputo, P.; Oppenländer, J.; Häussler, Ch.; Tomes, J.; Friesch, A.; Träuble, T.; Schopohl, N.

    2004-08-01

    We have developed an absolute magnetic field sensor using a superconducting quantum interference filter (SQIF) made of high-Tc grain-boundary Josephson junctions. The device shows the typical magnetic-field-dependent voltage response V(B ), which is a sharp deltalike dip in the vicinity of zero-magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B0≈0 to a value B ≈B1, which is about the average value of the Earth's magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ≈B1, and the further shielding of the SQIF results in a shift of the dip towards B0≈0. The low hysteresis observed in the sequence of experiments (less than 5% of B1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-Tc SQIFs in magnetometry.

  2. Electromagnetic Charge Radius of the Pion at High Precision

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  3. Present status and future aspects of highly precise radiotherapy

    Oita, Masataka; Takegawa, Yoshihiro; Maezawa, Hiroshi; Ikushima, Hitoshi; Osaki, Kyosuke; Nishitani, Hiromu

    2006-01-01

    This review describes about therapeutic equipments, irradiation technology, actual practice of highly precise radiotherapy (RT) and its tasks in future. Development of radiation equipments has made the therapy highly precise. At present, there are reportedly 836 linacs and 23 microtrons in Japan (March, 2005), most of which are computerized, new generation equipments. Image-guided RT, CT-linac system, real-time tumor-tracking RT (RTRT), tomotherapy and cyberknife are introduced owing to development of concerned devices and equipments. In addition, there are 7 facilities with proton and/or heavy ion beams. In parallel with the machine development above, irradiation has become to that from 2D to 3D by multi-gate technique with use of multi-leaf collimator and intensity-modulated RT is introduced. RTRT is an example of 4D RT. Practically, stereotactic irradiation (STI) to brain tumor has resulted in 1-year cumulative survival rate of 58% in 16 cases (23 foci, median size 1.2 cm and volume 0.57 ml) with median dose of 21.0 Gy in authors' hospital. STI in the early stage lung cancers is also practically conducted without severe adverse effects. Future tasks involve the further development of irradiation techniques and RT planning, QA/QC system, and raising of experts in related fields, which is a national problem. (T.I.)

  4. Dynamics of High-Speed Precision Geared Rotor Systems

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  5. BEAMGAA. A chance for high precision analysis of big samples

    Goerner, W.; Berger, A.; Haase, O.; Segebade, Chr.; Alber, D.; Monse, G.

    2005-01-01

    In activation analysis of traces in small samples, the non-equivalence of the activating radiation doses of sample and calibration material gives rise to sometimes tolerable systematic errors. Conversely, analysis of major components usually demands high trueness and precision. To meet this, beam geometry activation analysis (BEAMGAA) procedures have been developed for instrumental photon (IPAA) and neutron activation analysis (INAA) in which the activating neutron/photon beam exhibits broad, flat-topped characteristics. This results in a very low lateral activating flux gradient compared to known radiation facilities, however, at significantly lower flux density. The axial flux gradient can be accounted for by a monitor-sample-monitor assembly. As a first approach, major components were determined in high purity substances as well as selenium in a cattle fodder additive. (author)

  6. The QCD coupling and parton distributions at high precision

    Bluemlein, Johannes

    2010-07-01

    A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant α s (M 2 Z ). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)

  7. The QCD coupling and parton distributions at high precision

    Bluemlein, Johannes

    2010-07-15

    A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant {alpha}{sub s}(M{sup 2}{sub Z}). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)

  8. High coherence plane breaking packaging for superconducting qubits

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  9. Pulsed laser deposition of high Tc superconducting thin films

    Singh, R.K.; Narayan, J.

    1990-01-01

    This paper reports on the pulsed laser evaporation (PLE) technique for deposition of thin films characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa 2 Cu 3 O 7 superconducting thin films on different substrates in the temperature range of 500--650 degrees C. At temperatures below 600 degrees C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3--3.5% for films deposited on (100) SrTiO 3 and (100) LaAlO 3 substrates

  10. Magnet field design considerations for a high energy superconducting cyclotron

    Botman, J.I.M.; Craddock, M.K.; Kost, C.J.; Richardson, J.R.

    1983-08-01

    This paper reports the pole shape designs for a two stage superconducting isochronous cyclotron combination (CANUCK) to accelerate 100 μA proton beams to 15 GeV. The pole shape of the 15 sectors of the first stage 3.5 GeV proton cyclotron provides isochronism over the full energy range and a constant axial tune over all but the lowest energies. Progress on the pole design of the 42 sector 15 GeV second stage is also reported. The magnetic fields are computed from the current distribution of the superconducting coils and the infinitely thin current sheets simulating the fully saturated poles. A least squares method is used to minimize deviations from isochronism by adjusting the size of various elemental shim coils placed around the main coil. The method to obtain the desired axial tune is described

  11. Superconductivity revisited

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  12. Operating experience with high beta superconducting RF cavities

    Dylla, H.F.; Doolittle, L.R.; Benesch, J.F.

    1993-01-01

    The number of installed and operational β=1 superconducting rf cavities has grown significantly over the last two years in accelerator laboratories in Europe, Japan and the U.S. The total installed acceleration capability as of mid-1993 is approximately 1 GeV at nominal gradients. Major installations at CERN, DESY, KEK and CEBAF have provided large increments to the installed base and valuable operational experience. A selection of test data and operational experience gathered to date is reviewed

  13. Operating experience with high beta superconducting rf cavities

    Dylla, H.F.; Doolittle, L.R.; Benesch, J.F.

    1993-06-01

    The number of installed and operational β = 1 superconducting rf cavities has grown significantly over the last two years in accelerator laboratories in Europe, Japan and the US. The total installed acceleration capability as of mid-1993 is approximately 1 GeV at nominal gradients. Major installations at CERN, DESY, KEK and CEBAF have provided large increments to the installed base and valuable operational experience. A selection of test data and operational experience gathered to date is reviewed

  14. A superconducting maglev test facility for high speed transport

    Rhodes, R.G.; Mulhall, B.E.

    1976-01-01

    A 550 m long straight track for research into magnetically levitated vehicles has been constructed at the University of Warwick. The flat guideway comprises two strips of aluminium, interacting with the vehicle borne superconducting magnets to produce both lift and guidance. For propulsion a petrol driven winch is provided, though it is to be replaced later by a linear electric motor. Problems of engineering cryostats for magnetic levitation are briefly discussed. (author)

  15. Magnetic levitation systems using a high-Tc superconducting bulk magnet

    Ohsaki, Hiroyuki [Dept. of Electrical Engineering, Univ. of Tokyo (Japan); Kitahara, Hirotaka [Dept. of Electrical Engineering, Univ. of Tokyo (Japan); Masada, Eisuke [Dept. of Electrical Engineering, Univ. of Tokyo (Japan)

    1996-12-31

    Recent development of high-performance high-Tc bulk superconductors is making their application for electromagnetic force use feasible. We have studied electromagnetic levitation systems using high-Tc bulk superconducting material. In this paper, after an overview of superconducting magnetic levitation systems, with an emphasis on high-Tc bulk superconductor applications, experimental results of a high-Tc bulk EMS levitation and FEM analysis results of magnetic gradient levitation using bulk superconductor are described. Problems to be solved for their application are also discussed. (orig.)

  16. Observing exoplanet populations with high-precision astrometry

    Sahlmann, Johannes

    2012-06-01

    This thesis deals with the application of the astrometry technique, consisting in measuring the position of a star in the plane of the sky, for the discovery and characterisation of extra-solar planets. It is feasible only with a very high measurement precision, which motivates the use of space observatories, the development of new ground-based astronomical instrumentation and of innovative data analysis methods: The study of Sun-like stars with substellar companions using CORALIE radial velocities and HIPPARCOS astrometry leads to the determination of the frequency of close brown dwarf companions and to the discovery of a dividing line between massive planets and brown dwarf companions; An observation campaign employing optical imaging with a very large telescope demonstrates sufficient astrometric precision to detect planets around ultra-cool dwarf stars and the first results of the survey are presented; Finally, the design and initial astrometric performance of PRIMA, ! a new dual-feed near-infrared interferometric observing facility for relative astrometry is presented.

  17. High precision isotopic ratio analysis of volatile metal chelates

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  18. HIGH PRECISION ROVIBRATIONAL SPECTROSCOPY OF OH{sup +}

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; McCall, Benjamin J. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Müller, Holger S. P., E-mail: bjmccall@illinois.edu [I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2016-02-01

    The molecular ion OH{sup +} has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH{sup +}. The ions were produced in a water cooled discharge of O{sub 2}, H{sub 2}, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a {sup 3}Σ{sup −} linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  19. Ultracold Anions for High-Precision Antihydrogen Experiments.

    Cerchiari, G; Kellerbauer, A; Safronova, M S; Safronova, U I; Yzombard, P

    2018-03-30

    Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91)  THz and its transition rate to be A=4.90(50)×10^{4}  s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  20. Developing and implementing a high precision setup system

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  1. A high-precision system for conformal intracranial radiotherapy

    Tome, Wolfgang A.; Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Li Zuofeng

    2000-01-01

    Purpose: Currently, optimally precise delivery of intracranial radiotherapy is possible with stereotactic radiosurgery and fractionated stereotactic radiotherapy. We report on an optimally precise optically guided system for three-dimensional (3D) conformal radiotherapy using multiple noncoplanar fixed fields. Methods and Materials: The optically guided system detects infrared light emitting diodes (IRLEDs) attached to a custom bite plate linked to the patient's maxillary dentition. The IRLEDs are monitored by a commercially available stereo camera system, which is interfaced to a personal computer. An IRLED reference is established with the patient at the selected stereotactic isocenter, and the computer reports the patient's current position based on the location of the IRLEDs relative to this reference position. Using this readout from the computer, the patient may be dialed directly to the desired position in stereotactic space. The patient is localized on the first day and a reference file is established for 5 different couch positions. The patient's image data are then imported into a commercial convolution-based 3D radiotherapy planning system. The previously established isocenter and couch positions are then used as a template upon which to design a conformal 3D plan with maximum beam separation. Results: The use of the optically guided system in conjunction with noncoplanar radiotherapy treatment planning using fixed fields allows the generation of highly conformal treatment plans that exhibit a high degree of dose homogeneity and a steep dose gradient. To date, this approach has been used to treat 28 patients. Conclusion: Because IRLED technology improves the accuracy of patient localization relative to the linac isocenter and allows real-time monitoring of patient position, one can choose treatment-field margins that only account for beam penumbra and image resolution without adding margin to account for larger and poorly defined setup uncertainty. This

  2. High temperature superconducting compounds II; Proceedings of the Second Symposium, Anaheim, CA, Feb. 20, 21, 1990

    Whang, S.H.; Dasgupta, A.; Laibowitz, R.

    1990-01-01

    Various topics relevant to the production and implementation of high-temperature superconducting compounds are highlighted including critical current; texturing; ceramics and novel processing; composites; deformation and consolidation; thin films; microstructures; tapes, filaments, and ribbons; and thermodynamics. The thermally activated flux creep, critical current density and current enhancement in high-temperature superconductors are addressed. Also discussed are the phase stability and microstructure of doped superconductors, mechanical considerations in the processing of high-Tc superconductors, fabrication and application of high current density, high RTc superconducting thin films and devices, the effect of substrate temperature and RF biasing on the composition of sputtered Bi-based superconducting thin films, and optical electron microanalysis of cuprate superconductors. The microstructure dependence of critical current density and fabrication of double-layered ribbons from cuprate are also discussed

  3. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data

    Kandylakis, Z.; Karantzalos, K.

    2016-06-01

    In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

  4. Thermal-mechanical behavior of high precision composite mirrors

    Kuo, C. P.; Lou, M. C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors.

  5. Thermal-mechanical behavior of high precision composite mirrors

    Kuo, C.P.; Lou, M.C.; Rapp, D.

    1993-01-01

    Composite mirror panels were designed, constructed, analyzed, and tested in the framework of a NASA precision segmented reflector task. The deformations of the reflector surface during the exposure to space enviroments were predicted using a finite element model. The composite mirror panels have graphite-epoxy or graphite-cyanate facesheets, separated by an aluminum or a composite honeycomb core. It is pointed out that in order to carry out detailed modeling of composite mirrors with high accuracy, it is necessary to have temperature dependent properties of the materials involved and the type and magnitude of manufacturing errors and material nonuniformities. The structural modeling and analysis efforts addressed the impact of key design and materials parameters on the performance of mirrors. 4 refs.

  6. High precision measurements of 26Naβ- decay

    Grinyer, G. F.; Svensson, C. E.; Andreoiu, C.; Andreyev, A. N.; Austin, R. A.; Ball, G. C.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Hackman, G.; Hardy, J. C.; Hyland, B.; Iacob, V. E.; Koopmans, K. A.; Kulp, W. D.; Leslie, J. R.; MacDonald, J. A.; Morton, A. C.; Ormand, W. E.; Osborne, C. J.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Schwarzenberg, J.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Wood, J. L.; Zganjar, E. F.

    2005-04-01

    High-precision measurements of the half-life and β-branching ratios for the β- decay of 26Na to 26Mg have been measured in β-counting and γ-decay experiments, respectively. A 4π proportional counter and fast tape transport system were employed for the half-life measurement, whereas the γ rays emitted by the daughter nucleus 26Mg were detected with the 8π γ-ray spectrometer, both located at TRIUMF's isotope separator and accelerator radioactive beam facility. The half-life of 26Na was determined to be T1/2=1.07128±0.00013±0.00021s, where the first error is statistical and the second systematic. The logft values derived from these experiments are compared with theoretical values from a full sd-shell model calculation.

  7. The SFD - 80 M high precision double axis facing lathe

    Bran, T.; Dragomir, I.; Rusu, I.; Stanciu, S.; Niculceanu, F.; Nica, O.; Popescu, M.; Bailescu, V.; Burcea, Gh.; Turcanu, V.

    2001-01-01

    A high precision double axis facing lathe was designed for machining the 'final end-cup' by exterior conical lathing. The lathe is semi-automatic and includes two independent identical units. The general constructive, dimensional and functional characteristics are presented as well as the specific power consumptions. As compared to other machines able to perform the same operations this machine presents the following novel aspects: - it is dedicated from the design stage to the workpiece to be machined; - the splinting speed is quasi-constant all along the processing span (irrespective of the cutting diameter at which the tool is fixed, in its trajectory generating the exterior cone). At 100% and 80% nominal power values the yield is 240 workpiece/hour and 192 workpiece/hour, respectively

  8. High Precision Renormalization Group Study of the Roughening Transition

    Hasenbusch, M; Pinn, K

    1994-01-01

    We confirm the Kosterlitz-Thouless scenario of the roughening transition for three different Solid-On-Solid models: the Discrete Gaussian model, the Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with standard (cosine) action. The method is based on a matching of the renormalization group flow of the candidate models with the flow of a bona fide KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are performed using efficient cluster algorithms. We obtain high precision estimates for the critical couplings and other non-universal quantities. For the XY model with cosine action our critical coupling estimate is $\\beta_R^{XY}=1.1197(5)$. For the roughening coupling of the Discrete Gaussian and the Absolute-Value-Solid-On-Solid model we find $K_R^{DG}=0.6645(6)$ and $K_R^{ASOS}=0.8061(3)$, respectively.

  9. Optimal dynamic performance for high-precision actuators/stages

    Preissner, C.; Lee, S.-H.; Royston, T. J.; Shu, D.

    2002-01-01

    System dynamic performance of actuator/stage groups, such as those found in optical instrument positioning systems and other high-precision applications, is dependent upon both individual component behavior and the system configuration. Experimental modal analysis techniques were implemented to determine the six degree of freedom stiffnesses and damping for individual actuator components. These experimental data were then used in a multibody dynamic computer model to investigate the effect of stage group configuration. Running the computer model through the possible stage configurations and observing the predicted vibratory response determined the optimal stage group configuration. Configuration optimization can be performed for any group of stages, provided there is stiffness and damping data available for the constituent pieces

  10. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  11. A novel approach to quench detection for high temperature superconducting coils

    Song, W.J.; Fang, X.Y.; Fang, J.; Wei, B.; Hou, J.Z.; Liu, L.F.; Lu, K.K.; Li, Shuo

    2015-01-01

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  12. A novel approach to quench detection for high temperature superconducting coils

    Song, W.J., E-mail: songwenjuan@bjtu.edu.cn [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); China Electric Power Research Institute, Beijing (China); Fang, X.Y. [Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2 (Canada); Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Wei, B.; Hou, J.Z. [China Electric Power Research Institute, Beijing (China); Liu, L.F. [Guangzhou Metro Design & Research Institute Co., Ltd, Guangdong (China); Lu, K.K. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Shuo [College of Information Science and Engineering, Northeastern University, Shenyang (China)

    2015-11-15

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  13. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  14. Southwire's High Temperature Superconducting Cable Development - Summary Report

    Sinha, Uday; Lindsay, David

    2005-01-01

    at ORNL for the DC Ic, voltage withstand, ac loss, and other properties using both the Vacuum and Pressure Terminations. The design concept was proven with the 5-m cables and the same design was used for the 30-m cables. Three 30-m cables were constructed during the first two quarters of 1999. The cables were made on flexible formers but they were introduced into three separate rigid vacuum jacketed pipes (VJP). The cables passed the DC Ic tests that were carried out at the manufacturing site. A site was developed at Southwire with a switch yard, liquid nitrogen tank, a cryogenic cooling and delivery system, and a control room with PLC control for the system. The HTS cables were installed by the third quarter of 1999. The HTS cables were energized Jan. 6, 2000. The official opening was carried out on Feb. 18, 2000. As of April 30, 2005 the HTS site has been operating at 100% load for >29,000 hours. Since June 1, 2001 the system has logged over 21,000 hours at full load without an operator on duty at the site. The cryogenic system has been under operation for more than two years and has proven very reliable. Southwire has developed World's First Industrial HTS cable and is continuing to prove its reliability. This report contains several sections outlined below that are related to Southwire's HTS cable development: (1) High Temperature Superconducting (HTS) Tapes; (2) Hand Wound 1-m Cables; (3) Development of Facilities for Construction and testing of HTS cables; (4) 5-m HTS Cables; (5) 30-m HTS Cables, Installation at Southwire; (6) Continued Developments; and (7) Publications. Each of the above sections provide only a short report. The details are given in separate volumes (Vol. 1 to Vol. 7) with separate appendices for each section. These are available at the Cofer Center Technical Library

  15. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  16. Quench protection and design of large high-current-density superconducting magnets

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  17. Modal bifurcation in a high-T{sub c} superconducting levitation system

    Taguchi, D; Fujiwara, S; Sugiura, T, E-mail: sugiura@mech.keio.ac.jp [Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, kohoku-ku, Yokohama 223-8522 (Japan)

    2011-05-15

    This paper deals with modal bifurcation of a multi-degree-of-freedom high-T{sub c} superconducting levitation system. As modeling of large-scale high-T{sub c} superconducting levitation applications, where plural superconducting bulks are often used, it can be helpful to consider a system constituting of multiple oscillators magnetically coupled with each other. This paper investigates nonlinear dynamics of two permanent magnets levitated above high-T{sub c} superconducting bulks and placed between two fixed permanent magnets without contact. First, the nonlinear equations of motion of the levitated magnets were derived. Then the method of averaging was applied to them. It can be found from the obtained solutions that this nonlinear two degree-of-freedom system can have two asymmetric modes, in addition to a symmetric mode and an antisymmetric mode both of which also exist in the linearized system. One of the backbone curves in the frequency response shows a modal bifurcation where the two stable asymmetric modes mentioned above appear with destabilization of the antisymmetric mode, thus leading to modal localization. These analytical predictions have been confirmed in our numerical analysis and experiments of free vibration and forced vibration. These results, never predicted by linear analysis, can be important for application of high-T{sub c} superconducting levitation systems.

  18. Superconducting cermets

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  19. Large high current density superconducting solenoids for use in high energy physics experiments

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  20. High precision measurements of the luminosity at LEP

    Pietrzyk, B.

    1994-01-01

    The art of the luminosity measurements at LEP is presented. First generation LEP detectors have measured the absolute luminosity with the precision of 0.3-0.5%. The most precise present detectors have reached the 0.07% precision and the 0.05% is not excluded in future. Center-of-mass energy dependent relative precision of the luminosity detectors and the use of the theoretical cross-section in the LEP experiments are also discussed. (author). 18 refs., 6 figs., 6 tabs

  1. The design of a five-cell high-current superconducting cavity

    Li Yongming; Zhu Feng; Quan Shengwen; Liu Kexin; Nassiri, Ali

    2012-01-01

    Energy recovery linacs are promising for achieving high average current with superior beam quality. The key component for accelerating such high-current beams is the superconducting radio-frequency cavity. The design of a 1.3 GHz five-cell high-current superconducting cavity has been carried out under cooperation between Peking University and the Argonne National Laboratory. The radio-frequency properties, damping of the higher order modes, multipacting and mechanical features of this cavity have been discussed and the final design is presented. (authors)

  2. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  3. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet.

    Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi

    2009-02-01

    We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  4. Chemical casting of high-Tc superconducting BiSCCO

    Toth, L.E.; Das, B.N.; Rayne, R.J.; Bender, B.A.; Lechter, W.L.; Hoff, H.A.; Osofsky, M.S.; Soulen, R.J. Jr.

    1989-01-01

    BiSCCO has been successfully cast into a number of useful shapes. This casting process differs significantly from traditional casting in that the process includes a change in the oxygen content of the melt. A heat treatment is required to restore the original chemistry, properly form the BiSCCO crystal structure and develop the superconducting properties. This paper emphasizes the microstructures of as-cast and heat treated BiSCCO. Casting causes considerable grain alignment of the BiSCCO platelets. The platelets align preferentially along the thermal gradients which exist during the solidification process

  5. Tests of high gradient superconducting quadrupole magnets for the Tevatron

    Lamm, M.J.; Carson, J.; Gourlay, S.; Hanft, R.; Koepke, K.; Mantsch, P.; McInturff, A.D.; Riddiford, A.; Strait, J.

    1989-09-01

    Tests have been completed on three prototype magnets and two production magnets to be used for the Tevatron Dφ/Bφ low- β insertion. These cold iron, two shell quadrupoles are made of 36 strand Rutherford type NbTi superconducting cable. Magnet field gradients well in excess of the design 1.41 T/cm have been achieved at a transfer function of 0.291 T/cm/kA. Quench performance at 4.2 K and 3.7 K and magnetic multipole measurement data are presented and discussed. 9 refs., 4 figs., 4 tabs

  6. Problems of high temperature superconductivity in three-dimensional systems

    Geilikman, B T

    1973-01-01

    A review is given of more recent papers on this subject. These papers have dealt mainly with two-dimensional systems. The present paper extends the treatment to three-dimensional systems, under the following headings: systems with collective electrons of one group and localized electrons of another group (compounds of metals with non-metals-dielectrics, organic substances, undoped semiconductors, molecular crystals); experimental investigations of superconducting compounds of metals with organic compounds, dielectrics, semiconductors, and semi-metals; and systems with two or more groups of collective electrons. Mechanics are considered and models are derived. 86 references.

  7. Electroweak precision tests in high-energy diboson processes

    Franceschini, Roberto; Panico, Giuliano; Pomarol, Alex; Riva, Francesco; Wulzer, Andrea

    2018-02-01

    A promising avenue to perform precision tests of the SM at the LHC is to measure differential cross-sections at high invariant mass, exploiting in this way the growth with the energy of the corrections induced by heavy new physics. We classify the leading growing-with-energy effects in longitudinal diboson and in associated Higgs production processes, showing that they can be encapsulated in four real "high-energy primary" parameters. We assess the reach on these parameters at the LHC and at future hadronic colliders, focusing in particular on the fully leptonic W Z channel that appears particularly promising. The reach is found to be superior to existing constraints by one order of magnitude, providing a test of the SM electroweak sector at the per-mille level, in competition with LEP bounds. Unlike LHC run-1 bounds, which only apply to new physics effects that are much larger than the SM in the high-energy tail of the distributions, the probe we study applies to a wider class of new physics scenarios where such large departures are not expected.

  8. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  9. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Saunders, W.M.; Char, D.H.; Quivey, J.M.

    1985-01-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons

  10. Precise measurement of internal sense-wire locations in high-energy physics detectors

    Dunn, W.L.; O'Foghludha, F.; Yacount, A.M.

    1992-01-01

    Cylindrical straw tubes that contain central sense wires (as anodes) are commonly employed in high-energy and nuclear physics experiments to track charged particles through regions of large detectors. The outer tracking region of the proposed Solenoidal Detector Collaboration (SDC) detector for future experiments at the Superconducting Super Collider (SSC), for instance, is expected to contain more than a hundred thousand 4-mm-diam straw tube drift cells arranged in five cylindrically concentric superlayers. The superlayers will be made up of modules having roughly trapezoidal cross sections. The modules will be up to 4 m long and will contain ∼200 straws each, arranged in either six or eight layers. The module shells are expected to be made of thin but nontransparent carbon/epoxy composite material and the straws of mylar or kapton, which has been coated on the inside with a thin (∼0.15-μm) layer of copper. A precise knowledge of the locations of the sense wires in these modules is crucial to the intended particle tracking

  11. Research on DC-RF superconducting photocathode injector for high average power FELs

    Zhao Kui; Hao Jiankui; Hu Yanle; Zhang Baocheng; Quan Shengwen; Chen Jiaer; Zhuang Jiejia

    2001-01-01

    To obtain high average current electron beams for a high average power Free Electron Laser (FEL), a DC-RF superconducting injector is designed. It consists of a DC extraction gap, a 1+((1)/(2)) superconducting cavity and a coaxial input system. The DC gap, which takes the form of a Pierce configuration, is connected to the 1+((1)/(2)) superconducting cavity. The photocathode is attached to the negative electrode of the DC gap. The anode forms the bottom of the ((1)/(2)) cavity. Simulations are made to model the beam dynamics of the electron beams extracted by the DC gap and accelerated by the superconducting cavity. High quality electron beams with emittance lower than 3 π-mm-mrad can be obtained. The optimization of experiments with the DC gap, as well as the design of experiments with the coaxial coupler have all been completed. An optimized 1+((1)/(2)) superconducting cavity is in the process of being studied and manufactured

  12. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa

    Guo, Jing; Wang, Honghong; von Rohr, Fabian; Wang, Zhe; Cai, Shu; Zhou, Yazhou; Yang, Ke; Li, Aiguo; Jiang, Sheng; Wu, Qi; Cava, Robert J.; Sun, Liling

    2017-12-01

    We report the observation of extraordinarily robust zero-resistance superconductivity in the pressurized (TaNb)0.67(HfZrTi)0.33 high-entropy alloy--a material with a body-centered-cubic crystal structure made from five randomly distributed transition-metal elements. The transition to superconductivity (TC) increases from an initial temperature of 7.7 K at ambient pressure to 10 K at ˜60 GPa, and then slowly decreases to 9 K by 190.6 GPa, a pressure that falls within that of the outer core of the earth. We infer that the continuous existence of the zero-resistance superconductivity from 1 atm up to such a high pressure requires a special combination of electronic and mechanical characteristics. This high-entropy alloy superconductor thus may have a bright future for applications under extreme conditions, and also poses a challenge for understanding the underlying quantum physics.

  13. Overview of superconducting RF technology and its application to high-current linacs

    Delayen, J.R.; Bohn, C.L.

    1994-01-01

    Superconducting linacs may be a viable option for high-current applications such as copious neutron production like that needed for transmutation of radioactive waste. These linacs must run reliably for many years and allow easy routine maintenance. superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs. However, cost effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement

  14. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  15. Possible high-T/sub c/ superconductivity in thin wires

    Lee, Y.C.; Mendoza, B.S.

    1989-01-01

    A heuristic approach to the theory of superconductivity based on a simple physical picture and capable of treating the simultaneous participation of multiple bosonic modes that mediate the pairing interaction is first developed. The effect of the bosonic mode damping is also accounted for. We then propose a possible mechanism of superconductivity in slender electronic systems of finite cross sections based on the pairing interaction mediated by the multiple modes of acoustic plasmons in these structures. Such modes include the quasi-one-dimensional plasmon as well as the so-called slender acoustic plasmons. The critical temperature and the energy gap/T/sub c/ ratio are then calculated by the heuristic method just developed. Numerical results on T/sub c/ in various samples are presented, showing T/sub c/ in the 150--200 K range. The ratio 2Δ 0 /T/sub c/ differs generally from the BCS value due to the temperature dependence of the mode damping. The associated coherence length is shown to be considerably smaller than the transverse dimension of the wires

  16. Development of high field superconducting Tokamak 'TRIAM-1M'

    Ito, Satoshi; Suzuki, Takao; Suzuki, Shohei; Nishi, Masatsugu; Kawasaki, Takahide.

    1984-01-01

    The tokamak nuclear fusion apparatus ''TRIAM-1M'' which is constructed in the Research Institute for Applied Mechanics, Kyushu University, has a number of distinctive features as compared with other tokamak projects, that is, the toroidal field coils are made of superconductors for the first time in Japan, and the apparatus is small and has strong magnetic field. Hitachi Ltd. designed and has forwarded the manufacture of the TRIAM-1M. In this paper, the total constitution of the apparatus and the design and manufacture of the plasma vacuum vessel, superconducting toroidal coils and others are reported. The objectives of research are the containment of strong field tokamak plasma and the establishment of the law of proportion, the development of turbulent flow heating method, the adoption of mixed wave current driving method and the practical use of Nb 3 Sn superconducting coils. The apparatus is composed of the vacuum vessel containing plasma, toroidal field coils, poloidal field coils, current transformer coils and turbulent flow heating coils for plasma heating, heat insulating vacuum vessel and supporting structures. The evacuating facility, helium liquefying refrigerator and cooling water facility are installed around the main body. (Kako, I.)

  17. A Computer Controlled Precision High Pressure Measuring System

    Sadana, S.; Yadav, S.; Jha, N.; Gupta, V. K.; Agarwal, R.; Bandyopadhyay, A. K.; Saxena, T. K.

    2011-01-01

    A microcontroller (AT89C51) based electronics has been designed and developed for high precision calibrator based on Digiquartz pressure transducer (DQPT) for the measurement of high hydrostatic pressure up to 275 MPa. The input signal from DQPT is converted into a square wave form and multiplied through frequency multiplier circuit over 10 times to input frequency. This input frequency is multiplied by a factor of ten using phased lock loop. Octal buffer is used to store the calculated frequency, which in turn is fed to microcontroller AT89C51 interfaced with a liquid crystal display for the display of frequency as well as corresponding pressure in user friendly units. The electronics developed is interfaced with a computer using RS232 for automatic data acquisition, computation and storage. The data is acquired by programming in Visual Basic 6.0. This system is interfaced with the PC to make it a computer controlled system. The system is capable of measuring the frequency up to 4 MHz with a resolution of 0.01 Hz and the pressure up to 275 MPa with a resolution of 0.001 MPa within measurement uncertainty of 0.025%. The details on the hardware of the pressure measuring system, associated electronics, software and calibration are discussed in this paper.

  18. A high-precision synchronization circuit for clock distribution

    Lu Chong; Tan Hongzhou; Duan Zhikui; Ding Yi

    2015-01-01

    In this paper, a novel structure of a high-precision synchronization circuit, HPSC, using interleaved delay units and a dynamic compensation circuit is proposed. HPSCs are designed for synchronization of clock distribution networks in large-scale integrated circuits, where high-quality clocks are required. The application of a hybrid structure of a coarse delay line and dynamic compensation circuit performs roughly the alignment of the clock signal in two clock cycles, and finishes the fine tuning in the next three clock cycles with the phase error suppressed under 3.8 ps. The proposed circuit is implemented and fabricated using a SMIC 0.13 μm 1P6M process with a supply voltage at 1.2 V. The allowed operation frequency ranges from 200 to 800 MHz, and the duty cycle ranges between [20%, 80%]. The active area of the core circuits is 245 × 134 μm 2 , and the power consumption is 1.64 mW at 500 MHz. (paper)

  19. Characterisation of work function fluctuations for high-precision experiments

    Kahlenberg, Jan; Bickmann, Edward; Heil, Werner; Otten, Ernst W.; Schmidt, Christian; Wunderle, Alexander [Johannes Gutenberg-Universitaet Mainz (Germany); Babutzka, Martin; Schoenung, Kerstin [Karlsruher Institut fuer Technologie (Germany); Beck, Marcus [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany)

    2016-07-01

    For a wide range of high-precision experiments in physics, well-defined electric potentials for achieving high measurement accuracies are required. An accurate determination of the electric potential is crucial for the measurement of the neutrino mass (KATRIN) as well as the measurement of the e{sup -} anti ν{sub e} correlation coefficient a in free neutron decay (aSPECT). Work function fluctuations on the electrodes lead to uncertainties in the distribution of the electric potential. For aSPECT, the electric potential has to be known at an accuracy of 10 mV. However, due to the patch effect of gold, work function fluctuations of several 100 meV can occur. Therefore, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated. For aSPECT, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Due to the patch effect of gold, work function fluctuations of up to 160 meV occur. This would lead to a significant uncertainty of the potential barrier, which should be known at an accuracy of 10 mV. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated.

  20. A high field and cryogenic test facility for neutron irradiated superconducting wire

    Nishimura, A.; Miyata, H.; Yoshida, M.; Iio, M.; Suzuki, K.; Nakamoto, T.; Yamazaki, M.; Toyama, T.

    2017-12-01

    A 15.5 T superconducting magnet and a variable temperature insert (VTI) system were installed at a radiation control area in Oarai center in Tohoku University to investigate the superconducting properties of activated superconducting materials by fast neutron. The superconductivity was measured at cryogenic temperature and high magnetic field. During these tests, some inconvenient problems were observed and the additional investigation was carried out. The variable temperature insert was designed and assembled to perform the superconducting property tests. without the liquid helium. To remove the heat induced by radiation and joule heating, high purity aluminum rod was used in VTI. The thermal contact was checked by FEM analysis and an additional support was added to confirm the decreasing the stress concentration and the good thermal contact. After the work for improvement, it was affirmed that the test system works well and all troubles were resolved. In this report, the improved technical solution is described and the first data set on the irradiation effect on Nb3Sn wire is presented.

  1. The spheromak as a prototype for ultra-high-field superconducting magnets

    Furth, H.P.; Jardin, S.C.

    1987-08-01

    In view of current progress in the development of superconductor materials, the ultimate high-field limit of superconducting magnets is likely to be set by mechanical stress problems. Maximum field strength should be attainable by means of approximately force-free magnet windings having favorable ''MHD'' stability properties (so that small winding errors will not grow). Since a low-beta finite-flux-hole spheromak configuration qualifies as a suitable prototype, the theoretical and experimental spheromak research effort of the past decade has served to create a substantial technical basis for the design of ultra-high-field superconducting coils. 11 refs

  2. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  3. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  4. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  5. Ultra-long pulse operation using lower hybrid waves on the superconducting high field tokamak TRIAM-1M

    Moriyama, S.; Nakamura, Y.; Nagao, A.; Jotaki, E.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    Ultra-long pulse operation (>3 min) was achieved on the superconducting high field tokamak TRIAM-1M. In this operation, the plasma current was maintained with a relatively peaked current distribution by the 2.45 GHz radiofrequency power (P RF ≤ 35 kW) alone. A stationary plasma with a driven current of up to 35 kA and a line averaged electron density of up to 3x10 12 cm -3 was produced by precise plasma position and gas feed control. The extremely long discharge showed the interesting characteristics that the high temperatures of about 1 keV for the electrons and about 0.5 keV for the ions were kept almost constant during steady state current drive and that there was no impurity accumulation which could have a fatally adverse effect on steady state tokamak operation. (author). 16 refs, 17 figs

  6. Precision cosmology with time delay lenses: high resolution imaging requirements

    Meng, Xiao-Lei; Liao, Kai [Department of Astronomy, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 (China); Treu, Tommaso; Agnello, Adriano [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Marshall, Philip J., E-mail: xlmeng919@gmail.com, E-mail: tt@astro.ucla.edu, E-mail: aagnello@physics.ucsb.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: liaokai@mail.bnu.edu.cn, E-mail: dr.phil.marshall@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States)

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation

  7. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  8. Precision cosmology with time delay lenses: High resolution imaging requirements

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  9. Modeling and comparison of superconducting linear actuators for highly dynamic motion

    Bruyn B.J.H. de

    2015-12-01

    Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

  10. Interplay of CDW, SDW and superconductivity in high-T{sub c} cuprates

    Panda, S K [K.D. Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019, Orissa (India)

    2009-07-01

    We present a model calculation of the interplay of the charge density wave (CDW), spin density wave (SDW) and superconductivity in high temperature superconductors. In low doping situation the long range antiferromagnetic order is destroyed to give rise to SDW state accompanied by a CDW state in the system due to doping. For suitable doping the superconductivity appears in the system. The CDW state may describe the pseudogap phenomenon which co-exists with the superconducting phase and extends to normal phase in high-T{sub c} systems. These three competiting interactions co-exist together. These three gap parameters are calculated from the model Hamiltonian and solved self-consistently. By varying their coupling constants their interplay are investigated. Finally density of states is calculated for the conduction band which displays the experimental conductance data of Ekino et al. [T. Ekino, Y. Sezaki, H. Fujji, Phys. Rev. B 60 (1999) 6916].

  11. Interplay of CDW, SDW and superconductivity in high-Tc cuprates

    Panda, S.K.; Rout, G.C.

    2009-01-01

    We present a model calculation of the interplay of the charge density wave (CDW), spin density wave (SDW) and superconductivity in high temperature superconductors. In low doping situation the long range antiferromagnetic order is destroyed to give rise to SDW state accompanied by a CDW state in the system due to doping. For suitable doping the superconductivity appears in the system. The CDW state may describe the pseudogap phenomenon which co-exists with the superconducting phase and extends to normal phase in high-T c systems. These three competiting interactions co-exist together. These three gap parameters are calculated from the model Hamiltonian and solved self-consistently. By varying their coupling constants their interplay are investigated. Finally density of states is calculated for the conduction band which displays the experimental conductance data of Ekino et al. [T. Ekino, Y. Sezaki, H. Fujji, Phys. Rev. B 60 (1999) 6916].

  12. A new hybrid protection system for high-field superconducting magnets

    Ravaioli, Emanuele; Datskov, V.I.; Kirby, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A

  13. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  14. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  15. High Precision Current Control for the LHC Main Power Converters

    Thiesen, H; Hudson, G; King, Q; Montabonnet, V; Nisbet, D; Page, S

    2010-01-01

    Since restarting at the end of 2009, the LHC has reached a new energy record in March 2010 with the two 3.5 TeV beams. To achieve the performance required for the good functioning of the accelerator, the currents in the main circuits (Main Bends and Main Quadrupoles) must be controlled with a higher precision than ever previously requested for a particle accelerator at CERN: a few parts per million (ppm) of nominal current. This paper describes the different challenges that were overcome to achieve the required precision for the current control of the main circuits. Precision tests performed during the hardware commissioning of the LHC illustrate this paper.

  16. A high precision semi-analytic mass function

    Del Popolo, Antonino [Dipartimento di Fisica e Astronomia, University of Catania, Viale Andrea Doria 6, I-95125 Catania (Italy); Pace, Francesco [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL (United Kingdom); Le Delliou, Morgan, E-mail: adelpopolo@oact.inaf.it, E-mail: francesco.pace@manchester.ac.uk, E-mail: delliou@ift.unesp.br [Instituto de Física Teorica, Universidade Estadual de São Paulo (IFT-UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2—Barra Funda, 01140-070 São Paulo, SP Brazil (Brazil)

    2017-03-01

    In this paper, extending past works of Del Popolo, we show how a high precision mass function (MF) can be obtained using the excursion set approach and an improved barrier taking implicitly into account a non-zero cosmological constant, the angular momentum acquired by tidal interaction of proto-structures and dynamical friction. In the case of the ΛCDM paradigm, we find that our MF is in agreement at the 3% level to Klypin's Bolshoi simulation, in the mass range M {sub vir} = 5 × 10{sup 9} h {sup −1} M {sub ⊙}–−5 × 10{sup 14} h {sup −1} M {sub ⊙} and redshift range 0 ∼< z ∼< 10. For z = 0 we also compared our MF to several fitting formulae, and found in particular agreement with Bhattacharya's within 3% in the mass range 10{sup 12}–10{sup 16} h {sup −1} M {sub ⊙}. Moreover, we discuss our MF validity for different cosmologies.

  17. High precision relocation of earthquakes at Iliamna Volcano, Alaska

    Statz-Boyer, P.; Thurber, C.; Pesicek, J.; Prejean, S.

    2009-01-01

    In August 1996, a period of elevated seismicity commenced beneath Iliamna Volcano, Alaska. This activity lasted until early 1997, consisted of over 3000 earthquakes, and was accompanied by elevated emissions of volcanic gases. No eruption occurred and seismicity returned to background levels where it has remained since. We use waveform alignment with bispectrum-verified cross-correlation and double-difference methods to relocate over 2000 earthquakes from 1996 to 2005 with high precision (~ 100??m). The results of this analysis greatly clarify the distribution of seismic activity, revealing distinct features previously hidden by location scatter. A set of linear earthquake clusters diverges upward and southward from the main group of earthquakes. The events in these linear clusters show a clear southward migration with time. We suggest that these earthquakes represent either a response to degassing of the magma body, circulation of fluids due to exsolution from magma or heating of ground water, or possibly the intrusion of new dikes beneath Iliamna's southern flank. In addition, we speculate that the deeper, somewhat diffuse cluster of seismicity near and south of Iliamna's summit indicates the presence of an underlying magma body between about 2 and 4??km depth below sea level, based on similar features found previously at several other Alaskan volcanoes. ?? 2009 Elsevier B.V.

  18. High precision refractometry based on Fresnel diffraction from phase plates.

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  19. Software Development of High-Precision Ephemerides of Solar System

    Jong-Seob Shin

    1995-06-01

    Full Text Available We solved n-body problem about 9 plants, moon, and 4 minor planets with relativistic effect related to the basic equation of motion of the solar system. Perturbations including figure potential of the earth and the moon and solid earth tidal effect were considered on this relativistic equation of motion. The orientations employed precession and nutation for the earth, and lunar libration model with Eckert's lunar libration model based on J2000.0 were used for the moon. Finally, we developed heliocentric ecliptic position and velocity of each planet using this software package named the SSEG (Solar System Ephemerides Generator by long-term (more than 100 years simulation on CRAY-2S super computer, through testing each subroutine on personal computer and short-time (within 800days running on SUN3/280 workstation. Epoch of input data JD2440400.5 were adopted in order to compare our results to the data archived from JPL's DE200 by Standish and Newhall. Above equation of motion was integrated numerically having 1-day step-size interval through 40,000 days (about 110 years long as total computing interval. We obtained high-precision ephemerides of the planets with maximum error, less than ~2 x 10-8AU (≈±3km compared with DE200 data(except for mars and moon.

  20. Superconducting technology

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  1. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  2. Performance of a superconducting, high field subcentimeter undulator

    Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Ingold, G.; Sampson, W.; Woodle, M.

    1991-01-01

    A Superconducting 8.80mm wavelength undulator is under construction for the 500nm Free-Electron Laser at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. We present results on the design, construction and performance of this novel undulator structure. A field on axis of 0.51T has been measured for a 4.40mm gap, with a current 20% below the quench current. Our simple design focuses on minimizing the accumulation of errors by minimizing the numbers of parts and by using a ferromagnetic yoke. The magnetic field error is less than 0.30% rms as manufactured (without shimming). The third harmonic content is less than 0.1% of the fundamental

  3. High Power CW Superconducting Linacs for EURISOL and XADS

    Biarrotte, J L

    2004-01-01

    A multi-MW superconducting proton linac is proposed as the baseline solution for the EURISOL and the XADS driver accelerators. In the EURISOL project, which studies the design of the next-generation European ISOL facility, it is used to produce both neutron-deficient and neutron-rich exotic nuclei far from the valley of stability. In the PDS-XADS project, which aims to the demonstration of the feasibility of an ADS system for nuclear waste transmutation, it is used to produce the neutron flux required by the associated sub-critical reactor. In this paper, we report the main results and conclusions reached within these preliminary design studies. A special emphasis is given on the on-going and future R&D to be done to accomplish the demonstration of the full technology.

  4. Interferometric Star Tracker for High Precision Pointing, Phase I

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to adapt the precision star tracker it is currently developing under several DoD contracts for deep space lasercom beam...

  5. A Low-Cost, High-Precision Navigator, Phase II

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop and demonstrate a prototype low-cost precision navigation system using commercial-grade gyroscopes and accelerometers....

  6. French Meteor Network for High Precision Orbits of Meteoroids

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  7. Radio emission from Supernovae and High Precision Astrometry

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  8. Interface superconductivity

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  9. Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films

    Zhang Wen-Hao; Zhang Jin-Song; Li Fang-Sen; Guo Ming-Hua; Ding Hao; Tang Chen-Jia; Wang Qing-Yan; He Ke; Ji Shuai-Hua; Chen Xi; Sun Yi; Zhao Yan-Fei; Xing Ying; Wang Hui-Chao; Zhang Hui-Min; Peng Jun-Ping; Li Zhi; Wang Meng; Fujita Takeshi; Hirata Akihiko

    2014-01-01

    We prepared one-unit-cell (1-UC) thick FeSe films on insulating SrTiO 3 substrates with non-superconducting FeTe protection layers by molecular beam epitaxy for ex situ studies. By direct transport and magnetic measurements, we provide definitive evidence for high temperature superconductivity in the 1-UC FeSe films with an onset T C above 40 K and an extremely large critical current density J C ∼1.7×10 6 A/cm 2 at 2 K, which are much higher than T C ∼8 K and J C ∼10 4 A/cm 2 for bulk FeSe, respectively. Our work may pave the way to enhancing and tailoring superconductivity by interface engineering. (express letter)

  10. Superconducting linac beam dynamics with high-order maps for RF resonators

    Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177

    2004-01-01

    The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...

  11. Theory of high-Tc superconducting cuprates based on experimental evidence

    Abrikosov, A. A.

    1999-01-01

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of Tc, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc

  12. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  13. AC Losses and Their Thermal Effect in High Temperature Superconducting Machines

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2015-01-01

    In transient operations or fault conditions, high temperature superconducting (HTS) machines suffer AC losses which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate AC losses and their thermal effect in HTS machines is presented....... The method consists of three sub-models that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an AC loss model which has...

  14. Superconductive properties, interaction mechanisms, materials preparation and electronic transport in high-Tc superconductors

    Saemann-Ischenko, G.

    1993-01-01

    The final report is composed of eight chapters dealing with the following aspects: I. Mixed state, critical currents, anisotropy, intrinsic and extrinsic pinning. II. Microwave properties and far-infrared reflectivity of epitactic HTSC films. III. Hall effect at the states of normal conductivity and superconductivity, magnetoresistance, superconducting fluctuation phenomena. IV. Effects of the nuclear and the electronic energy loss. V. Scanning electron microscopy. VI. p- and n-doped high-Tc superconductors: Charge symmetry and magnetism. VII. Preparation methods. VIII. Electrochemical examinations of HTSC films and HTSC monocrystals at low temperatures. (orig./MM) [de

  15. High Tc superconducting three-terminal device under quasi-particle injection

    Hashimoto, K.; Kabasawa, U.; Tonouchi, M.; Kobayashi, T.

    1988-01-01

    A new type of the current injection type three terminal device was fabricated using the high Tc YBaCuO thin epitaxial films, wherein the hot quasi-particle injection effect on the superconducting current was closely examined. The zero bias drain current was efficiently suppressed by the injection of the hot quasi-particles through the gate electrode. Though it is speculative, a comparison of the experimental results and analyses based on the familiar BCS theory intimates that the main mechanism of the current modulation is the non-equilibrium superconductivity due to accumulation of the excess quasi-particles

  16. Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence

    Abrikosov, A. A.

    1999-12-10

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.

  17. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets

    Carcagno, R.; Feher, S.; Garvey, J.; Jaskierny, W.; Lamm, M.; Makulski, A.; Orris, D.F.; Pfeffer, H.; Tartaglia, M.; Tompkins, J.; Wolff, D.; /Fermilab

    2004-12-01

    A new 30 kA, 30 V dc Power System was designed, built, and commissioned at Fermilab for testing Superconducting High Field Magnets. This system has been successfully supporting operations at the Fermilab Magnet Test Facility since April 2002. It is based on six commercial 150 kW Power Energy Industries power supply modules and the following in-house modules: six 720 Hz filters, two 15 kA/1kV dc solid-state dump switch, and a 3 MJ/30 kA/1 kV dc dump resistor. Additional inhouse electronic components were designed and built to provide precise current regulation and distribution of current and current rate of change. An industrial-type Programmable Logic Controller system was used to provide equipment interlocks and monitoring. This paper summarizes studies on the influence of characteristics of this new power system--such as ripple current--on the performance of High Field Superconducting magnets.

  18. High-gradient near-quench-limit operation of superconducting Tesla-type cavities in scope of the International Linear Collider

    Mathieu Omet

    2014-07-01

    Full Text Available We report the successful demonstration of an ILC-like high-gradient near-quench-limit operation at the Superconducting RF Test Facility at the High Energy Accelerator Research Organization (KEK in Japan. Preparation procedures necessary for the accelerator operation were conducted, such as rf phase calibration, beam-based gradient calibration, and automated beam compensation. Test runs were performed successfully for nominal operation, high-loaded Q (Q_{L} operation, and automated P_{k}Q_{L} operation. The results are described in terms of the achieved precision and stabilities of gradients and phases.

  19. High precision patterning of ITO using femtosecond laser annealing process

    Cheng, Chung-Wei; Lin, Cen-Ying

    2014-01-01

    Highlights: • We have reported a process of fabrication of crystalline indium tin oxide (c-ITO) patterns using femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching. • The experimental results have demonstrated that the ablation and crystallization threshold fluences of a-ITO thin film are well-defined, the line width of the c-ITO patterns is controllable. • Fast fabrication of the two parallel sub-micro (∼0.5 μm) c-ITO line patterns using a single femtosecond laser beam and a single scanning path can be achieved. • A long-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices. - Abstract: High precision patterning of crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching is demonstrated. In the proposed approach, the a-ITO thin film is selectively transformed into a c-ITO structure via a low heat affect zone and the well-defined thresholds (ablation and crystallization) supplied by the femtosecond laser pulse. The experimental results show that by careful control of the laser fluence above the crystallization threshold, c-ITO patterns with controllable line widths and ridge-free characteristics can be accomplished. By careful control of the laser fluence above the ablation threshold, fast fabrication of the two parallel sub-micro c-ITO line patterns using a single femtosecond laser beam and single scanning path can be achieved. Along-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices

  20. a High Precision dem Extraction Method Based on Insar Data

    Wang, Xinshuang; Liu, Lingling; Shi, Xiaoliang; Huang, Xitao; Geng, Wei

    2018-04-01

    In the 13th Five-Year Plan for Geoinformatics Business, it is proposed that the new InSAR technology should be applied to surveying and mapping production, which will become the innovation driving force of geoinformatics industry. This paper will study closely around the new outline of surveying and mapping and then achieve the TerraSAR/TanDEM data of Bin County in Shaanxi Province in X band. The studying steps are as follows; Firstly, the baseline is estimated from the orbital data; Secondly, the interferometric pairs of SAR image are accurately registered; Thirdly, the interferogram is generated; Fourth, the interferometric correlation information is estimated and the flat-earth phase is removed. In order to solve the phase noise and the discontinuity phase existing in the interferometric image of phase, a GAMMA adaptive filtering method is adopted. Aiming at the "hole" problem of missing data in low coherent area, the interpolation method of low coherent area mask is used to assist the phase unwrapping. Then, the accuracy of the interferometric baseline is estimated from the ground control points. Finally, 1 : 50000 DEM is generated, and the existing DEM data is used to verify the accuracy through statistical analysis. The research results show that the improved InSAR data processing method in this paper can obtain the high-precision DEM of the study area, exactly the same with the topography of reference DEM. The R2 can reach to 0.9648, showing a strong positive correlation.

  1. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  2. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    Song, X.; Polinder, H.; Liu, D.; Mijatovic, Nenad; Holbøll, Joachim; Jensen, Bogi Bech

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen at

  3. Superconductivity of high Tc Scientific revolution?; Superconductividad de alta Tc una revolucion cientifica?

    Marquina, J E; Ridaura, R; Gomez, R; Marquina, V; Alvarez, J L

    1998-12-31

    A short history of superconductivity, since its discovery by Bednorz and Muller to the development of new materials with high transition temperatures, is presented. Further evolvements are analyzed in terms of T.s. Kuhn conceptions expressed in his book. The Structure of Scientific Revolutions. (Author) 4 refs.

  4. Adaptation of superconducting fault current limiter to high-speed reclosing

    Koyama, T.; Yanabu, S.

    2009-01-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  5. Interplay between spin polarization and color superconductivity in high density quark matter

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...

  6. Systematics in positron annihilation lifetime analysis of high Tc superconducting transitions

    Howell, R.H.; Radousky, H.B.; Wachs, A.L.; Fluss, M.J.; Turchi, P.E.A.; Jean, Y.C.; Sunder, C.S.; Chu, C.W.; Peng, J.L.; Folkerts, T.J.; Shelton, R.N.; Hinks, D.G.

    1989-01-01

    Values of the positron lifetime have previously been observed to change with temperature below T c in high T c superconducting oxides. The authors report new measurements on Ba .6 K .4 Bio 3 and Nd 1.85 Ce .15 CuO 4

  7. Superconducting accelerator technology

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  8. Design of high-energy high-current linac with focusing by superconducting solenoids

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  9. High Precision GNSS Guidance for Field Mobile Robots

    Ladislav Jurišica

    2012-11-01

    Full Text Available In this paper, we discuss GNSS (Global Navigation Satellite System guidance for field mobile robots. Several GNSS systems and receivers, as well as multiple measurement methods and principles of GNSS systems are examined. We focus mainly on sources of errors and investigate diverse approaches for precise measuring and effective use of GNSS systems for real-time robot localization. The main body of the article compares two GNSS receivers and their measurement methods. We design, implement and evaluate several mathematical methods for precise robot localization.

  10. High precision ages from the Torres del Paine Intrusion, Chile

    Michel, J.; Baumgartner, L.; Cosca, M.; Ovtcharova, M.; Putlitz, B.; Schaltegger, U.

    2006-12-01

    The upper crustal bimodal Torres del Paine Intrusion, southern Chile, consists of the lower Paine-Mafic- Complex and the upper Paine-Granite. Geochronologically this bimodal complex is not well studied except for a few existing data from Halpern (1973) and Sanchez (2006). The aim of this study is to supplement the existing data and to constrain the age relations between the major magmatic pulses by applying high precision U-Pb dating on accessory zircons and 40Ar/39Ar-laser-step-heating-ages on biotites from the Torres del Paine Intrusion. The magmatic rocks from mafic complex are fine to medium-grained and vary in composition from quartz- monzonites to granodiorites and gabbros. Coarse-grained olivine gabbros have intruded these rocks in the west. The granitic body is represented by a peraluminous, biotite-orthoclase-granite and a more evolved leucocratic granite in the outer parts towards the host-rock. Field observations suggest a feeder-zone for the granite in the west and that the granite postdates the mafic complex. Two granite samples of the outermost margins in the Northeast and South were analyzed. The zircons were dated by precise isotope-dilution U-Pb techniques of chemically abraded single grains. The data are concordant within the analytical error and define weighted mean 206/238U ages of 12.59 ± 0.03 Ma and 12.58 ± 0.01 Ma for the two samples respectively. A 40Ar/39Ar-age for the second sample yield a date of 12.37 ± 0.11 Ma. Three 40Ar/39Ar -ages of biotites were obtained for rocks belonging to the mafic complex. A hbl-bio- granodiorite from the central part, approximately 150 m below the subhorizontal contact with the granite, gives an age of 12.81 ± 0.11 Ma. A hbl-bio-granodiorite and an olivine-gabbro west of the feeder-zone date at 12.42 ± 0.14 Ma and 12.49 ± 0.11 Ma, respectively. The obtained older age of 12.81 Ma for the granodiorite in the central part is consistent with structural relationships of brittle fracturing of the mafic

  11. Three years of high precision gravity measurements at the gravimetric station of Brasimone - Italy

    G. Casula

    1998-06-01

    Full Text Available From August 1995 up to now, at the Enea Research Center of Brasimone, in the Italian Apennines between Bologna and Florence (Italy: 44º07'N, 11º.07'E, 890 m height, the superconducting gravimeter GWR model TT70 number T015 has been continuously recording the variation of the local gravity field, in the frame of the Global Geodynamics Project. The gravimetric laboratory, being a room of the disused nuclear power plant of Brasimone, is a very stable site, free from noise due to human activities. Data blocks of several months of continuous gravity records have been collected over a time span of three years, together with the meteorological data. The gravimeter has been calibrated at relative accuracy better than 0.3% with the aid of a mobile mass system, by imposed perturbations of the local gravity field and recording the gravimeter response. The results of this calibration technique were checked by two comparison experiments with absolute gravimeters performed during this period: the first, in May 1994 with the aid of the symmetrical rise and fall gravimeter of the Institute of Metrology Colonnetti of Turin, and the second in October 1997 involving an FG5 absolute gravimeter of the Institute de Physique du Globe of Strasbourg. The gravimeter signal was analysed to compute a high precision tidal model for Brasimone site. Starting from a set of gravimetric and atmospheric pressure data of high quality, relative to 46 months of observation, we performed the tidal analysis using Eterna 3.2 software to compute amplitudes, gravimetric factors and phases of the main waves of the Tamura catalogue. Finally a comparison experiment between two of the STS-1/VBB broadband seismometers of the MedNet project network and the gravity records relative to the Balleny Islands earthquake (March 25, 1998 were analysed to look for evidence of normal modes due to the free oscillations of the Earth.

  12. Design and Test of a Thermal Triggered Persistent Current System using High Temperature Superconducting Tapes

    Park, Dong Keun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kang, Hyoungku [Electro-Mechanical Research Institute, Hyundai Heavy Industries, Yongin (Korea, Republic of); Ahn, Min Cheol [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yang, Seong Eun [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Yoon, Yong Soo [Department of Electrical Engineering, Ansan College of Technology, 671 Choji-Dong, Danwon-Gu, Ansan, 425-792 (Korea, Republic of); Lee, Sang Jin [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Ko, Tae Kuk [Department of Electrical and Electronic Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2006-06-01

    A superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as high uniformity of magnetic field and reduced thermal loss. A high temperature superconducting (HTS) persistent current switch (PCS) system was designed and tested in this research. The HTS PCS was optimally designed using two different HTS tapes, second generation coated conductor (CC) HTS tape and Bi-2223 HTS tape by the finite element method (FEM) in thermal quench characteristic view. The CC tape is more prospective applicable wire in these days for its high n value and critical current independency from external magnetic field than Bi-2223 tape. Also a prototype PCS system using Bi-2223 tape was manufactured and tested. The PCS system consists of a PCS part, a heater which induces the PCS to quench, and a superconducting magnet. The test was performed in various conditions of transport current. An initial current decay appeared when the superconducting magnet was energized in a PCS system was analyzed. This paper would be foundation of HTS PCS researches.

  13. Theoretical study of stability and superconductivity of ScHn (n =4 -8 ) at high pressure

    Qian, Shifeng; Sheng, Xiaowei; Yan, Xiaozhen; Chen, Yangmei; Song, Bo

    2017-09-01

    The synthesis of hydrogen sulfides, with the potential of high-temperature superconductivity, was recently proposed at high Tc = 203 K. It motivated us to employ an ab initio approach for the predictions of crystal structures to find the stable scandium hydrides. In addition to the earlier predicted three stoichiometries of ScH, ScH2, and ScH3, we identify three other metallic stoichiometries of ScH4, ScH6, and ScH8, which show superconductivity at significantly higher temperatures. The phases of ScH4 and ScH6, whose stability does not require extremely high pressures (ZPE), are primarily ionic compounds containing exotic quasimolecular H2 arrangements. The present electron-phonon calculations revealed the superconductive potential of ScH4 and ScH6 with estimated Tc of 98 K and 129 K at 200 GPa and 130 GPa, respectively. The superconductivity of ScHn stems from the large electron-phonon coupling associated with the wagging, bending, and intermediate-frequency modes attributed mainly to the hydrogen atoms.

  14. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang

    2015-01-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230

  15. Superconducting magnet system for the AGS high energy unseparated beam

    Morgan, G.; Aggus, J.; Bamberger, J.

    1975-01-01

    A beam line to the Multi-Particle Spectrometer capable of handling 30 GeV/c secondary beams will consist of four large identical superconducting dipoles and a number of room temperature quadrupoles. The total bending angle is 20 0 , 5 0 per magnet, and the room temperature aperture required in the dipoles is 20 cm. The four dipoles will be of the cos theta type and will have an overall length of 2.5 m and nominal maximum field of 4.0 T at 2800 A. The conductor will be a thin, wide metal-impregnated braid. The circular aperture is surrounded by coils which are a six-block approximation to a single-layer cos theta current sheet, and a coaxial cylinder of laminated iron at helium temperature. Each magnet will weigh about 10 tons. The design of the dewar including its heat load is discussed. The system is planned to be operational in Fall 1975. (U.S.)

  16. Superconducting fluctuations and pseudogap in high-Tc cuprates

    Alloul H.

    2012-03-01

    Full Text Available Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x. These experiments allow us to determine the field Hc’(T and the temperature Tc’ above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc’ is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0 which is found to be be quite similar to Hc’ (0 and to increase with hole doping. Studies of the incidence of disorder on both Tc’ and T* allow us to to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.

  17. High-temperature superconductivity: the attractive Up regime

    Gulacsi, Miklos

    2005-01-01

    Full text: We present the result of an infinite order unitary transformation applied to a multiband Hubbard Hamiltonian by which it can be shown rigorously that an attractive interaction term appears at the oxygen ion sites as a result of oxygen-copper virtual charge excitations. This exact result yields convincing evidence that the pairing mechanism in two or three band Hubbard models results precisely from this attraction. (author)

  18. The High Road to Astronomical Photometric Precision : Differential Photometry

    Milone, E. F.; Pel, Jan Willem

    2011-01-01

    Differential photometry offers the most precise method for measuring the brightness of astronomical objects. We attempt to demonstrate why this should be the case, and then describe how well it has been done through a review of the application of differential techniques from the earliest visual

  19. An Elementary Algorithm to Evaluate Trigonometric Functions to High Precision

    Johansson, B. Tomas

    2018-01-01

    Evaluation of the cosine function is done via a simple Cordic-like algorithm, together with a package for handling arbitrary-precision arithmetic in the computer program Matlab. Approximations to the cosine function having hundreds of correct decimals are presented with a discussion around errors and implementation.

  20. Cognition-Based Approaches for High-Precision Text Mining

    Shannon, George John

    2017-01-01

    This research improves the precision of information extraction from free-form text via the use of cognitive-based approaches to natural language processing (NLP). Cognitive-based approaches are an important, and relatively new, area of research in NLP and search, as well as linguistics. Cognitive approaches enable significant improvements in both…

  1. High Precision Clock Bias Prediction Model in Clock Synchronization System

    Zan Liu

    2016-01-01

    Full Text Available Time synchronization is a fundamental requirement for many services provided by a distributed system. Clock calibration through the time signal is the usual way to realize the synchronization among the clocks used in the distributed system. The interference to time signal transmission or equipment failures may bring about failure to synchronize the time. To solve this problem, a clock bias prediction module is paralleled in the clock calibration system. And for improving the precision of clock bias prediction, the first-order grey model with one variable (GM(1,1 model is proposed. In the traditional GM(1,1 model, the combination of parameters determined by least squares criterion is not optimal; therefore, the particle swarm optimization (PSO is used to optimize GM(1,1 model. At the same time, in order to avoid PSO getting stuck at local optimization and improve its efficiency, the mechanisms that double subgroups and nonlinear decreasing inertia weight are proposed. In order to test the precision of the improved model, we design clock calibration experiments, where time signal is transferred via radio and wired channel, respectively. The improved model is built on the basis of clock bias acquired in the experiments. The results show that the improved model is superior to other models both in precision and in stability. The precision of improved model increased by 66.4%~76.7%.

  2. Overview of the JYFLTRAP mass measurements and high-precision ...

    nuclei, the mass difference can be determined with much higher precision than would normally be possible since for the mass doublets the systematic uncertainties become ..... The two-neutron separation energies in N = 60 indicate the. 338 ... Masses of zinc isotopes (Z = 30) were measured up to 80Zn, providing valuable.

  3. Comparison study of cable geometries and superconducting tape layouts for high-temperature superconductor cables

    Ta, Wurui; Shao, Tianchong; Gao, Yuanwen

    2018-04-01

    High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.

  4. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  5. Mechanism of high-T{sub c} superconductivity studied by neutron scattering

    Yamada, Kazuyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science

    1998-03-01

    La{sub 2-x}Sr{sub x}CuO{sub 4} is one of the typical high-T{sub c} cuprates where Sr-doping creates many phases from the Mott insulator at x=0 nonsuperconducting metal for x>0.26; the high-T{sub c} superconductivity appears for 0.06{<=}x{<=}0.26. We have grown large single crystals of La{sub 2-x}Sr{sub x}CuO{sub 4} over a wide the doping rate up to x=0.3 and performed systematic neutron scattering experiments for the first time. We obtained several results indicating an intimate relation between the dynamical spin correlations and the superconductivity. Incommensurate spatial modulation appears in the antiferromagnetic spin correlations beyond x=0.05 close to the lower boundary of the superconducting phase. We found that the degree of the spatial modulation or the incommensurability {delta} increases with doping and T{sub c} is linearly scaled with {delta} for x{<=}0.15. A well-defined spin excitation gap was observed only for x=0.15 where the T{sub c} reaches the maximum value. And the dynamical spin coherence degrades upon doping with x>>0.15. There results strongly suggest the essential role of the magnetically correlated region and the spatial spin modulation in the CuO{sub 2} planes to sustain or create the superconductivity. (author)

  6. State of the art and trends of high-Tc superconductivity

    Barone, A.

    1990-01-01

    In this paper a brief account is given on some aspects of the development of high-T c Superconductivity since the last edition of the SATT Conference. This year significant results have been obtained in the challenging endeavor of increasing high critical current densities and in the context of high-T c junctions. The attention is confined to achievements and perspectives in these two topics

  7. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  8. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  9. High precision measurement of the micro-imaging system to check repeatability of precision

    Cheng Lin; Song Li; Ma Chuntao; Luo Hongxin; Wang Jie

    2010-01-01

    The beamlines slits of Shanghai Synchrotron Radiation Facility (SSRF) are required to have a repeatability of better than 1 μm. Before the slits installation, the off-line and/or on-line repeatability measurements must be conducted. A machine vision measuring system based on high resolution CCD and adjustable high magnification lens was used in this regard. A multi-level filtering method was used to treat the imaging data. After image binarization, the imaging noises were depressed effectively by using of algebraic mean filtering, statistics median filtering,and the least square filtering. Using the subtracted image between the images before and after slit movement, an average displacement of slit blades could be obtained, and the repeatability of slit could be measured, with a resolution of 0.3 μm of the measurement system. The experimental results show that this measurement system meets the requirements for non-contact measurements to the repeatability of slits. (authors)

  10. Advanced methods and algorithm for high precision astronomical imaging

    Ngole-Mboula, Fred-Maurice

    2016-01-01

    One of the biggest challenges of modern cosmology is to gain a more precise knowledge of the dark energy and the dark matter nature. Fortunately, the dark matter can be traced directly through its gravitational effect on galaxies shapes. The European Spatial Agency Euclid mission will precisely provide data for such a purpose. A critical step is analyzing these data will be to accurately model the instrument Point Spread Function (PSF), which the focus of this thesis.We developed non parametric methods to reliably estimate the PSFs across an instrument field-of-view, based on unresolved stars images and accounting for noise, under sampling and PSFs spatial variability. At the core of these contributions, modern mathematical tools and concepts such as sparsity. An important extension of this work will be to account for the PSFs wavelength dependency. (author) [fr

  11. ADVANCED DESIGN SOLUTIONS FOR HIGH-PRECISION WOODWORKING MACHINES

    Giuseppe Lucisano

    2016-03-01

    Full Text Available With the aim at performing the highest precision during woodworking, a mix of alternative approaches, fruitfully integrated in a common design strategy, is essential. This paper represents an overview of technical solutions, recently developed by authors, in design of machine tools and their final effects on manufacturing. The most advanced solutions in machine design are reported side by side with common practices or little everyday expedients. These design actions are directly or indirectly related to the rational use of materials, sometimes very uncommon, as in the case of magnetorheological fluids chosen to implement an active control in speed and force on the electro-spindle, and permitting to improve the quality of wood machining. Other actions are less unusual, as in the case of the adoption of innovative anti-vibration supports for basement. Tradition or innovation, all these technical solutions contribute to the final result: the highest precision in wood machining.

  12. Hole superconductivity

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  13. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  14. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  15. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Heeger, Karsten M.

    2014-01-01

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta . Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  16. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M; Yamaguchi, M; Yokoyama, K; Noto, K

    2009-01-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  17. Strong correlations and the search for high-Tc superconductivity in chromium pnictides and chalcogenides

    Pizarro, J. M.; Calderón, M. J.; Liu, J.; Muñoz, M. C.; Bascones, E.

    2017-02-01

    Undoped iron superconductors accommodate n =6 electrons in five d orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole doping, as the electronic filling approaches half filling with n =5 electrons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with n slave-spin and multiorbital random-phase-approximation calculations we analyze the strength of the correlations and the superconducting and magnetic instabilities in these systems with the main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, with (π ,π ) antiferromagnetism and nodal d -wave pairing being the most plausible magnetic and superconducting instabilities, respectively.

  18. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  19. Impurity band Mott insulators: a new route to high Tc superconductivity

    Ganapathy Baskaran

    2008-01-01

    Full Text Available Last century witnessed the birth of semiconductor electronics and nanotechnology. The physics behind these revolutionary developments is certain quantum mechanical behaviour of 'impurity state electrons' in crystalline 'band insulators', such as Si, Ge, GaAs and GaN, arising from intentionally added (doped impurities. The present article proposes that certain collective quantum behaviour of these impurity state electrons, arising from Coulomb repulsions, could lead to superconductivity in a parent band insulator, in a way not suspected before. Impurity band resonating valence bond theory of superconductivity in boron doped diamond, recently proposed by us, suggests possibility of superconductivity emerging from impurity band Mott insulators. We use certain key ideas and insights from the field of high-temperature superconductivity in cuprates and organics. Our suggestion also offers new possibilities in the field of semiconductor electronics and nanotechnology. The current level of sophistication in solid state technology and combinatorial materials science is very well capable of realizing our proposal and discover new superconductors.

  20. High-temperature superconductivity in solid solutions based on mixed yttrium and barium cuprate

    Bazuev, G.V.; Kirsanov, N.A.; Makarova, O.V.; Zubkov, V.G.; Shveikin, G.P.

    1990-01-01

    The discovery of high-temperature superconductivity (T c = 30-40 K) in mixed lanthanum and alkaline earth cuprates La 2-x M x CuO 4 , where M = Ba and Ca (1-3) stimulated an extensive search for new superconducting phases based on mixed oxides of these elements. The superconducting transition temperature T c in LnBa 2 Cu 3 O 7-z phases is practically independent of the REE and lies between 90-96 K. The crystal structure of superconducting YBa 2 Cu 3 O 7-z is similar to perovskite, has orthorhombic symmetry (4,5), and is related to the lanthanum barium cuprite tetragonal defect structure La 3 Ba 3 Cu 6 O 14.1 (8). A study of possible solid solutions (SS) based on YBa 2 Cu 3 O 7-z through iso- or heterovalent substitution for Y 3+ and Ba 2+ and of their electrical properties seems warranted. In the present work, the authors report the synthesis, x-ray diffraction study, and specific electric resistivity of SS Y 1-x M x (Ba 1-y M y ') 2 Cu 3 O 7-z , where M = La, Lu, Sc, In, K, Zr, and Ce and M' = Ca, Sr, Mg, K, and La

  1. The vortex structure and flux creep within superconducting permanent-magnet high aspect-ratio discs

    Watson, J.H.P.; Younas, I.

    1997-01-01

    Inhomogeneous type II superconducting discs magnetized by an applied field will retain some magnetization when field is switched off so the superconducting disc will behave as a permanent magnet after flux creep has reduced to a low value.This paper examines the superconducting vortex structure within superconducting permanent-magnet high aspect-ratio discs which is consistent with the calculated magnetic field distribution.The discs, with radius R, have the axis along the z-direction and the mid-plane of the disc corresponds to z = 0. These discs with large aspect ratios in the remnant state have a region between radius r l and R where the magnetic field is reversed. Surrounding the line r = r l and z = 0 there is a region where H cl which is in the Meissner state. Near r l the vortex lines are strongly curved. For radii r l vortex lines creep to larger values of r. For radii r > r l vortex lines creep to smaller values of r, meet at r l with vortex lines of opposite sign and form a continuous loop which decreases in size and is finally annihilated in the Meissner region. Flux creep induces lossless currents in the Meissner region. (author)

  2. A vibrating wire parallel to a high temperature superconducting slab. Vol. 2

    Saif, A G; El-sabagh, M A [Department of Mathematic and Theoretical physics, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The power losses problem for an idealized high temperature type II superconducting system of a simple geometry is studied. This system is composed of a vibrating normal conducting wire (two wires) carrying a direct current parallel to an uniaxial anisotropic type II superconducting slab (moving slab). First, the electromagnetic equation governing the dynamics of this system, and its solutions are obtained. Secondly, a modified anisotropic london equation is developed to study these systems in the case of the slab moving. Thirdly, it is found that, the power losses is dependent on the frequency, london penetration depth, permeability, conductivity, velocity, and the distance between the normal conductors and the surfaces of the superconducting slab. Moreover, the power losses decreases as the distance between the normal conductors and the surface of the superconducting slab decreases; and increases as the frequency, the london penetration depth, permeability, conductivity, and velocity are increased. These losses along the versor of the anisotropy axis is increased as {lambda}{sub |}| increases. Moreover, it is greater than the power losses along the crystal symmetry direction. In the isotropic case as well as the slab thickness tends to infinity, agreement with previous results are obtained. 2 figs.

  3. Superconducted tour

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  4. The stress-strain relationship for multilayers of the high Tc superconducting oxides

    Hidaka, H.; Yamamura, H.

    1988-01-01

    This paper reports the calculation of the stress-strain relationship for multilayers of the high Tc superconducting oxides. The elucidation of this relationship is expected quite helpful for the preparation of high-quality multilayers of these materials. This calculation is possible to do in the same way of Timoshenko's bi-metal treatment. The authors did computation of the residual stress and strain, and the state of stress and strain for these multilayers has been acquired in detail by this calculation

  5. An investigation in texturing high Tc superconducting ceramics by creep sintering

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  6. 6. Trilateral German-Russian-Ukrainian seminar on high-temperature superconductivity

    Aksenov, V.L.; Kornilov, E.I.

    1993-01-01

    The proceedings of the 6. Trilateral German-Russian-Ukrainian seminar on high-temperature superconductivity are reported. Nuclear methods (neutron diffraction, neutron polarization, Raman scattering, ESR) applied to study rare earth cuprates are described. The reports dealing with fundamental experimental studies and theoretical investigations are presented. The source materials for preparation of high-tc superconductors and the ways of their preparation, as well as their physico-chemical properties are considered

  7. Metallorganic precursors route for high Tc superconducting materials and related phases

    Beltran-porter, D.; Gonzalez, A.; Sanchis, M.J.; Beltran-porter, A.; Ibanez, R.; Sapina, F.

    1991-01-01

    The adequacy of the precursors approach for high Tc superconducting materials is validated by means of three examples of a new synthesis of mixed oxides which are directly related to the high Tc superconductors. The synthesis temperature is lowered significantly, and the need for extending the classic 'building block' approach is shown. The hypothesis that topochemical reactions from molecular to extended solids are posssible is proven. 28 refs

  8. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  9. Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer

    Choi, S. J.; Song, M. K.; Lee, S. J.; Cho, J. W.; Sim, K. D.

    2005-01-01

    The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  10. Design of High Precise Focusing System in Laser Direct Writer

    Liang, Y Y; Tian, F; Luo, J B; Yang, G G

    2006-01-01

    In order to improve the accuracy and efficiency of fabricating lines with laser pattern generator, a novel focusing system was designed. Focusing system is based on optical off-axis detection principle. The detector is a two-quadrant photocell and the defocus signal is constructed by division. Focusing system has the character of second-order system with overdamp. The new embedded PID controller improves the performance of focusing system and upgrades the closed-loop precision to 0.2 μm. Furthermore focusing system has the fabrication capabilities for alterable-width lines under various defocus amount

  11. High precision survey and alignment techniques in accelerator construction

    Gervaise, J

    1974-01-01

    Basic concepts of precision surveying are briefly reviewed, and an historical account is given of instruments and techniques used during the construction of the Proton Synchrotron (1954-59), the Intersecting Storage Rings (1966-71), and the Super Proton Synchrotron (1971). A nylon wire device, distinvar, invar wire and tape, and recent automation of the gyrotheodolite and distinvar as well as auxiliary equipment (polyurethane jacks, Centipede) are discussed in detail. The paper ends summarizing the present accuracy in accelerator metrology, giving an outlook of possible improvement, and some aspects of staffing for the CERN Survey Group. (0 refs).

  12. A high precision method for normalization of cross sections

    Aguilera R, E.F.; Vega C, J.J.; Martinez Q, E.; Kolata, J.J.

    1988-08-01

    It was developed a system of 4 monitors and a program to eliminate, in the process of normalization of cross sections, the dependence of the alignment of the equipment and those condition of having centered of the beam. It was carried out a series of experiments with the systems 27 Al + 70, 72, 74, 76 Ge, 35 Cl + 58 Ni, 37 Cl + 58, 60, 62, 64 Ni and ( 81 Br, 109 Rh) + 60 Ni. For these experiments the typical precision of 1% was obtained in the normalization. It is demonstrated theoretical and experimentally the advantage of this method on those that use 1 or 2 monitors. (Author)

  13. High-T /SUB c/ Superconducting integrated circuit: a dc SQUID with input coil

    Di Iorio, M.S.; Beasley, M.R.

    1985-01-01

    We have fabricated a high transition temperature superconducting integrated circuit consisting of a dc SQUID and an input coupling coil. The purpose is to ascertain the generic problems associated with constructing a high-T /SUB c/ circuit as well as to fabricate a high performance dc SQUID. The superconductor used for both the SQUID and the input coil is Nb 3 Sn which must be deposited at 800 0 C. Importantly, the insulator separating SQUID and input coil maintains its integrity at this elevated temperature. A hole in the insulator permits contact to the innermost winding of the coil. This contact has been achieved without significant degradation of the superconductivity. Consequently, the device operates over a wide temperature range, from below 4.2 K to near T /SUB c/

  14. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  15. High precision determination of 16O in high Tc superconductors by DIGME

    Vickridge, I.; Tallon, J.; Presland, M.

    1994-01-01

    A method is described for measuring the 16 O content of high T c superconductors with better than 1% precision by exploiting the detection of gamma rays emitted when they are irradiated by an MeV deuterium beam. The method is presently less accurate than the widely used titration and thermogravimetric methods, however it is rapid, and may be applied to materials such as Tl-containing high T c superconductors which pose serious problems for the usual analytical methods. (orig.)

  16. Realisation and instrumentation of high current power station for superconducting cables testing

    Regnaud, S.

    2000-05-01

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%

  17. Feasibility study of electric motors constructed with high temperature superconducting materials

    Jordan, H.E.

    1989-01-01

    The potential application of high temperature superconducting (HTSC) materials to electric motors is discussed. The specific application area of motors in electric power generating stations has been selected and a feasible study has been initiated on the use of HTSC materials in the design of motors for this application. A progress report on this feasibility study is presented. Technical challenges in both the development of HTSC wire and the design of a motor to utilize this wire are discussed. Finally, the results of design calculations comparing a superconducting motor with one of conventional design are presented assuming that success can be achieved in overcoming the technical problems which must be resolved to produce a high performance HTSC wire

  18. The impact of high temperature superconductivity on the electric power sector

    Wolsky, A.M.

    1996-01-01

    The progress and prospects for the application of high temperature superconductivity to the Electric Power Sector has been the topic of an IEA Implementing Agreement, begun in 1990. The present Task Members are Canada, Denmark, Finland, Germany, Israel, Italy, Japan, Netherlands, Norway, Sweden, Switzerland, Turkey, United Kingdom and the United States. As a result of the Implementing Agreement, work has been done by the Operating Agent with the full participation of all the member countries. This work has facilitated the exchange of information among experts in all countries and has documented relevant assessments. Further, this work has examined the status of high amperage conductor, fault-current limiters, superconducting magnetic energy storage, cables, rotating machines, refrigeration, and studies of the power system. The Task Members find more progress toward applications than many expected five years ago and the grounds for further international collaboration to hasten the use of superconductors in the power sector, early in the 21st century

  19. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  20. Crystal Structure and Superconductivity of PH 3 at High Pressures

    Liu, Hanyu [Geophysical; Department; Li, Yinwei [School; Gao, Guoying [State; Tse, John S. [Department; State; Naumov, Ivan I. [Geophysical

    2016-02-04

    We have performed a systematic structure search on solid PH3 at high pressures using the particle swarm optimization method. At 100–200 GPa, the search led to two structures which along with others have P–P bonds. These structures are structurally and chemically distinct from those predicted for the high-pressure superconducting H2S phase, which has a different topology (i.e., does not contain S–S bonds). Phonon and electron–phonon coupling calculations indicate that both structures are dynamically stable and superconducting. The pressure dependence and critical temperature for the monoclinic (C2/m) phase of 83 K at 200 GPa are in excellent agreement with a recent experimental report.

  1. Multi-cell superconducting structures for high energy e+ e- colliders and free electron laser linacs

    Sekutowicz, J

    2008-01-01

    This volume, which is the first in the EuCARD Editorial Series on “Accelerator Science and Technology”, is closely combined with the most advanced particle accelerators – based on Superconducting Radio Frequency (SRF) technology. In general, SRF research includes following areas: high gradient cavities, cavity prototyping, thin film technologies, large grain and mono-crystalline niobium and niobium alloys, quenching effects in superconducting cavities, SRF injectors, photo-cathodes, beam dynamics, quality of electron beams, cryogenics, high power RF sources, low level RF controls, tuners, RF power coupling to cavities, RF test infrastructures, etc. The monograph focuses on TESLA structures used in FLASH machine and planned for XFEL and ILC experiments.

  2. A new hybrid protection system for high-field superconducting magnets

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coil's conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnet's coil.

  3. Misfit dislocations and phase transformations in high-T sub c superconducting films

    Gutkin, M Y

    2002-01-01

    A theoretical model is suggested that describes the effects of misfit stresses on defect structures, phase content and critical transition temperature T sub c in high-T sub c superconducting films. The focus is placed on the exemplary case of YBaCuO films deposited onto LaSrAlO sub 4 substrates. It is theoretically revealed here that misfit stresses are capable of inducing phase transformations controlled by the generation of misfit dislocations in growing cuprate films. These transformations, in the framework of the suggested model, account for experimental data on the influence of the film thickness on phase content and critical temperature T sub c of superconducting cuprate films, reported in the literature. The potential role of stress-assisted phase transformations in suppression of critical current density across grain boundaries in high-T sub c superconductors is briefly discussed.

  4. Routes to High-Temperature Superconductivity: A Lesson from FeSe/SrTiO3

    Lee, Dung-Hai

    2018-03-01

    Raising the superconducting transition temperature to a point where applications are practical is one of the most important challenges in science. In this review, we aim at gaining insights on the Tc controlling factors for a particular high-temperature superconductor family - the FeSe-based superconductors. In particular, we discuss the mechanisms by which the Cooper pairing temperature is enhanced from ˜8 K in bulk FeSe to ˜80 K in the interface between an atomic layer of FeSe and SrTiO3. This includes the experimental hints and the theoretical simulation of the involved mechanisms. We end by applying these insights to suggest some possible high-temperature superconducting systems.

  5. One- and two-dimensional sublattices as preconditions for high-Tc superconductivity

    Krueger, E.

    1989-01-01

    In an earlier paper it was proposed describing superconductivity in the framework of a nonadiabatic Heisenberg model in order to interprete the outstanding symmetry proper ties of the (spin-dependent) Wannier functions in the conduction bands of superconductors. This new group-theoretical model suggests that Cooper pair formation can only be mediated by boson excitations carrying crystal-spin-angular momentum. While in the three-dimensionally isotropic lattices of the standard superconductors phonons are able to transport crystal-spin-angular momentum, this is not true for phonons propagating through the one- or two-dimensional Cu-O sublattices of the high-T c compounds. Therefore, if such an anisotropic material is superconducting, it is necessarily higher-energetic excitations (of well-defined symmetry) which mediate pair formation. This fact is proposed being responsible for the high transition temperatures of these compounds. (author)

  6. Microwave superconductivity for particle accelerators - How the high TC superconductors measure up

    Padamsee, H.; Green, K.; Gruschus, J.

    1988-01-01

    Application of superconducting niobium cavities to accelerators for high energy physics, nuclear physics and free electron laser is growing rapidly. Cornell has a long standing effort in the development of superconducting RF accelerator technology. Nb cavities developed here from the basis for constructing the world's highest energy electron accelerator for nuclear physics. These cavities have set a standard against which the behavior of the new superconductors must be compared. From available results on dc critical fields, and the energy gap, it appears that the new materials could make a significant impact on the capabilities of future accelerators. Crucial to this assessment, however, are direct microwave loss measurements, together with measurements of the energy gap and RF frequency dependence as well as the behavior at high RF fields. Latest results on these properties for bulk sintered ceramics, thin films and single crystals at RF frequencies of 1.5 and 6 Ghz are presented

  7. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  8. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Marzik, James, V.

    2005-10-13

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  9. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Marzik, James V.

    2005-01-01

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  10. ac superconducting articles

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  11. Superconductivity suppression near metal-dielectric in transition highly disordered systems

    Kuchinskij, Eh.Z.; Sadovskij, M.V.; Ehrkabaev, M.A.

    1997-01-01

    The effects of temperature suppression of superconducting transition T c within wide limits of disorders values from low-disordered to highly-disordered ones caused by formation of the Coulomb gap in the states density are studied on the bases of the earlier proposed self consistent theory on the metal-dielectric. It is shown that the proposed theory gives satisfactory description of experimental data for a number of the systems under study

  12. 2+1 topological term, anyons and their possible application in high Tc superconductivity

    Zhu Chuanjie.

    1990-01-01

    I review pedagogically some aspects about the SO(3) non-linear σ-model and the topological Hopf term (or the abelian Chern-Simons term). I argue that the presence of the topological Chern-Simons term is irrelevant (for regular gauge field configurations). I also give a brief introduction to the ideal anyon gas approach to high T c superconductivity. (author). 18 refs

  13. Superconducting Quadrupoles for the ISR High Luminosity insertion Coil cross section

    1978-01-01

    This picture shows a cut out section of an ISR High Luminosity (low beta) Quadrupole. One can clearly see the distribution of conductors and spacers which produces the wanted quadrupolar field. The spacers are made of pure copper and the central pole of stainless steel.The superconducting wire may be seen in photo 8008591X. See also pictures 7702690X, 8008591X, 7702698X.

  14. Characterization of the superconducting state in hafnium hydride under high pressure

    Duda, A. M.; Szewczyk, K. A.; Jarosik, M. W.; Szcześniak, K. M.; Sowińska, M. A.; Szcześniak, D.

    2018-05-01

    The hydrogen-rich compounds at high pressure may exhibit notably high superconducting transition temperatures. In the paper, we have calculated the basic thermodynamic parameters of the superconducting state in two selected phases of HfH2 hydride under high-pressure respectively at 180 GPa for Cmma and 260 GPa for P21 / m . Calculations has been conducted in the framework of the Eliashberg formalism. In particular, we have determined the values of the critical temperature (TC) to be equal to 8 K and 13 K for the Cmma and P21 / m phases, respectively. Moreover, we have estimated other thermodynamic properties such as the order parameter (Δ (T)) , the thermodynamic critical field (HC (T)) , and the specific heat for the normal (CN) and superconducting (CS) state. Finally, we have shown that the characteristic ratios: RΔ = 2 Δ (0) /kBTC and RC = ΔC (TC) /CN (TC) , which are related to the above thermodynamic functions, slightly differ from the predictions of the Bardeen-Cooper-Schrieffer theory due to the strong-coupling and retardation effects.

  15. High-pressure effects on the superconductivity of β-pyrochlore oxides AOs2O6

    Muramatsu, Takaki; Takeshita, Nao; Terakura, Chikeko; Takagi, Hidenori; Tokura, Yoshinori; Yonezawa, Shigeki; Muraoka, Yuji; Hiroi, Zenji

    2006-01-01

    High-pressure effects on the superconducting transitions of β-pyrochlore oxide superconductors AOs 2 O 6 (A=Cs, Rb, K) are studied by measuring resistivity under high pressures up to 16 GPa. The superconducting transition temperature T c first increases with increasing pressure in all the compounds and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa) and 10 K (0.6 GPa) for A=Cs, Rb and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 and 6 GPa for A=Rb and K and probably above 10 GPa for A=Cs. Characteristic changes in the temperature dependence of resistivity of RbOs 2 O 6 under high pressure. The residual resistivity largely increases with pressure above 4 GPa and, as a result, resistivity indicates small temperature dependence down to 4.2 K at 7 GPa and application of further pressure up to 10 GPa indicates that temperature dependence of resistivity decrease below 100 K. This characteristic behavior in the β-pyrochlore oxides may originate from the nesting of nearly octahedron shape of Fermi surface

  16. The creation of high-temperature superconducting cables of megawatt range in Russia

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  17. The creation of high-temperature superconducting cables of megawatt range in Russia

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  18. New results of development on high efficiency high gradient superconducting rf cavities

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Z. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hao, Z. K. [Peking Univ., Beijing (China); Liu, K. X. [Peking Univ., Beijing (China); Zhao, H. Y. [OTIC, Ningxia (China); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-01

    We report on the latest results of development on high-efficiency high-gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  19. High-precision x-ray spectroscopy of highly charged ions with microcalorimeters

    Kraft-Bermuth, S; Andrianov, V; Bleile, A; Echler, A; Egelhof, P; Grabitz, P; Ilieva, S; Kiselev, O; Meier, J; Kilbourne, C; McCammon, D

    2013-01-01

    The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the experimental precision, the new detector concept of microcalorimeters is now exploited for such measurements. Such detectors consist of compensated-doped silicon thermistors and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40–70 keV, where the Doppler-shifted Lyman lines are located. For the first time, a microcalorimeter was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions at the experimental storage ring at GSI. The energy of the Ly α1 line E(Ly-α1, 207 Pb 81+ ) = (77937 ± 12 stat ± 25 syst ) eV agrees within error bars with theoretical predictions. To improve the experimental precision, a new detector array with more pixels and better energy resolution was equipped and successfully applied in an experiment to determine the Lyman-α lines of gold ions 197 Au 78+ . (paper)

  20. A new wire fabrication processing using high Ga content Cu-Ga compound in V3Ga compound superconducting wire

    Hishinuma, Yoshimitsu; Nishimura, Arata; Kikuchi, Akihiro; Iijima, Yasuo; Takeuchi, Takao

    2007-01-01

    A superconducting magnet system is also one of the important components in an advanced magnetic confinement fusion reactor. Then it is required to have a higher magnetic field property to confine and maintain steady-sate burning deuterium (D)-tritium (T) fusion plasma in the large interspace during the long term operation. Burning plasma is sure to generate 14 MeV fusion neutrons during deuterium-tritium reaction, and fusion neutrons will be streamed and penetrated to superconducting magnet through large ports with damping neutron energy. Therefore, it is necessary to consider carefully not only superconducting property but also neutron irradiation property in superconducting materials for use in a future fusion reactor, and a 'low activation and high field superconducting magnet' will be required to realize the fusion power plant beyond International Thermonuclear Experimental Reactor (ITER). V-based superconducting material has a much shorter decay time of induced radioactivity compared with the Nb-based materials. We thought that the V 3 Ga compound was one of the most promising materials for the 'low activation and higher field superconductors' for an advanced fusion reactor. However, the present critical current density (J c ) property of V 3 Ga compound wire is insufficient for apply to fusion magnet applications. We investigated a new route PIT process using a high Ga content Cu-Ga compound in order to improve the superconducting property of the V 3 Ga compound wire. (author)