WorldWideScience

Sample records for high precipitation increases

  1. Precipitation variability increases in a warmer climate.

    Science.gov (United States)

    Pendergrass, Angeline G; Knutti, Reto; Lehner, Flavio; Deser, Clara; Sanderson, Benjamin M

    2017-12-21

    Understanding changes in precipitation variability is essential for a complete explanation of the hydrologic cycle's response to warming and its impacts. While changes in mean and extreme precipitation have been studied intensively, precipitation variability has received less attention, despite its theoretical and practical importance. Here, we show that precipitation variability in most climate models increases over a majority of global land area in response to warming (66% of land has a robust increase in variability of seasonal-mean precipitation). Comparing recent decades to RCP8.5 projections for the end of the 21 st century, we find that in the global, multi-model mean, precipitation variability increases 3-4% K -1 globally, 4-5% K -1 over land and 2-4% K -1 over ocean, and is remarkably robust on a range of timescales from daily to decadal. Precipitation variability increases by at least as much as mean precipitation and less than moisture and extreme precipitation for most models, regions, and timescales. We interpret this as being related to an increase in moisture which is partially mitigated by weakening circulation. We show that changes in observed daily variability in station data are consistent with increased variability.

  2. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  3. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  4. Characterization of increased persistence and intensity of precipitation in the northeastern United States

    Science.gov (United States)

    Guilbert, Justin; Betts, Alan K.; Rizzo, Donna M.; Beckage, Brian; Bomblies, Arne

    2015-03-01

    We present evidence of increasing persistence in daily precipitation in the northeastern United States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We find that the largest region-wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also find that the study region is experiencing an increase in the magnitude of high-intensity precipitation events. The largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade. We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.

  5. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  6. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity.

    Science.gov (United States)

    Gherardi, Laureano A; Sala, Osvaldo E

    2015-12-01

    Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump-shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance. © 2015 John Wiley & Sons Ltd/CNRS.

  7. Increasing importance of precipitation variability on global livestock grazing lands

    Science.gov (United States)

    Sloat, Lindsey L.; Gerber, James S.; Samberg, Leah H.; Smith, William K.; Herrero, Mario; Ferreira, Laerte G.; Godde, Cécile M.; West, Paul C.

    2018-03-01

    Pastures and rangelands underpin global meat and milk production and are a critical resource for millions of people dependent on livestock for food security1,2. Forage growth, which is highly climate dependent3,4, is potentially vulnerable to climate change, although precisely where and to what extent remains relatively unexplored. In this study, we assess climate-based threats to global pastures, with a specific focus on changes in within- and between-year precipitation variability (precipitation concentration index (PCI) and coefficient of variation of precipitation (CVP), respectively). Relating global satellite measures of vegetation greenness (such as the Normalized Difference Vegetation Index; NDVI) to key climatic factors reveals that CVP is a significant, yet often overlooked, constraint on vegetation productivity across global pastures. Using independent stocking data, we found that areas with high CVP support lower livestock densities than less-variable regions. Globally, pastures experience about a 25% greater year-to-year precipitation variation (CVP = 0.27) than the average global land surface area (0.21). Over the past century, CVP has generally increased across pasture areas, although both positive (49% of pasture area) and negative (31% of pasture area) trends exist. We identify regions in which livestock grazing is important for local food access and economies, and discuss the potential for pasture intensification in the context of long-term regional trends in precipitation variability.

  8. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...... at higher temperature, faster than the rate of increase in the atmosphere's water-holding capacity, termed the Clausius-Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation......) as a cause for this increase , but the relative contributions of these two types of precipitation have been difficult to disentangle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic observations and temperature records, and separate convective...

  9. Global warming without global mean precipitation increase?

    Science.gov (United States)

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  10. Is convective precipitation increasing? The case of Catalonia

    Science.gov (United States)

    Llasat, M. C.; Marcos, R.; Turco, M.

    2012-04-01

    A recent work (Turco and Llasat, 2011) has been performed to analyse the trends of the ETCCDI (Expert Team on Climate Change Detection and Indices) precipitation indices in Catalonia (NE Iberian Peninsula) from 1951 to 2003, calculated from a interpolated dataset of daily precipitation, namely SPAIN02, regular at 0.2° horizontal resolution. This work has showed that no general trends at a regional scale have been observed, considering the annual and the seasonal regional values, and only the consecutive dry days index (CDD) at annual scale shows a locally coherent spatial trend pattern. Simultaneously, Llasat et al (2009, 2010) have showed an important increase of flash-flood events in the same region. Although aspects related with vulnerability, exposure and changes in uses of soil have been found as the main responsible of this increase, a major knowledge on the evolution of high rainfall events is mandatory. Heavy precipitation is usually associated to convective precipitation and therefore the analysis of the latter is a good indicator of it. Particularly, in Catalonia, funding was raised to define a parameter, designated as β, related with the greater or lesser convective character of the precipitation (Llasat, 2001). This parameter estimates the contribution of convective precipitation to total precipitation using 1-min or 5-min rainfall intensities usually estimated by rain gauges and it can be also analysed by means of the meteorological radar (Llasat et al, 2007). Its monthly distribution shows a maximum in August, followed by September, which are the months with the major number of flash-floods in Catalonia. This parameter also allows distinguishing between different kinds of precipitation events taking into account the degree of convective contribution. The main problem is the lack of long rainfall rate series that allow analysing trends in convective precipitation. The second one is related with its heterogeneous spatial and temporal distribution. To

  11. MCS precipitation and downburst intensity response to increased aerosol concentrations

    Science.gov (United States)

    Clavner, M.; Cotton, W. R.; van den Heever, S. C.

    2015-12-01

    Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.

  12. The effect of the precipitation of coherent and incoherent precipitates on the ductility and toughness of high-strength steel

    International Nuclear Information System (INIS)

    Hamano, R.

    1993-01-01

    The effect of the coexistence of coherent and incoherent precipitates, such as M 2 C and NiAl, on the ductility and plane strain fracture toughness of 5 wt pct Ni-2 wt pct Al-based high-strength steels was studied. In order to disperse coherent and incoherent precipitates, the heat treatments were carried out as follows: (a) austenitizing at 1373 K, (b) tempering at 1023 or 923 K for dispersing the incoherent precipitates of M 2 C and NiAl, and then (c) aging at 843 K for 2.4 ks to disperse the coherent precipitate of NiAl into the matrix, which contains incoherent precipitates, such as M 2 C and NiAl. The results were obtained as follows: (a) when the strengthening precipitates consist of coherent ones, such as M 2 C and/or NiAl, the ductility and toughness are extremely low, and (b) when the strengthening precipitates consist of coherent and incoherent precipitates, such as M 2 C and NiAl, the ductility and fracture toughness significantly increase with no loss in strength. It is shown that the coexistence of coherent and incoherent precipitates increases homogeneous deformation, thus preventing local strain concentration and early cleavage cracking. Accordingly, the actions of coherent precipitates in strengthening the matrix and of incoherent precipitates in promoting, homogeneous deformation can be expected to increase both the strength and toughness of the material

  13. Will climate change increase the risk for critical infrastructure failures in Europe due to extreme precipitation?

    Science.gov (United States)

    Nissen, Katrin; Ulbrich, Uwe

    2016-04-01

    An event based detection algorithm for extreme precipitation is applied to a multi-model ensemble of regional climate model simulations. The algorithm determines extent, location, duration and severity of extreme precipitation events. We assume that precipitation in excess of the local present-day 10-year return value will potentially exceed the capacity of the drainage systems that protect critical infrastructure elements. This assumption is based on legislation for the design of drainage systems which is in place in many European countries. Thus, events exceeding the local 10-year return value are detected. In this study we distinguish between sub-daily events (3 hourly) with high precipitation intensities and long-duration events (1-3 days) with high precipitation amounts. The climate change simulations investigated here were conducted within the EURO-CORDEX framework and exhibit a horizontal resolution of approximately 12.5 km. The period between 1971-2100 forced with observed and scenario (RCP 8.5 and RCP 4.5) greenhouse gas concentrations was analysed. Examined are changes in event frequency, event duration and size. The simulations show an increase in the number of extreme precipitation events for the future climate period over most of the area, which is strongest in Northern Europe. Strength and statistical significance of the signal increase with increasing greenhouse gas concentrations. This work has been conducted within the EU project RAIN (Risk Analysis of Infrastructure Networks in response to extreme weather).

  14. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

    Science.gov (United States)

    Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul

    2017-09-01

    High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

  15. Increasing precipitation volatility in twenty-first-century California

    Science.gov (United States)

    Swain, Daniel L.; Langenbrunner, Baird; Neelin, J. David; Hall, Alex

    2018-05-01

    Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California's rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016-2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's `Great Flood of 1862'. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California's existing water storage, conveyance and flood control infrastructure.

  16. A New Inter-Hemispheric Teleconnection Increases Predictability of Winter Precipitation in Southwestern US

    Science.gov (United States)

    Mamalakis, A.; Yu, J. Y.; Randerson, J. T.; AghaKouchak, A.; Foufoula-Georgiou, E.

    2017-12-01

    Early and reliable prediction of seasonal precipitation in the southwestern US (SWUS) remains a challenge with significant implications for the economy, water security and ecosystem management of the region. Traditional drivers of winter precipitation in the SWUS have been linked to the El Niño-Southern Oscillation (ENSO), decadal/multidecadal oscillations of the sea surface temperature in northern Pacific and Atlantic oceans, and persistent high-pressure ridges over the Gulf of Alaska. However, ENSO as well as other climate modes exhibit weak statistical relationships with precipitation and low predictability as lead time increases. Grounded on the hypothesis that still undiscovered relationships between large-scale atmosphere-ocean dynamics and SWUS precipitation might exist, here we followed a diagnostic approach by which instead of restricting ourselves to the established teleconnections, we analyzed systematically the correlation of global sea surface temperature (SST) and geopotential height (GPH) with winter precipitation amounts in all climatic divisions in the SWUS, for 1950-2015. Our results show that late-summer persistent SST and GPH anomalies in the subtropical southwestern Pacific are strongly connected with winter precipitation in most climatic divisions, exhibiting higher correlation values than ENSO, and thus increasing the potential for earlier and more accurate precipitation prediction. Cross validation and 30-year running average analysis starting in 1950 suggest an amplification of the detected teleconnections over the past three to four decades. The latter is most likely a result of the reported expansion of the tropics, which has started after the 1980s, and allows SST or GPH variability at lower latitudes to affect the meridional atmospheric circulation. Our work highlights the need to understand the dynamic nature of the coupled atmosphere-ocean system in a changing climate for improving future predictions of regional precipitation.

  17. Precipitation Kinetics of Cr2N in High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    SHI Feng; WANG Li-jun; CUI Wen-fang; LIU Chun-ming

    2008-01-01

    The precipitation behavior of Cr2N during isothermal aging in the temperature range from 700℃to 950℃ in Fe-18Cr-12Mn-0.48N(in mass percent)high nitrogen austenitic stainless steel,including morphology and content of precipitate,was investigated using optical microscopy,scanning electron microscopy,and transmission electron microscopy.The isothermal precipitation kinetics curve of Cr2N and the corresponding precipitation activation energy were obtained.The results show that Cr2N phase precipitates in a cellular way and its morphology is transformed from initial granular precipitates to lamellar ones in the cell with increasing aging time.The nose temperature of Cr2N precipitation is about 800℃,with a corresponding incubation period of 30 min,and the ceiling temperature of Cr2N precipitation is 950℃.The diffusion activation energy of Cr2N precipitation is 296 kJ/mol.

  18. El Nino-like Teleconnection Increases California Precipitation in Response to Warming

    Science.gov (United States)

    Allen, R.

    2017-12-01

    Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Nino teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Nino-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century.

  19. High-throughput computational search for strengthening precipitates in alloys

    International Nuclear Information System (INIS)

    Kirklin, S.; Saal, James E.; Hegde, Vinay I.; Wolverton, C.

    2016-01-01

    The search for high-strength alloys and precipitation hardened systems has largely been accomplished through Edisonian trial and error experimentation. Here, we present a novel strategy using high-throughput computational approaches to search for promising precipitate/alloy systems. We perform density functional theory (DFT) calculations of an extremely large space of ∼200,000 potential compounds in search of effective strengthening precipitates for a variety of different alloy matrices, e.g., Fe, Al, Mg, Ni, Co, and Ti. Our search strategy involves screening phases that are likely to produce coherent precipitates (based on small lattice mismatch) and are composed of relatively common alloying elements. When combined with the Open Quantum Materials Database (OQMD), we can computationally screen for precipitates that either have a stable two-phase equilibrium with the host matrix, or are likely to precipitate as metastable phases. Our search produces (for the structure types considered) nearly all currently known high-strength precipitates in a variety of fcc, bcc, and hcp matrices, thus giving us confidence in the strategy. In addition, we predict a number of new, currently-unknown precipitate systems that should be explored experimentally as promising high-strength alloy chemistries.

  20. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    Science.gov (United States)

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  1. Global warming precipitation accumulation increases above the current-climate cutoff scale

    Science.gov (United States)

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  2. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    Science.gov (United States)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2018-06-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than

  3. Are recent severe floods in Xiang River basin of China linked with the increase extreme precipitation?

    Science.gov (United States)

    Cheng, L.; Du, J.

    2015-12-01

    The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in

  4. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    OpenAIRE

    Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke

    2016-01-01

    The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...

  5. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    Science.gov (United States)

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation.

  6. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century.

    Science.gov (United States)

    Ye, Hengchun; Fetzer, Eric J; Wong, Sun; Lambrigtsen, Bjorn H

    2017-01-01

    Convective precipitation-localized, short-lived, intense, and sometimes violent-is at the root of challenges associated with observation, simulation, and prediction of precipitation. The understanding of long-term changes in convective precipitation characteristics and their role in precipitation extremes and intensity over extratropical regions are imperative to future water resource management; however, they have been studied very little. We show that annual convective precipitation total has been increasing astonishingly fast, at a rate of 18.4%/°C, of which 16% is attributable to an increase in convective precipitation occurrence, and 2.4% is attributable to increased daily intensity based on the 35 years of two (combined) historical data sets of 3-hourly synoptic observations and daily precipitation. We also reveal that annual daily precipitation extreme has been increasing at a rate of about 7.4%/°C in convective events only. Concurrently, the overall increase in mean daily precipitation intensity is mostly due to increased convective precipitation, possibly at the expanse of nonconvective precipitation. As a result, transitional seasons are becoming more summer-like as convective becomes the dominant precipitation type that has accompanied higher daily extremes and intensity since the late 1980s. The data also demonstrate that increasing convective precipitation and daily extremes appear to be directly linearly associated with higher atmospheric water vapor accompanying a warming climate over northern Eurasia.

  7. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  8. STAMMEX high resolution gridded daily precipitation dataset over Germany: a new potential for regional precipitation climate research

    Science.gov (United States)

    Zolina, Olga; Simmer, Clemens; Kapala, Alice; Mächel, Hermann; Gulev, Sergey; Groisman, Pavel

    2014-05-01

    We present new high resolution precipitation daily grids developed at Meteorological Institute, University of Bonn and German Weather Service (DWD) under the STAMMEX project (Spatial and Temporal Scales and Mechanisms of Extreme Precipitation Events over Central Europe). Daily precipitation grids have been developed from the daily-observing precipitation network of DWD, which runs one of the World's densest rain gauge networks comprising more than 7500 stations. Several quality-controlled daily gridded products with homogenized sampling were developed covering the periods 1931-onwards (with 0.5 degree resolution), 1951-onwards (0.25 degree and 0.5 degree), and 1971-2000 (0.1 degree). Different methods were tested to select the best gridding methodology that minimizes errors of integral grid estimates over hilly terrain. Besides daily precipitation values with uncertainty estimates (which include standard estimates of the kriging uncertainty as well as error estimates derived by a bootstrapping algorithm), the STAMMEX data sets include a variety of statistics that characterize temporal and spatial dynamics of the precipitation distribution (quantiles, extremes, wet/dry spells, etc.). Comparisons with existing continental-scale daily precipitation grids (e.g., CRU, ECA E-OBS, GCOS) which include considerably less observations compared to those used in STAMMEX, demonstrate the added value of high-resolution grids for extreme rainfall analyses. These data exhibit spatial variability pattern and trends in precipitation extremes, which are missed or incorrectly reproduced over Central Europe from coarser resolution grids based on sparser networks. The STAMMEX dataset can be used for high-quality climate diagnostics of precipitation variability, as a reference for reanalyses and remotely-sensed precipitation products (including the upcoming Global Precipitation Mission products), and for input into regional climate and operational weather forecast models. We will present

  9. A DLTS study of the evolution of oxygen precipitates in Si at high temperature and high pressure

    International Nuclear Information System (INIS)

    Antonova, I.V.; Popov, V.P.; Fedina, L.I.; Shaimeev, S.S.; Misiuk, A.

    1996-01-01

    The effect of high hydrostatic pressure on the dissolution of oxygen precipitates introduced beforehand into Si at temperatures of 920-1000 K (over period of 96 h) is investigated by the DLTS method. A measurement procedure, based on the formation of electrically active complexes (interstitial oxygen atom-vacancy) during electron irradiation of the samples, is proposed. It is shown that the precipitates do not decompose when point defects are introduced at room temperature. As the treatment temperature increases (to 1220-1650 K), for the same values of the hydrostatic pressure (up to 1.3 GPa) the intensity of the decomposition of oxygen precipitates increases and at 1650 K they are completely dissolved. Study of the decomposition kinetics showed that hydrostatic pressure raises the limit of solubility of the oxygen atoms Oi and slows down their diffusion. It is determined that the diffusion activation energy Ea, just as the preexponential factor D0, in the expression for the diffusion decrease with increasing hydrostatic pressure, resulting in a lower diffusion. Possible mechanisms for the effect of hydrostatic pressure on oxygen diffusion near a precipitate are discussed

  10. El Niño-like teleconnection increases California precipitation in response to warming

    Science.gov (United States)

    Allen, Robert J.; Luptowitz, Rainer

    2017-07-01

    Future California (CA) precipitation projections, including those from the most recent Climate Model Intercomparison Project (CMIP5), remain uncertain. This uncertainty is related to several factors, including relatively large internal climate variability, model shortcomings, and because CA lies within a transition zone, where mid-latitude regions are expected to become wetter and subtropical regions drier. Here, we use a multitude of models to show CA may receive more precipitation in the future under a business-as-usual scenario. The boreal winter season-when most of the CA precipitation increase occurs-is associated with robust changes in the mean circulation reminiscent of an El Niño teleconnection. Using idealized simulations with two different models, we further show that warming of tropical Pacific sea surface temperatures accounts for these changes. Models that better simulate the observed El Niño-CA precipitation teleconnection yield larger, and more consistent increases in CA precipitation through the twenty-first century.

  11. Ranch profitability given increased precipitation variability and flexible stocking

    Science.gov (United States)

    Forage and cattle performance relationships with spring precipitation, combined with cattle market price variability, were incorporated into a ranch level model to determine if addition of a yearling enterprise to the base cow-calf herd would improve profitability with increasing (25% and 50% greate...

  12. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes

    International Nuclear Information System (INIS)

    Lenderink, Geert; Van Meijgaard, Erik

    2010-01-01

    Relations between hourly precipitation extremes and atmospheric temperature and moisture derived for the present-day climate are studied with the aim of understanding the behavior (and the uncertainty in predictions) of hourly precipitation extremes in a changing climate. A dependency of hourly precipitation extremes on the daily mean 2 m temperature of approximately two times the Clausius-Clapeyron (CC) relation is found for temperatures above 10 deg. C. This is a robust relation obtained in four observational records across western Europe. A dependency following the CC relation can be explained by the observed increase in atmospheric (absolute) humidity with temperature, whereas the enhanced dependency (compared to the CC relation) appears to be caused by dynamical feedbacks owing to excess latent heat release in extreme showers. Integrations with the KNMI regional climate model RACMO2 at 25 km grid spacing show that changes in hourly precipitation extremes may indeed considerably exceed the prediction from the CC relation. The results suggests that increases of + 70% or even more are possible by the end of this century. However, a different regional model (CLM operated at ETHZ) predicts much smaller increases; this is probably caused by a too strong sensitivity of this model to a decrease in relative humidity.

  13. Streamflow response to increasing precipitation extremes altered by forest management

    Science.gov (United States)

    Charlene N. Kelly; Kevin J. McGuire; Chelcy Ford Miniat; James M. Vose

    2016-01-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the...

  14. Precipitation increases the occurrence of sporadic legionnaires' disease in Taiwan.

    Directory of Open Access Journals (Sweden)

    Nai-Tzu Chen

    Full Text Available Legionnaires' disease (LD is an acute form of pneumonia, and changing weather is considered a plausible risk factor. Yet, the relationship between weather and LD has rarely been investigated, especially using long-term daily data. In this study, daily data was used to evaluate the impacts of precipitation, temperature, and relative humidity on LD occurrence in Taiwan from 1995-2011. A time-stratified 2:1 matched-period case-crossover design was used to compare each case with self-controlled data using a conditional logistic regression analysis, and odds ratios (ORs for LD occurrence was estimated. The city, gender and age were defined as a stratum for each matched set to modify the effects. For lag day- 0 to 15, the precipitation at lag day-11 significantly affected LD occurrence (p0.05. In conclusion, in warm, humid regions, an increase of daily precipitation is likely to be a critical weather factor triggering LD occurrence where the risk is found particularly significant at an 11-day lag. Additionally, precipitation at 21-40 and 61-80 mm might make LD occurrence more likely.

  15. High-power high-voltage pulse generator for supplying electrostatic precipitators of dust

    International Nuclear Information System (INIS)

    Radu, A.; Martin, D.

    1992-01-01

    The study and development of an experimental high voltage generator specialized in the supply of electrostatic precipitators are presented. The main parameters of the pulse generator are: U = -30 kV, I = 8.8 A, τ = 120μs, f r = 150 Hz. The pulse generator was tested on a laboratory electrostatic precipitator with nominal capacitance C = 25 nF, biased at -40 kV by means of a separate high voltage rectifier. The experimental results will be used for the creation of a more powerful pulse generator, a prototype for the supply of a real industrial electrostatic precipitator: U = -50 kV, I = 313 A, τ = 100μs, f r = 300 Hz, C = 100 nF. (Author)

  16. An Ultra-high Resolution Synthetic Precipitation Data for Ungauged Sites

    Science.gov (United States)

    Kim, Hong-Joong; Choi, Kyung-Min; Oh, Jai-Ho

    2018-05-01

    Despite the enormous damage caused by record heavy rainfall, the amount of precipitation in areas without observation points cannot be known precisely. One way to overcome these difficulties is to estimate meteorological data at ungauged sites. In this study, we have used observation data over Seoul city to calculate high-resolution (250-meter resolution) synthetic precipitation over a 10-year (2005-2014) period. Furthermore, three cases are analyzed by evaluating the rainfall intensity and performing statistical analysis over the 10-year period. In the case where the typhoon "Meari" passed to the west coast during 28-30 June 2011, the Pearson correlation coefficient was 0.93 for seven validation points, which implies that the temporal correlation between the observed precipitation and synthetic precipitation was very good. It can be confirmed that the time series of observation and synthetic precipitation in the period almost completely matches the observed rainfall. On June 28-29, 2011, the estimation of 10 to 30 mm h-1 of continuous strong precipitation was correct. In addition, it is shown that the synthetic precipitation closely follows the observed precipitation for all three cases. Statistical analysis of 10 years of data reveals a very high correlation coefficient between synthetic precipitation and observed rainfall (0.86). Thus, synthetic precipitation data show good agreement with the observations. Therefore, the 250-m resolution synthetic precipitation amount calculated in this study is useful as basic data in weather applications, such as urban flood detection.

  17. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  18. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    Science.gov (United States)

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  19. The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency

    Science.gov (United States)

    Clavner, Michal; Cotton, William R.; van den Heever, Susan C.; Saleeby, Stephen M.; Pierce, Jeffery R.

    2018-01-01

    Mesoscale Convective Systems (MCSs) are important contributors to rainfall in the High Plains of the United States and elsewhere in the world. It is therefore of interest to understand how different aerosols serving as cloud condensation nuclei (CCN) may impact the total amount, rates and spatial distribution of precipitation produced by MCSs. In this study, different aerosol concentrations and their effects on precipitation produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that differed only in the initial concentration, spatial distribution, and chemical composition of aerosols. Aerosol fields were derived from the output of GEOS-Chem, a 3D chemical transport numerical model. Results from the RAMS simulations show that the total domain precipitation was not significantly affected by variations in aerosol concentrations, however, the pollution aerosols altered the precipitation characteristics. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier precipitation, and a smaller area with lighter precipitation. These differences arose as a result of aerosols enhancing precipitation in the convective region of the MCS while suppressing precipitation from the MCS's stratiform-anvil. In the convective region, several processes likely contributed to an increase of precipitation. First, owing to the very humid environment of this storm, the enhanced amount of cloud water available to be collected overwhelmed the reduction in precipitation efficiency associated with the aerosol-induced production of smaller droplets which led to a net increase in the conversion of cloud droplets to precipitation. Second, higher aerosol concentrations led to invigoration of convective updrafts which

  20. Future changes of precipitation characteristics in China

    Science.gov (United States)

    Wu, S.; Wu, Y.; Wen, J.

    2017-12-01

    Global warming has the potential to alter the hydrological cycle, with significant impacts on the human society, the environment and ecosystems. This study provides a detailed assessment of potential changes in precipitation characteristics in China using a suite of 12 high-resolution CMIP5 climate models under a medium and a high Representative Concentration Pathways: RCP4.5 and RCP8.5. We examine future changes over the entire distribution of precipitation, and identify any shift in the shape and/or scale of the distribution. In addition, we use extreme-value theory to evaluate the change in probability and magnitude for extreme precipitation events. Overall, China is going to experience an increase in total precipitation (by 8% under RCP4.5 and 12% under RCP8.5). This increase is uneven spatially, with more increase in the west and less increase in the east. Precipitation frequency is projected to increase in the west and decrease in the east. Under RCP4.5, the overall precipitation frequency for the entire China remains largely unchanged (0.08%). However, RCP8.5 projects a more significant decrease in frequency for large part of China, resulting in an overall decrease of 2.08%. Precipitation intensity is likely increase more uniformly, with an overall increase of 11% for RCP4.5 and 19% for RCP8.5. Precipitation increases for all parts of the distribution, but the increase is more for higher quantiles, i.e. strong events. The relative contribution of small quantiles is likely to decrease, whereas contribution from heavy events is likely to increase. Extreme precipitation increase at much higher rates than average precipitation, and high rates of increase are expected for more extreme events. 1-year events are likely to increase by 15%, but 20-year events are going to increase by 21% under RCP4.5, 26% and 40% respectively under RCP8.5. The increase of extreme events is likely to be more spatially uniform.

  1. Spatio-Temporal Analysis of the Accuracy of Tropical Multisatellite Precipitation Analysis 3B42 Precipitation Data in Mid-High Latitudes of China

    Science.gov (United States)

    Cai, Yancong; Jin, Changjie; Wang, Anzhi; Guan, Dexin; Wu, Jiabing; Yuan, Fenghui; Xu, Leilei

    2015-01-01

    Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS). This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998–2012. Comparative analysis at three timescales (daily, monthly and annual scale) indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%). Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these data are

  2. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China.

    Directory of Open Access Journals (Sweden)

    Yancong Cai

    Full Text Available Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS. This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998-2012. Comparative analysis at three timescales (daily, monthly and annual scale indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%. Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these

  3. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    Science.gov (United States)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  4. A test for Improvement of high resolution Quantitative Precipitation Estimation for localized heavy precipitation events

    Science.gov (United States)

    Lee, Jung-Hoon; Roh, Joon-Woo; Park, Jeong-Gyun

    2017-04-01

    Accurate estimation of precipitation is one of the most difficult and significant tasks in the area of weather diagnostic and forecasting. In the Korean Peninsula, heavy precipitations are caused by various physical mechanisms, which are affected by shortwave trough, quasi-stationary moisture convergence zone among varying air masses, and a direct/indirect effect of tropical cyclone. In addition to, various geographical and topographical elements make production of temporal and spatial distribution of precipitation is very complicated. Especially, localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances. In weather radar data with high temporal and spatial resolution, accurate estimation of rain rate from radar reflectivity data is too difficult. Z-R relationship (Marshal and Palmer 1948) have adapted representatively. In addition to, several methods such as support vector machine (SVM), neural network, Fuzzy logic, Kriging were utilized in order to improve the accuracy of rain rate. These methods show the different quantitative precipitation estimation (QPE) and the performances of accuracy are different for heavy precipitation cases. In this study, in order to improve the accuracy of QPE for localized heavy precipitation, ensemble method for Z-R relationship and various techniques was tested. This QPE ensemble method was developed by a concept based on utilizing each advantage of precipitation calibration methods. The ensemble members were produced for a combination of different Z-R coefficient and calibration method.

  5. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  6. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

    International Nuclear Information System (INIS)

    Mulholland, Michael D.; Seidman, David N.

    2011-01-01

    Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M 2 C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M 2 C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 deg. C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at -30 deg. C and -60 deg. C, respectively. The co-location of Cu and M 2 C carbide precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 deg. C is due to dissolution of cementite, Fe 3 C, which is the source of carbon for the nucleation and growth of M 2 C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 deg. C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 deg. C. Aging treatments at temperatures greater than 600 deg. C produce more austenite, in the range 2-7%, but at the expense of yield strength.

  7. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    Science.gov (United States)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-03-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  8. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    Science.gov (United States)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-05-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  9. Hydrological Applications of a High-Resolution Radar Precipitation Data Base for Sweden

    Science.gov (United States)

    Olsson, Jonas; Berg, Peter; Norin, Lars; Simonsson, Lennart

    2017-04-01

    There is an increasing need for high-resolution observations of precipitation on local, regional, national and even continental level. Urbanization and other environmental changes often make societies more vulnerable to intense short-duration rainfalls (cloudbursts) and their consequences in terms of e.g. flooding and landslides. Impact and forecasting models of these hazards put very high demands on the rainfall input in terms of both resolution and accuracy. Weather radar systems obviously have a great potential in this context, but also limitations with respect to e.g. conversion algorithms and various error sources that may have a significant impact on the subsequent hydrological modelling. In Sweden, the national weather radar network has been in operation for nearly three decades, but until recently the hydrological applications have been very limited. This is mainly because of difficulties in managing the different errors and biases in the radar precipitation product, which made it hard to demonstrate any distinct added value as compared with gauge-based precipitation products. In the last years, however, in light of distinct progress in developing error correction procedures, substantial efforts have been made to develop a national gauge-adjusted radar precipitation product - HIPRAD (High-Resolution Precipitation from Gauge-Adjusted Weather Radar). In HIPRAD, the original radar precipitation data are scaled to match the monthly accumulations in a national grid (termed PTHBV) created by optimal interpolation of corrected daily gauge observations, with the intention to attain both a high spatio-temporal resolution and accurate long-term accumulations. At present, HIPRAD covers the period 2000-present with resolutions 15 min and 2×2 km2. A key motivation behind the development of HIPRAD is the intention to increase the temporal resolution in the national flood forecasting system from 1 day to 1 hour. Whereas a daily time step is sufficient to describe the

  10. High-Resolution Modeling of ENSO-Induced Precipitation in the Tropical Andes: Implications for Proxy Interpretation.

    Science.gov (United States)

    Kiefer, J.; Karamperidou, C.

    2017-12-01

    Clastic sediment flux into high-elevation Andean lakes is controlled by glacial processes and soil erosion caused by high precipitation events, making these lakes suitable archives of past climate. To wit, sediment records from Laguna Pallcacocha in Ecuador have been interpreted as proxies of ENSO variability, owing to increased precipitation in the greater region during El Niño events. However, the location of the lake's watershed, the presence of glaciers, and the different impacts of ENSO on precipitation in the eastern vs western Andes have challenged the suitability of the Pallcacocha record as an ENSO proxy. Here, we employ WRF, a high-resolution regional mesoscale weather prediction model, to investigate the circulation dynamics, sources of moisture, and resulting precipitation response in the L. Pallcacocha region during different flavors of El Niño and La Niña events, and in the presence or absence of ice caps. In patricular, we investigate Eastern Pacific (EP), Central Pacific (CP), coastal El Niño, and La Niña events. We validate the model simulations against spatially interpolated station measurements and reanalysis data. We find that during EP events, moisture is primarily advected from the Pacific, whereas during CP events, moisture primarily originates from the Atlantic. More moisture is available during EP events, which implies higher precipitation rates. Furthermore, we find that precipitation during EP events is mostly non-convective in contrast to primarily convective precipitation during CP events. Finally, a synthesis of the sedimentary record and the EP:CP ratio of accumulated precipitation and specific humidity in the L. Pallcacocha region allows us to assess whether past changes in the relative frequency of the two ENSO flavors may have been recorded in paleoclimate archives in this region.

  11. Increased Kawasaki Disease Incidence Associated With Higher Precipitation and Lower Temperatures, Japan, 1991-2004.

    Science.gov (United States)

    Abrams, Joseph Y; Blase, Jennifer L; Belay, Ermias D; Uehara, Ritei; Maddox, Ryan A; Schonberger, Lawrence B; Nakamura, Yosikazu

    2018-06-01

    Kawasaki disease (KD) is an acute febrile vasculitis, which primarily affects children. The etiology of KD is unknown; while certain characteristics of the disease suggest an infectious origin, genetic or environmental factors may also be important. Seasonal patterns of KD incidence are well documented, but it is unclear whether these patterns are caused by changes in climate or by other unknown seasonal effects. The relationship between KD incidence and deviations from expected temperature and precipitation were analyzed using KD incidence data from Japanese nationwide epidemiologic surveys (1991-2004) and climate data from 136 weather stations of the Japan Meteorological Agency. Seven separate Poisson-distributed generalized linear regression models were run to examine the effects of temperature and precipitation on KD incidence in the same month as KD onset and the previous 1, 2, 3, 4, 5 and 6 months, controlling for geography as well as seasonal and long-term trends in KD incidence. KD incidence was negatively associated with temperature in the previous 2, 3, 4 and 5 months and positively associated with precipitation in the previous 1 and 2 months. The model that best predicted variations in KD incidence used climate data from the previous 2 months. An increase in total monthly precipitation by 100 mm was associated with increased KD incidence (rate ratio [RR] 1.012, 95% confidence interval [CI]: 1.005-1.019), and an increase of monthly mean temperature by 1°C was associated with decreased KD incidence (RR 0.984, 95% CI: 0.978-0.990). KD incidence was significantly affected by temperature and precipitation in previous months independent of other unknown seasonal factors. Climate data from the previous 2 months best predicted the variations in KD incidence. Although fairly minor, the effect of temperature and precipitation independent of season may provide additional clues to the etiology of KD.

  12. High-strength wrought magnesium alloy with dense nano-scale spherical precipitate

    Institute of Scientific and Technical Information of China (English)

    YU WenBin; CHEN ZhiQian; CHENG NanPu; GAN BingTai; HE Hong; LI XueLian; HU JinZhu

    2007-01-01

    This paper reported the influences of Yb addition on the precipitate and mechanical properties of wrought magnesium alloy ZK60. The ingots of ZK60-1.78Yb (wt%,0.26 at%) alloys were cast using permanent mould and extruded at 370℃. By means of TEM and HRTEM,it was observed that Yb affected the precipitate and precipitation of ZK60-1.78Yb alloys significantly. Dynamic precipitation occurred in the as-extruded alloy and spherical nano-scale precipitate with high density and homogeneity exhibited in the aged alloys. The precipitate particles were about 5-20 nm in diameter,10-30 nm in average space length. The tensile test results showed that the ZK60-1.78Yb alloy had excellent precipitation strengthening response with the maximum tensile strength 417.5 MPa at ambient temperature.

  13. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    Science.gov (United States)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  14. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  15. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2010-02-15

    Rapid and homogeneous mixing of the solvent and antisolvent is critical to achieve submicron drug particles by antisolvent precipitation technique. This work aims to develop a continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs with spironolactone as a model drug. Continuous antisolvent production of drug nanoparticles was carried out with a SMV DN25 static mixer comprising 6-18 mixing elements. The total flow rate ranged from 1.0 to 3.0 L/min while the flow rate ratio of solvent to antisolvent was maintained at 1:9. It is found that only 6 mixing elements were sufficient to precipitate the particles in the submicron range. Increasing the number of elements would further reduce the precipitated particle size. Increasing flow rate from 1.0 to 3.0 L/min did not further reduce the particle size, while higher drug concentrations led to particle size increase. XRD and SEM results demonstrated that the freshly precipitated drug nanoparticles are in the amorphous state, which would, in presence of the mixture of solvent and antisolvent, change to crystalline form in short time. The lyophilized spironolactone nanoparticles with lactose as lyoprotectant possessed good redispersibility and showed 6.6 and 3.3 times faster dissolution rate than that of lyophilized raw drug formulation in 5 and 10 min, respectively. The developed static mixing process exhibits high potential for continuous and large-scale antisolvent precipitation of submicron drug particles. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe.

    Directory of Open Access Journals (Sweden)

    Yanhui Hou

    Full Text Available To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C4 grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C3 plants like Artemisia capillaris to decrease and perennial C4 plants to increase.

  17. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    Science.gov (United States)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-03-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  18. The role of the cold Okhotsk Sea in strengthening of the Pacific subtropical high and Baiu precipitation

    Science.gov (United States)

    Kawasaki, K.; Tachibana, Y.; Nakamura, T.; Yamazaki, K.; Kodera, K.

    2016-12-01

    It is commonly known that the formation of a stationery precipitation zone in association with the Baiu front is influenced by the existence of the warm Tibetan Plateau. Some GCM studies in which the Tibetan Plateau is removed pointed out that without the Tibetan Plateau, the Baiu front wound not appear. The cold Okhotsk Sea, which is located to the north of Japan, is also important in forming cold air for the Bai front. This study focused on the role of the Okhotsk Sea in the formation of the Baiu front by using an atmospheric GCM. One GCM is executed without the Okhotsk Sea, in which was changed to an eastern part of the Eurasian continent as if the Okhotsk Sea was totally landfilled (land run). The other (sea run) is a control run under the boundary condition of climatic seasonal changes of the SST over the globe. The comparison of the land run with the sea run showed that precipitation over Japan would weaken in the Baiu season without the Okhotsk Sea, indicating that the existence of the Okhotsk Sea has an impact on the increase in precipitation. The precipitation increase in the sea run is directly accounted by the strengthening of southeast wind in association with the strengthening of the subtropical high located over the Pacific Ocean (Fig. 1). The westerly jet, which is located at the northern part of the subtropical high, was also accelerated in the sea run. The subtropical high in association with the accelerated jet was strengthened by meridional atmospheric thermal gradient caused by underlying cold Okhotsk Sea and the warm Pacific Ocean. The strengthened thermal gradient also activated the storm track that extends zonally over the Okhotsk Sea, and the activated storm track further strengthened the jet and subtropical high by wave-mean flow feedback. This feedback loop could further strengthen the Baiu precipitation. In consequence, the Okhotsk plays a significant role in the strengthening the subtropical high and its associated Baiu precipitation.

  19. Investigation on grain refinement and precipitation strengthening applied in high speed wire rod containing vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Da-yong; Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn; Wang, Bin; Liu, Jia-ling; Liao, Bo, E-mail: cyddjyjs@263.net

    2014-01-13

    To obtain necessary information for the simulation of high speed wire production process, the effect of grain refinement and precipitation strengthening on two high speed wire rod steels with different vanadium and nitrogen contents was investigated by continuous cooling transformation (CCT) characteristics. CCT curves were constructed by the dilatometer test and microscopic observation. Results showed that the formation of intra-granular ferrite (IGF) could refine grain remarkably and accelerate the ferrite transformation. Schedules for high speed wire production process focused on the effect of cooling rate. Ferrite grain was refined by increasing cooling rate and the formation of IGF. The microhardness calculation revealed that the steels were strengthened mostly by a combined effect of grain refinement and precipitation hardening. Degenerated pearlite was observed at lower transformation temperature and the fracture morphology changed from cementite lamellar to nanoscale cementite particle with increasing cooling rate. Based on the analysis above, an optimal schedule was applied and the microstructure and microhardness were improved.

  20. Precipitation in solid solution and structural transformations in single crystals of high rhenium ruthenium-containing nickel superalloys at high-temperature creep

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.A.; Petrushin, N.V.; Zaitsev, D.V.; Treninkov, I.A.; Filonova, E.V. [All-Russian Scientific Research Institute of Aviation Materials (VIAM), Moscow (Russian Federation)

    2010-07-01

    The phase composition and structure of single crystals of two superalloys (alloy 1 and alloy 2) were investigated in this work. For alloy 1 (Re - 9 wt%) the kinetics of precipitation in solid solution at heat treatment (HT) was investigated. TEM and X-Ray examinations have revealed that during HT rhombic phase (R-phase) precipitation (Immm class (BCR)) occurs. The TTT diagram is plotted, it contains the time-temperature area of the existence of R-phase particles. The element content of R-phase is identified (at. %): Re- 51.5; Co- 23.5; Cr- 14.8; Mo- 4.2; W- 3.3; Ta- 2.7. For alloy 2 (Re - 6.5 wt %, Ru - 4 wt %) structural transformations at high-temperature creep are investigated. By dark-field TEM methods it is established, that in alloy 2 the additional phase with a rhombic lattice is formed during creep. Particles of this phase precipitate in {gamma}-phase and their quantity increases during high-temperature creep. It is revealed that during creep 3-D dislocation network is formed in {gamma}-phase. At the third stage of creep the process of inversion structure formation is observed in the alloy, i.e. {gamma}'-phase becomes a matrix. Thus during modeling creep the volume fraction of {gamma}'-phase in the samples increases from 30% (at creep duration of 200 hrs) up to 55% (at 500 hrs). The processes of structure formation in Re and Ru-containing nickel superalloys are strongly affected by decomposition of solid solution during high-temperature creep that includes precipitation of additional TCP-phases. (orig.)

  1. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2015-06-01

    Full Text Available This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA, Climate Prediction Center morphing technique (CMORPH, Global Satellite Mapping of Precipitation (GSMaP and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN. All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB (128.17% while GSMaP_Gauge shows consistent high correlation coefficient (CC (>0.8 but RB fluctuates between −57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67. Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%, CSI (less than 45% and relatively high FAR (more than 35%.

  2. Dualism of precipitation morphology in high strength low alloy steel

    International Nuclear Information System (INIS)

    Chih-Yuan, Chen; Chien-Chon, Chen; Jer-Ren, Yang

    2015-01-01

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  3. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  4. Verification of high resolution simulation of precipitation and wind in Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Demand of energy and freshwater continues to grow as the global population and demands increase. Precipitation feed the freshwater ecosystems which provides a wealth of goods and services for society and river flow to sustain native species and natural ecosystem functions. The adoption of the wind and hydro-electric power supplies will sustain energy demands/services without restricting the economic growth and accelerated policies scenarios. However, the international meteorological observation network is not sufficiently dense to directly support high resolution climatic research. In this sense, coupled global and regional atmospheric models constitute the most appropriate physical and numerical tool for weather forecasting and downscaling in high resolution grids with the capacity to solve problems resulting from the lack of observed data and measuring errors. Thus, this study aims to calibrate and validate of the WRF regional model from precipitation and wind fields simulation, in high spatial resolution grid cover in Portugal. The simulations were performed in two-way nesting with three grids of increasing resolution (60 km, 20 km and 5 km) and the model performance assessed for the summer and winter months (January and July), using input variables from two different reanalyses and forecasted databases (ERA-Interim and NCEP-FNL) and different forcing schemes. The verification procedure included: (i) the use of several statistics error estimators, correlation based measures and relative errors descriptors; and, (ii) an observed dataset composed by time series of hourly precipitation, wind speed and direction provided by the Portuguese meteorological institute for a comprehensive set of weather stations. Main results suggested the good ability of the WRF to: (i) reproduce the spatial patterns of the mean and total observed fields; (ii) with relatively small values of bias and other errors; and, (iii) and good temporal correlation. These findings are in good

  5. A new approach for assimilation of two-dimensional radar precipitation in a high resolution NWP model

    Science.gov (United States)

    Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetman, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; GIll, Rasphal; Vedel, Henrik

    2014-05-01

    The DMI nowcasting system has been running in a pre-operational state for the past year. The system consists of hourly simulations with the High Resolution Limited Area weather model combined with surface and three-dimensional variational assimilation at each restart and nudging of satellite cloud products and radar precipitation. Nudging of a two-dimensional radar reflectivity CAPPI product is achieved using a new method where low level horizontal divergence is nudged towards pseudo observations. Pseudo observations are calculated based on an assumed relation between divergence and precipitation rate and the strength of the nudging is proportional to the offset between observed and modelled precipitation leading to increased moisture convergence below cloud base if there is an under-production of precipitation relative to the CAPPI product. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. In this talk results will be discussed based on calculation of the fractions skill score in cases with heavy precipitation over Denmark. Furthermore, results from simulations combining reflectivity nudging and extrapolation of reflectivity will be shown. Results indicate that the new method leads to fast adjustment of the dynamical state of the model to facilitate precipitation release when the model precipitation intensity is too low. Removal of precipitation is also shown to be of importance and strong improvements were found in the position of the precipitation systems. Bias is reduced for low and extreme precipitation rates.

  6. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    Science.gov (United States)

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area

  7. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion

    International Nuclear Information System (INIS)

    Shuro, I.; Kuo, H.H.; Sasaki, T.; Hono, K.; Todaka, Y.; Umemoto, M.

    2012-01-01

    Highlights: ► Using TEM and APT analyses, G-phase precipitation was observed in HPTed SUS304 with no trace of spinodal decomposition. ► G-phase precipitation occurred much shorter time than previous studies probably due to the elimination of prior SD and enhanced diffusion by severe plastic deformation. ► G-phase composition is a function of aging time. ► Tensile tests showed that in SUS304 embrittlement occurs solely due to G-phase precipitation. - Abstract: G phase an intermetallic silicide has been observed in martensite of precipitation hardened stainless steels and in the ferrite of dual (austenite and ferrite) phase stainless steels. In both cases, before G-phase precipitates, the matrix composition changes due to spinodal decomposition and solute partitioning between ferrite and austenite. Thus in the present study, single bcc phase and high Ni content stainless steel, was selected to study G-phase precipitation expecting elimination of the interference from spinodal decomposition and solute partitioning. Fe–18Cr–8Ni (SUS304) austenitic stainless steel samples were deformed at room temperature by high pressure torsion to obtain 100% volume fraction of deformation induced martensite (α′). HPT deformation was chosen due to its ability to induce high strength by grain refinement and also attain 100% α′ at room temperature. After annealing at 400 °C for 500 h, G-phase precipitation was observed in the fully martensitic matrix without spinodal decomposition. Crystallographic analysis of annealed samples using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) detected a Mn–Ni–Si rich G-phase with fcc crystal structure with lattice parameter of 1.16 nm. The value of lattice parameter corresponds well with previously reported values. Chemical analysis by atom probe tomography (APT) showed G-phase of composition Mn 21 Ni 50 Si 24 Fe 4 Cr. Tensile tests showed that G-phase precipitation leads to

  8. G-phase precipitation in austenitic stainless steel deformed by high pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Shuro, I., E-mail: innoshuro@martens.me.tut.ac.jp [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan); Kuo, H.H. [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan); Sasaki, T.; Hono, K. [National Institute for Materials Sciences, Sengen 1-2-1, Tsukuba 305-0047 (Japan); Todaka, Y.; Umemoto, M. [Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580 (Japan)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Using TEM and APT analyses, G-phase precipitation was observed in HPTed SUS304 with no trace of spinodal decomposition. Black-Right-Pointing-Pointer G-phase precipitation occurred much shorter time than previous studies probably due to the elimination of prior SD and enhanced diffusion by severe plastic deformation. Black-Right-Pointing-Pointer G-phase composition is a function of aging time. Black-Right-Pointing-Pointer Tensile tests showed that in SUS304 embrittlement occurs solely due to G-phase precipitation. - Abstract: G phase an intermetallic silicide has been observed in martensite of precipitation hardened stainless steels and in the ferrite of dual (austenite and ferrite) phase stainless steels. In both cases, before G-phase precipitates, the matrix composition changes due to spinodal decomposition and solute partitioning between ferrite and austenite. Thus in the present study, single bcc phase and high Ni content stainless steel, was selected to study G-phase precipitation expecting elimination of the interference from spinodal decomposition and solute partitioning. Fe-18Cr-8Ni (SUS304) austenitic stainless steel samples were deformed at room temperature by high pressure torsion to obtain 100% volume fraction of deformation induced martensite ({alpha} Prime ). HPT deformation was chosen due to its ability to induce high strength by grain refinement and also attain 100% {alpha} Prime at room temperature. After annealing at 400 Degree-Sign C for 500 h, G-phase precipitation was observed in the fully martensitic matrix without spinodal decomposition. Crystallographic analysis of annealed samples using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) detected a Mn-Ni-Si rich G-phase with fcc crystal structure with lattice parameter of 1.16 nm. The value of lattice parameter corresponds well with previously reported values. Chemical analysis by atom probe tomography

  9. High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, J.Y.; Wang, H.; Wu, Y.; Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Nieh, T.G. [Department of Materials Science and Engineering, the University of Tennessee, Knoxville, TN 37996 (United States); Lu, Z.P., E-mail: luzhaoping@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-02-16

    In this work, we systematically investigated flow behavior of a high entropy alloy (HEA) strengthened by coherent γ′ precipitates in the temperature range of 1023–1173 K. In contrast to the single-phase FeCoNiCrMn HEA, this precipitate-hardened alloy, i.e., (FeCoNiCr){sub 94}Ti{sub 2}Al{sub 4}, exhibited large reduction of the steady-state strain rate (by ~2 orders of magnitude) or drastic enhancement in flow stress, indicating significant improvement in high-temperature properties. Our results showed that the deformation could be divided into two regimes. At temperatures below 1123 K, coherent γ′ precipitates effectively blocked the dislocation motion, thus resulted in a threshold stress effect. Above 1123 K, however, γ′ particles dissolved and the deformation was controlled by the ordinary dislocation climb mechanism. In addition, we conducted transmission electron microscopy to characterize dislocation-precipitate interaction to provide microstructural evidences to support our conclusion of the specific deformation mechanisms in the two temperature regimes.

  10. High resolution reconstruction of monthly precipitation of Iberian Peninsula using circulation weather types

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; Gonzalez-Hidalgo, J. C.; Ramos, A. M.

    2012-06-01

    Precipitation over the Iberian Peninsula (IP) is highly variable and shows large spatial contrasts between wet mountainous regions, to the north, and dry regions in the inland plains and southern areas. In this work, a high-density monthly precipitation dataset for the IP was coupled with a set of 26 atmospheric circulation weather types (Trigo and DaCamara, 2000) to reconstruct Iberian monthly precipitation from October to May with a very high resolution of 3030 precipitation series (overall mean density one station each 200 km2). A stepwise linear regression model with forward selection was used to develop monthly reconstructed precipitation series calibrated and validated over 1948-2003 period. Validation was conducted by means of a leave-one-out cross-validation over the calibration period. The results show a good model performance for selected months, with a mean coefficient of variation (CV) around 0.6 for validation period, being particularly robust over the western and central sectors of IP, while the predicted values in the Mediterranean and northern coastal areas are less acute. We show for three long stations (Lisbon, Madrid and Valencia) the comparison between model and original data as an example to how these models can be used in order to obtain monthly precipitation fields since the 1850s over most of IP for this very high density network.

  11. Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Jian Zhou; Yonglin Kang; Xinping Mao

    2008-01-01

    Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti mieroalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S>2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.

  12. [Effects of increased precipitation on the water use of Nitraira tangutorum at southeast edge of Baddain Jaran Desert in China].

    Science.gov (United States)

    Zhu, Ya-Juan; Lu, Qi; Wu, Bo; Li, Yong-Hua; Yao, Bin; Zhang, Jin-Xin

    2013-01-01

    This paper studied the threshold value of the water use of Nitraria tanturorum shrubs at the southeast edge of Baddain Jiran Desert. From the early May to late September in 2009, an irrigation simulating increased precipitation was conducted once every month. Three ratios of increased precipitation (0, 50% and 100%) were designed, based on the local mean annual precipitation (115 mm). On the 1 day before irrigation and the 1, 3 and 7 days after irrigation in May, July and September, the deltaD in the xylem water of N. tangutorum, the soil water at the depths 10 and 30 cm, and the well water and natural rainfall, and the variations of the soil water content were measured. Under natural condition, the N. tangutorum mainly utilize ground water in May and September, and utilize the soil water at the depths 10 and 30 cm in July. After irrigation, the ground water use rate of the N. tangutorum decreased, while the soil water use rate increased. In the treatment of 100% increased precipitation, the deltaD ratio of the water in N. tangutorum xylem was affected significantly, and the water use of the N. tangutorum in May, July and September increased. In the treatment of 50% increased precipitation, the soil water condition in May and July was improved, but the water use rate had little improvement. Only when the increased precipitation reached 100% of the local mean annual precipitation, could the water use rate of the N. tangutorum have an obvious increase.

  13. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem

    Science.gov (United States)

    Johnson, Shannon L.; Kuske, Cheryl R.; Carney, Travis D.; Housman, David C.; Gallegos-Graves, La Verne; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are common and ecologically important members of dryland ecosystems worldwide, where they stabilize soil surfaces and contribute newly fixed C and N to soils. To test the impacts of predicted climate change scenarios on biocrusts in a dryland ecosystem, the effects of a 2–3 °C increase in soil temperature and an increased frequency of smaller summer precipitation events were examined in a large, replicated field study conducted in the cold desert of the Colorado Plateau, USA. Surface soil biomass (DNA concentration), photosynthetically active cyanobacterial biomass (chlorophyll a concentration), cyanobacterial abundance (quantitative PCR assay), and bacterial community composition (16S rRNA gene sequencing) were monitored seasonally over 2 years. Soil microbial biomass and bacterial community composition were highly stratified between the 0–2 cm depth biocrusts and 5–10 cm depth soil beneath the biocrusts. The increase in temperature did not have a detectable effect on any of the measured parameters over 2 years. However, after the second summer of altered summer precipitation pattern, significant declines occurred in the surface soil biomass (avg. DNA concentration declined 38%), photosynthetic cyanobacterial biomass (avg. chlorophyll a concentration declined 78%), cyanobacterial abundance (avg. gene copies g−1 soil declined 95%), and proportion of Cyanobacteria in the biocrust bacterial community (avg. representation in sequence libraries declined 85%). Biocrusts are important contributors to soil stability, soil C and N stores, and plant performance, and the loss or reduction of biocrusts under an altered precipitation pattern associated with climate change could contribute significantly to lower soil fertility and increased erosion and dust production in dryland ecosystems at a regional scale.

  14. Observational evidence of a long-term increase in precipitation due to urbanization effects and its implications for sustainable urban living.

    Science.gov (United States)

    Wai, K M; Wang, X M; Lin, T H; Wong, M S; Zeng, S K; He, N; Ng, E; Lau, K; Wang, D H

    2017-12-01

    Although projected precipitation increases in East Asia due to future climate change have aroused concern, less attention has been paid by the scientific community and public to the potential long-term increase in precipitation due to rapid urbanization. A ten-year precipitation dataset was analysed for both a rapidly urbanized megacity and nearby suburban/rural stations in southern China. Rapid urbanization in the megacity was evident from satellite observations. A statistically significant, long-term, increasing trend of precipitation existed only at the megacity station (45.6mm per decade) and not at the other stations. The increase was attributed to thermal and dynamical modifications of the tropospheric boundary layer related to urbanization, which was confirmed by the results of our WRF-SLUCM simulations. The results also suggested that a long-term regional increase in precipitation, caused by greenhouse gas-induced climate change, for instance, was not evident within the study period. The urbanization-induced increase was found to be higher than the precipitation increase (18.3mm per decade) expected from future climate change. The direct climate impacts due to rapid urbanization is highlighted with strong implications for urban sustainable development and the planning of effective adaptation strategies for issues such as coastal defenses, mosquito-borne disease spread and heat stress mortality. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  16. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys

    International Nuclear Information System (INIS)

    Meng, X.L.; Cai, W.; Zheng, Y.F.; Zhao, L.C.

    2006-01-01

    More attention has been paid to ternary Ti-Ni-Hf high-temperature shape memory alloys (SMAs) due to their high phase transformation temperatures, good thermal stability and low cost. However, the Ti-Ni-Hf alloys have been found to have low ductility and only about 3% shape memory effect and these have hampered their applications. It is well known that there are three methods to improve the shape memory properties of high-temperature SMAs: (a) cold rolling + annealing; (b) adding another element to the alloy; (c) aging. These methods are not suitable to improve the properties of Ti-Ni-Hf alloys. In this paper, a method of conditioning Ni-rich Ti-Ni-Hf alloys as high-temperature SMAs by aging is presented. For Ni-rich Ti 80-x Ni x Hf 20 alloys (numbers indicate at.%) the phase transformation temperatures are on average increased by more than 100 K by aging at 823 K for 2 h. Especially for those alloys with Ni contents less than 50.6 at.%, the martensitic transformation start temperatures (M s ) are higher than 473 K after aging. Transmission electron microscopy shows the presence of (Ti + Hf) 3 Ni 4 precipitates after aging. Compared with the precipitation of Ti 3 Ni 4 particles in Ni-rich Ti-Ni alloys, the precipitation of (Ti + Hf) 3 Ni 4 particles in Ni-rich Ti-Ni-Hf alloys needs higher temperatures and longer times

  17. Numerical simulation of Cr2N age-precipitation in high nitrogen stainless steels

    International Nuclear Information System (INIS)

    Dai, Q.X.; Yuan, Z.Z.; Luo, X.M.; Cheng, X.N.

    2004-01-01

    At the temperature raging from 700 to 950 deg. C, the Cr 2 N age-precipitation in high nitrogen austenitic stainless steels Fe24Mn18Cr3Ni0.62N was investigated in this paper. A qualitative mathematical model of Cr 2 N age-precipitation, ln t S = f (Me,1/T), was established based on the thermodynamics and kinetics and phase transformation theories. Satisfactory results were obtained by means of the test of artificial neural network. This mathematical model can be applied to the calculation design and predication of Cr 2 N age-precipitation in high nitrogen stainless steels

  18. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  19. High-resolution precipitation database for the last two centuries in Italy: climatologies and anomalies

    Science.gov (United States)

    Crespi, Alice; Brunetti, Michele; Maugeri, Maurizio

    2017-04-01

    The availability of gridded high-resolution spatial climatologies and corresponding secular records has acquired an increasing importance in the recent years both to research purposes and as decision-support tools in the management of natural resources and economical activities. High-resolution monthly precipitation climatologies for Italy were computed by gridding on a 30-arc-second-resolution Digital Elevation Model (DEM) the precipitation normals (1961-1990) obtained from a quality-controlled dataset of about 6200 stations covering the Italian surface and part of the Northern neighbouring regions. Starting from the assumption that the precipitation distribution is strongly influenced by orography, especially elevation, a local weighted linear regression (LWLR) of precipitation versus elevation was performed at each DEM cell. The regression coefficients for each cell were estimated by selecting the stations with the highest weights in which the distances and the level of similarity between the station cells and the considered grid cell, in terms of orographic features, are taken into account. An optimisation procedure was then set up in order to define, for each month and for each grid cell, the most suitable decreasing coefficients for the weighting factors which enter in the LWLR scheme. The model was validated by the comparison with the results provided by inverse distance weighting (IDW) applied both to station normals and to the residuals of a global regression of station normals versus elevation. In both cases, the LWLR leave-one-out reconstructions show the best agreement with the observed station normals, especially when considering specific station clusters (high elevation sites for example). After producing the high-resolution precipitation climatological field, the temporal component on the high-resolution grid was obtained by following the anomaly method. It is based on the assumption that the spatio-temporal structure of the signal of a

  20. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2018-04-01

    World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change

  1. Exposure to extreme heat and precipitation events associated with increased risk of hospitalization for asthma in Maryland, U.S.A.

    Science.gov (United States)

    Soneja, Sutyajeet; Jiang, Chengsheng; Fisher, Jared; Upperman, Crystal Romeo; Mitchell, Clifford; Sapkota, Amir

    2016-04-27

    Several studies have investigated the association between asthma exacerbations and exposures to ambient temperature and precipitation. However, limited data exists regarding how extreme events, projected to grow in frequency, intensity, and duration in the future in response to our changing climate, will impact the risk of hospitalization for asthma. The objective of our study was to quantify the association between frequency of extreme heat and precipitation events and increased risk of hospitalization for asthma in Maryland between 2000 and 2012. We used a time-stratified case-crossover design to examine the association between exposure to extreme heat and precipitation events and risk of hospitalization for asthma (ICD-9 code 493, n = 115,923). Occurrence of extreme heat events in Maryland increased the risk of same day hospitalization for asthma (lag 0) by 3 % (Odds Ratio (OR): 1.03, 95 % Confidence Interval (CI): 1.00, 1.07), with a considerably higher risk observed for extreme heat events that occur during summer months (OR: 1.23, 95 % CI: 1.15, 1.33). Likewise, summertime extreme precipitation events increased the risk of hospitalization for asthma by 11 % in Maryland (OR: 1.11, 95 % CI: 1.06, 1.17). Across age groups, increase in risk for asthma hospitalization from exposure to extreme heat event during the summer months was most pronounced among youth and adults, while those related to extreme precipitation event was highest among ≤4 year olds. Exposure to extreme heat and extreme precipitation events, particularly during summertime, is associated with increased risk of hospitalization for asthma in Maryland. Our results suggest that projected increases in frequency of extreme heat and precipitation event will have significant impact on public health.

  2. Effect of nano-sized precipitates on the crystallography of ferrite in high-strength strip steel

    Institute of Scientific and Technical Information of China (English)

    Jing-jing Yang; Run Wu; Wen Liang; Meng-xia Tang

    2014-01-01

    For strip steel with the thickness of 1.6 mm, the yield and tensile strengths as high as 760 and 850 MPa, respectively, were achieved using the compact strip production technology. Precipitates in the steel were characterized by scanning and transmission electron microscopy to elucidate the strengthening mechanism. In addition, intragranular misorientation, Kernel average misorientation, and stored energy were measured using electron backscatter diffraction for crystallographic analysis of ferrite grains containing precipitates and their neighbors without precipitates. It is found that precipitates in specimens primarily consist of TiC and Ti4C2S2. Ferrite grains containing pre-cipitates exhibit the high Taylor factor as well as the crystallographic orientations with{012},{011},{112}, or{221}plane parallel to the rolling plane. Compared with the intragranular orientation of adjoining grains, the intragranular misorientation of grains containing precipi-tates fluctuates more frequently and more mildly as a function of distance. Moreover, the precipitates can induce ferrite grains to store a rela-tively large amount of energy. These results suggest that a correlation exists between precipitation in ferrite grains and grain crystallographic properties.

  3. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration.

    Science.gov (United States)

    Rinella, Matthew J; Hammond, Darcy H; Bryant, Ana-Elisa M; Kozar, Brian J

    2015-06-01

    Drylands comprise 40% of Earth's land mass and are critical to food security, carbon sequestration, and threatened and endangered wildlife. Exotic weed invasions, overgrazing, energy extraction, and other factors have degraded many drylands, and this has placed an increased emphasis on dryland restoration. The increased restoration focus has generated a wealth of experience, innovations and empirical data, yet the goal of restoring diverse, native, dryland plant assemblages composed of grasses, forbs, and shrubs has generally proven beyond reach. Of particular concern are shrubs, which often fail to establish or establish at trivially low densities. We used data from two Great Plains, USA coal mines to explore factors regulating shrub establishment. Our predictor data related to weather and restoration (e.g., seed rates, rock cover) variables, and our response data described shrub abundances on fields of the mines. We found that seeded non-shrubs, especially grasses, formed an important competitive barrier to shrub establishment: With every one standard deviation increase in non-shrub seed rate, the probability shrubs were present decreased ~0.1 and shrub cover decreased ~35%. Since new fields were seeded almost every year for > 20 years, the data also provided a unique opportunity to explore effects of stochastic drivers (i.e., precipitation, year effects). With every one standard deviation increase in precipitation the first growing season following seeding, the probability shrubs were present decreased ~0.07 and shrub cover decreased ~47%. High precipitation appeared to harm shrubs by increasing grass growth/competition. Also, weak evidence suggested shrub establishment was better in rockier fields where grass abundance/competition was lower. Multiple lines of evidence suggest reducing grass seed rates below levels typically used in Great Plains restoration would benefit shrubs without substantially impacting grass stand development over the long term. We used

  4. PDF added value of a high resolution climate simulation for precipitation

    Science.gov (United States)

    Soares, Pedro M. M.; Cardoso, Rita M.

    2015-04-01

    General Circulation Models (GCMs) are models suitable to study the global atmospheric system, its evolution and response to changes in external forcing, namely to increasing emissions of CO2. However, the resolution of GCMs, of the order of 1o, is not sufficient to reproduce finer scale features of the atmospheric flow related to complex topography, coastal processes and boundary layer processes, and higher resolution models are needed to describe observed weather and climate. The latter are known as Regional Climate Models (RCMs) and are widely used to downscale GCMs results for many regions of the globe and are able to capture physically consistent regional and local circulations. Most of the RCMs evaluations rely on the comparison of its results with observations, either from weather stations networks or regular gridded datasets, revealing the ability of RCMs to describe local climatic properties, and assuming most of the times its higher performance in comparison with the forcing GCMs. The additional climatic details given by RCMs when compared with the results of the driving models is usually named as added value, and it's evaluation is still scarce and controversial in the literuature. Recently, some studies have proposed different methodologies to different applications and processes to characterize the added value of specific RCMs. A number of examples reveal that some RCMs do add value to GCMs in some properties or regions, and also the opposite, elighnening that RCMs may add value to GCM resuls, but improvements depend basically on the type of application, model setup, atmospheric property and location. The precipitation can be characterized by histograms of daily precipitation, or also known as probability density functions (PDFs). There are different strategies to evaluate the quality of both GCMs and RCMs in describing the precipitation PDFs when compared to observations. Here, we present a new method to measure the PDF added value obtained from

  5. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  6. Studies on the oxygen precipitation in highly boron doped silicon; Untersuchungen zur Sauerstoffausscheidung in hoch bordotiertem Silicium

    Energy Technology Data Exchange (ETDEWEB)

    Zschorsch, Markus

    2007-12-14

    The aim of this thesis was the getting of new knowledge on the elucidation of the oxygen precipitation in highly doped silicon. In the study of the early phases of the oxygen precipitation boron-oxygen complexes and their kinetics could be indirectly detected. These arise already during the cooling of the crystal and can be destroyed by subsequent temperature processes. The formation of the here as BO assumed species during the cooling after the silicon crystal fabrication could be numerically reproduced. Furthermore the study of early precipitation phases by means of neutron small angle scattering a maximum of the oxygen precipitation at {rho}=9 m{omega}cm. It could be shown that the decreasing of this at increasing boron concentration can be most probably reduced to boron precipitations. Furthermore it could be shown that after a tempering time of 24 hours at 700 C in silicon with {rho}=9 m{omega}cm platelet-shaped precipitates form. By the study of the precipitate growth could be shown that also in this phase the oxygen precipitation in silicon is strongest with a specific resistance of {rho}=9 m{omega}cm. By means of FTIR spectroscopy a new absorption band at a wave number of 1038 cm{sup -1} was found, which could be assigned to a boron species. By different experiments it is considered as probable that at this species it deals with BI respectively B{sub 2}I complexes.

  7. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  8. Dissimilarity of Ant Communities Increases with Precipitation, but not Reduced Land-Use Intensity, in Indonesian Cacao Agroforestry

    Directory of Open Access Journals (Sweden)

    Damayanti Buchori

    2013-01-01

    Full Text Available Land-use degradation and climate change are well-known drivers of biodiversity loss, but little information is available about their potential interaction. Here, we focus on the effects of land-use and precipitation on ant diversity in cacao agroforestry. In Central Sulawesi, Indonesia, we selected 16 cacao agroforestry plots with a shaded vs. unshaded plot in each of eight villages differing in precipitation (1032–2051 mm annual rainfall. On each plot, 10 cacao trees with similar size and age (7–10 years were selected for hand collection of ants on each cacao tree and the soil surface. In total, we found 80 ant species belonging to five subfamilies. Land-use intensification (removal of shade trees and precipitation had no effect on species richness of ants per cacao tree (alpha diversity and, in an additive partitioning approach, within-plot beta diversity. However, higher precipitation (but not shade significantly increased ant species dissimilarity across cacao trees within a plot, with ant species showing contrasting responses to precipitation. Reduced precipitation causing drought stress appeared to contribute to convergence of ant community structure, presumably via reduced heterogeneity in cacao tree growth. In conclusion, reduced precipitation greatly influenced ant community dissimilarity and appeared to be more important for ant community structure than land-use intensification.

  9. Numerical simulations of significant orographic precipitation in Madeira island

    Science.gov (United States)

    Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João

    2016-03-01

    High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.

  10. Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route

    International Nuclear Information System (INIS)

    Kamal, S.S. Kalyan; Sahoo, P.K.; Vimala, J.; Shanker, B.; Ghosal, P.; Durai, L.

    2016-01-01

    In this paper we report synthesis of tungsten nanoparticles of high purity >99.7 wt% from heavy alloy scrap using a novel chemical route of selective precipitation and reduction. The effect of Poly(vinylpyrrolidone) polymer on controlling the particle size is established through FTIR spectra and corroborated with TEM images, wherein the average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g under different experimental conditions. This process is economical as raw material is a scrap and the efficiency of the reaction is >95%. - Highlights: • Tungsten nanoparticles were synthesized from tungsten heavy alloy scrap. • A novel chemical route of precipitation and reduction with Poly(vinylpyrrolidone) polymer as stabilizer is reported. • The average size decreased form 210 to 45 nm with increasing PVP content from zero to 2 g. • High pure tungsten nanoparticles of >99.7% purity could be synthesized using this route. • Efficiency of the reaction is >95%.

  11. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    Science.gov (United States)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  12. Flotation separation of strontium via phosphate precipitation.

    Science.gov (United States)

    Thanh, Luong H V; Liu, J C

    2017-06-01

    Flotation separation of strontium (Sr) from wastewater via phosphate precipitation was investigated. While 37.33% of Sr precipitated at highly alkaline pH in the absence of PO 4 3- , it completely precipitated as Sr 3 (PO 4 ) 2 at a molar ratio ([PO 4 3- ]:[Sr 2+ ]) of 0.62 at a lower pH value. The presence of Ca 2+ hindered Sr precipitation, yet it could be overcome by increasing the PO 4 3- dose. Sodium dodecyl sulfate (SDS) was a better collector for dispersed air flotation of Sr 3 (PO 4 ) 2 than cetyl trimethyl ammonium bromide, or mixed collector systems of SDS and saponin. The highest separation efficiency of 97.5% was achieved at an SDS dose of 40 mg/L. The main mechanism in the precipitate flotation is adsorption of anionic SDS on the positively charged surface of colloidal Sr 3 (PO 4 ) 2 via electrostatic interaction. SDS enhanced the aggregation of Sr 3 (PO 4 ) 2 precipitates as the size increased from 1.65 to 28.0 μm, which was beneficial to separation as well.

  13. Comparing NEXRAD Operational Precipitation Estimates and Raingage Observations of Intense Precipitation in the Missouri River Basin.

    Science.gov (United States)

    Young, C. B.

    2002-05-01

    Accurate observation of precipitation is critical to the study and modeling of land surface hydrologic processes. NEXRAD radar-based precipitation estimates are increasingly used in field experiments, hydrologic modeling, and water and energy budget studies due to their high spatial and temporal resolution, national coverage, and perceived accuracy. Extensive development and testing of NEXRAD precipitation algorithms have been carried out in the Southern Plains. Previous studies (Young et al. 2000, Young et al. 1999, Smith et al. 1996) indicate that NEXRAD operational products tend to underestimate precipitation at light rain rates. This study investigates the performance of NEXRAD precipitation estimates of high-intensity rainfall, focusing on flood-producing storms in the Missouri River Basin. NEXRAD estimates for these storms are compared with data from multiple raingage networks, including NWS recording and non-recording gages and ALERT raingage data for the Kansas City metropolitan area. Analyses include comparisons of gage and radar data at a wide range of temporal and spatial scales. Particular attention is paid to the October 4th, 1998, storm that produced severe flooding in Kansas City. NOTE: The phrase `NEXRAD operational products' in this abstract includes precipitation estimates generated using the Stage III and P1 algorithms. Both of these products estimate hourly accumulations on the (approximately) 4 km HRAP grid.

  14. Detection of the relationship between peak temperature and extreme precipitation

    Science.gov (United States)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  15. Adjustment of measurement errors to reconcile precipitation distribution in the high-altitude Indus basin

    NARCIS (Netherlands)

    Dahri, Zakir Hussain; Moors, Eddy; Ludwig, Fulco; Ahmad, Shakil; Khan, Asif; Ali, Irfan; Kabat, Pavel

    2018-01-01

    Precipitation in the high-altitude Indus basin governs its renewable water resources affecting water, energy and food securities. However, reliable estimates of precipitation climatology and associated hydrological implications are seriously constrained by the quality of observed data. As such,

  16. The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio

    International Nuclear Information System (INIS)

    Liu, L.; Chen, J.H.; Wang, S.B.; Liu, C.H.; Yang, S.S.; Wu, C.L.

    2014-01-01

    The precipitations in an Al–5.0Cu–0.3Mg (wt%) alloy and an Al–5.0Cu–0.3Mg–0.3Si (wt%) alloy have been systematically investigated by high-angle annular dark-field scanning transmission electron microscopy. The results are compared to clarify the effect of Si addition. The nucleation and growth process of θ′ (Al 2 Cu) phase in Si-containing alloy during isothermal ageing at 180 °C is revealed in detail. The formation of Q″-type precipitates, on which the θ′ precursors nucleate heterogeneously, contributes to the considerable increase in the ageing kinetics and higher strength at the early ageing stage. The thickening of the θ′ precipitate is largely confined due to the rather small size of fine Q″-type precipitate. As a result, a large proportion of θ′ phase precipitates possess a specific thickness of 2c θ′ and change slightly during the entire observed duration of ageing. The θ′ growth mechanism distinct from the Al–Cu–Mg alloy finally leads to a refined θ′ morphology regarding the thickness and aspect ratio (diameter/thickness). As is counterintuitive, the θ′ precipitate thickness distribution is demonstrated to have little effect on the mechanical property steadiness at the late ageing stage of the Al–Cu–Mg–(Si) alloys

  17. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    Science.gov (United States)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  18. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    Science.gov (United States)

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  19. Predicting abundance and variability of ice nucleating particles in precipitation at the high-altitude observatory Jungfraujoch

    Directory of Open Access Journals (Sweden)

    E. Stopelli

    2016-07-01

    Full Text Available Nucleation of ice affects the properties of clouds and the formation of precipitation. Quantitative data on how ice nucleating particles (INPs determine the distribution, occurrence and intensity of precipitation are still scarce. INPs active at −8 °C (INPs−8 were observed for 2 years in precipitation samples at the High-Altitude Research Station Jungfraujoch (Switzerland at 3580 m a.s.l. Several environmental parameters were scanned for their capability to predict the observed abundance and variability of INPs−8. Those singularly presenting the best correlations with observed number of INPs−8 (residual fraction of water vapour, wind speed, air temperature, number of particles with diameter larger than 0.5 µm, season, and source region of particles were implemented as potential predictor variables in statistical multiple linear regression models. These models were calibrated with 84 precipitation samples collected during the first year of observations; their predictive power was successively validated on the set of 15 precipitation samples collected during the second year. The model performing best in calibration and validation explains more than 75 % of the whole variability of INPs−8 in precipitation and indicates that a high abundance of INPs−8 is to be expected whenever high wind speed coincides with air masses having experienced little or no precipitation prior to sampling. Such conditions occur during frontal passages, often accompanied by precipitation. Therefore, the circumstances when INPs−8 could be sufficiently abundant to initiate the ice phase in clouds may frequently coincide with meteorological conditions favourable to the onset of precipitation events.

  20. Evaluation of precipitates used in strainer head loss testing. Part I. Chemically generated precipitates

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2009-01-01

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes' Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  1. High resolution TEM study of Ni4Ti3 precipitates in austenitic Ni51Ti49

    International Nuclear Information System (INIS)

    Tirry, Wim; Schryvers, Dominique

    2003-01-01

    Binary NiTi with a composition of 51 at.% Ni was heat treated to form lens-shaped Ni 4 Ti 3 precipitates that are coherent or semi-coherent with the B2 matrix. High resolution transmission electron microscopy (HRTEM) was used to study the internal structure of the precipitates, precipitate-precipitate and matrix-precipitate interfaces and the deformation of the B2 matrix near a precipitate. Observations were made in the B2 and B2 zones and compared with computer simulated high resolution images. The B2 observations made it possible to study the [0 0 1] H zone orientation of Ni 4 Ti 3 (direction defined according to the hexagonal unit cell of Ni 4 Ti 3 ) which corresponds to the normal of the central plane of the discs. In these images the superperiodicity of the 4:3 ordering is clearly visible confirming the known atomic structure. Close to the precipitate the B2 matrix is deformed, as determined by measuring the interplanar spacing from the HRTEM images. The observed deformations are compared with theoretical models for the stress field

  2. Probability Distribution and Projected Trends of Daily Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-Ge; ZHONG; Jun; SU; Bu-Da; ZHAI; Jian-Qing; Macro; GEMMER

    2013-01-01

    Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling(CCLM)for 1961–2000,the simulation ability of CCLM on daily precipitation in China is examined,and the variation of daily precipitation distribution pattern is revealed.By applying the probability distribution and extreme value theory to the projected daily precipitation(2011–2050)under SRES A1B scenario with CCLM,trends of daily precipitation series and daily precipitation extremes are analyzed.Results show that except for the western Qinghai-Tibetan Plateau and South China,distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other;their spatial correlation coefcients are above 0.75.The CCLM can well capture the distribution characteristics of daily precipitation over China.It is projected that in some parts of the Jianghuai region,central-eastern Northeast China and Inner Mongolia,the kurtosis and skewness will increase significantly,and precipitation extremes will increase during 2011–2050.The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions,also show increasing trends of droughts and floods in the next 40 years.

  3. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation

    NARCIS (Netherlands)

    Lutz, A. F.; Immerzeel, W. W.|info:eu-repo/dai/nl/290472113; Shrestha, A. B.; Bierkens, M. F P|info:eu-repo/dai/nl/125022794

    Rivers originating in the high mountains of Asia are among the most meltwater-dependent river systems on Earth, yet large human populations depend on their resources downstream1. Across High Asias river basins, there is large variation in the contribution of glacier and snow melt to total runoff 2,

  4. Influence of rolling direction and carbide precipitation on IGSCC susceptibility in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Chiba, Goro

    2005-01-01

    IGSCC growth behaviors of austenitic stainless steels in hydrogenated high temperature water were studied using compact type specimens (0.5T for cold worked materials). The effect of cold rolling direction, alloy composition and carbide precipitation on crack growth behaviors was studied in hydrogenated high temperature water. Then, to examine the effect of cold work and carbide precipitation on IGSCC behaviors, the role of grain boundary sliding studied in high temperature air using CT specimens. The similar dependences of carbide precipitation and cold work on IGSCC and creep behaviors suggest that grain boundary sliding might play an important role by itself or in conjunction with other reactions such as crack tip dissolution etc. (author)

  5. Infectious precipitants of acute hyperammonemia are associated with indicators of increased morbidity in patients with urea cycle disorders.

    Science.gov (United States)

    McGuire, Peter J; Lee, Hye-Seung; Summar, Marshall L

    2013-12-01

    To prospectively characterize acute hyperammonemic episodes in patients with urea cycle disorders (UCDs) in terms of precipitating factors, treatments, and use of medical resources. This was a prospective, longitudinal observational study of hyperammonemic episodes in patients with UCD enrolled in the National Institutes of Health-sponsored Urea Cycle Disorders Consortium Longitudinal Study. An acute hyperammonemic event was defined as plasma ammonia level >100 μmol/L. Physician-reported data regarding the precipitating event and laboratory and clinical variables were recorded in a central database. In our study population, 128 patients with UCD experienced a total of 413 hyperammonemia events. Most patients experienced between 1 and 3 (65%) or between 4 and 6 (23%) hyperammonemia events since study inception, averaging fewer than 1 event/year. The most common identifiable precipitant was infection (33%), 24% of which were upper/lower respiratory tract infections. Indicators of increased morbidity were seen with infection, including increased hospitalization rates (P = .02), longer hospital stays (+2.0 days; P = .003), and increased use of intravenous ammonia scavengers (+45%-52%; P = .003-.03). Infection is the most common precipitant of acute hyperammonemia in patients with UCD and is associated with indicators of increased morbidity (ie, hospitalization rate, length of stay, and use of intravenous ammonia scavengers). These findings suggest that the catabolic and immune effects of infection may be a target for clinical intervention in inborn errors of metabolism. Published by Mosby, Inc.

  6. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    Science.gov (United States)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  7. Strengthening of stainless steel weldment by high temperature precipitation

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2017-10-01

    Full Text Available The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C and long periods (up to 2000 h under constant load, and both mechanical properties and microstructural changes in the material were monitored. It was found that the exposure of the material at 600 °C under load contributes to a strengthening effect on the weld. The phenomenon might be correlated with an accelerated process of second phase precipitation hardening. Keywords: Stainless steel, Weld, AISI 304, Precipitation hardening

  8. Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic

    Science.gov (United States)

    Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.

    2017-12-01

    Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.

  9. Intercomparison of spaceborne precipitation radars and its applications in examining precipitation-topography relationships in the Tibetan Plateau

    Science.gov (United States)

    Tang, G.; Gao, J.; Long, D.

    2017-12-01

    Precipitation is one of the most important components in the water and energy cycles. Spaceborne radars are considered the most direct technology for observing precipitation from space since 1998. This study compares and evaluates the only three existing spaceborne precipitation radars, i.e., the Ku-band precipitation radar (TRMM PR), the W-band Cloud Profiling Radar (CloudSat CPR), and the Ku/Ka-band Dual-frequency Precipitation Radar (GPM DPR). In addition, TRMM PR and GPM DPR are evaluated against hourly rain gauge data in Mainland China. The Tibetan Plateau (TP) is known as the Earth's third pole where precipitation is affected profoundly by topography. However, ground gauges are extremely sparse in the TP, and spaceborne radars can provide valuable data with relatively high accuracy. The relationships between precipitation and topography over the TP are investigated using 17-year TRMM PR data and 2-year GPM DPR data, in combination with rain gauge data. Results indicate that: (1) DPR and PR agree with each other and correlate very well with gauges in Mainland China. DPR improves light precipitation detectability significantly compared with PR. However, DPR high sensitivity scans (HS) deviates from DPR normal and matched scans (NS and MS) and PR in the comparison based on global coincident events and rain gauges in China; (2) CPR outperforms the other two radars in terms of light precipitation detection. In terms of global snowfall estimation, DPR and CPR show very different global snowfall distributions originating from different frequencies, retrieval algorithms, and sampling characteristics; and (3) Precipitation generally decreases exponentially with increasing elevation in the TP. The precipitation-topography relationships are regressed using exponential fitting in seventeen river basins in the TP with good coefficients of determination. Due to the short time span of GPM DPR, the relationships based on GPM DPR data are less robust than those derived from

  10. Oak Forest Responses to Episodic-Seasonal-Drought, Chronic Multi-year Precipitation Change and Acute Drought Manipulations in a Region With Deep Soils and High Precipitation

    Science.gov (United States)

    Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Auge, Robert M.; Froberg, Mats; Johnson, Dale W.

    2010-05-01

    drying, but no change in mineral soil carbon pools attributable to changing precipitation. Measured changes in nitrogen and other element pools suggested that long term immobilization of elements with chronic drying would lead to reduced growth, but that deep rooting access to the key base cations would moderate such effects by providing a source of minerals to be cycled in near surface soils. Cumulative changes in canopy foliar production were evident over time showing sustained or even increased production with chronic drying. This unexpected response is hypothesized to result from the retention of nutrients in highly-rooted surface horizons made available for plant uptake during spring mineralization.

  11. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    Science.gov (United States)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  12. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  13. Study on effect of precipitation conditions on the properties of ammonium diuranate

    International Nuclear Information System (INIS)

    Kraikaew, J.; Yacumpai, O.; Pruantonsai, P.

    1994-01-01

    This study was carried out in order to select the optimum conditions for ammonium diuranate (ADU) precipitation to obtain high density uranium dioxide. The data were collected for ADU precipitation reactor design. The precipitation temperature was controlled at 50 0 C. The stirrer speeds are 5.9 and 7.1 Hz. The properties namely : specific filtration resistance, initial settling rate and agglomerate size of ADU precipitates obtained at various pH were investigated. The results indicated that when the pH of precipitation increases, specific filtration resistance increases but ADU agglomerate size decreases and causing difficulty in filtration

  14. Predicting when precipitation-driven synthesis is feasible : application to biocatalysis

    NARCIS (Netherlands)

    Ulijn, R.V.; Janssen, A.E.M.; Moore, B.D.; Halling, P.J.

    2001-01-01

    Precipitation-driven synthesis offers the possibility of obtaining high reaction yields using very low volume reactors and is finding increasing applications in biocatalysis. Here, a model that allows straightforward prediction of when such a precipitation-driven reaction will be thermodynamically

  15. Can small island mountains provide relief from the Subtropical Precipitation Decline? Simulating future precipitation regimes for small island nations using high resolution Regional Climate Models.

    Science.gov (United States)

    Bowden, J.; Terando, A. J.; Misra, V.; Wootten, A.

    2017-12-01

    Small island nations are vulnerable to changes in the hydrologic cycle because of their limited water resources. This risk to water security is likely even higher in sub-tropical regions where anthropogenic forcing of the climate system is expected to lead to a drier future (the so-called `dry-get-drier' pattern). However, high-resolution numerical modeling experiments have also shown an enhancement of existing orographically-influenced precipitation patterns on islands with steep topography, potentially mitigating subtropical drying on windward mountain sides. Here we explore the robustness of the near-term (25-45 years) subtropical precipitation decline (SPD) across two island groupings in the Caribbean, Puerto Rico and the U.S. Virgin Islands. These islands, forming the boundary between the Greater and Lesser Antilles, significantly differ in size, topographic relief, and orientation to prevailing winds. Two 2-km horizontal resolution regional climate model simulations are used to downscale a total of three different GCMs under the RCP8.5 emissions scenario. Results indicate some possibility for modest increases in precipitation at the leading edge of the Luquillo Mountains in Puerto Rico, but consistent declines elsewhere. We conclude with a discussion of potential explanations for these patterns and the attendant risks to water security that subtropical small island nations could face as the climate warms.

  16. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  17. On the Mass Balance of Asphaltene Precipitation

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lira-Galeana, C.; Stenby, Erling Halfdan

    2001-01-01

    In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments are pe......, and that the material in the second precipitation step was often of higher apparent molecular weight anti had an increased overall absorbance coefficient.......In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments...... indicates that in temperature experiments as well as in solvent series experiments the precipitation of heavy asphaltenes affects the following precipitation of lighter asphaltenes. In both cases the mass balance using standard separation techniques cannot be closed, as less material is precipitated...

  18. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  19. High resolution reconstruction of monthly autumn and winter precipitation of Iberian Peninsula for last 150 years.

    Science.gov (United States)

    Cortesi, N.; Trigo, R.; González-Hidalgo, J. C.; Ramos, A.

    2012-04-01

    Precipitation over Iberian Peninsula (IP) presents large values of interannual variability and large spatial contrasts between wet mountainous regions in the north and dry regions in the southern plains. Unlike other European regions, IP was poorly monitored for precipitation during 19th century. Here we present a new approach to fill this gap. A set of 26 atmospheric circulation weather types (Trigo R.M. and DaCamara C.C., 2000) derived from a recent SLP dataset, the EMULATE (European and North Atlantic daily to multidecadal climate variability) Project, was used to reconstruct Iberian monthly precipitation from October to March during 1851-1947. Principal Component Regression Analysis was chosen to develop monthly precipitation reconstruction back to 1851 and calibrated over 1948-2003 period for 3030 monthly precipitation series of high-density homogenized MOPREDAS (Monthly Precipitation Database for Spain and Portugal) database. Validation was conducted over 1920-1947 at 15 key site locations. Results show high model performance for selected months, with a mean coefficient of variation (CV) around 0.6 during validation period. Lower CV values were achieved in western area of IP. Trigo, R. M., and DaCamara, C.C., 2000: "Circulation weather types and their impact on the precipitation regime in Portugal". Int. J. Climatol., 20, 1559-1581.

  20. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  1. A new approach for assimilation of 2D radar precipitation in a high-resolution NWP model

    DEFF Research Database (Denmark)

    Korsholm, Ulrik Smith; Petersen, Claus; Sass, Bent Hansen

    2015-01-01

    of precipitation, the strength of the nudging is proportional to the offset between observed and modelled precipitation, leading to increased moisture convergence. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values......A new approach for assimilation of 2D precipitation in numerical weather prediction models is presented and tested in a case with convective, heavy precipitation. In the scheme a nudging term is added to the horizontal velocity divergence tendency equation. In case of underproduction....... The method was implemented in the Danish Meteorological Institute numerical weather prediction (DMI NWP) nowcasting system, running with hourly cycles, performing a surface analysis and 3D variational analysis for upper air assimilation at each cycle restart, followed by nudging assimilation of precipitation...

  2. Comparison of direct and precipitation methods for the estimation of ...

    African Journals Online (AJOL)

    Background: There is increase in use of direct assays for analysis of high and low density lipoprotein cholesterol by clinical laboratories despite differences in performance characteristics with conventional precipitation methods. Calculation of low density lipoprotein cholesterol in precipitation methods is based on total ...

  3. Towards better understanding of the response of Sphagnum peatland to increased temperature and reduced precipitation in Central Europe

    Science.gov (United States)

    Juszczak, Radoslaw; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Hoffmann, Mathias; Józefczyk, Damian; Lamentowicz, Mariusz; Leśny, Jacek; Łuców, Dominika; Moni, Christophe; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Olejnik, Janusz

    2017-04-01

    With respect to climate change peatlands are highly vulnerable ecosystems. Especially a potential drying in future might result in a major carbon source and release to the atmosphere. We carried out a field climate manipulation experiment at Rzecin peatland in western Poland to assess how increased temperature and reduced precipitation may impact carbon balance, vegetation, microbes and water chemistry of the Sphagnum peatland. Here, we present results of measurements conducted in two contrasting years (417 mm and 678 mm of precipitation in very dry 2015 and wet 2016, respectively). The experimental design consists of four treatments, each one replicated three times (control, CO; simulated warming, W; prolonged drought, D and warming & drought, W+D). Increased temperatures (T) during the year were achieved by infrared heaters (400W × 4 per site, approx. 60 Wṡm-2 addition of LW radiation). Precipitation was reduced using an automatic curtain, covering the site during nighttime hours of the growth seasons. The manipulation experiment was successful during both years, increasing the air (30 cm height) and soil temperature (5 cm depth, sites W and D) by up to 0.2 oC and 1.0 oC, respectively. Precipitation was reduced to 37 % during both years. At W+D site the peat temperature was nearly two times higher than on W site indicating the impact of drought on T increase. To study the C exchange we developed an automatic mobile platform for measuring CO2/CH4/H2O fluxes (LGR) as well as 13CO2 and 13CH4 fluxes (PICARRO CRDS G2201-i). Measurements were performed, using dynamic ecosystem chambers (for NEE and Reco) and combined with simultaneous measurements of surface spectral properties. Flux calculation and gap filling was done according to Hoffmann et al. 2015. Methane emissions were significantly higher on manipulated plots than on CO (25 gCṡm-2yr-1) during both years, but only in the very dry 2015, CH4 fluxes were the highest on W+D site (33 gC gCṡm-2yr-1). Besides

  4. Tree Rings Show Recent High Summer-Autumn Precipitation in Northwest Australia Is Unprecedented within the Last Two Centuries.

    Directory of Open Access Journals (Sweden)

    Alison J O'Donnell

    Full Text Available An understanding of past hydroclimatic variability is critical to resolving the significance of recent recorded trends in Australian precipitation and informing climate models. Our aim was to reconstruct past hydroclimatic variability in semi-arid northwest Australia to provide a longer context within which to examine a recent period of unusually high summer-autumn precipitation. We developed a 210-year ring-width chronology from Callitris columellaris, which was highly correlated with summer-autumn (Dec-May precipitation (r = 0.81; 1910-2011; p < 0.0001 and autumn (Mar-May self-calibrating Palmer drought severity index (scPDSI, r = 0.73; 1910-2011; p < 0.0001 across semi-arid northwest Australia. A linear regression model was used to reconstruct precipitation and explained 66% of the variance in observed summer-autumn precipitation. Our reconstruction reveals inter-annual to multi-decadal scale variation in hydroclimate of the region during the last 210 years, typically showing periods of below average precipitation extending from one to three decades and periods of above average precipitation, which were often less than a decade. Our results demonstrate that the last two decades (1995-2012 have been unusually wet (average summer-autumn precipitation of 310 mm compared to the previous two centuries (average summer-autumn precipitation of 229 mm, coinciding with both an anomalously high frequency and intensity of tropical cyclones in northwest Australia and the dominance of the positive phase of the Southern Annular Mode.

  5. Tree Rings Show Recent High Summer-Autumn Precipitation in Northwest Australia Is Unprecedented within the Last Two Centuries

    Science.gov (United States)

    O'Donnell, Alison J.; Cook, Edward R.; Palmer, Jonathan G.; Turney, Chris S. M.; Page, Gerald F. M.; Grierson, Pauline F.

    2015-01-01

    An understanding of past hydroclimatic variability is critical to resolving the significance of recent recorded trends in Australian precipitation and informing climate models. Our aim was to reconstruct past hydroclimatic variability in semi-arid northwest Australia to provide a longer context within which to examine a recent period of unusually high summer-autumn precipitation. We developed a 210-year ring-width chronology from Callitris columellaris, which was highly correlated with summer-autumn (Dec–May) precipitation (r = 0.81; 1910–2011; p < 0.0001) and autumn (Mar–May) self-calibrating Palmer drought severity index (scPDSI, r = 0.73; 1910–2011; p < 0.0001) across semi-arid northwest Australia. A linear regression model was used to reconstruct precipitation and explained 66% of the variance in observed summer-autumn precipitation. Our reconstruction reveals inter-annual to multi-decadal scale variation in hydroclimate of the region during the last 210 years, typically showing periods of below average precipitation extending from one to three decades and periods of above average precipitation, which were often less than a decade. Our results demonstrate that the last two decades (1995–2012) have been unusually wet (average summer-autumn precipitation of 310 mm) compared to the previous two centuries (average summer-autumn precipitation of 229 mm), coinciding with both an anomalously high frequency and intensity of tropical cyclones in northwest Australia and the dominance of the positive phase of the Southern Annular Mode. PMID:26039148

  6. Uncertainty of global summer precipitation in the CMIP5 models: a comparison between high-resolution and low-resolution models

    Science.gov (United States)

    Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing

    2018-04-01

    The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.

  7. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    International Nuclear Information System (INIS)

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed

  8. Descriptive and predictive evaluation of high resolution Markov chain precipitation models

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2012-01-01

    A time series of tipping bucket recordings of very high temporal and volumetric resolution precipitation is modelled using Markov chain models. Both first and second‐order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques. The fi...

  9. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Goldstein, Leah; Kraft, Nathan

    2010-01-01

    Patterns of precipitation are likely to change significantly in the coming century, with important but poorly understood consequences for plant communities. Experimental and correlative studies may provide insight into expected changes, but little research has addressed the degree of concordance...... between these approaches. We synthesized results from four experimental water addition studies with a correlative analysis of community changes across a large natural precipitation gradient in the United States. We investigated whether community composition, summarized with plant functional traits......, responded similarly to increasing precipitation among studies and sites. In field experiments, increased precipitation favored species with small seed size,short leaf life span and high leaf nitrogen (N) concentration. However, with increasing precipitation along the natural gradient, community composition...

  10. Advances in Understanding the Role of Frozen Precipitation in High Latitude Hydrology

    Science.gov (United States)

    L'Ecuyer, T. S.; Wood, N.; Smalley, M.; McIlhattan, E.; Kulie, M.

    2017-12-01

    Satellite-based millimeter wavelength radar observations provide a unique perspective on the global character of frozen precipitation that has been difficult to detect using conventional spaceborne precipitation sensors. This presentation will describe the methodology underpinning the ten-year CloudSat global snowfall product and discuss the results of a number of complementary approaches that have been adopted to quantify its uncertainties. These datasets are shedding new light on the distribution, character, and impacts of frozen precipitation on high latitude hydrology. Inferred regional snowfall accumulations, for example, provide valuable constraints on projected changes in precipitation and mass balance on the Antarctic ice sheet in climate models. When placed in the broader context of complementary observations from other A-Train sensors, instantaneous snowfall estimates also hint at the large-scale processes that influence snow formation including air-sea interactions associated with cold-air outbreaks, lake-effect snows, and orographic enhancement. Simultaneous CloudSat and CALIPSO observations further emphasize the important role snowfall plays in the lifetime of super-cooled liquid containing clouds in the Arctic and highlight a model deficiency with important implications for surface energy and mass balance on the Greenland ice sheet.

  11. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  12. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Jia, Z.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Copper does not significantly influence toughness. → Copper precipitation during aging occurs at dislocations. → Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of ε-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of ε-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  13. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  14. PRECIPITATION BEHAVIOR OF M2N IN A HIGH-NITROGEN AUSTENITIC STAINLESS STEEL DURING ISOTHERMAL AGING

    Institute of Scientific and Technical Information of China (English)

    F. Shi; L.J. Wang; W.F. Cui; C.M. Liu

    2007-01-01

    The precipitation behavior of M2N and the microstructural evolution in a Cr-Mn austenitic stainless steel with a high nitrogen content of 0.43mass% during isothermal aging has been investigated using optical microscopy (OM), scanning electron microscopy ( SEM), and transmission electron microscopy (TEM). The aging treatments have led to the decomposition of nitrogen supersaturated austenitic matrix through discontinuous cellular precipitation. The precipitated cells comprise alternate lamellae of M2N precipitate and austenitic matrix. This kind of precipitate morphology is similar to that of pearlite. However, owing to the non-eutectoidic mechanism of the reaction, the growth characteristic of the cellular precipitates is different from that of pearlite in Fe-C binary alloys. M2N precipitate in the cell possesses a hexagonal crystal structure with the parameters a=0.4752nm and c=0.4429nm, and the orientation relationship between the MN precipitates and austenite determined from the SADP is [01110]M2N// [101]γ,[2-1-10]M2N// [010]γ.

  15. High resolution SEM characterization of nano-precipitates in ODS steels.

    Science.gov (United States)

    Jóźwik, Iwona; Strojny-Nędza, Agata; Chmielewski, Marcin; Pietrzak, Katarzyna; Kurpaska, Łukasz; Nosewicz, Szymon

    2018-05-01

    The performance of the present-day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low-kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo-diode BSE detector in SEM imaging allowed for the registration of single nm-sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM-EDS. © 2018 Wiley Periodicals, Inc.

  16. SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview

    Directory of Open Access Journals (Sweden)

    R. Serrano-Notivoli

    2017-09-01

    Full Text Available A high-resolution daily gridded precipitation dataset was built from raw data of 12 858 observatories covering a period from 1950 to 2012 in peninsular Spain and 1971 to 2012 in Balearic and Canary islands. The original data were quality-controlled and gaps were filled on each day and location independently. Using the serially complete dataset, a grid with a 5 × 5 km spatial resolution was constructed by estimating daily precipitation amounts and their corresponding uncertainty at each grid node. Daily precipitation estimations were compared to original observations to assess the quality of the gridded dataset. Four daily precipitation indices were computed to characterise the spatial distribution of daily precipitation and nine extreme precipitation indices were used to describe the frequency and intensity of extreme precipitation events. The Mediterranean coast and the Central Range showed the highest frequency and intensity of extreme events, while the number of wet days and dry and wet spells followed a north-west to south-east gradient in peninsular Spain, from high to low values in the number of wet days and wet spells and reverse in dry spells. The use of the total available data in Spain, the independent estimation of precipitation for each day and the high spatial resolution of the grid allowed for a precise spatial and temporal assessment of daily precipitation that is difficult to achieve when using other methods, pre-selected long-term stations or global gridded datasets. SPREAD dataset is publicly available at https://doi.org/10.20350/digitalCSIC/7393.

  17. Assessing changes in extreme convective precipitation from a damage perspective

    Science.gov (United States)

    Schroeer, K.; Tye, M. R.

    2016-12-01

    Projected increases in high-intensity short-duration convective precipitation are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to which, not only are extreme events rare, but such small scale events are likely to be underreported where they don't coincide with the observation network. Rather than focus solely on the convective precipitation, understanding the characteristics of these extremes which drive damage may be more effective to assess future risks. Two sources of data are used in this study. First, sub-daily precipitation observations over the Southern Alps enable an examination of seasonal and regional patterns in high-intensity convective precipitation and their relationship with weather types. Secondly, reports of private loss and damage on a household scale are used to identify which events are most damaging, or what conditions potentially enhance the vulnerability to these extremes.This study explores the potential added value from including recorded loss and damage data to understand the risks from summertime convective precipitation events. By relating precipitation generating weather types to the severity of damage we hope to develop a mechanism to assess future risks. A further benefit would be to identify from damage reports the likely occurrence of precipitation extremes where no direct observations are available and use this information to validate remotely sensed observations.

  18. High cloud variations with surface temperature from 2002 to 2015: Contributions to atmospheric radiative cooling rate and precipitation changes

    Science.gov (United States)

    Liu, Run; Liou, Kuo-Nan; Su, Hui; Gu, Yu; Zhao, Bin; Jiang, Jonathan H.; Liu, Shaw Chen

    2017-05-01

    The global mean precipitation is largely constrained by atmospheric radiative cooling rates (Qr), which are sensitive to changes in high cloud fraction. We investigate variations of high cloud fraction with surface temperature (Ts) from July 2002 to June 2015 and compute their radiative effects on Qr using the Fu-Liou-Gu plane-parallel radiation model. We find that the tropical mean (30°S-30°N) high cloud fraction decreases with increasing Ts at a rate of about -1.0 ± 0.34% K-1 from 2002 to 2015, which leads to an enhanced atmospheric cooling around 0.86 W m-2 K-1. On the other hand, the northern midlatitudes (30°N-60°N) high cloud fraction increases with surface warming at a rate of 1.85 ± 0.65% K-1 and the near-global mean (60°S-60°N) high cloud fraction shows a statistically insignificant decreasing trend with increasing Ts over the analysis period. Dividing high clouds into cirrus, cirrostratus, and deep convective clouds, we find that cirrus cloud fraction increases with surface warming at a rate of 0.32 ± 0.11% K-1 (0.01 ± 0.17% K-1) for the near-global mean (tropical mean), while cirrostratus and deep convective clouds decrease with surface warming at a rate of -0.02 ± 0.18% K-1 and -0.33 ± 0.18% K-1 for the near-global mean and -0.64 ± 0.23% K-1 and -0.37 ± 0.13% K-1 for the tropical mean, respectively. High cloud fraction response to feedback to Ts accounts for approximately 1.9 ± 0.7% and 16.0 ± 6.1% of the increase in precipitation per unit surface warming over the period of 2002-2015 for the near-global mean and the tropical mean, respectively.

  19. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    Science.gov (United States)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in

  20. Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data

    Science.gov (United States)

    Liu, N.; Liu, C.

    2017-12-01

    Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.

  1. Response of biological soil crust diazotrophs to season, altered summer precipitation and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Directory of Open Access Journals (Sweden)

    Chris M Yeager

    2012-10-01

    Full Text Available Biological soil crusts (biocrusts, which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33 Tg y-1, are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring, as well as field manipulations that increased the frequency of small-volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3x106 – 1x108 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised > 98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low and spring (high. A year-round increase of soil temperature (2 − 3 °C had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6 fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small-volume precipitation events.

  2. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Science.gov (United States)

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; Johnson, Shannon L.; Ticknor, Lawrence O.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33Tg y-1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3×106 to 1×8 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  3. A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions

    NARCIS (Netherlands)

    Welker, Christoph; Martius, Olivia; Froidevaux, Paul; Reijmer, Carleen H.; Fischer, Hubertus

    2014-01-01

    The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979-2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located

  4. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  5. A savanna response to precipitation intensity.

    Directory of Open Access Journals (Sweden)

    Ryan S Berry

    Full Text Available As the atmosphere warms, precipitation events are becoming less frequent but more intense. A three-year experiment in Kruger National Park, South Africa, found that fewer, more intense precipitation events encouraged woody plant encroachment. To test whether or not these treatment responses persisted over time, here, we report results from all five years of that experiment. Grass growth, woody plant growth, total fine root number and area and hydrologic tracer uptake by grasses and woody plants were measured in six treated plots (8 m by 8 m and six control plots. Treatment effects on soil moisture were measured continuously in one treated and one control plot. During the fourth year, increased precipitation intensity treatments continued to decrease water flux in surface soils (0-10 cm, increase water flux in deeper soils (20+ cm, decrease grass growth and increase woody plant growth. Greater root numbers at 20-40 cm and greater woody plant uptake of a hydrological tracer from 45-60 cm suggested that woody plants increased growth by increasing root number and activity (but not root area in deeper soils. During the fifth year, natural precipitation events were large and intense so treatments had little effect on precipitation intensity or plant available water. Consistent with this effective treatment removal, there was no difference in grass or woody growth rates between control and treated plots, although woody plant biomass remained higher in treated than control plots due to treatment effects in the previous four years. Across the five years of this experiment, we found that 1 small increases in precipitation intensity can result in large increases in deep (20-130 cm soil water availability, 2 plant growth responses to precipitation intensity are rapid and disappear quickly, and 3 because woody plants accumulate biomass, occasional increases in precipitation intensity can result in long-term increases in woody plant biomass (i.e., shrub

  6. Nanocharacterisation of precipitates in austenite high manganese steels with advanced techniques: HRSTEM and DualEELS mapping

    International Nuclear Information System (INIS)

    Bobynko, J; Craven, A J; McGrouther, D; MacLaren, I; Paul, G

    2014-01-01

    To achieve optimal mechanical properties in high manganese steels, the precipitation of nanoprecipitates of vanadium and niobium carbides is under investigation. It is shown that under controlled heat treatments between 850°C and 950°C following hot deformation, few-nanometre precipitates of either carbide can be produced in test steels with suitable contents of vanadium or niobium. The structure and chemistry of these precipitates are examined in detail with a spatial resolution down to better than 1 nm using a newly commissioned scanning transmission electron microscope. In particular, it is shown that the nucleation of vanadium carbide precipitates often occurs at pre-existing titanium carbide precipitates which formed from titanium impurities in the bulk steel. This work will also highlight the links between the nanocharacterisation and changes in the bulk properties on annealing

  7. γ' Precipitation Study of a Co-Ni-Based Alloy

    Science.gov (United States)

    Locq, D.; Martin, M.; Ramusat, C.; Fossard, F.; Perrut, M.

    2018-05-01

    A Co-Ni-based alloy strengthened by γ'-(L12) precipitates was utilized to investigate the precipitation evolution after various cooling rates and several aging conditions. In this study, the precipitate size and volume fraction have been studied via scanning electron microscopy and transmission electron microscopy. The influence of the precipitation evolution was measured via microhardness tests. The cooling rate study shows a more sluggish γ' precipitation reaction compared to that observed in a Ni-based superalloy. Following a rapid cooling rate, the application of appropriate double aging treatments allows for the increase of the γ' volume fraction as well as the control of the size and distribution of the precipitates. The highest hardness values reach those measured on supersolvus cast and wrought Ni-based superalloys. The observed γ' precipitation behavior should have implications for the production, the heat treatment, the welding, or the additive manufacturing of this new class of high-temperature materials.

  8. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  9. A highly sensitive electrostatic precipitator with no moving parts

    DEFF Research Database (Denmark)

    Teodosić, V.

    1968-01-01

    Cross correlation between a modulated precipitation voltage and the corresponding detector voltage variation gives a signal which is proportional to the fission gas concentration even when the precipitation electrode is not moving, which makes it possible to build a simple unit for fuel leakage...... detection....

  10. Theory and uses of electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Descolas, M

    1974-01-01

    Factors influencing the efficiency of electrostatic precipitators, and the principal uses of this type of dust separator are reviewed. The counter-ionization caused by very high resistivity of the dust can be avoided theoretically by increasing the temperature. The resistance of the settled dust layer is determined not only by the inherent resistivity of the dust but also that of impurities adsorbed by the dust particles, such as water vapor and sulfur dioxide, which tend to decrease the resistance. The maximum possible current intensity decreases with increasing temperature. The current intensity decreases with increasing dust concentration in the waste gas. Electrostatic dust precipitators are successfully used in thermal power plants, waste incinerators, open-hearth furnaces, and oxygen converters. In the pulp industry, they are used to recover sodium sulfate and carbonate between the soda lye boiler and the economizer.

  11. The full annual carbon balance of Eurasian boreal forests is highly sensitive to precipitation

    Science.gov (United States)

    Öquist, Mats; Bishop, Kevin; Grelle, Achim; Klemedtsson, Leif; Köhler, Stephan; Laudon, Hjalmar; Lindroth, Anders; Ottosson Löfvenius, Mikaell; Wallin, Marcus; Nilsson, Mats

    2013-04-01

    Boreal forest biomes are identified as one of the major sinks for anthropogenic atmospheric CO2 and are also predicted to be particularly sensitive to climate change. Recent advances in understanding the carbon balance of these biomes stems mainly from eddy-covariance measurements of the net ecosystem exchange (NEE). However, NEE includes only the vertical CO2 exchange driven by photosynthesis and ecosystem respiration. A full net ecosystem carbon balance (NECB) also requires inclusion of lateral carbon export (LCE) through catchment discharge. Currently LCE is often regarded as negligible for the NECB of boreal forest ecosystems of the northern hemisphere, commonly corresponding to ~5% of annual NEE. Here we use long term (13 year) data showing that annual LCE and NEE are strongly correlated (p=0.003); years with low C sequestration by the forest coincide with years when lateral C loss is high. The fraction of NEE lost annually through LCE varied markedly from solar radiation caused by clouds. The dual effect of precipitation implies that both the observed and the predicted increases in annual precipitation at high latitudes may reduce NECB in boreal forest ecosystems. Based on regional scaling of hydrological discharge and observed spatio-temporal variations in forest NEE we conclude that our finding is relevant for large areas of the boreal Eurasian landscape.

  12. High-resolution Monthly Satellite Precipitation Product over the Conterminous United States

    Science.gov (United States)

    Hashemi, H.; Fayne, J.; Knight, R. J.; Lakshmi, V.

    2017-12-01

    We present a data set that enhanced the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) monthly product 3B43 in its accuracy and spatial resolution. For this, we developed a correction function to improve the accuracy of TRMM 3B43, spatial resolution of 25 km, by estimating and removing the bias in the satellite data using a ground-based precipitation data set. We observed a strong relationship between the bias and land surface elevation; TRMM 3B43 tends to underestimate the ground-based product at elevations above 1500 m above mean sea level (m.amsl) over the conterminous United States. A relationship was developed between satellite bias and elevation. We then resampled TRMM 3B43 to the Digital Elevation Model (DEM) data set at a spatial resolution of 30 arc second ( 1 km on the ground). The produced high-resolution satellite-based data set was corrected using the developed correction function based on the bias-elevation relationship. Assuming that each rain gauge represents an area of 1 km2, we verified our product against 9,200 rain gauges across the conterminous United States. The new product was compared with the gauges, which have 50, 60, 70, 80, 90, and 100% temporal coverage within the TRMM period of 1998 to 2015. Comparisons between the high-resolution corrected satellite-based data and gauges showed an excellent agreement. The new product captured more detail in the changes in precipitation over the mountainous region than the original TRMM 3B43.

  13. Using Extreme Tropical Precipitation Statistics to Constrain Future Climate States

    Science.gov (United States)

    Igel, M.; Biello, J. A.

    2017-12-01

    Tropical precipitation is characterized by a rapid growth in mean intensity as the column humidity increases. This behavior is examined in both a cloud resolving model and with high-resolution observations of precipitation and column humidity from CloudSat and AIRS, respectively. The model and the observations exhibit remarkable consistency and suggest a new paradigm for extreme precipitation. We show that the total precipitation can be decomposed into a product of contributions from a mean intensity, a probability of precipitation, and a global PDF of column humidity values. We use the modeling and observational results to suggest simple, analytic forms for each of these functions. The analytic representations are then used to construct a simple expression for the global accumulated precipitation as a function of the parameters of each of the component functions. As the climate warms, extreme precipitation intensity and global precipitation are expected to increase, though at different rates. When these predictions are incorporated into the new analytic expression for total precipitation, predictions for changes due to global warming to the probability of precipitation and the PDF of column humidity can be made. We show that strong constraints can be imposed on the future shape of the PDF of column humidity but that only weak constraints can be set on the probability of precipitation. These are largely imposed by the intensification of extreme precipitation. This result suggests that understanding precisely how extreme precipitation responds to climate warming is critical to predicting other impactful properties of global hydrology. The new framework can also be used to confirm and discount existing theories for shifting precipitation.

  14. The effect of precipitation on contaminant dissolution and transport: Analytic solutions

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1988-09-01

    We analysed the effect of precipitation on the dissolution and transport rates of a nondecaying contaminant. Precipitation near the waste surface can have a profound effect on dissolution and transport rates. The mass-transfer rate at the waste surface is controlled by the solid-liquid reaction rate to an extent determined by the modified reaction-rate modulus, α. At later times extending to steady state, the mass-transfer rate depends on the location of the precipitation front r/sub p/ and on the solubility ratio C/sub o//C/sub p/. A precipitation front very near the waste surface can change the dissolution mechanism from solubility-diffusion-controlled to chemical-reaction-rate controlled. Precipitation limits the concentration of the contaminant at r > r/sub p/ to C/sub p/, steepening the concentration gradient for dissolution on the waste package side of the front and flattening the gradient for transport in the region outside the front. This increases the rate of contaminant transport from the waste to the front while decreasing the rate of transport away from the front, when compared to the situation without precipitation. The difference in the transport rates at the front is the rate of precipitation. For large changes in solubility, most of the contaminant is immobilized by precipitation, as was observed in a parallel study. The effect of a precipitation front located nearby in surrounding rock is to increase the release rate at the waste surface/rock interface. The increase in release rate at the waste surface is greater the closer the precipitation and the larger the ratio C/sub o//C/sub p/, also observed by others. The release rates of other waste constituents that dissolve congruently with the solubility-controlling matrix can be increased by a local high-solubility region between the waste surface and the precipitation front. 10 refs., 5 figs

  15. Fast high-temperature consolidation of Oxide-Dispersion Strengthened (ODS) steels: process, microstructure, precipitation, properties

    International Nuclear Information System (INIS)

    Boulnat, Xavier

    2014-01-01

    This work aims to lighten the understanding of the behavior of a class of metallic materials called Oxide-Dispersion Strengthened (ODS) ferritic steels. ODS steels are produced by powder metallurgy with various steps including atomization, mechanical alloying and high-temperature consolidation. The consolidation involves the formation of nanoparticles in the steel and various evolutions of the microstructure of the material that are not fully understood. In this thesis, a novel consolidation technique assisted by electric field called 'Spark Plasma Sintering' (SPS) or 'Field-Assisted Sintering Technique' (FAST) was assessed. Excellent mechanical properties were obtained by SPS, comparable to those of conventional hot isostatic pressed (HIP) materials but with much shorter processing time. Also, a broad range of microstructures and thus of tensile strength and ductility were obtained by performing SPS on either milled or atomized powder at different temperatures. However, SPS consolidation failed to avoid heterogeneous microstructure composed of ultrafine-grained regions surrounded by micron grains despite of the rapid consolidation kinetics. A multi-scale characterization allowed to understand and model the evolution of this complex microstructure. An analytical evaluation of the contributing mechanisms can explain the appearance of the complex grain structure and its thermal stability during further heat treatments. Inhomogeneous distribution of plastic deformation in the powder is argued to be the major cause of heterogeneous recrystallization and further grain growth during hot consolidation. Even if increasing the solute content of yttrium, titanium and oxygen does not impede abnormal growth, it permits to control the fraction and the size of the retained ultrafine grains, which is a key-factor to tailor the mechanical properties. Since precipitation through grain boundary pinning plays a significant role on grain growth, a careful

  16. Intensity changes in future extreme precipitation: A statistical event-based approach.

    Science.gov (United States)

    Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    Short-lived precipitation extremes are often responsible for hazards in urban and rural environments with economic and environmental consequences. The precipitation intensity is expected to increase about 7% per degree of warming, according to the Clausius-Clapeyron (CC) relation. However, the observations often show a much stronger increase in the sub-daily values. In particular, the behavior of the hourly summer precipitation from radar observations with the dew point temperature (the Pi-Td relation) for the Netherlands suggests that for moderate to warm days the intensification of the precipitation can be even higher than 21% per degree of warming, that is 3 times higher than the expected CC relation. The rate of change depends on the initial precipitation intensity, as low percentiles increase with a rate below CC, the medium percentiles with 2CC and the moderate-high and high percentiles with 3CC. This non-linear statistical Pi-Td relation is suggested to be used as a delta-transformation to project how a historic extreme precipitation event would intensify under future, warmer conditions. Here, the Pi-Td relation is applied over a selected historic extreme precipitation event to 'up-scale' its intensity to warmer conditions. Additionally, the selected historic event is simulated in the high-resolution, convective-permitting weather model Harmonie. The initial and boundary conditions are alternated to represent future conditions. The comparison between the statistical and the numerical method of projecting the historic event to future conditions showed comparable intensity changes, which depending on the initial percentile intensity, range from below CC to a 3CC rate of change per degree of warming. The model tends to overestimate the future intensities for the low- and the very high percentiles and the clouds are somewhat displaced, due to small wind and convection changes. The total spatial cloud coverage in the model remains, as also in the statistical

  17. Precipitates in irradiated Zircaloy

    International Nuclear Information System (INIS)

    Chung, H.M.

    1985-10-01

    Precipitates in high-burnup (>20 MWd/kg U) Zircaloy spent-fuel cladding discharged from commercial boiling- and pressurized-water reactors have been characterized by TEM-HVEM. Three classes of primary precipitates were observed in the irradiated Zircaloys: Zr 3 O (2 to 6 nm), cubic-ZrO 2 (greater than or equal to 10 nm), and delta-hydride (35 to 100 nm). The former two precipitations appears to be irradiation induced in nature. Zr(Fe/sub x/Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/Ni/sub 1-x/) intermetallics, which are the primary precipitates in unirradiated Zircaloys, were largely dissolved after the high burnup. It seems, therefore, that the influence of the size and distribution of the intermetallics on the corrosion behavior may be quite different for the irradiated Zircaloys

  18. Do competitors modulate rare plant response to precipitation change?

    Science.gov (United States)

    Levine, J.M.; Kathryn, Mceachern A.; Cowan, C.

    2010-01-01

    Ecologists increasingly suspect that climate change will directly impact species physiology, demography, and phenology, but also indirectly affect these measures via changes to the surrounding community. Unfortunately, few studies examine both the direct and indirect pathways of impact. Doing so is important because altered competitive pressures can reduce or magnify the direct responses of a focal species to climate change. Here, we examine the effects of changing rainfall on three rare annual plant species in the presence and absence of competition on the California Channel Islands. We used rain-out shelters and hand watering to exclude and augment early, late, and season-long rainfall, spanning the wide range of precipitation change forecast for the region. In the absence of competition, droughts reduced the population growth rates of two of three focal annuals, while increased rainfall was only sometimes beneficial, As compared to the focal species, the dominant competitors were more sensitive to the precipitation treatments, benefiting from increased season-long precipitation and harmed by droughts. Importantly, the response of two of three competitors to the precipitation treatments tended to be positively correlated with those of the focal annuals. Although this leads to the expectation that increased competition will counter the direct benefits of favorable conditions, such indirect effects of precipitation change proved weak to nonexistent in our experiment. Competitors had little influence on the precipitation response of two focal species, due to their low sensitivity to competition and highly variable precipitation responses. Competition did affect how our third focal species responded to precipitation change, but this effect only approached significance, and whether it truly resulted from competitor response to precipitation change was unclear. Our work suggests that even when competitors respond to climate change, these responses may have little

  19. Preplastic strain effect on chromium carbides precipitation of type 316 stainless steel during high-temperature ageing

    International Nuclear Information System (INIS)

    Mao, X.; Zhao, W.

    1992-01-01

    Long exposure of Type 316 stainless steel to elevated temperature (400-900 o C) is known to cause high-temperature embrittlement due to chromium carbides and σ-phase precipitating in grain boundaries. Numerous investigations have been published on the mechanical properties and microstructure changes occurring during such exposure. However, no investigations exist on the preplastic deformation effect on chromium carbide precipitation in the grain matrix and grain boundary during high-temperature ageing of Type 316 stainless steel and then its effects on the room-temperature tensile properties. Since the stainless steel sometimes is deformed before use at high temperatures, it is necessary to study the preplastic strain effect of the stainless steel on the microstructure change and mechanical property change during high-temperature exposure. The purpose of the present investigation was to carry out such a study. The conclusions reached are as follows. First, chromium carbides are precipitated in deformation lines (slip lines) and then the amount of chromium carbides precipitation in the grain boundary is relatively reduced in predeformed stainless steel after ageing. Secondly, plastic strain pretreatments of and subsequent ageing treatments of Type 316 stainless steel can improve its tensile ductility. Finally, secondary cracking of aged stainless steel occurs in a normal tensile test. The secondary cracking can be reduced by adding preplastic strain into the material. (Author)

  20. The Relative Performance of High Resolution Quantitative Precipitation Estimates in the Russian River Basin

    Science.gov (United States)

    Bytheway, J. L.; Biswas, S.; Cifelli, R.; Hughes, M.

    2017-12-01

    The Russian River carves a 110 mile path through Mendocino and Sonoma counties in western California, providing water for thousands of residents and acres of agriculture as well as a home for several species of endangered fish. The Russian River basin receives almost all of its precipitation during the October through March wet season, and the systems bringing this precipitation are often impacted by atmospheric river events as well as the complex topography of the region. This study will examine the performance of several high resolution (hourly, products and forecasts over the 2015-2016 and 2016-2017 wet seasons. Comparisons of event total rainfall as well as hourly rainfall will be performed using 1) rain gauges operated by the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division (PSD), 2) products from the Multi-Radar/Multi-Sensor (MRMS) QPE dataset, and 3) quantitative precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model at 1, 3, 6, and 12 hour lead times. Further attention will be given to cases or locations representing large disparities between the estimates.

  1. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation

    Energy Technology Data Exchange (ETDEWEB)

    Pauling, Andreas [University of Bern, Institute of Geography, Bern (Switzerland); Luterbacher, Juerg; Wanner, Heinz [University of Bern, Institute of Geography, Bern (Switzerland); National Center of Competence in Research (NCCR) in Climate, Bern (Switzerland); Casty, Carlo [University of Bern, Climate and Environmental Physics Institute, Bern (Switzerland)

    2006-03-15

    We present seasonal precipitation reconstructions for European land areas (30 W to 40 E/30-71 N; given on a 0.5 x 0.5 resolved grid) covering the period 1500-1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901-1983 calibration period and applied to 1500-1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500 years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstructions. (orig.)

  2. Evaluation of high intensity precipitation from 16 Regional climate models over a meso-scale catchment in the Midlands Regions of England

    Science.gov (United States)

    Wetterhall, F.; He, Y.; Cloke, H.; Pappenberger, F.; Freer, J.; Wilson, M.; McGregor, G.

    2009-04-01

    Local flooding events are often triggered by high-intensity rain-fall events, and it is important that these can be correctly modelled by Regional Climate Models (RCMs) if the results are to be used in climate impact assessment. In this study, daily precipitation from 16 RCMs was compared with observations over a meso-scale catchment in the Midlands Region of England. The RCM data was provided from the European research project ENSEMBLES and the precipitation data from the UK MetOffice. The RCMs were all driven by reanalysis data from the ERA40 dataset over the time period 1961-2000. The ENSEMBLES data is on the spatial scale of 25 x 25 km and it was disaggregated onto a 5 x 5 km grid over the catchment and compared with interpolated observational data with the same resolution. The mean precipitation was generally underestimated by the ENSEMBLES data, and the maximum and persistence of high intensity rainfall was even more underestimated. The inter-annual variability was not fully captured by the RCMs, and there was a systematic underestimation of precipitation during the autumn months. The spatial pattern in the modelled precipitation data was too smooth in comparison with the observed data, especially in the high altitudes in the western part of the catchment where the high precipitation usually occurs. The RCM outputs cannot reproduce the current high intensity precipitation events that are needed to sufficiently model extreme flood events. The results point out the discrepancy between climate model output and the high intensity precipitation input needs for hydrological impact modelling.

  3. CMIP5 model simulations of Ethiopian Kiremt-season precipitation: current climate and future changes

    Science.gov (United States)

    Li, Laifang; Li, Wenhong; Ballard, Tristan; Sun, Ge; Jeuland, Marc

    2016-05-01

    Kiremt-season (June-September) precipitation provides a significant water supply for Ethiopia, particularly in the central and northern regions. The response of Kiremt-season precipitation to climate change is thus of great concern to water resource managers. However, the complex processes that control Kiremt-season precipitation challenge the capability of general circulation models (GCMs) to accurately simulate precipitation amount and variability. This in turn raises questions about their utility for predicting future changes. This study assesses the impact of climate change on Kiremt-season precipitation using state-of-the-art GCMs participating in the Coupled Model Intercomparison Project Phase 5. Compared to models with a coarse resolution, high-resolution models (horizontal resolution <2°) can more accurately simulate precipitation, most likely due to their ability to capture precipitation induced by topography. Under the Representative Concentration Pathway (RCP) 4.5 scenario, these high-resolution models project an increase in precipitation over central Highlands and northern Great Rift Valley in Ethiopia, but a decrease in precipitation over the southern part of the country. Such a dipole pattern is attributable to the intensification of the North Atlantic subtropical high (NASH) in a warmer climate, which influences Ethiopian Kiremt-season precipitation mainly by modulating atmospheric vertical motion. Diagnosis of the omega equation demonstrates that an intensified NASH increases (decreases) the advection of warm air and positive vorticity into the central Highlands and northern Great Rift Valley (southern part of the country), enhancing upward motion over the northern Rift Valley but decreasing elsewhere. Under the RCP 4.5 scenario, the high-resolution models project an intensification of the NASH by 15 (3 × 105 m2 s-2) geopotential meters (stream function) at the 850-hPa level, contributing to the projected precipitation change over Ethiopia. The

  4. Deformation-Induced Dissolution and Precipitation of Nitrides in Austenite and Ferrite of a High-Nitrogen Stainless Steel

    Science.gov (United States)

    Shabashov, V. A.; Makarov, A. V.; Kozlov, K. A.; Sagaradze, V. V.; Zamatovskii, A. E.; Volkova, E. G.; Luchko, S. N.

    2018-02-01

    Methods of Mössbauer spectroscopy and electron microscopy have been used to study the effect of the severe plastic deformation by high pressure torsion in Bridgman anvils on the dissolution and precipitation of chromium nitrides in the austenitic and ferritic structure of an Fe71.2Cr22.7Mn1.3N4.8 high-nitrogen steel. It has been found that an alternative process of dynamic aging with the formation of secondary nitrides affects the kinetics of the dissolution of chromium nitrides. The dynamic aging of ferrite is activated with an increase in the deformation temperature from 80 to 573 K.

  5. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    Science.gov (United States)

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  6. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  7. Enhancement of metal-nanoparticle precipitation by co-irradiation of high-energy heavy ions and laser in silica glass

    International Nuclear Information System (INIS)

    Okubo, N.; Umeda, N.; Takeda, Y.; Kishimoto, N.

    2003-01-01

    Simultaneous laser irradiation under ion irradiation is conducted to control nanoparticle precipitation in amorphous (a-)SiO 2 . Copper ions of 3 MeV and photons of 532 nm by Nd:YAG laser are irradiated to substrates of a-SiO 2 . The ion dose rate and total dose are set at 2-10 μA/cm 2 and 3.0 x 10 16 -3.0 x 10 17 ions/cm 2 , respectively, and the laser power density is 0.05-0.2 J/cm 2 pulse at 10 Hz. The laser is simultaneously irradiated with ions in the co-irradiation mode, and the result is compared to that in the sequential and ion-only irradiation. Cross-sectional TEM of the irradiated specimens is conducted after measuring optical absorption spectra. In the case of co-irradiation of intense laser power and high dose (0.2 J/cm 2 pulse and 3.0 x 10 17 ions/cm 2 ), Cu nanoparticles precipitate much more extensively than in the sequential irradiation, increasing both the particle diameter and the total Cu atoms in the nanoparticles. The optical absorption spectra show a surface plasmon peak of the nanoparticles. The precipitation enhancement in the co-irradiation mode suggests that the electronic energy is absorbed by the dynamic electronic states and promotes the Cu precipitation via enhancing the atomic migration

  8. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ashly P.; Bond-Lamberty, Benjamin; Benscoter, Brian W.; Tfaily, Malak M.; Hinkle, Ross; Liu, Chongxuan; Bailey, Vanessa L.

    2017-11-06

    Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.

  9. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    Science.gov (United States)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  10. Precipitation kinetics in warm forming of AW-7020 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M., E-mail: Manoj.kumar@ait.ac.at [Leichtmetall-Kompetenzzentrum Ranshofen GmbH, Austrian Institute of Technology, Postfach 26, A-5282 Ranshofen (Austria); Institute of Material Science and Technology, TU Vienna (Austria); Poletti, C. [Present address: Institute of Material Science and Welding, TU Graz (Austria); Institute of Material Science and Technology, TU Vienna (Austria); Degischer, H.P. [Institute of Material Science and Technology, TU Vienna (Austria)

    2013-01-20

    The warm formability of the precipitation hardening AW-7020 (AlZn 4.5Mg1) alloy is investigated by testing extruded tubes. The precipitation kinetics of different conditions before and after warm deformation is studied by differential scanning calorimetry and transmission electron microcopy. The precipitation conditions are correlated with the results of hardness tests at room temperature and of tensile tests at temperatures between 200 and 350 Degree-Sign C at different strain rates. The yield strength decreases with increasing test temperature approaching that of samples in the annealed condition, while the strain at fracture increases. The overall influence of the strain rate on ductility is dominated by the corresponding time required for deformation. The formability of the starting condition T1 as well as the corresponding strain hardening exponent is particularly promising for high strain rates at 250 Degree-Sign C, where the metastable precipitates of the T1 condition are dissolved. The short exposure of about 30 s at 250 Degree-Sign C re-establishes the potential for precipitation strengthening by natural ageing after the warm deformation and a following paint baking heat treatment maintains the hardness level.

  11. A Central European precipitation climatology – Part II: Application of the high-resolution HYRAS data for COSMO-CLM evaluation

    Directory of Open Access Journals (Sweden)

    Susanne Brienen

    2016-05-01

    Full Text Available The horizontal resolution of regional climate model (RCM simulations is increasing constantly in the last years. For the evaluation of these simulations and the further development of the models, adequate observational data sets are required, in particular with respect to the spatial scales. The aim of this paper is to investigate the value of a new high-resolution precipitation climatology, the HYRAS-PRE v.2.0 data set, for the evaluation of RCM output. HYRAS-PRE is available for the time period 1951–2006 at daily resolution and covers ten river catchments in Germany and neighbouring countries at a spatial grid spacing of 5 km. A set of simulations with the regional climate model COSMO-CLM with three different grid spacings (~7$\\sim7$, 14 and 28 km is used for this model evaluation study. In addition, three other data sets with different horizontal resolution are considered in the comparisons: the E‑OBS v.8.0 gridded observations (~25$\\sim25$ km grid spacing, the ERA-Interim reanalysis (~79$\\sim79$ km and the analysis of the driving model GME (~40$\\sim40$–60 km. For three selected years, different spatial and temporal characteristics of daily precipitation are investigated. In all the analyzed precipitation characteristics, it is found that the variability between the data sets is very large. The benefit of an evaluation with HYRAS-PRE compared to coarser-resolved observations becomes visible especially in the representation of the frequency of occurrence distribution of daily precipitation amounts and in the spatial variability of different precipitation indices. A second goal of this study was to estimate the error when comparing a high resolution simulated precipitation field with coarser resolved observations. Comparing the HYRAS-PRE average over an area of 5×5$5\\times5$ grid points with the original HYRAS-PRE data results in a systematic underestimation of high values of all indices considered and an overestimation

  12. Interannual variation of annual precipitation and urban effect on precipitation in the Beijing region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The large scale character of the interannual variation of precipitation and the urban effect on local annual precipitation anomaly are investigated in this paper based on the 1960-2000 annual precipitation observations at 20 stations in the Beijing region. The results show that: the annual precipitation in the Beijing region possesses the large scale variation character with the linear trend of - 1.197/10 yr, which corresponds to a total reduction of 27.82 mm in annual precipitation in the 41 years; the local annual precipitation anomalies (percent of the normal 1960-2000) show a positive center near the urban area, i.e. urban precipitation island (UPI), whose intensity increases with the linear trend of 0. 6621%/10 yr, opposite to the interannual trend of large scale precipitation over the Beijing region; changes in the UPI are also associated with the intensity of synoptic processes of precipitation, and when the synoptic processes are strong (wet years), the intensity of UPI strengthens, while the synoptic processes are weak (dry years), and the UPI disappears in the Beijing region.

  13. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  14. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology.

    Science.gov (United States)

    Baisden, W Troy; Keller, Elizabeth D; Van Hale, Robert; Frew, Russell D; Wassenaar, Leonard I

    2016-01-01

    Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.

  15. Precipitate strengthening of nanostructured aluminium alloy.

    Science.gov (United States)

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  16. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  17. Probability of occurrence of monthly and seasonal winter precipitation over Northwest India based on antecedent-monthly precipitation

    Science.gov (United States)

    Nageswararao, M. M.; Mohanty, U. C.; Dimri, A. P.; Osuri, Krishna K.

    2018-05-01

    Winter (December, January, and February (DJF)) precipitation over northwest India (NWI) is mainly associated with the eastward moving mid-latitude synoptic systems, western disturbances (WDs), embedded within the subtropical westerly jet (SWJ), and is crucial for Rabi (DJF) crops. In this study, the role of winter precipitation at seasonal and monthly scale over NWI and its nine meteorological subdivisions has been analyzed. High-resolution (0.25° × 0.25°) gridded precipitation data set of India Meteorological Department (IMD) for the period of 1901-2013 is used. Results indicated that the seasonal precipitation over NWI is below (above) the long-term mean in most of the years, when precipitation in any of the month (December/January/February) is in deficit (excess). The contribution of December precipitation (15-20%) to the seasonal (DJF) precipitation is lesser than January (35-40%) and February (35-50%) over all the subdivisions. December (0.60), January (0.57), and February (0.69) precipitation is in-phase (correlation) with the corresponding winter season precipitation. However, January precipitation is not in-phase with the corresponding December (0.083) and February (-0.03) precipitation, while December is in-phase with the February (0.21). When monthly precipitation (December or January or December-January or February) at subdivision level over NWI is excess (deficit); then, the probability of occurrence of seasonal excess (deficit) precipitation is high (almost nil). When antecedent-monthly precipitation is a deficit or excess, the probability of monthly (January or February or January + February) precipitation to be a normal category is >60% over all the subdivisions. This study concludes that the December precipitation is a good indicator to estimate the performance of January, February, January-February, and the seasonal (DJF) precipitation.

  18. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures

    Science.gov (United States)

    Stein, C. R.; Bezerra, M. T. S.; Holanda, G. H. A.; André-Filho, J.; Morais, P. C.

    2018-05-01

    This study reports on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by chemical co-precipitation in alkaline medium at increasing temperatures in the range of 27 °C to 100 °C. High-quality samples in the size range of 5 to 10 nm were produced using very low stirring speed (250 rpm) and moderate alkaline aqueous solution concentration (4.8 mol/L). Three samples were synthesized and characterized by x-ray diffraction (XRD) and room-temperature (RT) magnetization measurements. All samples present superparamagnetic (SPM) behavior at RT and Rietveld refinements confirm the inverse cubic spinel structure (space group Fd-3m (227)) with minor detectable impurity phase. As the synthesis temperature increases, structural parameters such as lattice constant and grain size change monotonically from 8.385 to 8.383 Å and from 5.8 to 7.4 nm, respectively. Likewise, as the synthesis temperature increases the NPs' magnetic moment and saturation magnetization increases monotonically from 2.6 ×103 to 16×103 μB and from 37 to 66 emu/g, respectively. The RT magnetization (M) versus applied field (H) curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. The excellent curve-fitting of the M versus H data is credited to a reduced particle-particle interaction due to both the SPM behavior and the existence of a surface amorphous shell layer (dead layer), the latter reducing systematically as the synthesis temperature increases.

  19. Influence of precipitations, buildings and over increase of radioactive emission in the population dose calculation under accident conditions

    International Nuclear Information System (INIS)

    Conte, M.C.

    1987-01-01

    The influence of precipitations is analyzed, as well as of buildings and emission over increase on the dosis produced on the population as a consequence of some postulated accidents in Atucha II nuclear power plant. The following conclusions were achieved: the calculations performed without considering the above mentioned effects are conservative, excluding the case in which the precipitation is very close to the emission source. In this case, the maximal difference observed was 20% for class C and 5% for class D, at 1 km from source, with a decreasing difference according to the distance. The doses calculated without building effect were approximately 25% greater than those calculated considering this effect for class E and 40% for class F, at 1 km from the source. The difference decreases with distance and increases with the stability of atmospheric conditions. This behaviour is also observed with the over increase effect. In this case, the maximal observed differences were of one order of magnitude for class E and three orders for class F, at 1 km from the source. (Author)

  20. Evaluation of ERA-Interim precipitation data in complex terrain

    Science.gov (United States)

    Gao, Lu; Bernhardt, Matthias; Schulz, Karsten

    2013-04-01

    Precipitation controls a large variety of environmental processes, which is an essential input parameter for land surface models e.g. in hydrology, ecology and climatology. However, rain gauge networks provides the necessary information, are commonly sparse in complex terrains, especially in high mountainous regions. Reanalysis products (e.g. ERA-40 and NCEP-NCAR) as surrogate data are increasing applied in the past years. Although they are improving forward, previous studies showed that these products should be objectively evaluated due to their various uncertainties. In this study, we evaluated the precipitation data from ERA-Interim, which is a latest reanalysis product developed by ECMWF. ERA-Interim daily total precipitation are compared with high resolution gridded observation dataset (E-OBS) at 0.25°×0.25° grids for the period 1979-2010 over central Alps (45.5-48°N, 6.25-11.5°E). Wet or dry day is defined using different threshold values (0.5mm, 1mm, 5mm, 10mm and 20mm). The correspondence ratio (CR) is applied for frequency comparison, which is the ratio of days when precipitation occurs in both ERA-Interim and E-OBS dataset. The result shows that ERA-Interim captures precipitation occurrence very well with a range of CR from 0.80 to 0.97 for 0.5mm to 20mm thresholds. However, the bias of intensity increases with rising thresholds. Mean absolute error (MAE) varies between 4.5 mm day-1 and 9.5 mm day-1 in wet days for whole area. In term of mean annual cycle, ERA-Interim almost has the same standard deviation of the interannual variability of daily precipitation with E-OBS, 1.0 mm day-1. Significant wet biases happened in ERA-Interim throughout warm season (May to August) and dry biases in cold season (November to February). The spatial distribution of mean annual daily precipitation shows that ERA-Interim significant underestimates precipitation intensity in high mountains and northern flank of Alpine chain from November to March while pronounced

  1. Precipitation Sedimentation and Advection in GFS

    Science.gov (United States)

    Sun, R.; Tallapragada, V.

    2016-12-01

    Zhao and Carr microphysics scheme as implemented in the NCEP Global Forecasting System (GFS) predicts only the total cloud condensate (cloud water or ice). The precipitation generated in the column fall to the ground instantly. This mean precipitation sedimentation and advection are not considered. As resolution increases the lack of the two physical processes creates problems. The slowly falling precipitation (snow) falls to the wrong surface grid box, which may have led to the observed spotty-precipitation pattern. To solve the problem two prognositic variables, snow and rain, are added. Addition of the two precipitation variable allows their advection. The corresponding sedimentation process are also added. In this study we examine the effect of precipitation advection and sedimentation on the precipitation pattern, associated precipitation skills and clouds.

  2. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR upon TRMM Precipitation Radar (PR in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    Directory of Open Access Journals (Sweden)

    Jinyu Gao

    2017-11-01

    Full Text Available Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR, was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM. This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku and single frequency (Ku methods performed similarly. In both inner (the central 25 beams and outer swaths (1–12 beams and 38–49 beams of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02% of stratiform (convective precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne

  3. Stable Isotopic Variations in Precipitation in Southwest China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study analyzes the relationships of stable isotopes in precipitation with temperature, air pressure and humidity at different altitudes, and the potential influencing mechanisms of control factors on the stable isotopes in precipitation in Southwest China. There appear marked negative correlations of the δ18O in precipitation with precipitation amount, vapor pressure and atmospheric precipitable water (PW)at the Mengzi, Simao and Tengchong stations on the synoptic timescale; the marked negative correlations between the δ18O in precipitation and the diurnal mean temperature at 400 hPa, 500 hPa, 700 hPa and 850hPa are different from the temperature effect in middle-high-latitude inland areas. In addition, the notable positive correlation between the δ18O in precipitation and the dew-point deficit △Td at different altitudes is found at the three stations. Precipitation is not the only factor generating an amount effect. Probably,the amount effect is related to the variations of atmospheric circulation and vapor origins. On the annual timescale, the annual precipitation amount weighted-mean δ18O displays negative correlations not only with annual precipitation but also with annual mean temperature at 500 hPa. It can be deduced that, in the years with an abnormally strong summer monsoon, more warm and wet air from low-latitude oceans is transported northward along the vapor channel located in Southwest China and generates abnormally strong rainfall on the way. Meanwhile, the abnormally strong condensation process will release more condensed latent heat in the atmosphere, and this will lead to a rise of atmospheric temperature during rainfall but a decline of δ18O in the precipitation. On the other hand, in the years with an abnormally weak summer monsoon, the precipitation and the atmospheric temperature during rainfalls decrease abnormally but the δ18O in precipitation increases.

  4. Precipitation from Space: Advancing Earth System Science

    Science.gov (United States)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    otherwise possible. These developments have taken place in parallel with the growth of an increasingly interconnected scientific environment. Scientists from different disciplines can easily interact with each other via information and materials they encounter online, and collaborate remotely without ever meeting each other in person. Likewise, these precipitation datasets are quickly and easily available via various data portals and are widely used. Within the framework of the NASA/JAXA Global Precipitation Measurement (GPM mission, these applications will become increasingly interconnected. We emphasize that precipitation observations by themselves provide an incomplete picture of the state of the atmosphere. For example, it is unlikely that a richer understanding of the global water cycle will be possible by standalone missions and algorithms, but must also involve some component of data, where model analyses of the physical state are constrained alongside multiple observations (e.g., precipitation, evaporation, radiation). The next section provides examples extracted from the many applications that use various high-resolution precipitation products. The final section summarizes the future system for global precipitation processing.

  5. Effects of turbulence on warm clouds and precipitation with various aerosol concentrations

    Science.gov (United States)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2015-02-01

    This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.

  6. Maximizing recovery of water-soluble proteins through acetone precipitation.

    Science.gov (United States)

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Floridian heatwaves and extreme precipitation: future climate projections

    Science.gov (United States)

    Raghavendra, Ajay; Dai, Aiguo; Milrad, Shawn M.; Cloutier-Bisbee, Shealynn R.

    2018-02-01

    Observational analysis and climate modeling efforts concur that the frequency, intensity, and duration of heatwaves will increase as the Earth's mean climate shifts towards warmer temperatures. While the impacts and mechanisms of heatwaves have been well explored, extreme temperatures over Florida are generally understudied. This paper sheds light on Floridian heatwaves by exploring 13 years of daily data from surface observations and high-resolution WRF climate simulations for the same timeframe. The characteristics of the current and future heatwaves under the RCP8.5 high emissions scenario for 2070-2099 were then investigated. Results show a tripling in the frequency, and greater than a sixfold increase in the mean duration of heatwaves over Florida when the current standard of heatwaves was used. The intensity of heatwaves also increased by 4-6 °C due to the combined effects of rising mean temperatures and a 1-2 °C increase attributed to the flattening of the temperature distribution. Since Florida's atmospheric boundary layer is rich in moisture and heatwaves could further increase the moisture content in the lower troposphere, the relationship between heatwaves and extreme precipitation was also explored in both the current and future climate. As expected, rainfall during a heatwave event was anomalously low, but it quickly recovered to normal within 3 days after the passage of a heatwave. Finally, the late 21st-century climate could witness a slight decrease in the mean precipitation over Florida, accompanied by heavier heatwave-associated extreme precipitation events over central and southern Florida.

  8. Using High Energy Precipitation for Magnetic Mapping in the Nightside Transition Region During Dynamic Events

    Science.gov (United States)

    Spanswick, E.

    2017-12-01

    Identifying the magnetic footprint of a satellite can be done using the in situ observations together with some ionospheric or low-altitude satellite observation to argue that the two measurements were made on the same field line. Nishimura et al. [2011], e.g., correlated a time series of chorus wave power near the magnetic equator with the time series of intensities of every pixel of a is roughly magnetically conjugate ASI. Often, the pattern of correlation shows a well-defined peak at the location of the satellite's magnetic footprint. Their results cannot be replicated during dynamic events (e.g., substorms), because the required auroral forms do not occur at such times. It would be important if we could make mappings with such confidence during active times. The Transition Region Explorer (TREx), which is presently being implemented, is a new ground-based facility that will remote sense electron precipitation across 3 hours of MLT and 12 degrees of magnetic latitude spanning the auroral zone in western Canada. TREx includes the world's first imaging riometers array with a contiguous field of view large enough to seamlessly track the spatio-temporal evolution of high energy electron precipitation at mesoscales. Two studies motivated the TREx riometers array. First, Baker et al. [1981] demonstrated riometer absorption is an excellent proxy for the electron energy flux integrated from 30 keV to 200keV keV at the magnetic equator on the flux tube corresponding to the location of that riometers. Second, Spanswick et al. [2007] showed the correlation between the riometers absorption and the integrated electron energy flux near the magnetic equator peaked when the satellite was nearest to conjugate to the riometers. Here we present observations using CANOPUS single beam riometers and CRRES MEB to illustrate how the relative closeness of the footpoint of an equatorial spacecraft can be assessed using high energy precipitation. As well, we present the capabilities of

  9. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  10. Removal of salt from rare earth precipitates by vacuum distillation

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Eun, Hee-Chul; Cho, Yong-Zun; Park, Hwan-Seo; Kim, In-Tae

    2008-01-01

    This study investigated the distillation rates of LiCl-KCl eutectic salt from the rare earth (RE) precipitates originating from the oxygen-sparging RE precipitation process. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. The second part study tested the removal efficiency of eutectic salt from RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature, the degree of vacuum and the time. Salt distillation operation with a moderated distillation rate of 10 -4 - 10 -5 mole sec -1 cm -2 is possible at temperature less than 1300 K and vacuums of 5-50 Torr, by minimizing the potentials of the RE particle entrainment. An increase in the vaporizing surface area is relatively effective for removing the residual salt in pores of bulk of the precipitated RE particles, when compared to that for the vaporizing time. Over 99.9% of the salt removal from the salt-RE precipitate mixture could be achieved by increasing the vaporizing surface area under moderate vacuum conditions of 50 Torr at 1200 K. (author)

  11. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  12. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  13. Is precipitation a predictor of mortality in Bangladesh? A multi-stratified analysis in a South Asian monsoon climate.

    Science.gov (United States)

    Burkart, Katrin; Kinney, Patrick

    2016-05-15

    While numerous studies have assessed the association between temperature and mortality in various locations, few have addressed the relationship between precipitation and mortality. Given the high amounts of rainfall in many tropical monsoon areas and the often seasonally pronounced differences, there might be a potentially strong impact on health outcomes and death. In this study, we investigated the association between precipitation and daily death counts in Bangladesh from 2003 to 2007 using regression models with a quasipoisson distribution adjusting for long-term time and seasonal trends, day of the month, age and perceived temperature. Effects were assessed for all ages, the elderly and by gender. During the dry season a sharp increase in death risk was found at very high precipitation amounts which are most likely to be cyclone-related. This cyclone effect was most pronounced for females at the immediate day with an increase of 18.7% (3.8-35.6%) in non-external cause mortality per mm precipitation above 5mm. At longer lags we found a negative association between precipitation and mortality indicating some kind of dry effect which was more pronounced for the elderly with a mortality increase of 4.4% (2.6-6.2%) per mm decrease in precipitation. During the rainy season, we observed a protective effect of rainfall which was strongest during periods of seasonally high equivalent temperatures with a decrease in mortality of 4.0% (2.3-5.6%) per mm increase in precipitation on the immediate day. The observed associations between precipitation and mortality differed by season, age and gender. Generally, a strong short-term increase in mortality was associated with cyclonic activity during the dry season, while ongoing low rainfall seemed to have an adverse impact at higher lags. During the rainy season, precipitation seemed to mitigate heat effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of natural organic matter on calcium and phosphorus co-precipitation.

    Science.gov (United States)

    Sindelar, Hugo R; Brown, Mark T; Boyer, Treavor H

    2015-11-01

    Phosphorus (P), calcium (Ca) and natural organic matter (NOM) naturally occur in all aquatic ecosystems. However, excessive P loads can cause eutrophic or hyper-eutrophic conditions in these waters. As a result, P regulation is important for these impaired aquatic systems, and Ca-P co-precipitation is a vital mechanism of natural P removal in many alkaline systems, such as the Florida Everglades. The interaction of P, Ca, and NOM is also an important factor in lime softening and corrosion control, both critical processes of drinking water treatment. Determining the role of NOM in Ca-P co-precipitation is important for identifying mechanisms that may limit P removal in both natural and engineered systems. The main goal of this research is to assess the role of NOM in inhibiting Ca and P co-precipitation by: (1) measuring how Ca, NOM, and P concentrations affect NOM's potential inhibition of co-precipitation; (2) determining the effect of pH; and (3) evaluating the precipitated solids. Results showed that Ca-P co-precipitation occurs at pH 9.5 in the presence of high natural organic matter (NOM) (≈30 mg L(-1)). The supersaturation of calcite overcomes the inhibitory effect of NOM seen at lower pH values. Higher initial P concentrations lead to both higher P precipitation rates and densities of P on the calcite surface. The maximum surface density of co-precipitated P on the precipitated calcite surface increases with increasing NOM levels, suggesting that NOM does prevent the co-precipitation of Ca and P. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Vertical structure and microphysical characteristics of precipitation on the high terrain and lee side of the Olympic Mountains

    Science.gov (United States)

    Zagrodnik, J. P.; McMurdie, L. A.; Houze, R.

    2017-12-01

    As mid-latitude cyclones pass over coastal mountain ranges, the processes producing their clouds and precipitation are modified when they encounter complex terrain, leading to a maximum in precipitation fallout on the windward slopes and a minimum on the lee side. The precipitation that does reach the high terrain and lee side of a mountain range can be theoretically determined by a complex interaction between the dynamics of air lifting over the terrain, the thermodynamics of moist air, and the microphysical time required to grow particles large enough to fall out. To date, there have been few observational studies that have focused on the nonlinear microphysical processes contributing to the variability of precipitation that is received on the lee side slopes of a mountain range such as the Olympic Mountains. The 2015-16 Olympic Mountains Experiment (OLYMPEX) collected unprecedented observations on the high terrain and lee side of the Olympic Mountains including frequent soundings on Vancouver Island, dual-polarization Doppler radar, multi-frequency airborne radar, and ground-based particle size and crystal habit observations at the higher elevation Hurricane Ridge site. We utilize these observations to examine the evolution of the vertical structure and microphysical precipitation characteristics over the high terrain and leeside within the context of large-scale dynamic and thermodynamic conditions that evolve during the passage of cold season mid-latitude cyclones. The primary goal is to determine the degree to which the observed variability in lee side precipitation amount and microphysical properties are controlled by variations in temperature, flow speed and direction, shear, and stability associated with characteristic synoptic storm sectors and frontal passages.

  16. A novel electrostatic precipitator

    International Nuclear Information System (INIS)

    Tang, Minkang; Wang, Liqian; Lin, Zhigui

    2013-01-01

    ESP (Electrostatic Precipitation) has been widely used in the mining, building materials, metallurgy and power industries. Dust particles or other harmful particles from the airstream can be precipitated by ESP with great collecting efficiency. Because of its' large size, high cost and energy consumption, the scope of application of ESP has been limited to a certain extent. By means of the theory of electrostatics and fluid dynamics, a corona assembly with a self-cleaning function and a threshold voltage automatic tracking technology has been developed and used in ESP. It is indicated that compared with conventional ESP, the electric field length has been reduced to 1/10 of the original, the current density on the collecting electrode increased 3-5 times at the maximum, the approach speed of dust particles in the electric field towards the collecting electrode is 4 times that in conventional ESP and the electric field wind speed may be enhanced by 2-3 times the original. Under the premise of ESP having a high efficiency of dust removal, equipment volume may be actually reduced to 1/5 to 1/10 of the original volume and energy consumption may be reduced by more than 50%.

  17. Analysis of grain boundaries, twin boundaries, and Te precipitates in CdZnTe grown by high-pressure Bridgeman method

    International Nuclear Information System (INIS)

    Heffelfinger, J.R.; Medlin, D.L.; James, R.B.

    1998-03-01

    Grain boundaries and twin boundaries in commercial Cd 1-x Zn x Te, which is prepared by a high pressure Bridgeman technique, have been investigated with transmission electron microscopy, scanning electron microscopy, infrared light microscopy and visible light microscopy. Boundaries inside these materials were found to be decorated with Te precipitates. The shape and local density of the precipitates were found to depend on the particular boundary. For precipitates that decorate grain boundaries, their microstructure was found to consist of a single, saucer shaped grain of hexagonal Te (space group P3 1 21). Analysis of a Te precipitate precipitates by selected area diffraction revealed the Te to be aligned with the surrounding Cd 1-x Zn x Te grains. This alignment was found to match the (111) Cd 1-x Z x Te planes with the (1 bar 101) planes of hexagonal Te. Crystallographic alignments between the Cd 1-x Zn x Te grains were also observed for a high angle grain boundary. The structure of the grain boundaries and the Te/Cd 1-x Zn x Te interface are discussed

  18. Effect of carbide precipitates on high temperature creep of a 20Cr-25Ni austenitic stainless steel

    International Nuclear Information System (INIS)

    Yamane, T.; Takahashi, Y.; Nakagawa, K.

    1984-01-01

    The high temperature creep of an austenitic stainless steel having carbide precipitates, is different from that of the carbide precipitate-free one. Strain rates of the steady state creep d(epsilonsub(s))/dt, or minimum strain rates of the creep in precipitate hardened and dispersion strengthened alloys at the creep temperature T, can be expressed by Sherby-Dorn's equation d(epsilonsub(s))/dt = Aσsup(n) exp (-Qsub(c)/RT). The stress exponent n, and the activation energy for creep Qsub(c), in a power law creep region, are more than those of unstrengthened alloys, where σ is the creep stress, R the gas constant and A the constant. In this research, the influence of carbide precipitates on steady creep rates, is investigated. Experimental details are given. Results are given and discussed. (author)

  19. Spatial analysis of precipitation time series over the Upper Indus Basin

    Science.gov (United States)

    Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad

    2018-01-01

    The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.

  20. [Removal of high-abundance proteins in plasma of the obese by improved TCA/acetone precipitation method].

    Science.gov (United States)

    Wang, Jun; Feng, Liru; Yu, Wei; Xu, Jian; Yang, Hui; Liu, Xiaoli

    2013-09-01

    To develop an improved trichloroacetic acid (TCA)/acetone precipitation method for removal of high-abundance proteins in plasma of the obese. Volumes of TCA/acetone solution (1, 3, 4, 5, 6, 8, 10 and 20 times of the sample) and concentrations of TCA (10%, 30%, 50%, 60%, 70% TCA/acetone solution) have been investigated to optimize the conditions of sample preparation. SDS-PAGE were used to separate and tested proteins in the supernatant and sediment. The best concentration of the TCA/acetone solution was first determined by SDS-PAGE. The protein in precipitation from 10% TCA/acetone solution processing and the new determined concentration TCA/acetone solution processing were verified by 2-D-SDS-PAGE. And then the digested products of the protein in precipitation and supernatant by trypsin were analyzed by nano HPLC-Chip-MS/MS to verify which is the best concentration to process the plasma. The best volume of TCA/acetone is four times to sample, which less or more TCA/acetone would reduce the removal efficiency of high-abundance proteins. The concentration of TCA in acetone solution should be 60%, which may remove more high-abundance proteins in plasma than 10%, 30%, 50% TCA in acetone solution. If the TCA concentration is more than 60%, the reproducibility will be much poorer due to fast precipitation of proteins. The results of mass identification showed that human plasma prepared with 60% TCA/acetone (4 times sample volume) could be verified more low-abundance proteins than 10%. The most desirable conditions for removal of high-abundance proteins in plasma is 60% TCA/acetone (4 times sample volume), especially for the plasma of obesity.

  1. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  2. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  3. The Consequences of Precipitation Seasonality for Mediterranean-Ecosystem Vegetation of South Africa.

    Science.gov (United States)

    Cramer, Michael D; Hoffman, M Timm

    2015-01-01

    Globally, mediterranean-climate ecosystem vegetation has converged on an evergreen, sclerophyllous and shrubby growth form. The particular aspects of mediterranean-climate regions that contribute to this convergence include summer droughts and relatively nutrient-poor soils. We hypothesised that winter-precipitation implies stressful summer droughts and leaches soils due to greater water availability (i.e. balance between precipitation and potential evapotranspiration; P-PET) during cold periods. We conducted a comparative analysis of normalised difference vegetation indices (NDVI) and edaphic and climate properties across the biomes of South Africa. NDVI was strongly correlated with both precipitation and P-PET (r2 = 0.8). There was no evidence, however, that winter-precipitation reduces NDVI in comparison to similar amounts of summer-precipitation. Base saturation (BS), a measure of soil leaching was, however, negatively related to P-PET (r2 = 0.64). This led to an interaction between P-PET and BS in determining NDVI, indicating the existence of a trade-off between water availability and soil nutrients that enables NDVI to increase with precipitation, despite negative consequences for soil nutrient availability. The mechanism of this trade-off is suggested to be that water increases nutrient accessibility. This implies that along with nutrient-depauperate geologies and long periods of time since glaciation, the winter-precipitation may have contributed to the highly leached status of the soils. Since many of the ecophysiological characteristics of mediterranean-ecosystem flora are associated with low nutrient availabilities (e.g. evergreen foliage, sclerophylly, cluster roots), we conclude that mediterranean-climates promote convergence of growth-forms in these regions through high leaching capacity.

  4. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  5. Development of precipitator of fluid film type

    International Nuclear Information System (INIS)

    Liu Yupu

    1987-01-01

    The precipitator of fluid film type is developed for the determination of fuel element cladding failure of water-cooled reactor. It integrates the scrubber, precipitator and detector. The jet of element cooling water automatically circulates carrier gas and the flow water film transfers precipitates onto the surface of centre electrode. Three different types are designed. On the special test loop, the uranium sample pellets of simulating cladding failure is measured. The sensitivity of precipitators, saturated precipitation voltage, incremental speed of signal, speed of driving out precipitates and the contents of the precipitates are determined. The test shows that the precipitators are highly sensitive, reliable, cheap and easy to operate

  6. High-resolution precipitation data derived from dynamical downscaling using the WRF model for the Heihe River Basin, northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Zheng, Jingyun; Ge, Quansheng

    2018-02-01

    The community of climate change impact assessments and adaptations research needs regional high-resolution (spatial) meteorological data. This study produced two downscaled precipitation datasets with spatial resolutions of as high as 3 km by 3 km for the Heihe River Basin (HRB) from 2011 to 2014 using the Weather Research and Forecast (WRF) model nested with Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP) and ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) (hereafter referred to as FNLexp and ERAexp, respectively). Both of the downscaling simulations generally reproduced the observed spatial patterns of precipitation. However, users should keep in mind that the two downscaled datasets are not exactly the same in terms of observations. In comparison to the remote sensing-based estimation, the FNLexp produced a bias of heavy precipitation centers. In comparison to the ground gauge-based measurements, for the warm season (May to September), the ERAexp produced more precipitation (root-mean-square error (RMSE) = 295.4 mm, across the 43 sites) and more heavy rainfall days, while the FNLexp produced less precipitation (RMSE = 115.6 mm) and less heavy rainfall days. Both the ERAexp and FNLexp produced considerably more precipitation for the cold season (October to April) with RMSE values of 119.5 and 32.2 mm, respectively, and more heavy precipitation days. Along with simulating a higher number of heavy precipitation days, both the FNLexp and ERAexp also simulated stronger extreme precipitation. Sensitivity experiments show that the bias of these simulations is much more sensitive to micro-physical parameterizations than to the spatial resolution of topography data. For the HRB, application of the WSM3 scheme may improve the performance of the WRF model.

  7. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau

    Science.gov (United States)

    Wang, Li; Zhang, Fan; Zhang, Hongbo; Scott, Christopher A.; Zeng, Chen; Shi, Xiaonan

    2018-01-01

    Precipitation is one of the most critical inputs for models used to improve understanding of hydrological processes. In high mountain areas, it is challenging to generate a reliable precipitation data set capturing the spatial and temporal heterogeneity due to the harsh climate, extreme terrain and the lack of observations. This study conducts intensive observation of precipitation in the Mabengnong catchment in the southeast of the Tibetan Plateau during July to August 2013. Because precipitation is greatly influenced by altitude, the observed data are used to characterize the precipitation gradient (PG) and hourly distribution (HD), showing that the average PG is 0.10, 0.28 and 0.26 mm/d/100 m and the average duration is around 0.1, 0.8 and 5.2 h for trace, light and moderate rain, respectively. A distributed biosphere hydrological model based on water and energy budgets with improved physical process for snow (WEB-DHM-S) is applied to simulate the hydrological processes with gridded precipitation data derived from a lower altitude meteorological station and the PG and HD characterized for the study area. The observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are used for model calibration and validation. Runoff, SCA and LST simulations all show reasonable results. Sensitivity analyses illustrate that runoff is largely underestimated without considering PG, indicating that short-term intensive precipitation observation has the potential to greatly improve hydrological modelling of poorly gauged high mountain catchments.

  8. High resolution forecast of heavy precipitation with Lokal Modell: analysis of two case studies in the Alpine area

    Directory of Open Access Journals (Sweden)

    M. Elementi

    2005-01-01

    Full Text Available Northern Italy is frequently affected by severe precipitation conditions often inducing flood events with associated loss of properties, damages and casualties. The capability of correctly forecast these events, strongly required for an efficient support to civil protection actions, is still nowadays a challenge. This difficulty is also related with the complex structure of the precipitation field in the Alpine area and, more generally, over the Italian territory. Recently a new generation of non-hydrostatic meteorological models, suitable to be used at very high spatial resolution, has been developed. In this paper the performance of the non-hydrostatic Lokal Modell developed by the COSMO Consortium, is analysed with regard to a couple of intense precipitation events occurred in the Piemonte region in Northern Italy. These events were selected among the reference cases of the Hydroptimet/INTERREG IIIB project. LM run at the operational resolution of 7km provides a good forecast of the general rain structure, with an unsatisfactory representation of the precipitation distribution across the mountain ranges. It is shown that the inclusion of the new prognostic equations for cloud ice, rain and snow produces a remarkable improvement, reducing the precipitation in the upwind side and extending the intense rainfall area to the downwind side. The unrealistic maxima are decreased towards observed values. The use of very high horizontal resolution (2.8 km improves the general shape of the precipitation field in the flat area of the Piemonte region but, keeping active the moist convection scheme, sparse and more intense rainfall peaks are produced. When convective precipitation is not parametrised but explicitly represented by the model, this negative effect is removed.

  9. The Influence of Aerosol Hygroscopicity on Precipitation Intensity During a Mesoscale Convective Event

    Science.gov (United States)

    Kawecki, Stacey; Steiner, Allison L.

    2018-01-01

    We examine how aerosol composition affects precipitation intensity using the Weather and Research Forecasting Model with Chemistry (version 3.6). By changing the prescribed default hygroscopicity values to updated values from laboratory studies, we test model assumptions about individual component hygroscopicity values of ammonium, sulfate, nitrate, and organic species. We compare a baseline simulation (BASE, using default hygroscopicity values) with four sensitivity simulations (SULF, increasing the sulfate hygroscopicity; ORG, decreasing organic hygroscopicity; SWITCH, using a concentration-dependent hygroscopicity value for ammonium; and ALL, including all three changes) to understand the role of aerosol composition on precipitation during a mesoscale convective system (MCS). Overall, the hygroscopicity changes influence the spatial patterns of precipitation and the intensity. Focusing on the maximum precipitation in the model domain downwind of an urban area, we find that changing the individual component hygroscopicities leads to bulk hygroscopicity changes, especially in the ORG simulation. Reducing bulk hygroscopicity (e.g., ORG simulation) initially causes fewer activated drops, weakened updrafts in the midtroposphere, and increased precipitation from larger hydrometeors. Increasing bulk hygroscopicity (e.g., SULF simulation) simulates more numerous and smaller cloud drops and increases precipitation. In the ALL simulation, a stronger cold pool and downdrafts lead to precipitation suppression later in the MCS evolution. In this downwind region, the combined changes in hygroscopicity (ALL) reduces the overprediction of intense events (>70 mm d-1) and better captures the range of moderate intensity (30-60 mm d-1) events. The results of this single MCS analysis suggest that aerosol composition can play an important role in simulating high-intensity precipitation events.

  10. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    Science.gov (United States)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  11. G phase precipitation and strengthening in ultra-high strength ferritic steels: Towards lean ‘maraging’ metallurgy

    International Nuclear Information System (INIS)

    Sun, W.W.; Marceau, R.K.W.; Styles, M.J.; Barbier, D.; Hutchinson, C.R.

    2017-01-01

    Ultra-high strength steels are interesting materials for light-weighting applications in the transportation industries. A key requirement of these applications is weldability and consequently a low carbon content is desirable. Maraging steels are examples of ultra-high strength, low carbon steels but their disadvantage is their high cost due to the large Ni and/or Co additions required. This contribution is focussed on the development of steels with maraging-like strengths but with low solute contents (less than 10%). A series of alloy compositions were designed to exploit precipitation of the G phase in a ferritic matrix at temperatures of 450–600 °C in order to obtain yield strengths in excess of 2 GPa. The mechanical response of the materials was measured using tension and compression testing and the precipitate evolution has been characterized using atom probe tomography (APT) and in-situ small angle X-ray scattering (SAXS) at a synchrotron beamline. Precipitate number densities of 10"2"5 m"−"3 are obtained, which are amongst the highest number densities so far observed in engineering alloys. The intrinsic strength of the G phase is shown to be proportional to its size, and deviations in the chemistry of the precipitates do not significantly affect their strengthening behaviour. An important outcome is that the common temper embrittlement issues known to occur during aging of martensite in the 450–600 °C range were mitigated in one alloy by starting with a cold-rolled and partially fragmented lath martensite instead of a freshly quenched martensite.

  12. Effect of creep-aging on precipitates of 7075 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: yclin@csu.edu.cn [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China); Jiang, Yu-Qiang; Chen, Xiao-Min; Wen, Dong-Xu [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); Zhou, Hua-Min [State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China)

    2013-12-20

    The creep-aging behaviors of 7075 aluminum alloy are studied by uniaxial tensile creep experiments under elevated temperatures. The effects of creep-aging temperature and applied stress on the precipitates of 7075-T651 aluminum alloy are investigated using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Results show that (1) coarse insoluble precipitates (Al{sub 7}Cu{sub 2}Fe and Mg{sub 2}Si) and intermediate precipitates (Al{sub 18}Mg{sub 3}Cr{sub 2} and Al{sub 3}Zr) are found in the aluminum matrix, and the effects of creep-aging treatment on these precipitates are not obvious; (2) the main aging precipitates are η′ and η phases, and the amount of aging precipitates increase with the increase of creep-aging temperature and applied stress; (3) with the increase of creep-aging temperature and applied stress, the precipitates are discontinuously distributed on the grain boundary, and the width of precipitate free zone increases with the increase of creep-aging temperature and applied stress and (4) compared with the microstructure in the traditional stress-free aged sample, the creep-aging process can refine the precipitates and narrow the width of the precipitate free zone.

  13. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China

    Science.gov (United States)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.

    2017-12-01

    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period

  14. Carbon and oxygen stable isotopes in large herbivore tooth enamel illustrate a mid-Miocene precipitation increase in the interior Pacific Northwest

    Science.gov (United States)

    Drewicz, A.; Kohn, M. J.

    2017-12-01

    The mid-Miocene Climatic Optimum (MMCO; 13.75-16.9 Ma), represents the warmest period in Earth's history during the last 35 Ma, and is distinguished by low ice volume and high ocean water temperatures. The MMCO has been associated with high atmospheric CO2 (pCO2) similar to levels anticipated in the next century. Thus, understanding MMCO climate may help enlighten predictions of future climate change. Here, using new stable oxygen and carbon isotopes of fossil ungulate tooth enamel from before, during, and after the MMCO, we show that high pCO2 corresponds with warm-wet conditions, whereas low pCO2 corresponds with cool-dry conditions. We specifically show that mean annual precipitation (MAP), as inferred from tooth enamel δ13C values and corrected for atmospheric δ13C values (Δ13C), increased with increasing pCO2. Values of Δ13C > 19.5 ‰ in the lower John Day ( 27 Ma) and Mascall ( 15.3 Ma) localities imply relatively high mean annual precipitation (MAP = 550-850 mm/yr). Values of Δ 13C < 18.5 ‰ at 18 Ma and at four levels between 15 and 3 Ma imply low MAP (≤250 mm/yr), similar to modern climate. High MAP values generally correlate with high pCO2 levels, as inferred from marine records, implicating pCO2 as a principal driver of MAP in the Pacific Northwest. A climate oscillation model best explains our δ 13C data, such that warm-wet conditions during high pCO2 events alternated with cool-dry conditions during low pCO2 events on timescales of 100 kyr. The MMCO may have been more dynamic than originally considered, with wet-warm and cool-dry cycles reflecting Milankovitch cycles. High δ18O values in specimens from the John Day (21.8±0.6 ‰ V-SMOW) and Mascall (21.3±0.5 ‰) Formations may reflect lower elevations for the upwind Cascade Range prior to 7 Ma, or its proximity to the coast compared to more inland sites (δ18O = 17.7±0.9 to 19.6±1.1 ‰). Unusually high δ18O values of Dromomeryx sp. from Red Basin (27.4±0.6 ‰) most likely reflect

  15. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study

    International Nuclear Information System (INIS)

    Xi, Tong; Babar Shahzad, M.; Xu, Dake; Zhao, Jinlong; Yang, Chunguang; Qi, Min; Yang, Ke

    2016-01-01

    The effect of precipitation hardening on mechanical properties and coarsening behavior of Cu-rich precipitates in a Cu-bearing 316L austenite stainless steel after aging at 700 °C for different time were systematically investigated. The variations of morphology and composition of Cu-rich precipitates as a function of aging time were respectively characterized by electrical resistivity, atom probe tomography (APT) and transmission electron microscopy (TEM). It was found that both hardness and mechanical strength increased to peak value within short aging time, and remained nearly unchanged with prolonged aging time. The TEM observation confirmed a coherent interface between Cu-rich precipitates and austenite matrix, while high number densities of spheroidal Cu-rich precipitates were observed in all aged samples. APT analyses confirmed virtually 100% Cu core composition of Cu-rich precipitates, whereas the average radius was slightly increased from 1.38±0.46 nm to 2.39±0.81 nm with increasing the aging time. The relatively slow growth and coarsening behavior of Cu-rich precipitates was largely attributed to the slower diffusion kinetics of Cu, low interfacial energy and high strain energy of Cu-rich precipitates in the austenite matrix, and was well predicted by the Lifshitz-Slyozov-Wagner theory. The slow increase in average radius of Cu-rich precipitates was consistent with the modest change in hardness and yield strength with extended aging. In addition, the precipitation strengthening effects of Cu-rich precipitates were quantitatively evaluated and analyzed. These cumulative results and analyses could provide a solid foundation for much wider applications of Cu-bearing stainless steels.

  16. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Tong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Babar Shahzad, M.; Xu, Dake; Zhao, Jinlong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Chunguang, E-mail: cgyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Qi, Min [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-10-15

    The effect of precipitation hardening on mechanical properties and coarsening behavior of Cu-rich precipitates in a Cu-bearing 316L austenite stainless steel after aging at 700 °C for different time were systematically investigated. The variations of morphology and composition of Cu-rich precipitates as a function of aging time were respectively characterized by electrical resistivity, atom probe tomography (APT) and transmission electron microscopy (TEM). It was found that both hardness and mechanical strength increased to peak value within short aging time, and remained nearly unchanged with prolonged aging time. The TEM observation confirmed a coherent interface between Cu-rich precipitates and austenite matrix, while high number densities of spheroidal Cu-rich precipitates were observed in all aged samples. APT analyses confirmed virtually 100% Cu core composition of Cu-rich precipitates, whereas the average radius was slightly increased from 1.38±0.46 nm to 2.39±0.81 nm with increasing the aging time. The relatively slow growth and coarsening behavior of Cu-rich precipitates was largely attributed to the slower diffusion kinetics of Cu, low interfacial energy and high strain energy of Cu-rich precipitates in the austenite matrix, and was well predicted by the Lifshitz-Slyozov-Wagner theory. The slow increase in average radius of Cu-rich precipitates was consistent with the modest change in hardness and yield strength with extended aging. In addition, the precipitation strengthening effects of Cu-rich precipitates were quantitatively evaluated and analyzed. These cumulative results and analyses could provide a solid foundation for much wider applications of Cu-bearing stainless steels.

  17. The Centennial Trends Greater Horn of Africa precipitation dataset

    Science.gov (United States)

    Funk, Chris; Nicholson, Sharon E.; Landsfeld, Martin F.; Klotter, Douglas; Peterson, Pete J.; Harrison, Laura

    2015-01-01

    East Africa is a drought prone, food and water insecure region with a highly variable climate. This complexity makes rainfall estimation challenging, and this challenge is compounded by low rain gauge densities and inhomogeneous monitoring networks. The dearth of observations is particularly problematic over the past decade, since the number of records in globally accessible archives has fallen precipitously. This lack of data coincides with an increasing scientific and humanitarian need to place recent seasonal and multi-annual East African precipitation extremes in a deep historic context. To serve this need, scientists from the UC Santa Barbara Climate Hazards Group and Florida State University have pooled their station archives and expertise to produce a high quality gridded ‘Centennial Trends’ precipitation dataset. Additional observations have been acquired from the national meteorological agencies and augmented with data provided by other universities. Extensive quality control of the data was carried out and seasonal anomalies interpolated using kriging. This paper documents the CenTrends methodology and data.

  18. Spatio-temporal variability of several eco-precipitation indicators in China

    Science.gov (United States)

    Guo, B. B.; Zhang, J.; Wang, F.

    2016-12-01

    Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of

  19. Regional climate scenarios - A study on precipitation

    International Nuclear Information System (INIS)

    Hesselbjerg Christensen, J.; Boessing Christensen, O.

    2001-01-01

    A set of nested climate change simulations for the Nordic region and Denmark has been revisited. In the present work we have re-examined the results of CCMB and MBC with special emphasis on precipitation intensity frequencies, in particular the more extreme part of the frequency distribution. It has been demonstrated that the role of extreme precipitation events appears to be more realistically described in a high-resolution model, in terms of numerical agreement as well as seasonal variation. This is mainly due to a better simulation of deep low-pressure systems and mesoscale circulation. Generally, the analysis has confirmed the results from CCMB, but furthermore a resolution effect has been identified which seems essential to the understanding of climate change effects on the extreme end of the precipitation intensity distribution. In order to analyse the role of the model resolution we have aggregated both the nested model data and observational records to the GCM grid from the driving AOGCM. It was found that, in spite of changes in absolute numbers, the seasonal behaviour of decay constants does not change appreciably because of the aggregation. The RCM results show a seasonal behaviour very similar to an observed data set. It is therefore concluded that the GCM has an unrealistic simulation of the dependence of heavy precipitation on climate, as manifested in seasonal variation. In contrast, the regional simulations remain close to observation in this respect. Furthermore, they agree on a conclusion that extreme precipitation generally scales with average precipitation (no significant change in decay constants were detected), but that crucial summer season may be an exception, exhibiting an anomalous increase in heavy precipitation due to the anthropogenic greenhouse effect. The analysis has only been performed over Denmark due to lack of daily observational data for other regions. It is, however, necessary to extend the work to other areas, for instance

  20. Characteristics of autumn-winter extreme precipitation on the Norwegian west coast identified by cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, U. [Bjerknes Centre for Climate Research, Uni Bjerknes Centre, Bergen (Norway); Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia); Sorteberg, A. [University of Bergen, Geophysical Institute, Bergen (Norway); University of Bergen, Bjerknes Centre for Climate Research, Bergen (Norway)

    2012-08-15

    Extremely high autumn and winter precipitation events on the European west coast are often driven by low-pressure systems in the North Atlantic. Climate projections suggest the number and intensity of these events is likely to increase far more than the mean precipitation. In this study we investigate the autumn-winter extreme precipitation on the Norwegian west coast and the connection between its spatial distribution and sea level pressure (SLP) patterns using the k-means cluster analysis. We use three relatively high resolved downscalings of one global coupled model: the Arpege global atmospheric model (stretched grid with 35-km horizontal resolution over Norway) and the WRF-downscaled Arpege model (30 and 10-km) for the 30-year periods of 1961-1990 and 2021-2050. The cluster analysis finds three main SLP patterns responsible for extreme precipitation in different parts of the country. The SLP patterns found are similar to the NAO positive pattern known to strengthen the westerly flow towards European coast. We then apply the method to investigate future change in extreme precipitation. We find an increase in the number of days with extreme precipitation of 15, 39 and 35% in the two simulations (Arpege 35-km and WRF 30 and 10-km, respectively). We do not find evidence of a significant change in the frequency of weather patterns between the present and the future periods. Rather, it is the probability of a given weather pattern to cause extreme precipitation which is increased in the future, probably due to higher temperatures and an increased moisture content of the air. The WRF model predicts the increase in this probability caused by the most important SLP patterns to be >50%. The Arpege model does not predict such a significant change because the general increase in extreme precipitation predicted is smaller, probably due to its coarser resolution over ocean which leads to smoother representation of the low pressure systems. (orig.)

  1. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins.

    Science.gov (United States)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters

  2. Controls on the meridional extent of tropical precipitation and its contraction under global warming

    Science.gov (United States)

    Donohoe, A.

    2017-12-01

    A method for decomposing changes and variability in the spatial structure of tropical precipitation into shifting (meridional translation), contracting, and intensifying modes of variability is introduced. We demonstrate that the shifting mode of tropical precipitation explains very little (20%) more of the tropical precipitation changes and variability. Furthermore, the contraction of tropical precipitation is highly correlated (R2 > 0.95) with an intensification of the precipitation in both the observations and forced modeled simulations. These results suggest that the simultaneous contraction and intensification of tropical precipitation is the dominant mode of variability and changes under external forcing. We speculate that tropical surface temperature controls this concurrent variability. Indeed, models robustly predict that tropical precipitation increases and meridionally contracts in response to increased CO2 and is reduced and meridionally expanded under glacial forcing and boundary conditions. In contrast, the directionality of the tropical precipitation shift is both ambiguous and small in magnitude in response to increased CO2. Furthermore, the ratio of the contraction/expansion to intensification/reduction is consistent in the continuum of climate states from the glacial climate to a modern climate to a 4XCO2 climate suggesting that the intensification and contraction are linked together via a single mechanism. We examine two mechanisms responsible for the contraction of the precipitation under global warming : i. the reduction of the seasonal cycle of energy input to the atmosphere due to sea ice retreat that results in the tropical precipitation remaining closer to the equator during the solsticial seasons and; ii. the increased gross moist stability of the tropical atmosphere as the surface warms resulting in a weaker cross-equatorial Hadley circulation during the solsticial seasons.

  3. Energetic electron precipitation in weak to moderate corotating interaction region-driven storms

    Science.gov (United States)

    Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Søraas, Finn; Stadsnes, Johan; Sandanger, Marit Irene

    2017-03-01

    High-energy electron precipitation from the radiation belts can penetrate deep into the mesosphere and increase the production rate of NOx and HOx, which in turn will reduce ozone in catalytic processes. The mechanisms for acceleration and loss of electrons in the radiation belts are not fully understood, and most of the measurements of the precipitating flux into the atmosphere have been insufficient for estimating the loss cone flux. In the present study the electron flux measured by the NOAA POES Medium Energy Proton and Electron Detectors 0° and 90° detectors is combined together with theory of pitch angle diffusion by wave-particle interaction to quantify the electron flux lost below 120 km altitude. Using this method, 41 weak and moderate geomagnetic storms caused by corotating interaction regions during 2006-2010 are studied. The dependence of the energetic electron precipitation fluxes upon solar wind parameters and geomagnetic indices is investigated. Nine storms give increased precipitation of >˜750 keV electrons. Nineteen storms increase the precipitation of >˜300 keV electrons, but not the >˜750 keV population. Thirteen storms either do not change or deplete the fluxes at those energies. Storms that have an increase in the flux of electrons with energy >˜300 keV are characterized by an elevated solar wind velocity for a longer period compared to the storms that do not. Storms with increased precipitation of >˜750 keV flux are distinguished by higher-energy input from the solar wind quantified by the ɛ parameter and corresponding higher geomagnetic activity.

  4. Geo-statistical model of Rainfall erosivity by using high temporal resolution precipitation data in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2015-04-01

    Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error

  5. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  6. Thermodynamic Assessment of Silica Precipitation in the Primary Coolant of PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dooho; Kwon, Hyukchul; Sung, Kibang [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    Increasing silica concentration has been observed in many plants' reactor coolant system (RCS) following a refueling outage as a result of the cross contamination between the refueling cavity and the spent fuel pool. To have a better understanding of the role of silica on the fuel crud deposition, MULTEQ (MULTiple Equilibrium) calculations were performed in this study to predict high-temperature aqueous and precipitated species such as aluminum, calcium, magnesium, zinc and silica. This thermodynamic study implies that all hardness cations such as aluminum, calcium and magnesium already have precipitates with boron under current normal plant operating conditions. However, In-core boiling can increase the amount of precipitates with silica, such as CaB{sub 2}O{sub 4} and CaMg(SiO{sub 3}){sub 2}. For all cases modeled, a 1 ppm silica concentration will not result in precipitation of SiO{sub 2}.

  7. APFIM and TEM investigations of precipitation in rapidly solidified 316 stainless steel

    International Nuclear Information System (INIS)

    Wisutmethangoon, S.; Kelly, T.F.; Flinn, J.E.; Camus, P.P.

    1998-01-01

    316 stainless steel has been rapid solidification-processed (RSP) by gas atomization and hot extrusion of the powder with the intent of improving the mechanical properties through fine-scale precipitation. Vanadium, nitrogen and oxygen have been introduced intentionally as alloying elements for this purpose. The yield strength after solution heat treatment of the RSP alloy is 450 MPa. By ageing at 600 C for 1000 h, the yield strength increases to 615 MPa with little loss of ductility (53% reduction of area). The ultimate tensile strength after cold work and ageing is 922 MPa. The morphology and composition of the precipitates in this steel have been investigated using APFIM and TEM techniques in order understand the origin of the high strength. A high numbered density (∼2 x 10 21 m -3 ) of 25 nm plate-like precipitates was observed with TEM in an aged specimen. The composition of these precipitates was analyzed using APFIM techniques, and was found to be a complex nitride of Cr, V, Fe, Ni and Mo. This nitride precipitate was not found in an unaged specimen of this alloy. These precipitates are responsible for improving mechanical properties by dispersion strengthening. (orig.)

  8. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    International Nuclear Information System (INIS)

    Ye Baisheng; Yang Daqing; Ma Lijuan

    2012-01-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959–2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff. (letter)

  9. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    Science.gov (United States)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  10. Effects of Convective Aggregation on Radiative Cooling and Precipitation in a CRM

    Science.gov (United States)

    Naegele, A. C.; Randall, D. A.

    2017-12-01

    In the global energy budget, the atmospheric radiative cooling (ARC) is approximately balanced by latent heating, but on regional scales, the ARC and precipitation rates are inversely related. We use a cloud-resolving model to explore how the relationship between precipitation and the ARC is affected by convective aggregation, in which the convective activity is confined to a small portion of the domain that is surrounded by a much larger region of dry, subsiding air. Sensitivity tests show that the precipitation rate and ARC are highly sensitive to both SST and microphysics; a higher SST and 1-moment microphysics both act to increase the domain-averaged ARC and precipitation rates. In all simulations, both the domain-averaged ARC and precipitation rates increased due to convective aggregation, resulting in a positive temporal correlation. Furthermore, the radiative effect of clouds in these simulations is to decrease the ARC. This finding is consistent with our observational results of the cloud effect on the ARC, and has implications for convective aggregation and the geographic extent in which it can occur.

  11. Precipitation of Chromium Nitrides in the Super Duplex Stainless Steel 2507

    Science.gov (United States)

    Pettersson, Niklas; Pettersson, Rachel F. A.; Wessman, Sten

    2015-03-01

    Precipitation of chromium nitrides during cooling from temperatures in the range 1373 K to 1523 K (1100 °C to 1250 °C) has been studied for the super duplex stainless steel 2507 (UNS S32750). Characterization with optical, scanning and transmission electron microscopy was combined to quantify the precipitation process. Primarily Cr2N nitrides were found to precipitate with a high density in the interior of ferrite grains. An increased cooling rate and/or an increased austenite spacing clearly promoted nitride formation, resulting in precipitation within a higher fraction of the ferrite grains, and lager nitride particles. Furthermore, formation of the meta-stable CrN was induced by higher cooling rates. The toughness seemed unaffected by nitrides. A slight decrease in pitting resistance was, however, noticed for quenched samples with large amounts of precipitates. The limited adverse effect on pitting resistance is attributed to the small size (~200 nm) of most nitrides. Slower cooling of duplex stainless steels to allow nitrogen partitioning is suggested in order to avoid large nitrides, and thereby produce a size distribution with a smaller detrimental effect on pitting resistance.

  12. Intensification of extreme European summer precipitation in a warmer climate

    DEFF Research Database (Denmark)

    Christensen, O. B.; Christensen, J. H.

    2004-01-01

    Heavy and/or extended precipitation episodes with subsequent surface runoff can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of such events could change in response to greenhouse gas-induced global warming. Impacts of climate...... warming on severe precipitation events in Europe on a diurnal time scale were investigated with a high-resolution regional climate model for two of the greenhouse gas emission scenarios constructed by the Intergovernmental Panel on Climate Change (IPCC; Nakicenovic, N., et al., 2000, IPCC special report...... models both originating from fully transient climate change simulations. Here, we show that although the summer time precipitation decreases over a substantial part of Europe in the scenarios analysed, an increase in the amount of precipitation exceeding the present-day 99th and in most cases even the 95...

  13. The evolution of extreme precipitations in high resolution scenarios over France

    Science.gov (United States)

    Colin, J.; Déqué, M.; Somot, S.

    2009-09-01

    Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics

  14. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ′ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ′ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ′ phase, whereas the preceding precipitation of the θ′ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  15. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jimiao; Song, Min [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Hongge [School of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Yang, Chao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Ni, Song, E-mail: song.ni@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that the high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.

  16. Precipitation of plutonium from acidic solutions using magnesium oxide

    International Nuclear Information System (INIS)

    Jones, S.A.

    1994-01-01

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria

  17. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  18. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    Mouaia, K.

    1983-01-01

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector [fr

  19. Acute Precipitants of Physical Elder Abuse: Qualitative Analysis of Legal Records From Highly Adjudicated Cases.

    Science.gov (United States)

    Rosen, Tony; Bloemen, Elizabeth M; LoFaso, Veronica M; Clark, Sunday; Flomenbaum, Neal E; Breckman, Risa; Markarian, Arlene; Riffin, Catherine; Lachs, Mark S; Pillemer, Karl

    2016-08-01

    Elder abuse is a common phenomenon with potentially devastating consequences for older adults. Although researchers have begun to identify predisposing risk factors for elder abuse victims and abusers, little is known about the acute precipitants that lead to escalation to physical violence. We analyzed legal records from highly adjudicated cases to describe these acute precipitants for physical elder abuse. In collaboration with a large, urban district attorney's office, we qualitatively evaluated legal records from 87 successfully prosecuted physical elder abuse cases from 2003 to 2015. We transcribed and analyzed narratives of the events surrounding physical abuse within victim statements, police reports, and prosecutor records. We identified major themes using content analysis. We identified 10 categories of acute precipitants that commonly triggered physical elder abuse, including victim attempting to prevent the abuser from entering or demanding that he or she leave, victim threatening or attempting to leave/escape, threat or perception that the victim would involve the authorities, conflict about a romantic relationship, presence during/intervention in ongoing family violence, issues in multi-generational child rearing, conflict about the abuser's substance abuse, confrontation about financial exploitation, dispute over theft/destruction of property, and disputes over minor household issues. Common acute precipitants of physical elder abuse may be identified. Improved understanding of these acute precipitants for escalation to physical violence and their contribution to elder abuse may assist in the development of prevention and management strategies.

  20. Lipopolysaccharide precipitates hepatic encephalopathy and increases blood-brain barrier permeability in mice with acute liver failure.

    Science.gov (United States)

    Chastre, Anne; Bélanger, Mireille; Nguyen, Bich N; Butterworth, Roger F

    2014-03-01

    Acute liver failure (ALF) is frequently complicated by infection leading to precipitation of central nervous system complications such as hepatic encephalopathy (HE) and increased mortality. There is evidence to suggest that when infection occurs in ALF patients, the resulting pro-inflammatory mechanisms may be amplified that could, in turn, have a major impact on blood-brain barrier (BBB) function. The aim of this study was to investigate the role of endotoxemia on the progression of encephalopathy in relation to BBB permeability during ALF. Adult male C57-BL6 mice with ALF resulting from azoxymethane-induced toxic liver injury were administered trace amounts of the endotoxin component lipopolysaccharide (LPS). Effects on the magnitude of the systemic inflammatory response, liver pathology and BBB integrity were measured as a function of progression of HE, defined as time to loss of corneal reflex (coma). Lipopolysaccharide caused additional two- to seven-fold (P liver pathology and associated increases of circulating transaminases as well as increased hyperammonaemia consistent with a further loss of viable hepatocytes. LPS treatment of ALF mice led to a rapid precipitation of hepatic coma and the BBB became permeable to the 25-kDa protein immunoglobulin G (IgG). This extravasation of IgG was accompanied by ignificant up-regulation of matrix metalloproteinase-9 (MMP-9), an endopeptidase known to modulate opening of the BBB in a wide range of neurological disorders. These findings represent the first direct evidence of inflammation-related BBB permeability changes in ALF. © 2013 John Wiley & Sons A/S. Publishing by John Wiley & Sons Ltd.

  1. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  2. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    Science.gov (United States)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  3. Spatial variations of summer precipitation trends in South Korea, 1973-2005

    International Nuclear Information System (INIS)

    Chang, Heejun; Kwon, Won-Tae

    2007-01-01

    We have investigated the spatial patterns of trends in summer precipitation amount, intensity, and heavy precipitation for South Korea between 1973 and 2005. All stations show increasing trends in precipitation amount during the summer months, with the highest percentage of significant increase in June precipitation for the northern and central western part of South Korea. There is a significant increase in August precipitation for stations in the southeastern part of South Korea. Only a few stations exhibited significant upward trends in September precipitation. There is a weak to moderate spatial autocorrelation with the highest Moran's I value in June precipitation amount and August precipitation intensity. The number of days with daily precipitation exceeding 50 and 30 mm during the summer has increased at all stations. Observed trends are likely to be associated with changes in large-scale atmospheric circulation, sea surface temperature anomalies, and orography, but detailed causes of these trends need further investigation

  4. Precipitation alters interactions in a grassland ecological community.

    Science.gov (United States)

    Deguines, Nicolas; Brashares, Justin S; Prugh, Laura R

    2017-03-01

    Climate change is transforming precipitation regimes world-wide. Changes in precipitation regimes are known to have powerful effects on plant productivity, but the consequences of these shifts for the dynamics of ecological communities are poorly understood. This knowledge gap hinders our ability to anticipate and mitigate the impacts of climate change on biodiversity. Precipitation may affect fauna through direct effects on physiology, behaviour or demography, through plant-mediated indirect effects, or by modifying interactions among species. In this paper, we examined the response of a semi-arid ecological community to a fivefold change in precipitation over 7 years. We examined the effects of precipitation on the dynamics of a grassland ecosystem in central California from 2007 to 2013. We conducted vegetation surveys, pitfall trapping of invertebrates, visual surveys of lizards and capture-mark-recapture surveys of rodents on 30 plots each year. We used structural equation modelling to evaluate the direct, indirect and modifying effects of precipitation on plants, ants, beetles, orthopterans, kangaroo rats, ground squirrels and lizards. We found pervasive effects of precipitation on the ecological community. Although precipitation increased plant biomass, direct effects on fauna were often stronger than plant-mediated effects. In addition, precipitation altered the sign or strength of consumer-resource and facilitative interactions among the faunal community such that negative or neutral interactions became positive or vice versa with increasing precipitation. These findings indicate that precipitation influences ecological communities in multiple ways beyond its recognized effects on primary productivity. Stochastic variation in precipitation may weaken the average strength of biotic interactions over time, thereby increasing ecosystem stability and resilience to climate change. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological

  5. Investigation of Asphaltene Precipitation at Elevated Temperature

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lindeloff, Niels; Stenby, Erling Halfdan

    1998-01-01

    In order to obtain quantitative data on the asphaltene precipitation induced by the addition of n-alkane (heptane) at temperatures above the normal boiling point of the precipitant, a high temperature/high pressure filtration apparatus has been constructed. Oil and alkane are mixed...

  6. Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation

    Science.gov (United States)

    Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.

    2018-04-01

    The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.

  7. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils

    International Nuclear Information System (INIS)

    Thørring, H.; Skuterud, L.; Steinnes, E.

    2014-01-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m −2 per column, results indicate that acidic precipitation increased the mobility of 134 Cs added during the experiment. However, depth distribution of already present Chernobyl fallout 137 Cs was not significantly affected by the chemical composition of precipitation. - Highlights: • Mobility of freshly added Cs-134 was higher in soil receiving acidic precipitation. • Depth penetration of Cs-134 was higher in soil profiles with a thicker humus layer. • Depth distribution of Chernobyl Cs-137 was not affected by precipitation type

  8. High-resolution electron microscopy studies of the precipitation of copper under neutron irradiation in an Fe-1.3WT% Cu alloy

    International Nuclear Information System (INIS)

    Nicol, A. C.

    1998-01-01

    We have studied by electron microscopy the copper-rich precipitates in an Fe-1.3wt%Cu model alloy irradiated with neutrons to doses of 8.61 x 10 -3 dpa and 6.3 x 10 -2 dpa at a temperature of ∼270 C. In the lower dose material a majority (ca. 60%)of the precipitates visible in high-resolution electron microscopy were timed 9R precipitates of size ∼2-4 nm, while ca. 40% were untwinned. In the higher dose material, a majority (ca. 75%) of visible precipitates were untwinned although many still seemed to have a 9R structure. The average angle α between the herring-bone fringes in the twin variants was measured as 125 degree, not the 129 degree characteristic of precipitates in thermally-aged and electron-irradiated material immediately after the bcc->9R martensitic transformation. We argue that these results imply that the bcc->9R transformation of small (<4 nm) precipitates under neutron irradiation takes place at the irradiation temperature of 270 C rather than after subsequent cooling. Preliminary measurements showed that precipitate sizes did not depend strongly on dose, with a mean diameter of 3.4 ± 0.7 nm for the lower dose material, and 3.0 ± 0.5 nm for the higher dose material. This result agrees with the previous assumption that the lack of coarsening in precipitates formed under neutron irradiation is a consequence of the partial dissolution of larger precipitates by high-energy cascades

  9. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal).

    Science.gov (United States)

    Durães, Nuno; Bobos, Iuliu; da Silva, Eduardo Ferreira

    2017-02-01

    Acid mine waters (AMW) collected during high- and low-flow water conditions from the Lousal, Aljustrel, and São Domingos mining areas (Iberian Pyrite Belt) were physicochemically analyzed. Speciation calculation using PHREEQC code confirms the predominance of Me n+ and Me-SO 4 species in AMW samples. Higher concentration of sulfate species (Me-SO 4 ) than free ion species (Me n+ , i.e., Al, Fe, and Pb) were found, whereas opposite behavior is verified for Mg, Cu, and Zn. A high mobility of Zn than Cu and Pb was identified. The sulfate species distribution shows that Fe 3+ -SO 4 2- , SO 4 2- , HSO 4 - , Al-SO 4 , MgSO 4 0 , and CaSO 4 0 are the dominant species, in agreement with the simple and mixed metal sulfates and oxy-hydroxysulphates precipitated from AMW. The saturation indices (SI) of melanterite and epsomite show a positive correlation with Cu and Zn concentrations in AMW, which are frequently retained in simple metal sulfates. Lead is well correlated with jarosite and alunite (at least in very acid conditions) than with simple metal sulfates. The Pb for K substitution in jarosite occurs as increasing Pb concentration in solution. Lead mobility is also controlled by anglesite precipitation (a fairly insoluble sulfate), where a positive correlation was ascertained when the SI approaches equilibrium. The zeta potential of AMW decreased as pH increased due to colloidal particles aggregation, where water species change from SO 4 2- to OH - species during acid to alkaline conditions, respectively. The AMW samples were supersaturated in schwertmannite and goethite, confirmed by the Me n+ -SO 4 , Me n+ -Fe-O-OH, or Me n+ -S-O-Fe-O complexes identified by attenuated total reflectance infrared spectroscopy (ATR-IR). The ATR-IR spectrum of an AMW sample with pH 3.5 (sample L1) shows well-defined vibration plans attributed to SO 4 tetrahedron bonded with Fe-(oxy)hydroxides and the Me n+ sorbed by either SO 4 or Fe-(oxy)hydroxides. For samples with lower pH values (p

  10. Precipitate resolution in an electron irradiated ni-si alloy

    Science.gov (United States)

    Watanabe, H.; Muroga, T.; Yoshida, N.; Kitajima, K.

    1988-09-01

    Precipitate resolution processes in a Ni-12.6 at% Si alloy under electron irradiation have been observed by means of HVEM. Above 400°C, growth and resolution of Ni 3Si precipitates were observed simultaneously. The detail stereoscopic observation showed that the precipitates close to free surfaces grew, while those in the middle of a specimen dissolved. The critical dose when the precipitates start to shrink increases with increasing the depth. This depth dependence of the precipitate behavior under irradiation has a close relation with the formation of surface precipitates and the growth of solute depleted zone beneath them. The temperature and dose dependence of the resolution rate showed that the precipitates in the solute depleted zone dissolved by the interface controlled process of radiation-enhanced diffusion.

  11. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    Science.gov (United States)

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This

  12. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  13. Is southwestern China experiencing more frequent precipitation extremes?

    International Nuclear Information System (INIS)

    Liu, Meixian; Xu, Xianli; Wang, Kelin; Sun, Alexander Y; Liu, Wen; Zhang, Xiaoyan

    2014-01-01

    Climate extremes have and will continue to cause severe damages to buildings and natural environments around the world. A full knowledge of the probability of the climate extremes is important for the management and mitigation of natural hazards. Based on Mann–Kendall trend test and copulas, this study investigated the characteristics of precipitation extremes as well as their implications in southwestern China (Yunnan, Guangxi and Guizhou Province), through analyzing the changing trends and probabilistic characteristics of six indices, including the consecutive dry days, consecutive wet days, annual total wet day precipitation, heavy precipitation days (R25), max 5 day precipitation amount (Rx5) and the rainy days (RDs). Results showed that the study area had generally become drier (regional mean annual precipitation decreased by 11.4 mm per decade) and experienced enhanced precipitation extremes in the past 60 years. Relatively higher risk of drought in Yuanan and flood in Guangxi was observed, respectively. However, the changing trends of the precipitation extremes were not spatially uniform: increasing risk of extreme wet events for Guangxi and Guizhou, and increasing probability of concurrent extreme wet and dry events for Yunnan. Meanwhile, trend analyses of the 10 year return levels of the selected indices implied that the severity of droughts decreased in Yunnan but increased significantly in Guangxi and Guizhou, and the severity of floods increased in Yunnan and Guangxi in the past decades. Hence, the policy-makers need to be aware of the different characterizations and the spatial heterogeneity of the precipitation extremes. (letters)

  14. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection across different horizontal resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.

    2011-04-15

    Current climate models produce quite heterogeneous projections for the responses of precipitation extremes to future climate change. To help understand the range of projections from multimodel ensembles, a series of idealized 'aquaplanet' Atmospheric General Circulation Model (AGCM) runs have been performed with the Community Atmosphere Model CAM3. These runs have been analysed to identify the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. We adopt the aquaplanet framework for our simulations to remove any sensitivity to the spatial resolution of external inputs and to focus on the roles of model physics and dynamics. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes than on mean precipitation. Horizontal model resolution strongly affects the global warming signals in the extreme precipitation in tropical and subtropical regions but not in high latitude regions. This study illustrates that the effects of horizontal resolution have to be taken into account to develop more robust projections of precipitation extremes.

  15. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    International Nuclear Information System (INIS)

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-01

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al 12 Mg 17 phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β

  16. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K

    2017-04-07

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.

  17. Studying of Nano SiO2 Preparation from Rice Husk Ash by Using High Gravity Reaction Precipitation Technology

    International Nuclear Information System (INIS)

    Nguyen Thanh Chung; Tran Ngoc Ha; Hoang Van Duc

    2013-01-01

    A novel method (High-gravity reactive precipitation - HGRP) was developed to prepare nano-SiO 2 from rice husk ash using gas-liquid reaction system. The precipitated silica produced by our proposed method had average size of 20 nm with narrow size distribution and purity of SiO 2 was approximately 99.2%. The principles of the method as well as experimental conditions were also described. (author)

  18. Prediction of long-term precipitate evolution in austenitic heat-resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae-Hyeok; Jung, Woo-Sang; Cho, Young Whan [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials/Devices Div.; Kozeschnik, Ernst [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology

    2010-07-01

    Numerical prediction of the long-term precipitate evolution in five different austenitic heat-resistant stainless steels, NF709, Super304H, Sanicro25, CF8C-PLUS and HTUPS has been carried out. MX and M{sub 23}C{sub 6} are predicted to remain as major precipitates during long-term aging in these steels. The addition of 3 wt% Cu produces very fine Cu-rich precipitates during aging in Super304H and Sanicro25. It is found that the amount of Z phase start to increase remarkably between 1,000 and 10,000 hours of aging at the expense of MX precipitates in the steels containing a high nitrogen content. However, the growth rate of Z phase is relatively slow and its average size reaches at most a few tens of nanometers after 100,000 hours of aging at 700 C, compared with 9-12% Cr ferritic/martensitic heat-resistant steels. The predicted precipitation sequence and precipitate size during aging are in general agreement with experimental observations. (orig.)

  19. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  20. Long Term Ground Based Precipitation Data Analysis in California's 7 Climate Divisions: Spatial and Temporal Variability

    Science.gov (United States)

    Rodriguez, L.; El-Askary, H. M.; Rakovski, C.; Allai, M.

    2015-12-01

    California is an area of diverse topography and has what many scientists call a Mediterranean climate. Various precipitation patterns exist due to El Niño Southern Oscillation (ENSO) which can cause abnormal precipitation or droughts. As temperature increases mainly due to the increase of CO2 in the atmosphere, it is rapidly changing the climate of not only California but the world. An increase in temperature is leading to droughts in certain areas as other areas are experiencing heavy rainfall/flooding. Droughts in return are providing a foundation for fires harming the ecosystem and nearby population. Various natural hazards can be induced due to the coupling effects from inconsistent precipitation patterns and vice versa. Using wavelets and ARIMA modeling, we were able to identify anomalies of high precipitation and droughts within California's 7 climate divisions using NOAA's hourly precipitation data from rain gauges and compared the results with modeled data, SOI, PDO, and AMO. The identification of anomalies can be used to compare and correct remote sensing measurements of precipitation and droughts.

  1. Identifying external influences on global precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, K.; Bonfils, C.

    2013-11-11

    Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle (“thermodynamic” changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt (“dynamic” changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities.

  2. Improvement of the performance of the electrostatic precipitators for coal thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, A. (ENEL, Pisa (IT)); Bogani, V.; Dinelli, G.; Mattachini, F.

    1986-10-01

    Electrostatic precipitators performances are greatly influenced by the physical and chemical characteristics of the particles which are to be collected; a very important role is played by electric resistivity of fly ash: when it is high we have a general increase in the number of discharges within the precipitator ,with a consequent decrease in collection efficiency and an increase in emissions. In order to avoid such a behaviour, a different kind of energization, based on the superposition of narrow voltage pulses to a DC voltage, may be used. A prototype of pulse power supply has been installed on the electrostatic precipitator of a coal burning 320 MWe thermal unit and some tests have been carried out to verify its performance with different operating conditions. Some results of the tests are presented here, together with the plan of the research which will develop on a new experimental electrostatic precipitator.

  3. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    Science.gov (United States)

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  4. Effect of magnetic field on the carbide precipitation during tempering of a molybdenum-containing steel

    International Nuclear Information System (INIS)

    Hou, T.P.; Li, Y.; Zhang, J.J.; Wu, K.M.

    2012-01-01

    The influence of a high magnetic field on the carbide precipitation during the tempering of an Fe–2.8C–3.0Mo(wt%) steel was investigated. As-quenched steels were tempered at 200 °C for various times with and without the presence of 12-T magnetic field. The applied field effectively promoted the precipitation of the relatively high-temperature monoclinic χ-Fe 5 C 2 carbide, compared to the usual ε-Fe 2 C and η-Fe 2 C carbides precipitated without magnetic field. It is believed that the effect of applying a magnetic field is due to the reduction in the Gibbs free energy of the relatively higher magnetization phase. The denser distributions of the metastable carbides are attributed to the increased nucleation rate due to additional transformation force. The dispersed precipitation strengthening compensated for the decrease of hardness due to the loss of supersaturation of carbon atoms in the matrix. - Highlights: ► Applied field promoted the precipitation of χ-Fe 5 C 2 carbide. ► Promotion of the transition carbide was attributed to its higher magnetization. ► Increase in hardness was counterbalanced by the reduction in carbon content.

  5. Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship.

    Science.gov (United States)

    Estiarte, Marc; Vicca, Sara; Peñuelas, Josep; Bahn, Michael; Beier, Claus; Emmett, Bridget A; Fay, Philip A; Hanson, Paul J; Hasibeder, Roland; Kigel, Jaime; Kröel-Dulay, Gyorgy; Larsen, Klaus Steenberg; Lellei-Kovács, Eszter; Limousin, Jean-Marc; Ogaya, Romà; Ourcival, Jean-Marc; Reinsch, Sabine; Sala, Osvaldo E; Schmidt, Inger Kappel; Sternberg, Marcelo; Tielbörger, Katja; Tietema, Albert; Janssens, Ivan A

    2016-07-01

    Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with

  6. Increasing the regional availability of the Standardized Precipitation Index: an operational approach

    Directory of Open Access Journals (Sweden)

    Monica Cristina Meschiatti

    Full Text Available ABSTRACT The need to use a length of rainfall records of at least 30 years to calculate the Standardized Precipitation Index (SPI limits its application in several Drought Early Warning Systems of developing countries. Therefore, in order to increase the number of weather stations in which the SPI may be applied, this study quantified the difference among SPI values derived from calibration periods (CP smaller than 30 years in respect to those computed from the 30-year period of 1985 – 2014 in the State of São Paulo, Brazil (time scales ranging from 1 to 12 months were considered. The correlation, agreement and consistency of SPI values derived from CP ranging from the last 30 to 21 years have been evaluated. The Kolmogorov-Smirnov/Lilliefors test indicated, for all CP, that the 2-parameter gamma distribution may be used to calculate the SPI in the State of São Paulo. The normality test indicated that, even for the period of 1985 – 2014, the normally assumption of the SPI series is not always met. However, it was observed no remarkable difference in the rejection rates of the normality assumption obtained from the different CP. Finally, both absolute mean error and the modified index of agreement indicated a high consistence among SPI values derived from the calibration period of 1991 – 2014 (24 years in respect to those derived from the 30-year period. Accordingly, it is possible to use weather stations with rainfall records starting in 1991 (or earlier to calculate, in operational mode, the SPI in the State of São Paulo.

  7. Urbanization effect on precipitation over the Pearl River Delta based on CMORPH data

    Directory of Open Access Journals (Sweden)

    Sheng Chen

    2015-03-01

    Full Text Available Based on the satellite data from the Climate Prediction Center morphing (CMORPH at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta (PRD metropolitan regions of China. CMORPH data well estimates the precipitation features over the PRD. Compared to the surrounding rural areas, the PRD urban areas experience fewer and shorter precipitation events with a lower precipitation frequency (ratio of rainy hours, about 3 days per year less; however, short-duration heavy rain events play a more significant role over the PRD urban areas. Afternoon precipitation is much more pronounced over the PRD urban areas than the surrounding rural areas, which is probably because of the increase in short-duration heavy rain over urban areas.

  8. Are climate-related changes to the character of global-mean precipitation predictable?

    International Nuclear Information System (INIS)

    Stephens, Graeme L; Hu, Yongxiang

    2010-01-01

    The physical basis for the change in global-mean precipitation projected to occur with the warming associated with increased greenhouse gases is discussed. The expected increases to column water vapor W control the rate of increase of global precipitation accumulation through its affect on the planet's energy balance. The key role played by changes to downward longwave radiation controlled by this changing water vapor is emphasized. The basic properties of molecular absorption by water vapor dictate that the fractional rate of increase of global-mean precipitation must be significantly less that the fractional rate of increase in water vapor and it is further argued that this reduced rate of precipitation increase implies that the timescale for water re-cycling is increased in the global mean. This further implies less frequent precipitation over a fixed period of time, and the intensity of these less frequent precipitating events must subsequently increase in the mean to realize the increased global accumulation. These changes to the character of global-mean precipitation, predictable consequences of equally predictable changes to W, apply only to the global-mean state and not to the regional or local scale changes in precipitation.

  9. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions.

    Science.gov (United States)

    Polade, Suraj D; Gershunov, Alexander; Cayan, Daniel R; Dettinger, Michael D; Pierce, David W

    2017-09-07

    In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events.

  10. Precipitation of Second Phases in High-Interstitial-Alloyed Austenitic Steel

    Science.gov (United States)

    Lee, Tae-Ho; Ha, Heon-Young; Kim, Sung-Joon

    2011-12-01

    The precipitation reaction of an austenitic stainless steel containing N + C was investigated using transmission electron microscopy. The main precipitate formed during isothermal aging at 1123 K (850 °C) was M23C6 carbide, and its morphology gradually changed in a sequence of intergranular (along grain boundary) → cellular (or discontinuous) → intragranular (within grain interior) form with aging time. Irrespective of different morphologies, the M23C6 was consistently related to austenite matrix in accordance with the cube-on-cube orientation relationship. Based on the analysis of electron diffraction, two variants of intragranular M23C6 were identified, and they were related to each other by twin relation. Prolonged aging produced other types of precipitates—the rod-shaped Cr2N and the coarse irregular intermetallic sigma phase. The similarities and differences in precipitation behavior between N only and N + C alloyed austenitic stainless steels are briefly discussed.

  11. Warm season precipitation signal in δ2 H values of wood lignin methoxyl groups from high elevation larch trees in Switzerland.

    Science.gov (United States)

    Riechelmann, Dana F C; Greule, Markus; Siegwolf, Rolf T W; Anhäuser, Tobias; Esper, Jan; Keppler, Frank

    2017-10-15

    In this study, we tested stable hydrogen isotope ratios of wood lignin methoxyl groups (δ 2 H methoxyl values) as a palaeoclimate proxy in dendrochronology. This is a quite new method in the field of dendrochronology and the sample preparation is much simpler than the methods used before to measure δ 2 H values from wood. We measured δ 2 H methoxyl values in high elevation larch trees (Larix decidua Mill.) from Simplon Valley (southern Switzerland). Thirty-seven larch trees were sampled and five individuals analysed for their δ 2 H methoxyl values at annual (1971-2009) and pentadal resolution (1746-2009). The δ 2 H methoxyl values were measured as CH 3 I released upon treatment of the dried wood samples with hydroiodic acid. 10-90 μL from the head-space were injected into the gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/HTC-IRMS) system. Testing the climate response of the δ 2 H methoxyl values, the annually resolved series show a positive correlation of r = 0.60 with June/July precipitation. The pentadally resolved δ 2 H methoxyl series do not show any significant correlation to climate parameters. Increased precipitation during June and July, which are on average warm and relatively dry months, results in higher δ 2 H values of the xylem water and, therefore, higher δ 2 H values in the lignin methoxyl groups. Therefore, we suggest that δ 2 H methoxyl values of high elevation larch trees might serve as a summer precipitation proxy. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Waste and Simulant Precipitation Issues

    International Nuclear Information System (INIS)

    Steele, W.V.

    2000-01-01

    As Savannah River Site (SRS) personnel have studied methods of preparing high-level waste for vitrification in the Defense Waste Processing Facility (DWPF), questions have arisen with regard to the formation of insoluble waste precipitates at inopportune times. One option for decontamination of the SRS waste streams employs the use of an engineered form of crystalline silicotitanate (CST). Testing of the process during FY 1999 identified problems associated with the formation of precipitates during cesium sorption tests using CST. These precipitates may, under some circumstances, obstruct the pores of the CST particles and, hence, interfere with the sorption process. In addition, earlier results from the DWPF recycle stream compatibility testing have shown that leaching occurs from the CST when it is stored at 80 C in a high-pH environment. Evidence was established that some level of components of the CST, such as silica, was leached from the CST. This report describes the results of equilibrium modeling and precipitation studies associated with the overall stability of the waste streams, CST component leaching, and the presence of minor components in the waste streams

  13. Effect of high-temperature pre-precipitation on microstructure and properties of 7055 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    陈康华; 黄兰萍

    2003-01-01

    The near-solvus pre-precipitation following higher temperature solution treatment was performed on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transmission electron microscopy results show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the sequent age. The stress corrosion cracking resistance of aged 7055 alloys could be improved with non-deteriorated strength and plasticity via the pre-precipitation.

  14. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  15. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change

    Science.gov (United States)

    Tsanis, I.; Tapoglou, E.

    2018-01-01

    The North Atlantic Oscillation (NAO) is responsible for the climatic variability in the Northern Hemisphere, in particular, in Europe and is related to extreme events, such as droughts. The purpose of this paper is to study the correlation between precipitation and winter (December-January-February-March (DJFM)) NAO both for the historical period (1951-2000) and two future periods (2001-2050 and 2051-2100). NAO is calculated for these three periods by using sea level pressure, while precipitation data from seven climate models following the representative concentration pathway (RCP) 8.5 are also used in this study. An increasing trend in years with positive DJFM NAO values in the future is defined by this data, along with higher average DJFM NAO values. The correlation between precipitation and DJFM NAO is high, especially in the Northern (high positive) and Southern Europe (high negative). Therefore, higher precipitation in Northern Europe and lower precipitation in Southern Europe are expected in the future. Cross-spectral analysis between precipitation and DJFM NAO time series in three different locations in Europe revealed the best coherence in a dominant cycle between 3 and 4 years. Finally, the maximum drought period in terms of consecutive months with drought is examined in these three locations. The results can be used for strategic planning in a sustainable water resources management plan, since there is a link between drought events and NAO.

  16. The influence of a Cr-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2009-01-01

    The effects of a Cr-dopant on the precipitation of acicular α-FeOOH particles, the formation of solid solutions, particle size and shape were investigated using X-ray powder diffraction (XRD), Moessbauer and Fourier transform infrared (FT-IR) spectroscopies and field emission scanning electron microscopy (FE-SEM). Acicular and monodisperse α-FeOOH particles were precipitated at a very high pH by heating the suspension obtained by adding a tetramethylammonium hydroxide solution to an aqueous solution of FeCl 3 . The influence of the Cr-dopant was investigated by addition of various amounts of Cr 3+ ions to the initial FeCl 3 solution, where r = 100[Cr]/([Cr] + [Fe]) stands for the added amount of Cr. XRD analysis of the obtained powders (with r values from 0 to 23.08) showed only the presence of the diffraction lines characteristic for α-FeOOH. Moessbauer spectroscopy showed a decrease in hyperfine magnetic field of α-FeOOH with an increase in Cr addition which indicates Cr incorporation into the α-FeOOH structure. The OH bending bands in the FT-IR spectra showed only a slight change in position with an increase in r, but the considerable increase in the lattice band wave number indicated a decrease in thickness of the lath-like α-FeOOH particles. This conclusion was confirmed by FE-SEM observations

  17. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    Science.gov (United States)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  18. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  19. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    Science.gov (United States)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.

  20. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    Directory of Open Access Journals (Sweden)

    S. Stisen

    2012-11-01

    . We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid fluctuate significantly, causing climatological mean correction factors to be inadequate.

  1. Aerosol removal due to precipitation and wind forcings in Milan urban area

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne

    2018-01-01

    Air pollution represents a critical issue in Milan urban area (Northern Italy). Here, the levels of fine particles increase, overcoming the legal limits, mostly in wintertime, due to favourable calm weather conditions and large heating and vehicular traffic emissions. The main goal of this work is to quantify the aerosol removal effect due to precipitation at the ground. At first, the scavenging coefficients have been calculated for aerosol particles with diameter between 0.25 and 3 μm. The average values of this coefficient vary between 2 ×10-5 and 5 ×10-5 s-1. Then, the aerosol removal induced separately by precipitation and wind have been compared through the introduction of a removal index. As a matter of fact, while precipitation leads to a proper wet scavenging of the particles from the atmosphere, high wind speeds cause enhanced particle dispersion and dilution, that locally bring to a tangible decrease of aerosol particles' number. The removal triggered by these two forcings showed comparable average values, but different trends. The removal efficiency of precipitation lightly increases with the increase of particle diameters and vice versa happens with strong winds.

  2. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  3. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China

    Directory of Open Access Journals (Sweden)

    Shan-hu Jiang

    2010-12-01

    Full Text Available Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC morphing technique precipitation product (CMORPH, were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and −5% biases for 3B42V6, 3B42RT, and CMORPH, respectively. Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.

  4. Global Precipitation Responses to Land Hydrological Processes

    Science.gov (United States)

    Lo, M.; Famiglietti, J. S.

    2012-12-01

    Several studies have established that soil moisture increases after adding a groundwater component in land surface models due to the additional supply of subsurface water. However, impacts of groundwater on the spatial-temporal variability of precipitation have received little attention. Through the coupled groundwater-land-atmosphere model (NCAR Community Atmosphere Model + Community Land Model) simulations, this study explores how groundwater representation in the model alters the precipitation spatiotemporal distributions. Results indicate that the effect of groundwater on the amount of precipitation is not globally homogeneous. Lower tropospheric water vapor increases due to the presence of groundwater in the model. The increased water vapor destabilizes the atmosphere and enhances the vertical upward velocity and precipitation in tropical convective regions. Precipitation, therefore, is inhibited in the descending branch of convection. As a result, an asymmetric dipole is produced over tropical land regions along the equator during the summer. This is analogous to the "rich-get-richer" mechanism proposed by previous studies. Moreover, groundwater also increased short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth and found to be a function of water table depth. Based on the spatial distributions of the one-month-lag autocorrelation coefficients as well as Hurst coefficients, air-land interaction can occur from short (several months) to long (several years) time scales. This study indicates the importance of land hydrological processes in the climate system and the necessity of including the subsurface processes in the global climate models.

  5. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David

    2007-01-01

    Can calorimetry bring new input to the Current understanding of asphaltene precipitation? In this work, two types of precipitation were studied by means of calorimetry: addition of n-heptane into asphaltene solutions and temperature/pressure variations on a recombined live oil. The first series...... of experiments showed that weak forces determine precipitation. Indeed, isothermal titration calorimetry could not detect any clear signal although this technique can detect low-energy transitions such as liquid-liquid equilibrium and rnicellization. The second series of tests proved that precipitation caused...... by T and P variations is exothermic for this system. Furthermore, the temperature-induced precipitation is accompanied by an increase in the apparent thermal expansivity. Therefore, it seems that these two phase transitions exhibit different calorimetric behaviours and they may not be as similar...

  6. A Radar Climatology for Germany - a 16-year high resolution precipitation data and its possibilities

    Science.gov (United States)

    Walawender, Ewelina; Winterrath, Tanja; Brendel, Christoph; Hafer, Mario; Junghänel, Thomas; Klameth, Anna; Weigl, Elmar; Becker, Andreas

    2017-04-01

    One of the main features of heavy precipitation events is their small-scale distribution. Despite a local occurrence, these intensive rainfalls may, however, cause most serious damage and have significant impact on the whole river basin area resulting in e.g. flash floods or urban flooding. Thus, it is of great importance not only to detect the life-cycle of extreme precipitation during its occurrence but also to collect precise climatological information on such events. The German weather service (Deutscher Wetterdienst) operates a very dense network of more than 2000 weather stations collecting data on precipitation. It is however not sufficient for detecting spatially limited phenomena. Thanks to radar data, current monitoring of such events is possible. A quality control process is applied to real-time radar products, however only automatic rain gauges data can be used in the adjustment procedure. To merge both radar data and all available rain gauges data, the radar climatology dataset was established. Within the framework of a project financed by the federal agencies' strategic alliance 'Adaptation to Climate Change', 16 years (2001-2016) of radar data have been reanalyzed in order to gain a homogenous, quality-controlled, high-resolution precipitation data set suitable for analyzing extreme events in a climatological approach. Additional corrections methods (e.g. clutter, spokes and beam height correction) were defined and used for the reprocessing procedure to enhance the data quality. Although the time series is still rather short for a climatology, for the first time the data set allows an insight into e.g. the distribution, size, life cycle, and duration of extreme events that cannot be measured by point measurements alone. All radar climatology products share the same spatial and temporal coverage. The whole dataset has been produced for the area of Germany. With the relatively high spatial resolution of 1km, the data can be used as a component of wide

  7. Tree ring evidence of a 20th century precipitation surge in the monsoon shadow zone of the western Himalaya, India

    Science.gov (United States)

    Yadav, Ram R.

    2011-01-01

    The present study is the first attempt to develop an annual (August-July) precipitation series back to AD 1330 using a tree ring data network of Himalayan cedar (Cedrus deodara (Roxb.) G. Don) from the Lahaul-Spiti region in the western Himalaya, India. The rainfall reconstruction reveals high magnitude multidecadal droughts during the 14th and 15th centuries and thenceforth a gradual increase in precipitation. Increasingly wet conditions during the 20th century are consistent with other long-term precipitation reconstructions from high Asia and reflect a large-scale intensification of the hydrological cycle, coincident with what is anticipated due to global warming. Significant relationships between reconstructed precipitation and precipitation records from central southwest Asia, east of the Caspian Sea, ENSO (NINO4-SST) variability and summer monsoon rainfall over central northeast India underscore the utility of our data in synoptic climatology.

  8. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  9. Impact of acid precipitation on freshwater ecosystems in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R F; Dale, T; Gjessing, E T; Hendrey, G R; Henriksen, A; J Hannesen, M; Muniz, I P

    1975-01-01

    Precipitation in southern Norway contains large amounts of H/sup +/, SO/sub 4//sup 2 -/, and NO/sub 3//sup -/ ions, along with heavy metals such as Cu, Zn, Cd, and Pb. These pollutants are transported over long distances to Scandinavia and are deposited in precipitation and dry-fallout. Large areas of southern Norway have been adversely affected by acid precipitation. The pH of many lakes is below 5.0 and sulfate, rather than bicarbonate, is the major anion. Lakes in these areas are particularly vulnerable to acid precipitation because their watersheds are underlain by highly resistant bedrock with low calcium and magnesium contents. The effects of the increasing acidity of freshwater ecosystems involve interference at every trophic level. Biological surveys indicate that low pH-values inhibit the decomposition of allochthonous organic matter, decrease the species number of phyto- and zooplankton and benthic invertebrates, and promote the growth of benthic mosses. Fish populations have been severely affected - the salmon have been eliminated from many rivers, and hundreds of lakes have lost their sport fisheries.

  10. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy

    Institute of Scientific and Technical Information of China (English)

    Chung-Seok KIM; Cliff J.LISSENDEN

    2009-01-01

    The influence of γ' precipitate on the acoustic nonlinearity is investigated for a nickel-based superalloy,which is subjected to creep deformation.During creep deformation,the cuboidal γ' precipitate is preferentially coarsened in a direction perpendicular to the applied stress axis.The length and shape factor of the γ' precipitate increase with creep time.The increase of relative acoustic nonlinearity with increasing fraction of creep life is discussed in relation to the rafting of γ' precipitate,which is closely related to the scattering and distortion of the acoustic wave.

  11. Does extreme precipitation intensity depend on the emissions scenario?

    Science.gov (United States)

    Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang

    2016-04-01

    The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.

  12. Improving precipitation estimates over the western United States using GOES-R precipitation data

    Science.gov (United States)

    Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.

    2017-12-01

    Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.

  13. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    Science.gov (United States)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-09-01

    Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analysed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as coalescence, aggregation, riming and diffusional growth to changes in the aerosol number concentrations are evaluated and compared. The participating numerical models are the model from the Consortium for Small-Scale Modeling (COSMO) with bulk microphysics, the Weather Research and Forecasting (WRF) model with bin microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others, which implies that a decrease in riming with increasing aerosol load is not a robust result

  14. Characteristics and seasonal variations of precipitation phenomena at Syowa Station

    Directory of Open Access Journals (Sweden)

    Hiroyuki Konishi

    1997-03-01

    Full Text Available Long-term observations of precipitating clouds were carried out by a vertical pointing radar, PPI radar and a 37 GHz microwave radiometer at Syowa Station (69°00′S, 39°35′E, Antarctica in 1989. It is concluded from the observations that precipitation near Syowa Station, Antarctica is mainly brought by cloud vortices associated with extratropical cyclones which advance to high latitude while developing to a mature stage. The seasonal variations of clouds and precipitation were analyzed corresponding to the seasonal changes of air temperature and sea ice area. The occurrence frequencies of cloud vortices which brought snowfall to Syowa Station increased in the fall and spring seasons corresponding to activity of the circumpolar trough. However, the activities of cloud systems that bring precipitation weaken in spring when the sea ice area expands to low latitudes, because of less supply of heat and vapor. In 1989,the amount of precipitation in spring brought by a few snowfall events was as large as the amount of precipitation in fall brought by frequent snowfall events. Radar observations revealed that there were three abundant snowfall seasons at Syowa Station and the amount of snowfall was uniform in all seasons except summer. The amounts of precipitation in fall, winter and spring were 74,74 and 53mm respectively.

  15. Global Precipitation Measurement (GPM) L-6

    Science.gov (United States)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2013-10-01

    The Global Precipitation Measurement (GPM) mission will advance the measurement of global precipitation, making possible high spatial resolution precipitation measurements. GPM will provide the first opportunity to calibrate measurements of global precipitation across tropical, mid-latitude, and polar regions. The GPM mission has the following scientific objectives: (1) Advance precipitation measurement capability from space through combined use of active and passive remote-sensing techniques; (2) Advance understanding of global water/energy cycle variability and fresh water availability; (3) Improve climate prediction by providing the foundation for better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release in the Earth's atmosphere; (4) Advance Numerical Weather Prediction (NWP) skills through more accurate and frequent measurements of instantaneous rain rates; and (5) Improve high impact natural hazard (flood/drought, landslide, and hurricane hazard) prediction capabilities. The GPM mission centers on the deployment of a Core Observatory carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. GPM, jointly led with the Japan Aerospace Exploration Agency (JAXA), involves a partnership with other international space agencies including the French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory is currently being prepared for shipment to Japan for launch. Launch is scheduled for February 2014 from JAXA's Tanegashima Space Center on an H-IIA 202 launch vehicle.

  16. Constraining precipitation amount and distribution over cold regions using GRACE

    Science.gov (United States)

    Behrangi, A.; Reager, J. T., II; Gardner, A. S.; Fisher, J.

    2017-12-01

    Current quantitative knowledge on the amount and distribution of precipitation in high-elevation and high latitude regions is limited due to instrumental and retrieval shortcomings. Here we demonstrate how that satellite gravimetry (Gravity Recovery and Climate Experiment, GRACE) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger error. We also observed that as near surface temperature decreases products tend to underestimate accumulated precipitation retrieved from GRACE. The analysis performed using various products such as GPCP, GPCC, TRMM, and gridded station data over vast regions in high latitudes and two large endorheic basins in High Mountain Asia. Based on the analysis over High Mountain Asia it was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, GPCP showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basin.

  17. A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950-2006

    NARCIS (Netherlands)

    Haylock, M.; Hofstra, N.; Klein Tank, A.; Klok, L.; Jones, P.; New, M.

    2008-01-01

    We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period 1950–2006. This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and

  18. Examine Precipitation Extremes in Terms of Storm Properties

    Science.gov (United States)

    Jiang, P.; Yu, Z.; Chen, L.; Gautam, M. R.; Acharya, K.

    2017-12-01

    The increasing potential of the extreme precipitation is of significant societal concern. Changes in precipitation extremes have been mostly examined using extreme precipitation indices or Intensity-Duration-Frequency (IDF) analyses, which often fail to reveal the characteristics of an integrated precipitation event. In this study, we will examine the precipitation extremes in terms of storm properties including storm duration, storm intensity, total storm precipitation, and within storm pattern. Single storm event will be identified and storm properties will be determined based on the hourly precipitation time series in the selected locations in southwest United States. Three types of extreme precipitation event will be recognized using the criteria as (1) longest storm duration; (2) Highest storm intensity; and (3) largest total precipitation over a storm. The trend and variation of extreme precipitation events will be discussed for each criterion. Based on the comparisons of the characteristics of extreme precipitation events identified using different criteria, we will provide guidelines for choosing proper criteria for extreme precipitation analysis in specific location.

  19. The Potential of Tropospheric Gradients for Regional Precipitation Prediction

    Science.gov (United States)

    Boisits, Janina; Möller, Gregor; Wittmann, Christoph; Weber, Robert

    2017-04-01

    Changes of temperature and humidity in the neutral atmosphere cause variations in tropospheric path delays and tropospheric gradients. By estimating zenith wet delays (ZWD) and gradients using a GNSS reference station network the obtained time series provide information about spatial and temporal variations of water vapour in the atmosphere. Thus, GNSS-based tropospheric parameters can contribute to the forecast of regional precipitation events. In a recently finalized master thesis at TU Wien the potential of tropospheric gradients for weather prediction was investigated. Therefore, ZWD and gradient time series at selected GNSS reference stations were compared to precipitation data over a period of six months (April to September 2014). The selected GNSS stations form two test areas within Austria. All required meteorological data was provided by the Central Institution for Meteorology and Geodynamics (ZAMG). Two characteristics in ZWD and gradient time series can be anticipated in case of an approaching weather front. First, an induced asymmetry in tropospheric delays results in both, an increased magnitude of the gradient and in gradients pointing towards the weather front. Second, an increase in ZWD reflects the increased water vapour concentration right before a precipitation event. To investigate these characteristics exemplary test events were processed. On the one hand, the sequence of the anticipated increase in ZWD at each GNSS station obtained by cross correlation of the time series indicates the direction of the approaching weather front. On the other hand, the corresponding peak in gradient time series allows the deduction of the direction of movement as well. To verify the results precipitation data from ZAMG was used. It can be deduced, that tropospheric gradients show high potential for predicting precipitation events. While ZWD time series rather indicate the orientation of the air mass boundary, gradients rather indicate the direction of movement

  20. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  1. Effects of different oxyanions in solution on the precipitation of jarosite at room temperature.

    Science.gov (United States)

    Yeongkyoo, Kim

    2018-04-09

    The effects of five different oxyanions, AsO 4 , SeO 3 , SeO 4 , MoO 4 , and CrO 4 , on the precipitation of jarosite at room temperature were investigated by X-ray diffraction, scanning electron microscopy, and chemical analysis. Different amounts (2, 5, and 10 mol%) of oxyanions in the starting solution and different aging times (1 h-40 days) were used for the experiment. In the initial stage, only the amorphous phase appears for all samples. With increasing aging time, jarosite and jarosite with oxyanions start precipitating at room temperature with different precipitation rates and crystallinities. Jarosite with AsO 4 shows the lowest precipitation rate and lowest crystallinity. With increasing amounts of oxyanions, the crystallization rate decreases, especially for jarosite with AsO 4 . The jarosite samples with CrO 4 and SeO 4 show the fastest precipitation and highest crystallinities. For the jarosite samples with a low precipitation rate and low crystallinity, the amorphous phase contains high concentrations of oxyanions, probably because of the fast precipitation of the amorphous iron oxyanion phase; however, the phase with fast jarosite precipitation contains fewer oxyanions. The results show that coprecipitation of jarosite can play a more important role in controlling the behavior of CrO 4 than AsO 4 in acid mine drainage. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Shifts in Summertime Precipitation Accumulation Distributions over the US

    Science.gov (United States)

    Martinez-Villalobos, C.; Neelin, J. D.

    2017-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation

  3. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  4. Precipitate microstructure evolution in exposed IN738LC superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Strunz, Pavel, E-mail: strunz@ujf.cas.cz [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic); Petrenec, Martin [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Gasser, Urs [Laboratory for Neutron Scattering, PSI, CH-5232 Villigen (Switzerland); Tobiáš, Jiří; Polák, Jaroslav [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Šaroun, Jan [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic)

    2014-03-15

    Highlights: • Evolution of γ′-phase morphology in IN738LC Ni-base superalloy was examined by SANS. • In situ tests at high temperatures revealed trimodal precipitate distribution. • Formation, dissolution and (slow) kinetics of small γ′ precipitates was determined. • Equilibrium volume fraction of γ′ phase is significantly higher than 45%. • The small γ′ precipitates arise regardless the application of the mechanical load. -- Abstract: Nickel base superalloy IN738LC has been studied after low-cycle fatigue by Small Angle Neutron Scattering (SANS). Samples subjected to high-temperature low-cycle fatigue were annealed at various temperatures to change the size and the distribution of precipitates. Ex and in situ SANS and TEM studies were performed. It was found that additional precipitates are formed either during slow cooling from high temperatures or after reheating above 570 °C. Their size and distribution were evaluated. The precipitates arise regardless the application of the mechanical load. Nevertheless, these small precipitates influence low-cycle fatigue resistance. From the SANS data, it can be also deduced that the equilibrium volume fraction of γ′-precipitates at temperatures from room temperature to 825 °C is significantly higher than 45%. The kinetics of formation of small and medium-size γ′ precipitates at 700 and 800 °C was determined as well.

  5. Rain-season trends in precipitation and their effect in different climate regions of China during 1961-2008

    International Nuclear Information System (INIS)

    Song Yanling; Achberger, Christine; Linderholm, Hans W

    2011-01-01

    Using high-quality precipitation data from 524 stations, the trends of a set of precipitation variables during the main rain season (May-September) from 1961 to 2008 for different climate regions in China were analysed. However, different characteristics were displayed in different regions of China. In most temperate monsoon regions (north-eastern China), total rain-season precipitation and precipitation days showed decreasing trends; positive tendencies in precipitation intensity were, however, noted for most stations in this region. It is suggested that the decrease in rain-season precipitation is mainly related to there being fewer rain days and a change towards drier conditions in north-eastern China, and as a result, the available water resources have been negatively affected in the temperate monsoon regions. In most subtropical and tropical monsoon climate regions (south-eastern China), the rain-season precipitation and precipitation days (11-50, with > 50 mm) showed slightly positive trends. However, precipitation days with ≤ 10 mm decreased in these regions. Changes towards wetter conditions in this area, together with more frequent heavy rainfall events causing floods, have a severe impact on peoples' lives and socio-economic development. In general, the rain-season precipitation, precipitation days and rain-season precipitation intensity had all increased in the temperate continental and plateau/mountain regions of western China. This increase in rain-season precipitation has been favourable to pasture growth.

  6. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  7. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    Science.gov (United States)

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  8. TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy

    Directory of Open Access Journals (Sweden)

    Moukrane Dehmas

    2011-01-01

    Full Text Available Inconel 718 is widely used because of its ability to retain strength at up to 650∘C for long periods of time through coherent metastable  Ni3Nb precipitation associated with a smaller volume fraction of  Ni3Al precipitates. At very long ageing times at service temperature,  decomposes to the stable Ni3Nb phase. This latter phase is also present above the  solvus and is used for grain control during forging of alloy 718. While most works available on precipitation have been performed at temperatures below the  solvus, it appeared of interest to also investigate the case where phase precipitates directly from the fcc matrix free of  precipitates. This was studied by X-ray diffraction and transmission electron microscopy (TEM. TEM observations confirmed the presence of rotation-ordered domains in plates, and some unexpected contrast could be explained by double diffraction due to overlapping phases.

  9. Precipitation Processes during Non-Isothermal Ageing of Fine-Grained 2024 Alloy

    Directory of Open Access Journals (Sweden)

    Kozieł J.

    2016-03-01

    Full Text Available Mechanical alloying and powder metallurgy procedures were used to manufacture very fine-grained bulk material made from chips of the 2024 aluminum alloy. Studies of solution treatment and precipitation hardening of as-received material were based on differential scanning calorimetry (DSC tests and TEM/STEM/EDX structural observations. Structural observations complemented by literature data lead to the conclusion that in the case of highly refined structure of commercial 2024 alloys prepared by severe plastic deformation, typical multi-step G-P-B →θ” →θ’ →θ precipitation mechanism accompanied with G-P-B →S” →S’ →S precipitation sequences result in skipping the formation of metastable phases and direct growth of the stable phases. Exothermic effects on DSC characteristics, which are reported for precipitation sequences in commercial materials, were found to be reduced with increased milling time. Moreover, prolonged milling of 2024 chips was found to shift the exothermic peak to lower temperature with respect to the material produced by means of common metallurgy methods. This effect was concluded to result from preferred heterogeneous nucleation of particles at subboundaries and grain boundaries, enhanced by the boundary diffusion in highly refined structures.

  10. Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basins

    International Nuclear Information System (INIS)

    Guimberteau, M; Ronchail, J; Lengaigne, M; Sultan, B; Drapeau, G; Espinoza, J C; Polcher, J; Guyot, J-L; Ducharne, A; Ciais, P

    2013-01-01

    Because of climate change, much attention is drawn to the Amazon River basin, whose hydrology has already been strongly affected by extreme events during the past 20 years. Hydrological annual extreme variations (i.e. low/high flows) associated with precipitation (and evapotranspiration) changes are investigated over the Amazon River sub-basins using the land surface model ORCHIDEE and a multimodel approach. Climate change scenarios from up to eight AR4 Global Climate Models based on three emission scenarios were used to build future hydrological projections in the region, for two periods of the 21st century. For the middle of the century under the SRESA1B scenario, no change is found in high flow on the main stem of the Amazon River (Óbidos station), but a systematic discharge decrease is simulated during the recession period, leading to a 10% low-flow decrease. Contrasting discharge variations are pointed out depending on the location in the basin. In the western upper part of the basin, which undergoes an annual persistent increase in precipitation, high flow shows a 7% relative increase for the middle of the 21st century and the signal is enhanced for the end of the century (12%). By contrast, simulated precipitation decreases during the dry seasons over the southern, eastern and northern parts of the basin lead to significant low-flow decrease at several stations, especially in the Xingu River, where it reaches −50%, associated with a 9% reduction in the runoff coefficient. A 18% high-flow decrease is also found in this river. In the north, the low-flow decrease becomes higher toward the east: a 55% significant decrease in the eastern Branco River is associated with a 13% reduction in the runoff coefficient. The estimation of the streamflow elasticity to precipitation indicates that southern sub-basins (except for the mountainous Beni River), that have low runoff coefficients, will become more responsive to precipitation change (with a 5 to near 35

  11. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-08-25

    Highlights: {yields} Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. {yields} Distribution of precipitates was analyzed with microscopy and diffraction pattern. {yields} During austenite-ferrite transformation, interface precipitation of NbC was observed. {yields} Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo{sub 2}C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1]{sub NbC}//[0 0 1]{sub {alpha}-Fe}, implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  12. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    International Nuclear Information System (INIS)

    Jia, Z.; Misra, R.D.K.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. → Distribution of precipitates was analyzed with microscopy and diffraction pattern. → During austenite-ferrite transformation, interface precipitation of NbC was observed. → Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo 2 C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1] NbC //[0 0 1] α-Fe , implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  13. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.

    2017-10-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.

  14. Precipitation Climatology on Titan-like Exomoons.

    Science.gov (United States)

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets.

  15. Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin

    Science.gov (United States)

    Pántano, Vanesa C.; Penalba, Olga C.

    2017-12-01

    Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970-2005 and 2065-2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.

  16. Three-phase current transformer rectifier sets. High-voltage power supplies for difficult conditions in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Stackelberg, Josef von [Rico-Werk Eiserlo und Emmrich GmbH, Toenisvorst (Germany)

    2013-04-01

    The precipitation rate of electrostatic precipitators (ESP) highly depends on the consistency of waste gas. Among other things, electrical conductivity plays an important role as well as the ability of particles to be electrically charged or ionised. Within certain limits, common ESPs are able to clean waste gas satisfactorily. If the dust attributes exceed these limits, more sophisticated technical solutions are required in the ESP to meet the demands for the gas cleaning equipment. In these cases, a three phase transformer rectifier system offers an alternative to the conventional single phase system, as it delivers a smooth direct current voltage over a wide voltage range. (orig.)

  17. IDF-curves for precipitation In Belgium

    International Nuclear Information System (INIS)

    Mohymont, Bernard; Demarde, Gaston R.

    2004-01-01

    The Intensity-Duration-Frequency (IDF) curves for precipitation constitute a relationship between the intensity, the duration and the frequency of rainfall amounts. The intensity of precipitation is expressed in mm/h, the duration or aggregation time is the length of the interval considered while the frequency stands for the probability of occurrence of the event. IDF-curves constitute a classical and useful tool that is primarily used to dimension hydraulic structures in general, as e.g., sewer systems and which are consequently used to assess the risk of inundation. In this presentation, the IDF relation for precipitation is studied for different locations in Belgium. These locations correspond to two long-term, high-quality precipitation networks of the RMIB: (a) the daily precipitation depths of the climatological network (more than 200 stations, 1951-2001 baseline period); (b) the high-frequency 10-minutes precipitation depths of the hydro meteorological network (more than 30 stations, 15 to 33 years baseline period). For the station of Uccle, an uninterrupted time-series of more than one hundred years of 10-minutes rainfall data is available. The proposed technique for assessing the curves is based on maximum annual values of precipitation. A new analytical formula for the IDF-curves was developed such that these curves stay valid for aggregation times ranging from 10 minutes to 30 days (when fitted with appropriate data). Moreover, all parameters of this formula have physical dimensions. Finally, adequate spatial interpolation techniques are used to provide nationwide extreme values precipitation depths for short- to long-term durations With a given return period. These values are estimated on the grid points of the Belgian ALADIN-domain used in the operational weather forecasts at the RMIB.(Author)

  18. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  19. Acidic precipitation: considerations for an air-quality standard

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.; Hendrey, G.R.; Stensland, G.J.; Johnson, D.W.; Francis, A.J.

    1980-01-01

    Acidic precipitation, wet or frozen deposition with a hydrogen ion concentration greatern than 2.5 ..mu..eq l/sup -1/ is a significant air pollution problem in the United States. The chief anions accounting for the hydrogen ions in rainfall are nitrate and sulfate. Agricultural systems are more likely to derive net nutritional benefits from increasing inputs of acidic rain than are forest systems when soils alone are considered. Agricultural soils may benefit because of the high N and S requirements of agricultural plants. Detrimental effects to forest soils may result if atmospheric H/sup +/ inputs significantly add to or exceed H/sup +/ production by soils. Acidification of fresh waters of southern Scandinavia, southwestern Scotland, southeastern Canada, and northeastern United States is caused by acid deposition. Areas of these regions in which this acidification occurs have in common, highly acidic precipitation with volume weighted mean annual H/sup +/ concentrations of 25 ..mu..eq l/sup -1/ or higher and slow weathering granitic or precambrian bedrock with thin soils deficient in minerals which would provide buffer capacity. Biological effects of acidification of fresh waters are detectable below pH 6.0. As lake and stream pH levels decrease below pH. 6.0, many species of plants, invertebrates, and vertebrates are progressively eliminated. Generally, fisheries are impacted below pH 5.0 and are completely destroyed below pH 4.8. There are few studies that document effects of acidic precipitation on terrestrial vegetation to establish an air quality standard. It must be demonstrated that current levels of precipitation acidity alone significantly injure terrestrial vegetation. In terms of documented damanges, current research indicates that establishing a standard for precipitation for the volume weighted annual H/sup +/ concentration at 25 ..mu..eq l/sup -1/ may protect the most sensitive areas from permanent lake acidification.

  20. Trends in total and daily precipitation indices in japan from 1901 to 2000

    OpenAIRE

    Nagata, Rena; Zaiki, Masumi

    2008-01-01

    Long-term trends in seasonal precipitation amount and daily precipitation indices were investigated for spring, summer, autumn, and winter with a daily precipitation dataset for Japan from 1901 to 2000. Heavy precipitation in spring and summer has significantly increased along the west coast of Japan. Such changes in precipitation have resulted in the increased heavy precipitation intensity. For autumn and winter, total precipitation significantly decreased in the Kanto district and central J...

  1. Mathematical Modelling of Carbonitride Precipitation during Hot Working in Nb Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on thermodynamics and kinetics, precipitation behavior of microalloyed steels was analyzed. Deformation greatly promotes isothermal carbonitride precipitation and makes C-curve shift leftwards. The position and shape of C-curve also depend on the content of Nb and N. C-curve shifts leftwards a little when N content increases and the nose temperature is raised with increasing Nb content. Deformation shortened precipitation start time during continuous cooling, raised precipitation start temperature, accelerated precipitation kinetics of carbonitrides. With decreasing the finishing temperature and coiling temperature, the precipitates volume fraction increases and strength increment is raised during hot rolling. The simulated results are in agreementwith experiment results.

  2. Urea Hydrolysis and Calcium Carbonate Precipitation in Gypsum-Amended Broiler Litter.

    Science.gov (United States)

    Burt, Christopher D; Cabrera, Miguel L; Rothrock, Michael J; Kissel, D E

    2018-01-01

    Broiler () litter is subject to ammonia (NH) volatilization losses. Previous work has shown that the addition of gypsum to broiler litter can increase nitrogen mineralization and decrease NH losses due to a decrease in pH, but the mechanisms responsible for these effects are not well understood. Therefore, three laboratory studies were conducted to evaluate the effect of gypsum addition to broiler litter on (i) urease activity at three water contents, (ii) calcium carbonate precipitation, and (iii) pH. The addition of gypsum to broiler litter increased ammonium concentrations ( litter pH by 0.43 to 0.49 pH units after 5 d ( litter only increased on Day 0 for broiler litter with low (0.29 g HO g) and high (0.69 g HO g) water contents, and on Day 3 for litter with medium (0.40 g HO g) water content ( litter with gypsum also caused an immediate decrease in litter pH (0.22 pH units) due to the precipitation of calcium carbonate (CaCO) from gypsum-derived calcium and litter bicarbonate. Furthermore, as urea was hydrolyzed, more urea-derived carbon precipitated as CaCO in gypsum-treated litter than in untreated litter ( litter with gypsum favors the precipitation of CaCO, which buffers against increases in litter pH that are known to facilitate NH volatilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  4. The impact of precipitation on land interfacility transport times.

    Science.gov (United States)

    Giang, Wayne C W; Donmez, Birsen; Ahghari, Mahvareh; MacDonald, Russell D

    2014-12-01

    Timely transfer of patients among facilities within a regionalized critical-care system remains a large obstacle to effective patient care. For medical transport systems where dispatchers are responsible for planning these interfacility transfers, accurate estimates of interfacility transfer times play a large role in planning and resource-allocation decisions. However, the impact of adverse weather conditions on transfer times is not well understood. Precipitation negatively impacts driving conditions and can decrease free-flow speeds and increase travel times. The objective of this research was to quantify and model the effects of different precipitation types on land travel times for interfacility patient transfers. It was hypothesized that the effects of precipitation would accumulate as the distance of the transfer increased, and they would differ based on the type of precipitation. Urgent and emergent interfacility transfers carried out by the medical transport system in Ontario from 2005 through 2011 were linked to Environment Canada's (Gatineau, Quebec, Canada) climate data. Two linear models were built to estimate travel times based on precipitation type and driving distance: one for transfers between cities (intercity) and another for transfers within a city (intracity). Precipitation affected both transfer types. For intercity transfers, the magnitude of the delays increased as driving distance increased. For median-distance intercity transfers (48 km), snow produced delays of approximately 9.1% (3.1 minutes), while rain produced delays of 8.4% (2.9 minutes). For intracity transfers, the magnitude of delays attributed to precipitation did not depend on distance driven. Transfers in rain were 8.6% longer (1.7 minutes) compared to no precipitation, whereas only statistically marginal effects were observed for snow. Precipitation increases the duration of interfacility land ambulance travel times by eight percent to ten percent. For transfers between cities

  5. Precipitation-productivity Relation in Grassland in Northern China: Investigations at Multiple Spatiotemporal Scales

    Science.gov (United States)

    Hu, Z.

    2017-12-01

    Climate change is predicted to cause dramatic variability in precipitation regime, not only in terms of change in annual precipitation amount, but also in precipitation seasonal distribution and precipitation event characteristics (high frenquency extrem precipitation, larger but fewer precipitation events), which combined to influence productivity of grassland in arid and semiarid regions. In this study, combining remote sensing products with in-situ measurements of aboveground net primary productivity (ANPP) and gross primary productivity (GPP) data from eddy covariance system in grassland of northern China, we quantified the effects of spatio-temporal vairation in precipitation on productivity from local sites to region scale. We found that, for an individual precipitation event, the duration of GPP-response to the individual precipitation event and the maximum absolute GPP response induced by the individual precipitation event increased linearly with the size of precipitation events. Comparison of the productivity-precipitation relationships between multi-sites determined that the predominant characteristics of precipitation events (PEC) that affected GPP differed remarkably between the water-limited temperate steppe and the temperature-limited alpine meadow. The number of heavy precipitation events (>10 mm d-1) was the most important PEC to impact GPP in the temperate steppe through affecting soil moisture at different soil profiles, while precipitation interval was the factor that affected GPP most in the alpine meadow via its effects on temperature. At the region scale, shape of ANPP-precipitation relationship varies with distinct spatial scales, and besides annual precipitation, precipitation seasonal distribution also has comparable impacts on spatial variation in ANPP. Temporal variability in ANPP was lower at both the dry and wet end, and peaked at a precipitation of 243.1±3.5mm, which is the transition region between typical steppe and desert steppe

  6. Effect of precipitating agent on the catalytic behaviour of precipitated iron catalysts

    International Nuclear Information System (INIS)

    Motjope, T.R.; Dlamini, H.T.; Pollak, H.; Coville, N.J.

    1999-01-01

    Iron precipitated catalysts have been prepared using different precipitating agents (NH 4 OH, K 2 CO 3 ) at different pH values. In situ Moessbauer (MES) study of the reduced catalyst prepared using NH 4 OH revealed the presence of superparamagnetic Fe 2+ , Fe 3+ and magnetically split α-Fe only, whereas the catalyst prepared with K 2 CO 3 also showed an extra magnetic sextuplet of Fe 3 O 4 . For both catalyst systems, in situ MES revealed that during Fischer-Tropsch synthesis α-Fe was converted into ε'-Fe 2,2 C and finally into χ-Fe 2,5 C when the synthesis time was increased. The rate of formation of hydrocarbons was observed to increase with the increase in the degree of carburisation with the NH 4 OH catalyst showing a higher rate of reaction. The K 2 CO 3 catalyst exhibited higher olefin selectivity than the NH 4 OH catalyst under similar pH conditions

  7. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit

  8. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  9. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland

    Directory of Open Access Journals (Sweden)

    Shaowei Ning

    2016-10-01

    Full Text Available The Global Precipitation Mission (GPM Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era satellite precipitation products (GPM IMERG and GSMap-Gauge Ver. 6 with a network of 840 precipitation gauges over the Chinese mainland. Direct comparisons of satellite-based precipitation products with rain gauge observations over a 20 month period from April 2014 to November 2015 at 0.1° and daily/monthly resolutions showed the following results: Both of the products were capable of capturing the overall spatial pattern of the 20 month mean daily precipitation, which was characterized by a decreasing trend from the southeast to the northwest. GPM IMERG overestimated precipitation by approximately 0.09 mm/day while GSMap-Gauge Ver. 6 underestimated precipitation by −0.04 mm/day. The two satellite-based precipitation products performed better over wet southern regions than over dry northern regions. They also showed better performance in summer than in winter. In terms of mean error, root mean square error, correlation coefficient, and probability of detection, GSMap-Gauge was better able to estimate precipitation and had more stable quality results than GPM IMERG on both daily and monthly scales. GPM IMERG was more sensitive to conditions of no rain or light rainfall and demonstrated good capability of capturing the behavior of extreme precipitation events. Overall, the results revealed some limitations of these two latest satellite-based precipitation products when used over the Chinese mainland, helping to characterize some of the error features in these datasets for potential users.

  10. ANALYSIS OF PROJECTED FREQUENCY AND INTENSITY CHANGES OF PRECIPITATION IN THE CARPATHIAN REGION

    Directory of Open Access Journals (Sweden)

    KIS ANNA

    2015-03-01

    Full Text Available Precipitation is the major atmospheric source of surface water, thus, in order to build appropriate adaptation strategies for various economic sections related to water resources it is essential to provide projections for precipitation tendencies as exact as possible. Extreme precipitation events are especially important from this point of view since they may result in different environmental, economical, and/or even human health damages. Excessive precipitation for instance may induce floods, flash-floods, landslides, traffic accidents. On the other hand, lack of precipitation is not favorable either: long dry periods affect agricultural production quite negatively, and hence, food safety can be threatened. Several precipitation-related indices (i.e., describing drought or intensity, exceeding different percentile-based or absolute threshold values are analyzed for the Carpathian region for 1961–2100. For this purpose 11 completed regional climate model simulations are used from the ENSEMBLES database. Before the thorough analysis, a percentile-based bias correction method was applied to the raw data, for which the homogenized daily gridded CarpatClim database (1961–2010 served as a reference. Absolute and relative seasonal mean changes of climate indices are calculated for two future time periods (2021–2050 and 2071–2100 and for three subregions within the entire Carpathian region, namely, for Slovakia, Hungary and Romania. According to our results, longer dry periods are estimated for the summer season, mainly in the southern parts of the domain, while precipitation intensity is likely to increase. Heavy precipitation days and high percentile values are projected to increase, especially, in winter and autumn.

  11. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    International Nuclear Information System (INIS)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-01-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH 4 + and Ca 2+ , whereas the main anion was HCO 3 − , which constituted approximately 69% of the anions, followed by NO 3 − , SO 4 2− and Cl − . Data analysis suggested that Na + , Cl − and K + were derived from the long-range transport of marine aerosols. Ca 2+ , Mg 2+ and HCO 3 − were related to rock and soil dust contributions and the NO 3 − and SO 4 2− concentrations were derived from anthropogenic sources. Furthermore, NH 4 + was derived from gaseous NH 3 scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ 18 O, and from − 0.8 to − 174‰ in δ 2 H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha −1 y −1 ) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO 3

  12. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    OpenAIRE

    Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

    2013-01-01

    Soil carbon (C) and nitrogen (N) cycling are sensitive to changes in environmental factors and play critical roles in the responses of terrestrial ecosystems to natural and anthropogenic perturbations. This study was conducted to quantify the effects of belowground particulate litter (BPL) addition, increased precipitation and their interactions on soil C and N mineralization in two adjacent sites where belowground photosynthate allocation was manipulated through vegetation ...

  13. Salts-based size-selective precipitation: toward mass precipitation of aqueous nanoparticles.

    Science.gov (United States)

    Wang, Chun-Lei; Fang, Min; Xu, Shu-Hong; Cui, Yi-Ping

    2010-01-19

    Purification is a necessary step before the application of nanocrystals (NCs), since the excess matter in nanoparticles solution usually causes a disadvantage to their subsequent coupling or assembling with other materials. In this work, a novel salts-based precipitation technique is originally developed for the precipitation and size-selective precipitation of aqueous NCs. Simply by addition of salts, NCs can be precipitated from the solution. After decantation of the supernatant solution, the precipitates can be dispersed in water again. By means of adjusting the addition amount of salt, size-selective precipitation of aqueous NCs can be achieved. Namely, the NCs with large size are precipitated preferentially, leaving small NCs in solution. Compared with the traditional nonsolvents-based precipitation technique, the current one is simpler and more rapid due to the avoidance of condensation and heating manipulations used in the traditional precipitation process. Moreover, the salts-based precipitation technique was generally available for the precipitation of aqueous nanoparticles, no matter if there were semiconductor NCs or metal nanoparticles. Simultaneously, the cost of the current method is also much lower than that of the traditional nonsolvents-based precipitation technique, making it applicable for mass purification of aqueous NCs.

  14. Strength and rupture-life transitions caused by secondary carbide precipitation in HT-9 during high-temperature low-rate mechanical testing

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.; Hughes, T.H.

    1992-01-01

    The martensitic-ferritic alloy HT-9 is slated for long-term use as a fuel-cladding material in the Integral Fast Reactor. Analysis of published high-temperature mechanical property data suggests that secondary carbide precipitation would occur during service life causing substantial strengthening of the as-heat-treated material. Aspects of the kinetics of this precipitation process are extracted from calculations of the back stress necessary to produce the observed strengthening effect under various creep loading conditions. The resulting Arrhenius factor is shown to agree quantitatively with shifts to higher strength of crept material in reference to the intrinsic strength of HT-9. The results of very low constant strain-rate high-temperature tensile tests on as-heat-treated HT-9 that focus on the transition in strength with precipitation will be presented and related to rupture-life

  15. Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: A mesocosm experiment.

    Science.gov (United States)

    Hui, Dafeng; Yu, Chih-Li; Deng, Qi; Dzantor, E Kudjo; Zhou, Suping; Dennis, Sam; Sauve, Roger; Johnson, Terrance L; Fay, Philip A; Shen, Weijun; Luo, Yiqi

    2018-01-01

    Climate changes, including chronic changes in precipitation amounts, will influence plant physiology and growth. However, such precipitation effects on switchgrass, a major bioenergy crop, have not been well investigated. We conducted a two-year precipitation simulation experiment using large pots (95 L) in an environmentally controlled greenhouse in Nashville, TN. Five precipitation treatments (ambient precipitation, and -50%, -33%, +33%, and +50% of ambient) were applied in a randomized complete block design with lowland "Alamo" switchgrass plants one year after they were established from tillers. The growing season progression of leaf physiology, tiller number, height, and aboveground biomass were determined each growing season. Precipitation treatments significantly affected leaf physiology, growth, and aboveground biomass. The photosynthetic rates in the wet (+50% and +33%) treatments were significantly enhanced by 15.9% and 8.1%, respectively, than the ambient treatment. Both leaf biomass and plant height were largely increased, resulting in dramatically increases in aboveground biomass by 56.5% and 49.6% in the +50% and +33% treatments, respectively. Compared to the ambient treatment, the drought (-33% and -50%) treatments did not influence leaf physiology, but the -50% treatment significantly reduced leaf biomass by 37.8%, plant height by 16.3%, and aboveground biomass by 38.9%. This study demonstrated that while switchgrass in general is a drought tolerant grass, severe drought significantly reduces Alamo's growth and biomass, and that high precipitation stimulates its photosynthesis and growth.

  16. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  17. Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia.

    Science.gov (United States)

    Sepúlveda, J.; Hoyos Ortiz, C. D.

    2017-12-01

    An adequate quantification of precipitation over land is critical for many societal applications including agriculture, hydroelectricity generation, water supply, and risk management associated with extreme events. The use of rain gauges, a traditional method for precipitation estimation, and an excellent one, to estimate the volume of liquid water during a particular precipitation event, does not allow to fully capture the highly spatial variability of the phenomena which is a requirement for almost all practical applications. On the other hand, the weather radar, an active remote sensing sensor, provides a proxy for rainfall with fine spatial resolution and adequate temporary sampling, however, it does not measure surface precipitation. In order to fully exploit the capabilities of the weather radar, it is necessary to develop quantitative precipitation estimation (QPE) techniques combining radar information with in-situ measurements. Different QPE methodologies are explored and adapted to local observations in a highly complex terrain region in tropical Colombia using a C-Band radar and a relatively dense network of rain gauges and disdrometers. One important result is that the expressions reported in the literature for extratropical locations are not representative of the conditions found in the tropical region studied. In addition to reproducing the state-of-the-art techniques, a new multi-stage methodology based on radar-derived variables and disdrometer data is proposed in order to achieve the best QPE possible. The main motivation for this new methodology is based on the fact that most traditional QPE methods do not directly take into account the different uncertainty sources involved in the process. The main advantage of the multi-stage model compared to traditional models is that it allows assessing and quantifying the uncertainty in the surface rain rate estimation. The sub-hourly rainfall estimations using the multi-stage methodology are realistic

  18. Future changes in Asian summer monsoon precipitation extremes as inferred from 20-km AGCM simulations

    Science.gov (United States)

    Lui, Yuk Sing; Tam, Chi-Yung; Lau, Ngar-Cheung

    2018-04-01

    This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075-2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of 5 to 8.5% K-1, roughly consistent with the Clausius-Clapeyron relation. However, over the Baiu area extreme precipitation change scales as 3.5% K-1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further

  19. Responses of Seasonal Precipitation Intensity to Global Warming

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia

    2016-04-01

    Under global warming, the water vapor increases with rising temperature at the rate of 7%/K. Most previous studies focus on the spatial differences of precipitation and suggest that wet regions become wetter and dry regions become drier. Our recent studies show a temporal disparity of global precipitation, which the wet season becomes wetter and dry season becomes drier; therefore, the annual range increases. However, such changes in the annual range are not homogeneous globally, and in fact, the drier trend over the ocean is much larger than that over the land, where the dry season does not become drier. Such precipitation change over land is likely because of decreased omega at 500hPa (more upward motion) in the reanalysis datasets from 1980 to 2013. The trends of vertical velocity and moist static energy profile over the increased precipitation regions become more unstable. The instability is most likely attributed to the change in specific humility below 400hPa. Further, we will use Coupled Model Intercomparison Project Phase 5 (CMIP5) archives to investigate whether the precipitation responses in dry season are different between the ocean and land under global warming.

  20. Precipitation regime classification for the Mojave Desert: Implications for fire occurrence

    Science.gov (United States)

    Tagestad, Jerry; Brooks, Matthew L.; Cullinan, Valerie; Downs, Janelle; McKinley, Randy

    2016-01-01

    Long periods of drought or above-average precipitation affect Mojave Desert vegetation condition, biomass and susceptibility to fire. Changes in the seasonality of precipitation alter the likelihood of lightning, a key ignition source for fires. The objectives of this study were to characterize the relationship between recent, historic, and future precipitation patterns and fire. Classifying monthly precipitation data from 1971 to 2010 reveals four precipitation regimes: low winter/low summer, moderate winter/moderate summer, high winter/low summer and high winter/high summer. Two regimes with summer monsoonal precipitation covered only 40% of the Mojave Desert ecoregion but contain 88% of the area burned and 95% of the repeat burn area. Classifying historic precipitation for early-century (wet) and mid-century (drought) periods reveals distinct shifts in regime boundaries. Early-century results are similar to current, while the mid-century results show a sizeable reduction in area of regimes with a strong monsoonal component. Such a shift would suggest that fires during the mid-century period would be minimal and anecdotal records confirm this. Predicted precipitation patterns from downscaled global climate models indicate numerous epochs of high winter precipitation, inferring higher fire potential for many multi-decade periods during the next century.

  1. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe–22.7Cr–2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...... precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic...

  2. Effects of Rare Earth on Behavior of Precipitation and Properties in Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    林勤; 陈邦文; 唐历; 李联生; 朱兴元; 王怀斌

    2003-01-01

    The influence of rare earths on the behavior of precipitation of 14MnNb,X60 and 10MnV steels was studied by STEM, XRD, ICP and thermal simulation method. The main carbonitride precipitates are Nb(C, N),(Nb, Ti)(C, N)and V(C, N). In austenite RE delays the beginning of precipitation, and decreases the rate of precipitation. In ferrite RE promotes precipitation and increases the amount of equilibrium carbonitride precipitation. RE can make precipitates fine, globular and dispersed in the microalloyed steels. With the increase of the amount of RE in steel, the amount of precipitation increases. The promotion effect is weakened with excessive RE. RE has only little influence on the strength of microalloyed steel, but it can improve impact toughness effectively.

  3. co-removal with nucleated Cu(II) precipitation in continuous-flow ...

    African Journals Online (AJOL)

    A compact nucleated precipitation technology using two fluidised sand columns in series was developed to pretreat model metal-plating wastewater containing high concentrations of Cu(II) and Cr(VI). Since either Cu(II) precipitation or Cr(VI) co-removal with Cu(II) precipitation was found to be highly pH dependent in batch ...

  4. Connecting Urbanization to Precipitation: the case of Mexico City

    Science.gov (United States)

    Georgescu, Matei

    2017-04-01

    Considerable evidence exists illustrating the influence of urban environments on precipitation. We revisit this theme of significant interest to a broad spectrum of disciplines ranging from urban planning to engineering to urban numerical modeling and climate, by detailing the simulated effect of Mexico City's built environment on regional precipitation. Utilizing the Weather Research and Forecasting (WRF) system to determine spatiotemporal changes in near-surface air temperature, precipitation, and boundary layer conditions induced by the modern-day urban landscape relative to presettlement conditions, I mechanistically link the built environment-induced increase in air temperature to simulated increases in rainfall during the evening hours. This simulated increase in precipitation is in agreement with historical observations documenting observed rainfall increase. These results have important implications for understanding the meteorological conditions leading to the widespread and recurrent urban flooding that continues to plague the Mexico City Metropolitan Area.

  5. 40 CFR 434.63 - Effluent limitations for precipitation events.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations for precipitation... SOURCE PERFORMANCE STANDARDS Miscellaneous Provisions § 434.63 Effluent limitations for precipitation... discharge or increase in the volume of a discharge caused by precipitation within any 24 hour period less...

  6. Parametric study on co-precipitation of U/Th in MOX fuel of AHWR

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Swaroopa Lakshmi, Y.; Nath, Baidurjya; Setty, D.S.; Kalyana Krishnan, G.; Saibaba, N.

    2015-01-01

    During manufacturing of Mixed Oxide Fuel (MOX) pellets for Advance Heavy Water Reactor (AHWR-LEU), around 30% rejected MOX pellets are generated in every cycle. These rejected MOX pellets are dissolved in nitric acid for recovery of U/Th. The recovered U/Th is recycled for production of MOX pellets. MOX pellets of varying compositions are used in AHWR fuel. Dissolution of MOX pellets in nitric acid is a challenging task because of its low surface area and longer dissolution times. High normal nitric acid is used in order to increase rate of dissolution, which in turn results in generation of high free acidity solution which influences the precipitation characteristics of Uranium (VI) by oxalic acid. Oxalic acid precipitation helps in generation of nitric acid which can be used for dissolution there by effectively facilitating nil effluent generation. Precipitation by oxalic acid unlike ammonia has advantage of zero liquid effluent discharge by complete recycle of oxalate filtrate to dissolution section. In the present work, the effect of various parameters like free acidity, residence time, concentration of oxalic acid, initial concentration of uranium and thorium etc. on the precipitation of U(VI) and Th(IV) in nitrate media by oxalic acid was carried out. The precipitated powder was subjected to various morphological evaluations like particle size etc. Study of various parameters on the co-precipitation of uranium and thorium by oxalic acid was carried out. It was observed that complete precipitation (> 99.9%) of thorium as oxalate does not depend on free acidity range (1- 6 N). Excess oxalic acid is not required for complete precipitation of thorium oxalate. The precipitation of uranyl oxalate varies with initial free acidity of solution. Uranyl oxalate precipitation does not take place at and above 5 N of free acidity

  7. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    Science.gov (United States)

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-01-01

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834

  8. Meteorological features associated with unprecedented precipitation ...

    Indian Academy of Sciences (India)

    Unprecedented precipitation along with heavy falls occurred over many parts of India from 28th February to 2nd March 2015. Many of the stations of northwest and central India received an all time high 24 hr cumulative precipitation of March during this period. Even the national capital, New Delhi, broke all the previous ...

  9. Association between Precipitation and Diarrheal Disease in Mozambique.

    Science.gov (United States)

    Horn, Lindsay M; Hajat, Anjum; Sheppard, Lianne; Quinn, Colin; Colborn, James; Zermoglio, Maria Fernanda; Gudo, Eduardo S; Marrufo, Tatiana; Ebi, Kristie L

    2018-04-10

    Diarrheal diseases are a leading cause of morbidity and mortality in Africa. Although research documents the magnitude and pattern of diarrheal diseases are associated with weather in particular locations, there is limited quantification of this association in sub-Saharan Africa and no studies conducted in Mozambique. Our study aimed to determine whether variation in diarrheal disease was associated with precipitation in Mozambique. In secondary analyses we investigated the associations between temperature and diarrheal disease. We obtained weekly time series data for weather and diarrheal disease aggregated at the administrative district level for 1997-2014. Weather data include modeled estimates of precipitation and temperature. Diarrheal disease counts are confirmed clinical episodes reported to the Mozambique Ministry of Health ( n = 7,315,738). We estimated the association between disease counts and precipitation, defined as the number of wet days (precipitation > 1 mm) per week, for the entire country and for Mozambique's four regions. We conducted time series regression analyses using an unconstrained distributed lag Poisson model adjusted for time, maximum temperature, and district. Temperature was similarly estimated with adjusted covariates. Using a four-week lag, chosen a priori, precipitation was associated with diarrheal disease. One additional wet day per week was associated with a 1.86% (95% CI: 1.05-2.67%), 1.37% (95% CI: 0.70-2.04%), 2.09% (95% CI: 1.01-3.18%), and 0.63% (95% CI: 0.11-1.14%) increase in diarrheal disease in Mozambique's northern, central, southern, and coastal regions, respectively. Our study indicates a strong association between diarrheal disease and precipitation. Diarrheal disease prevention efforts should target areas forecast to experience increased rainfall. The burden of diarrheal disease may increase with increased precipitation associated with climate change, unless additional health system interventions are undertaken.

  10. Paltry past-precipitation: Predisposing prairie dogs to plague?

    Science.gov (United States)

    Eads, David; Biggins, Dean E.

    2017-01-01

    The plague bacterium Yersinia pestis was introduced to California in 1900 and spread rapidly as a sylvatic disease of mammalian hosts and flea vectors, invading the Great Plains in the United States by the 1930s to 1940s. In grassland ecosystems, plague causes periodic, devastating epizootics in colonies of black-tailed prairie dogs (Cynomys ludovicianus), sciurid rodents that create and maintain subterranean burrows. In doing so, plague inhibits prairie dogs from functioning as keystone species of grassland communities. The rate at which fleas transmit Y. pestis is thought to increase when fleas are abundant. Flea densities can increase during droughts when vegetative production is reduced and herbivorous prairie dogs are malnourished and have weakened defenses against fleas. Epizootics of plague have erupted frequently in prairie dogs during years in which precipitation was plentiful, and the accompanying cool temperatures might have facilitated the rate at which fleas transmitted Y. pestis. Together these observations evoke the hypothesis that transitions from dry-to-wet years provide conditions for plague epizootics in prairie dogs. Using generalized linear models, we analyzed a 24-year dataset on the occurrence of plague epizootics in 42 colonies of prairie dogs from Colorado, USA, 1982–2005. Of the 33 epizootics observed, 52% erupted during years with increased precipitation in summer. For the years with increased summer precipitation, if precipitation in the prior growing season declined from the maximum of 502 mm to the minimum of 200 mm, the prevalence of plague epizootics was predicted to increase 3-fold. Thus, reduced precipitation may have predisposed prairie dogs to plague epizootics when moisture returned. Biologists sometimes assume dry conditions are detrimental for plague. However, 48% of epizootics occurred during years in which precipitation was scarce in summer. In some cases, an increased abundance of fleas during dry years might

  11. Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Li, Han; Zhang, Lili; Yin, Xiaozhe; Liu, Yi

    2018-04-01

    Changes in precipitation have a large effect on human society and are of primary importance for many scientific fields such as hydrology, agriculture and eco-environmental sciences. The present study intended to investigate the spatio-temporal characteristics of precipitation in Beijing-Tianjin-Hebei (BTH) region by using 316 meteorological stations during the period 1965-2014. Geographical Weighted Regression (GWR) method and High Accuracy Surface Modeling (HASM) method were applied to produce the precipitation patterns at different time scales. Mann-Kendall (MK) statistical test was applied to analyze the precipitation temporal variations. Results indicated that annual precipitation over the past 50 years appeared to be a non-periodic oscillation phenomenon; the number of wet years was approximately the same as that of dry years; significant positive trends were observed in spring during 1978-2014 and summer during 1996-2014; on the whole, precipitation in May, June, September, and December showed increasing trends at the 95% confidence level; and significant positive trends were also identified in July during 2000-2013 and August during 1997-2010, while slight decreasing trends were observed in February and November. Summer (June, July, and August) was the wettest season, accounting for 68.73% of annual totals in BTH. In general, northeastern BTH received the highest range of precipitation while northwestern area had the lowest. It was found that precipitation variation in this region had been closely linked to latitude, Digital Elevation Model (DEM), distance to the sea, and urbanization rate. In addition, land use played an important role in the decadal precipitation changes in BTH.

  12. Precipitation and Evolution Behavior of Second Phase Particles in Grain-oriented Silicon Steel with Cu

    Directory of Open Access Journals (Sweden)

    LI Zhi-chao

    2017-12-01

    Full Text Available The precipitation behavior and distribution of second phase particles in conventional grain-oriented silicon steel during manufacturing process were observed by field emission scanning electron microscopy, and the average particle size, the areal particle density, and the Zener factor were statistically analyzed. The results show that the samples mainly contain two kinds of precipitates:A class is the (Cu,MnS composite precipitates with the average size of 1μm; B class is the Cu2S precipitates with the size of 10-30nm, the key inhibition effect is produced by Cu2S. Hot rolling leads to a large amount of fine second phase particles precipitation, which has the minimum average particle size and the highest areal density; in the manufacturing process before high temperature annealing, the average particle size is increasing and the areal density is decreasing; in the process of high temperature annealing, with the decrease of volume fraction of precipitates, the inhibition ability exhibits reducing trend,obvious aggregation occurs at 960℃,secondary recrystallization will happen when Zener factor A decreases below the critical value of 0.19nm-1, and the residual particles will not produce valid inhibition effect.

  13. Changing precipitation extremes and flood risk over the conterminous U.S.

    Science.gov (United States)

    Lettenmaier, D. P.

    2017-12-01

    On the basis of first principles, precipitation extremes should increase in a warming climate. Effectively, the atmospheric "heat engine" is expected to turn over more rapidly as the climate warms, due to increased water holding capacity of the atmosphere. Most climate models reflect this behavior, and project that precipitation extremes should increase, at roughly the Clausius-Clapyron rate. From a societal standpoint though, changing precipitation extremes in and of themselves aren't necessarily a concern - rather, the question of societal interest is "are and/or will flood extremes change". Flood extremes of course respond to precipitation extremes, but they are affected by a number of other factors, among them being the duration of precipitation relative to catchment size and channel features, storm orientation relative to catchment orientation, soil characteristics, and antecedent hydrologic conditions. Various studies have shown that over both the conterminous U.S. and globally, there have been slight increases in precipitation extremes (i.e., more than would be expected due to chance. On the other hand, evidence for increases in flooding are less pervasive. I review past work in this area, and suggest the nature of studies that might be conducted going forward to better understand the likely signature of changing precipitation extremes on flooding.

  14. Computation of rainfall erosivity from daily precipitation amounts.

    Science.gov (United States)

    Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel

    2018-10-01

    Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Science.gov (United States)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  16. Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western US

    Energy Technology Data Exchange (ETDEWEB)

    Creamean, Jessie; Suski, Kaitlyn; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J.; Sullivan, Ryan C.; White, Allen B.; Ralph, F. M.; Minnis, Patrick; Comstock, Jennifer M.; Tomlinson, Jason M.; Prather, Kimberly

    2013-03-29

    Winter storms in California’s Sierra Nevada increase seasonal snowpack and provide critical water resources for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation (1), while few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols likely serve as IN and play an important role in orographic precipitation processes over the western United States.

  17. Conditions for precipitation of copper phases in DWPF waste glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Ramsey, W.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) precipitate hydrolysis process requires the use of copper formate catalyst. The expected absorbed radiation doses to the precipitate require levels of copper formate that increase the potential for the precipitation of metallic copper in the DWPF Melter. The conditions required to avoid the precipitation of copper are described

  18. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    2017-01-01

    Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...... gauges in the model area. The spatiotemporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatiotemporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying on precipitation output...

  19. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  20. Studies on gadolinium precipitation in moderator system of nuclear reactor

    International Nuclear Information System (INIS)

    Joshi, Akhilesh C.; Rajesh, Puspalata; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Gadolinium is used in the moderator system of many Pressurised Heavy Water Reactors (PHWRs) for start-up, shut-down and reactivity control during operation. It is very much essential to maintain gadolinium concentration in the system as desired. It has been reported that gadolinium gets precipitated in as oxalate in carbonated water under the influence of γ-radiation. Hence, studies were carried out to investigate the effect of dose, presence of other metal ions and metal surfaces on the precipitation of gadolinium. The results showed that the amount of carboxylic acids viz., formic acid and oxalic acid, formed due to radiolysis is dependent on the dose and that the curve passes though a maxima. Gadolinium is added in higher concentration in Advanced Heavy Water Reactor. So, experiments with high concentration of gadolinium were also carried out. Ultra pure water saturated with high purity CO 2 containing gadolinium and desired ion/surface was irradiated with γ-radiation from 60 Co source at 25°C to doses ranging from 2.5-16.6 Mrad. At lower doses, formation of carboxylic acids takes place but as the dose increases, decomposition of these acids starts and hence the concentration Vs dose passes through a maximum. It was found that precipitation of gadolinium as oxalate occurred at lower doses. At higher doses, it was seen that pH of the solution decreases and hence solubility of gadolinium oxalate increases. It was also observed that the amount of gadolinium precipitated varied linearly with the initial concentration of gadolinium varying from 2 ppm to 20 ppm. While for gadolinium concentration from 20 ppm to 400 ppm, gadolinium in particulate form was observed. The amount of carboxylic acids formed depends on the nature of cations present in solution. It was found that the amount of oxalic acid formed in the case of gadolinium was more than that formed in the case of sodium. Presence of metal oxides such as ZrO 2 formed over zircoloy surfaces was found to

  1. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  2. Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols

    Directory of Open Access Journals (Sweden)

    T. Tang

    2018-06-01

    Full Text Available Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare the modeled dynamical response of Mediterranean precipitation to individual forcing agents in a set of global climate models (GCMs. Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean and that precipitation is more sensitive to black carbon (BC forcing than to well-mixed greenhouse gases (WMGHGs or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive sea level pressure (SLP pattern similar to the North Atlantic Oscillation–Arctic Oscillation, characterized by higher SLP at midlatitudes and lower SLP at high latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31±17 % of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs, whereas global scattering sulfate aerosols would have negligible impacts. Aerosol–cloud interactions appear to have minimal impacts on Mediterranean precipitation in these models, at least in part because many simulations did not fully include such processes; these merit further study. The findings from this study suggest that future BC and WMGHG emissions may significantly affect regional water resources, agricultural practices, ecosystems and

  3. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  4. Chitosan-coated magnetic nanoparticles prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion.

    Science.gov (United States)

    Pineda, María Guadalupe; Torres, Silvia; López, Luis Valencia; Enríquez-Medrano, Francisco Javier; de León, Ramón Díaz; Fernández, Salvador; Saade, Hened; López, Raúl Guillermo

    2014-07-02

    Chitosan-coated magnetic nanoparticles (CMNP) were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  5. Chitosan-Coated Magnetic Nanoparticles Prepared in One-Step by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    María Guadalupe Pineda

    2014-07-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  6. Complex precipitation pathways in multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Clouet, Emmanuel; Nastar, Maylise [Service de Recherches de Metallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette (France); Lae, Ludovic; Deschamps, Alexis [LTPCM/ENSEEG, UMR CNRS 5614, Domaine Universitaire, BP 75, 38402 St Martin d' Heres (France); Epicier, Thierry [Groupe d' Etudes de Metallurgie Physique et de Physique des Materiaux, UMR CNRS 5510, INSA, 69621 Villeurbanne (France); Lefebvre, Williams [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France)

    2006-07-01

    One usual way to strengthen a metal is to add alloying elements and to control the size and the density of the precipitates obtained. However, precipitation in multicomponent alloys can take complex pathways depending on the relative diffusivity of solute atoms and on the relative driving forces involved. In Al - Zr - Sc alloys, atomic simulations based on first-principle calculations combined with various complementary experimental approaches working at different scales reveal a strongly inhomogeneous structure of the precipitates: owing to the much faster diffusivity of Sc compared with Zr in the solid solution, and to the absence of Zr and Sc diffusion inside the precipitates, the precipitate core is mostly Sc-rich, whereas the external shell is Zr-rich. This explains previous observations of an enhanced nucleation rate in Al - Zr - Sc alloys compared with binary Al - Sc alloys, along with much higher resistance to Ostwald ripening, two features of the utmost importance in the field of light high-strength materials. (authors)

  7. Object-Based Assessment of Satellite Precipitation Products

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2016-06-01

    Full Text Available An object-based verification approach is employed to assess the performance of the commonly used high-resolution satellite precipitation products: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN, Climate Prediction center MORPHing technique (CMORPH, and Tropical Rainfall Measurement Mission (TRMM Multi-Satellite Precipitation Analysis (TMPA 3B42RT. The evaluation of the satellite precipitation products focuses on the skill of depicting the geometric features of the localized precipitation areas. Seasonal variability of the performances of these products against the ground observations is investigated through the examples of warm and cold seasons. It is found that PERSIANN is capable of depicting the orientation of the localized precipitation areas in both seasons. CMORPH has the ability to capture the sizes of the localized precipitation areas and performs the best in the overall assessment for both seasons. 3B42RT is capable of depicting the location of the precipitation areas for both seasons. In addition, all of the products perform better on capturing the sizes and centroids of precipitation areas in the warm season than in the cold season, while they perform better on depicting the intersection area and orientation in the cold season than in the warm season. These products are more skillful on correctly detecting the localized precipitation areas against the observations in the warm season than in the cold season.

  8. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  9. Optimization of precipitation conditions of thorium oxalate precipitate

    International Nuclear Information System (INIS)

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  10. Simulated effects of a seasonal precipitation change on the vegetation in tropical Africa

    Directory of Open Access Journals (Sweden)

    E. S. Gritti

    2010-03-01

    Full Text Available Pollen data collected in Africa at high (Kuruyange, valley swamp, Burundi and low altitude (Victoria, lake, Uganda; Ngamakala, pond, Congo showed that after 6 ky before present (BP, pollen of deciduous trees increase their relative percentage, suggesting thus the reduction of the annual amount of precipitation and/or an increase of in the length of the dry season. Until now, pollen-climate transfer functions only investigated mean annual precipitation, due to the absence of modern pollen-assemblage analogs under diversified precipitation regimes. Hence these functions omit the potential effect of a change in precipitation seasonality modifying thus the length of the dry season. In the present study, we use an equilibrium biosphere model (i.e. BIOME3.5 to estimate the sensitivity of equatorial African vegetation, at specific sites, to such changes. Climatic scenarios, differing only in the monthly distribution of the current annual amount of precipitation, are examined at the above three locations in equatorial Africa. Soil characteristics, monthly temperatures and cloudiness are kept constant at their present-day values. Good agreement is shown between model simulations and current biomes assemblages, as inferred from pollen data. To date, the increase of the deciduous forest component in the palaeodata around 6 ky BP has been interpreted as the beginning of a drier climate period. However, our results demonstrate that a change in the seasonal distribution of precipitation could also induce the observed changes in vegetation types. This study confirms the importance of taking into account seasonal changes in the hydrological balance. Palaeoecologists can greatly benefit from the use of dynamic process based vegetation models to acccount for modification of the length of the dry season when they wish to reconstruct vegetation composition or to infer quantitative climate parameters, such as temperature and precipitation, from pollen or vegetation

  11. Precipitation behaviors of X70 acicular ferrite pipeline steel

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Yi Sun; Qixiang Chen; Haitao Jiang; Lihong Zhang

    2006-01-01

    The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Precipitates observed by TEM can be classified into two groups. The large precipitates are complex compounds that comprise square-shaped TiN precipitate as core with fine Nb-containing precipitate nucleated on pre-existing TiN precipitate as caps on one or more faces at high temperature. In contrast, the fine and spherical Nb carbides and/or carbonitrides precipitate heterogeneously on dislocations and sub-boundaries at low temperature. From the analysis in terms of thermodynamics, EDS and chemical composition of the steel, NbC precipitation is considered to be the predominant precipitation behavior in the tested steel under the processing conditions of this research.

  12. Tensile behavior of Cu50Zr50 metallic glass nanowire with a B2 crystalline precipitate

    Science.gov (United States)

    Sepulveda-Macias, Matias; Amigo, Nicolas; Gutierrez, Gonzalo

    2018-02-01

    A molecular dynamics study of the effect of a single B2-CuZr precipitate on the mechanical properties of Cu50Zr50 metallic glass nanowires is presented. Four different samples are considered: three with a 2, 4 and 6 nm radii precipitate and a precipitate-free sample. These systems are submitted to uniaxial tensile test up to 25% of strain. The interface region between the precipitate and the glass matrix has high local atomic shear strain, activating shear transformation zones, which concentrates in the neighborhood of the precipitate. The plastic regime is dominated by necking, and no localized shear band is observed for the samples with a 4 and 6 nm radii precipitate. In addition, the yield stress decreases as the size of the precipitate increases. Regarding the precipitate structure, no martensitic phase transformation is observed, since neither the shear band hit the precipitate nor the stress provided by the tensile test is enough to initiate the transformation. It is concluded that, in contrast to the case when multiple precipitates are present in the sample, a single precipitate concentrates the shear strain around its surface, eventually causing the failure of the nanowire.

  13. An assessment of differences in gridded precipitation datasets in complex terrain

    Science.gov (United States)

    Henn, Brian; Newman, Andrew J.; Livneh, Ben; Daly, Christopher; Lundquist, Jessica D.

    2018-01-01

    Hydrologic modeling and other geophysical applications are sensitive to precipitation forcing data quality, and there are known challenges in spatially distributing gauge-based precipitation over complex terrain. We conduct a comparison of six high-resolution, daily and monthly gridded precipitation datasets over the Western United States. We compare the long-term average spatial patterns, and interannual variability of water-year total precipitation, as well as multi-year trends in precipitation across the datasets. We find that the greatest absolute differences among datasets occur in high-elevation areas and in the maritime mountain ranges of the Western United States, while the greatest percent differences among datasets relative to annual total precipitation occur in arid and rain-shadowed areas. Differences between datasets in some high-elevation areas exceed 200 mm yr-1 on average, and relative differences range from 5 to 60% across the Western United States. In areas of high topographic relief, true uncertainties and biases are likely higher than the differences among the datasets; we present evidence of this based on streamflow observations. Precipitation trends in the datasets differ in magnitude and sign at smaller scales, and are sensitive to how temporal inhomogeneities in the underlying precipitation gauge data are handled.

  14. Changes in precipitation recycling over arid regions in the Northern Hemisphere

    Science.gov (United States)

    Li, Ruolin; Wang, Chenghai; Wu, Di

    2018-01-01

    Changes of precipitation recycling (PR) in Northern Hemisphere from 1981 to 2010 are investigated using a water recycling model. The temporal and spatial characteristics of recycling in arid regions are analyzed. The results show that the regional precipitation recycling ratio (PRR) in arid regions is larger than in wet regions. PRR in arid regions has obvious seasonal variation, ranging from more than 25 % to less than 1 %. Furthermore, in arid regions, PRR is significantly negatively correlated with precipitation (correlation coefficient r = -0.5, exceeding the 99 % significance level). Moreover, the trend of PRR is related to changes in precipitation in two ways. PRR decreases with increasing precipitation in North Africa, which implies that less locally evaporated vapor converts into actual precipitation. However, in Asian arid regions, the PRR increases as precipitation reduces, which implies that more locally evaporated vapor converts into rainfall. Further, as PRR mainly depends on evapotranspiration, the PRR trend in Asian arid regions develops as temperature increases and more evaporated vapor enters the atmosphere to offset the reduced rainfall.

  15. Application of probabilistic precipitation forecasts from a ...

    African Journals Online (AJOL)

    2014-02-14

    Feb 14, 2014 ... Application of probabilistic precipitation forecasts from a deterministic model ... aim of this paper is to investigate the increase in the lead-time of flash flood warnings of the SAFFG using probabilistic precipitation forecasts ... The procedure is applied to a real flash flood event and the ensemble-based.

  16. Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2006-01-01

    The influence of ruthenium ions on the precipitation of goethite (α-FeOOH), α-Fe 2 O 3 and Fe 3 O 4 in highly alkaline media was investigated by 57 Fe Moessbauer and FT-IR spectroscopies, thermal field emission scanning electron microscope (FE SEM) and EDS. The presence of Ru-dopant strongly affected the precipitation of α-FeOOH at highly alkaline pH, i.e. the formation of α-Fe 2 O 3 was also noticed. A decrease of hyperfine magnetic field (HMF) at RT from 35.1 T (undoped α-FeOOH) to 31.3 T for sample with [Ru]/([Ru] + [Fe]) = 0.0196 was assigned to the incorporation of ruthenium ions into the α-FeOOH structure. Moessbauer spectroscopy showed the formation of stoichiometric Fe 3 O 4 for [Ru]/([Ru] + [Fe]) = 0.0291-0.0909. α-Fe 2 O 3 and Fe 3 O 4 did not show a tendency to the formation of solid solutions with ruthenium ions. FE SEM observations of the samples showed that reference α-FeOOH sample contained acicular particles of good uniformity, which increased the length up to ∼5 times with increase of concentration of ruthenium ions. On the other hand, large octahedral Fe 3 O 4 crystals (particles) were associated with small particles of ruthenium (hydrous) oxide with a size in the range ∼100 nm or less. A possible catalytic action of ruthenium that created reduction conditions for Fe 3+ ions and formation of Fe 2+ ions for precipitation of Fe 3 O 4 was discussed

  17. Covariability of seasonal temperature and precipitation over the Iberian Peninsula in high-resolution regional climate simulations (1001-2099)

    Science.gov (United States)

    Fernández-Montes, S.; Gómez-Navarro, J. J.; Rodrigo, F. S.; García-Valero, J. A.; Montávez, J. P.

    2017-04-01

    Precipitation and surface temperature are interdependent variables, both as a response to atmospheric dynamics and due to intrinsic thermodynamic relationships and feedbacks between them. This study analyzes the covariability of seasonal temperature (T) and precipitation (P) across the Iberian Peninsula (IP) using regional climate paleosimulations for the period 1001-1990, driven by reconstructions of external forcings. Future climate (1990-2099) was simulated according to SRES scenarios A2 and B2. These simulations enable exploring, at high spatial resolution, robust and physically consistent relationships. In winter, positive P-T correlations dominate west-central IP (Pearson correlation coefficient ρ = + 0.43, for 1001-1990), due to prevalent cold-dry and warm-wet conditions, while this relationship weakens and become negative towards mountainous, northern and eastern regions. In autumn, negative correlations appear in similar regions as in winter, whereas for summer they extend also to the N/NW of the IP. In spring, the whole IP depicts significant negative correlations, strongest for eastern regions (ρ = - 0.51). This is due to prevalent frequency of warm-dry and cold-wet modes in these regions and seasons. At the temporal scale, regional correlation series between seasonal anomalies of temperature and precipitation (assessed in 31 years running windows in 1001-1990) show very large multidecadal variability. For winter and spring, periodicities of about 50-60 years arise. The frequency of warm-dry and cold-wet modes appears correlated with the North Atlantic Oscillation (NAO), explaining mainly co-variability changes in spring. For winter and some regions in autumn, maximum and minimum P-T correlations appear in periods with enhanced meridional or easterly circulation (low or high pressure anomalies in the Mediterranean and Europe). In spring and summer, the Atlantic Multidecadal Oscillation shows some fingerprint on the frequency of warm/cold modes. For

  18. Precipitation variations recorded in Guliya ice core in the past 400 years

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the Guliya ice core records, the precipitation in the past 400 years was retrieved. Its rela tions with other regions were also analyzed. The results demonstrated that there were two high-precipitation periods and two low-precipitation periods in Guliya ice core since 1571 AD. The average precipitation in the two high-precipitation periods was 42 mm (21%) higher than that in the two low-precipitation periods. The precipitation recorded in the Guliya ice core was consistent with that in Dunde ice core. The variation trends of precipitation in the Guliya ice core and the northern hemisphere are similar. During the extremely wet years in the northern hemisphere, the precipitation recorded in the Guliya ice core was two times the long-term average. However, the annual precipitation was 38% less than that of the long-term average in extremely dry years.

  19. Response of solute and precipitation-strengthened copper alloys at high neutron exposure

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Shikama, T.; Edwards, D.J.; Newkirk, J.W.

    1991-11-01

    A variety of solute and precipitation strengthened copper base alloys have been irradiated to neutron-induced displacement levels of 34 to 150 dpa at 415 degrees C and 32 dpa at 529 degrees C in the Fast Flux Test Facility to assess their potential for high heat flux applications in fusion reactors. Several MZC-type alloys appear to offer the most promise for further study. For low fluence applications CuBeNi and spinodally strengthened CuNiTi alloys may also be suitable. Although Cu-2Be resists swelling, it is not recommended for fusion reactor applications because of its low conductivity

  20. Response of solute and precipitation-strengthened copper alloys at high neutron exposure

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Shikama, T. [Tohoku Univ., Oarai Branch (Japan); Edwards, D.J.; Newkirk, J.W. [Missouri Univ., Rolla, MO (United States)

    1991-11-01

    A variety of solute and precipitation strengthened copper base alloys have been irradiated to neutron-induced displacement levels of 34 to 150 dpa at 415{degrees}C and 32 dpa at 529{degrees}C in the Fast Flux Test Facility to assess their potential for high heat flux applications in fusion reactors. Several MZC-type alloys appear to offer the most promise for further study. For low fluence applications CuBeNi and spinodally strengthened CuNiTi alloys may also be suitable. Although Cu-2Be resists swelling, it is not recommended for fusion reactor applications because of its low conductivity.

  1. Application of the Alternative Traditional and Selective Precipitation Routes for Recovery of High Grade Thorium Concentrates from Egyptian Crude Monazite Sand

    International Nuclear Information System (INIS)

    Helaly, O.S.

    2017-01-01

    Process flow sheet selection for thorium separation in relatively high grade concentrate from Egyptian crude monazite sand was carried out. Traditional selective leaching and precipitation routes were applied after sulfuric acid digestion upon Egyptian crude monazite for this purpose. The resultant hot grey sulfate paste from monazite digestion was firstly cooled to ambient temperature then leached by normal water into two successive stages. The first leach solution contained most of the thorium which represents about 88% of the present thorium and its concentration in the liquor reached 4.5 g Th/l. This liquor also contains most of the free acids and major of impurities especially iron (more than 6.3 g Fe/l). Different routes were tested to evaluate the suitable conditions that verify maximum recovery of thorium from such monazite sulfate solution and producing relatively high grade concentrate. Two different possible traditional and selective methods were involved, namely; thorium initial precipitation with rare earth elements as double sulfate or its precipitation as phosphate through acidity control at ph 1.1 which seems to be the simple, brief and convenient route to accomplish this purpose. Further separation and/or upgrading of thorium from these precipitates (after conversion to hydroxides or without) were conducted through re-dissolution in hydrochloric acid and re-precipitation with different selective reagents in the form of hydroxide, oxalate or fluoride was also included. The target was accomplished through thorium co-precipitation with light rare earth elements as double sulfate, followed by its recovery from this fraction, where a concentrate of grade 68.3% was produced

  2. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel

    International Nuclear Information System (INIS)

    Ping, D.H.; Ohnuma, M.; Hirakawa, Y.; Kadoya, Y.; Hono, K.

    2005-01-01

    The microstructure of 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened (PH) stainless steel has been investigated using transmission electron microscopy, three-dimensional atom probe and small-angle X-ray scattering. A high number density (∼10 23-25 m -3 ) of ultra-fine (1-6 nm) β-NiAl precipitates are formed during aging at 450-620 deg. C, which are spherical in shape and dispersed uniformly with perfect coherency with the matrix. As the annealing temperature increases, the size and concentration of the precipitates increase concurrently while the number density decreases. The Mo and Cr segregation to the precipitate-matrix interface has been detected and is suggested to suppress precipitate coarsening. In the sample aged for 500 h at 450 deg. C, the matrix decomposes into Cr-rich (α') and Cr-poor (α) regions. The decrease in the strength at higher temperature (above 550 deg. C) is attributed to the formation of larger carbides and reverted austenite

  3. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  4. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    Science.gov (United States)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  5. A High-Throughput, Precipitating Colorimetric Sandwich ELISA Microarray for Shiga Toxins

    Directory of Open Access Journals (Sweden)

    Andrew Gehring

    2014-06-01

    Full Text Available Shiga toxins 1 and 2 (Stx1 and Stx2 from Shiga toxin-producing E. coli (STEC bacteria were simultaneously detected with a newly developed, high-throughput antibody microarray platform. The proteinaceous toxins were immobilized and sandwiched between biorecognition elements (monoclonal antibodies and pooled horseradish peroxidase (HRP-conjugated monoclonal antibodies. Following the reaction of HRP with the precipitating chromogenic substrate (metal enhanced 3,3-diaminobenzidine tetrahydrochloride or DAB, the formation of a colored product was quantitatively measured with an inexpensive flatbed page scanner. The colorimetric ELISA microarray was demonstrated to detect Stx1 and Stx2 at levels as low as ~4.5 ng/mL within ~2 h of total assay time with a narrow linear dynamic range of ~1–2 orders of magnitude and saturation levels well above background. Stx1 and/or Stx2 produced by various strains of STEC were also detected following the treatment of cultured cells with mitomycin C (a toxin-inducing antibiotic and/or B-PER (a cell-disrupting, protein extraction reagent. Semi-quantitative detection of Shiga toxins was demonstrated to be sporadic among various STEC strains following incubation with mitomycin C; however, further reaction with B-PER generally resulted in the detection of or increased detection of Stx1, relative to Stx2, produced by STECs inoculated into either axenic broth culture or culture broth containing ground beef.

  6. Temperature sensitivity of extreme precipitation events in the south-eastern Alpine forelands

    Science.gov (United States)

    Schroeer, Katharina; Kirchengast, Gottfried

    2016-04-01

    How will convective precipitation intensities and patterns evolve in a warming climate on a regional to local scale? Studies on the scaling of precipitation intensities with temperature are used to test observational and climate model data against the hypothesis that the change of precipitation with temperature will essentially follow the Clausius-Clapeyron (CC) equation, which corresponds to a rate of increase of the water holding capacity of the atmosphere by 6-7 % per Kelvin (CC rate). A growing number of studies in various regions and with varying approaches suggests that the overall picture of the temperature-precipitation relationship is heterogeneous, with scaling rates shearing off the CC rate in both upward and downward directions. In this study we investigate the temperature scaling of extreme precipitation events in the south-eastern Alpine forelands of Austria (SEA) based on a dense rain gauge net of 188 stations, with sub-daily precipitation measurements since about 1990 used at 10-min resolution. Parts of the study region are European hot-spots for severe hailstorms and the region, which is in part densely populated and intensively cultivated, is generally vulnerable to climate extremes. Evidence on historical extremely heavy short-time and localized precipitation events of several hundred mm of rain in just a few hours, resulting in destructive flash flooding, underline these vulnerabilities. Heavy precipitation is driven by Mediterranean moisture advection, enhanced by the orographic lifting at the Alpine foothills, and hence trends in positive sea surface temperature anomalies might carry significant risk of amplifying future extreme precipitation events. In addition, observations from the highly instrumented subregion of south-eastern Styria indicate a strong and robust long-term warming trend in summer of about 0.7°C per decade over 1971-2015, concomitant with a significant increase in the annual number of heat days. The combination of these

  7. Effects of La on the age hardening behavior and precipitation kinetics in the cast Al–Cu alloy

    International Nuclear Information System (INIS)

    Yao Dongming; Bai Zhihao; Qiu Feng; Li Yanjun; Jiang Qichuan

    2012-01-01

    Highlights: ► La addition enhances the hardness of the Al–Cu alloy. ► La addition facilitates the formation of the θ′ precipitates. ► La addition decreases the nucleation activation energy of the θ′ precipitates. - Abstract: The hardness and thermal stability are the important problems of the cast Al–Cu alloy related to the microstructural changes. In order to increase the possibilities of high temperature applications of the cast Al–Cu alloy, it is necessary to gain a more detail understanding of the correlation between the age hardening and the microstructure in the cast Al–Cu alloy, and the thermal stability of the θ′ precipitates at elevated temperatures. The aim of this work is to investigate the effects of La addition on the age hardening behavior and precipitation kinetics in the Al–Cu alloy in the temperature range from 435 to 523 K. The results indicated that La addition considerably increases the number of the θ′ precipitates and decreases their sizes, which results in the enhanced age hardening effect. The precipitation kinetics analysis showed that the activation energy (13 kJ/mol) of the θ′ precipitate nucleation of the modified alloy is smaller than that (19 kJ/mol) of the unmodified alloy. The decrease in the activation energy of the θ′ precipitate nucleation can be explained with both the enhanced nucleation process due to La/Cu/vacancy aggregating and the increased interaction between Al and Cu atoms.

  8. Improvement of high floods predictability in the Red River of the North basin using combined remote-sensed, gauge-based and assimilated precipitation data

    Science.gov (United States)

    Semenova, O.; Restrepo, P. J.

    2011-12-01

    The Red River of the North basin (USA) is considered to be under high risk of flood danger, having experienced serious flooding during the last few years. The region climate can be characterized as cold and, during winter, it exhibits continuous snowcover modified by wind redistribution. High-hazard runoff regularly occurs as a major spring snowmelt event resulting from the relatively rapid release of water from the snowpack on frozen soils. Although in summer/autumn most rainfall occurs from convective storms over small areas and does not generate dangerous floods, the pre-winter state of the soils may radically influence spring maximum flows. Large amount of artificial agricultural tiles and numerous small post-glacial depressions influencing the redistribution of runoff complicates the predictions of high floods. In such conditions any hydrological model would not be successful without proper precipitation input. In this study the simulation of runoff processes for two watersheds in the basin of the Red River of the North, USA, was undertaken using the Hydrograph model developed at the State Hydrological Institute (St. Petersburg, Russia). The Hydrograph is a robust process-based model, where the processes have a physical basis combined with some strategic conceptual simplifications that give it the ability to be applied in the conditions of low information availability. It accounts for the processes of frost and thaw of soils, snow redistribution and depression storage impacts. The assessment of the model parameters was conducted based on the characteristics of soil and vegetation cover. While performing the model runs, the parameters of depression storage and the parameters of different types of flow were manually calibrated to reproduce the observed flow. The model provided satisfactory simulation results in terms not only of river runoff but also variable sates of soil like moisture and temperature over a simulation period 2005 - 2010. For experimental runs

  9. Precipitation process for supernate decontamination

    International Nuclear Information System (INIS)

    Lee, L.M.; Kilpatrick, L.L.

    1982-11-01

    A precipitation and adsorption process has been developed to remove cesium, strontium, and plutonium from water-soluble, high-level radioactive waste. An existing waste tank serves as the reaction vessel and the process begins with the addition of a solution of sodium tetraphenylborate and a slurry of sodium titanate to the contained waste salt solution. Sodium tetraphenylborate precipitates the cesium and sodium titanate adsorbs the strontium and plutonium. The precipitate/adsorbate is then separated from the decontaminated salt solution by crossflow filtration. This new process offers significant capital savings over an earlier ion exchange process for salt decontamination. Chemical and small-scale engineering studies with actual waste are reported. The effect of many variables on the decontamination factors and filter performance are defined

  10. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  11. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  12. Increased precipitation accelerates soil organic matter turnover associated with microbial community composition in topsoil of alpine grassland on the eastern Tibetan Plateau.

    Science.gov (United States)

    Han, Conghai; Wang, Zongli; Si, Guicai; Lei, Tianzhu; Yuan, Yanli; Zhang, Gengxin

    2017-10-01

    Large quantities of carbon are stored in alpine grassland of the Tibetan Plateau, which is extremely sensitive to climate change. However, it remains unclear whether soil organic matter (SOM) in different layers responds to climate change analogously, and whether microbial communities play vital roles in SOM turnover of topsoil. In this study we measured and collected SOM turnover by the 14 C method in alpine grassland to test climatic effects on SOM turnover in soil profiles. Edaphic properties and microbial communities in the northwestern Qinghai Lake were investigated to explore microbial influence on SOM turnover. SOM turnover in surface soil (0-10 cm) was more sensitive to precipitation than that in subsurface layers (10-40 cm). Precipitation also imposed stronger effects on the composition of microbial communities in the surface layer than that in deeper soil. At the 5-10 cm depth, the SOM turnover rate was positively associated with the bacteria/fungi biomass ratio and the relative abundance of Acidobacteria, both of which are related to precipitation. Partial correlation analysis suggested that increased precipitation could accelerate the SOM turnover rate in topsoil by structuring soil microbial communities. Conversely, carbon stored in deep soil would be barely affected by climate change. Our results provide valuable insights into the dynamics and storage of SOM in alpine grasslands under future climate scenarios.

  13. Projected precipitation changes in South America: a dynamical downscaling within CLARIS

    Energy Technology Data Exchange (ETDEWEB)

    Soerensson, Anna A. [Centra de Investigaciones del Mar y la Atmosfera, CONICET/UBA, Buenos Aires (Argentina); Menendez, Claudio G. [Centra de Investigaciones del Mar y la Atmosfera, CONICET/UBA, Buenos Aires (Argentina); Dept. de Ciencias de la Atmosfera y los Oceanos, FCEN, UBA, Buenos Aires (Argentina); Ruscica, Romina; Alexander, Peter [Dept. de Fisica, FCEN, UBA, Buenos Aires (Argentina); Samuelsson, Patrick; Willen, Ulrika [Rossby Centre, SMHI, Norrkoeping (Sweden)

    2010-06-15

    Responses of precipitation seasonal means and extremes over South America in a downscaling of a climate change scenario are assessed with the Rossby Centre Regional Atmospheric Model (RCA). The anthropogenic warming under A1B scenario influences more on the likelihood of occurrence of severe extreme events like heavy precipitation and dry spells than on the mean seasonal precipitation. The risk of extreme precipitation increases in the La Plata Basin with a factor of 1.5-2.5 during all seasons and in the northwestern part of the continent with a factor 1.5-3 in summer, while it decreases in central and northeastern Brazil during winter and spring. The maximum amount of 5-days precipitation increases by up to 50% in La Plata Basin, indicating risks of flooding. Over central Brazil and the Bolivian lowland, where present 5-days precipitation is higher, the increases are similar in magnitude and could cause less impacts. In southern Amazonia, northeastern Brazil and the Amazon basin, the maximum number of consecutive dry days increases and mean winter and spring precipitation decreases, indicating a longer dry season. In the La Plata Basin, there is no clear pattern of change for the dry spell duration. (orig.)

  14. Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy

    Directory of Open Access Journals (Sweden)

    Xiaofei Sheng

    2017-09-01

    Full Text Available Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250–400 °C, while the precipitation nucleation was scarce in the low-temperature zone (<250 °C and in the high-temperature zone (>400 °C. Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250–400 °C, and corresponding time-temperature-property (TTP curves of the studied alloy have been established.

  15. An assessment of historical Antarctic precipitation and temperature trend using CMIP5 models and reanalysis datasets

    Science.gov (United States)

    Tang, Malcolm S. Y.; Chenoli, Sheeba Nettukandy; Samah, Azizan Abu; Hai, Ooi See

    2018-03-01

    The study of Antarctic precipitation has attracted a lot of attention recently. The reliability of climate models in simulating Antarctic precipitation, however, is still debatable. This work assess the precipitation and surface air temperature (SAT) of Antarctica (90 oS to 60 oS) using 49 Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models and the European Centre for Medium-range Weather Forecasts "Interim" reanalysis (ERA-Interim); the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR); the Japan Meteorological Agency 55-year Reanalysis (JRA-55); and the Modern Era Retrospective-analysis for Research and Applications (MERRA) datasets for 1979-2005 (27 years). For precipitation, the time series show that the MERRA and JRA-55 have significantly increased from 1979 to 2005, while the ERA-Int and CFSR have insignificant changes. The reanalyses also have low correlation with one another (generally less than +0.69). 37 CMIP5 models show increasing trend, 18 of which are significant. The resulting CMIP5 MMM also has a significant increasing trend of 0.29 ± 0.06 mm year-1. For SAT, the reanalyses show insignificant changes and have high correlation with one another, while the CMIP5 MMM shows a significant increasing trend. Nonetheless, the variability of precipitation and SAT of MMM could affect the significance of its trend. One of the many reasons for the large differences of precipitation is the CMIP5 models' resolution.

  16. Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990

    Science.gov (United States)

    Pińskwar, Iwona; Choryński, Adam; Graczyk, Dariusz; Kundzewicz, Zbigniew W.

    2018-01-01

    Several episodes of extreme precipitation excess and extreme precipitation deficit, with considerable economic and social impacts, have occurred in Europe and in Poland in the last decades. However, the changes of related indices exhibit complex variability. This paper analyses changes in indices related to observed abundance and deficit of precipitated water in Poland. Among studied indices are maximum seasonal 24-h precipitation for the winter half-year (Oct.-March) and the summer half-year (Apr.-Sept.), maximum 5-day precipitation, maximum monthly precipitation and number of days with intense or very intense precipitation (respectively, in excess of 10 mm or 20 mm per day). Also, the warm-seasonal maximum number of consecutive dry days (longest period with daily precipitation below 1 mm) was examined. Analysis of precipitation extremes showed that daily maximum precipitation for the summer half-year increased for many stations, and increases during the summer half-year are more numerous than those in the winter half-year. Also, analysis of 5-day and monthly precipitation sums show increases for many stations. Number of days with intense precipitation increases especially in the north-western part of Poland. The number of consecutive dry days is getting higher for many stations in the summer half-year. Comparison of these two periods: colder 1961-1990 and warmer 1991-2015, revealed that during last 25 years most of statistical indices, such as 25th and 75th percentiles, median, mean and maximum are higher. However, many changes discussed in this paper are weak and statistically insignificant. The findings reported in this paper challenge results based on earlier data that do not include 2007-2015.

  17. Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes

    KAUST Repository

    Camilo, Daniela Castro

    2017-10-02

    In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.

  18. Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes

    KAUST Repository

    Camilo, Daniela Castro; Huser, Raphaë l

    2017-01-01

    In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.

  19. Detecting Climate Signals in Precipitation Extremes from TRMM (1998-2013) - Increasing Contrast Between Wet and Dry Extremes During the "Global Warming Hiatus"

    Science.gov (United States)

    Wu, Huey-Tzu Jenny; Lau, William K.-M.

    2016-01-01

    We investigate changes in daily precipitation extremes using Tropical Rainfall Measuring Mission (TRMM) data (1998-2013), which coincides with the "global warming hiatus." Results show a change in probability distribution functions of local precipitation events (LPEs) during this period consistent with previous global warming studies, indicating increasing contrast between wet and dry extremes, with more intense LPE, less moderate LPE, and more dry (no rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPEs over the Northern Hemisphere extratropics during the wet season but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. A significant global drying trend (3.2% per decade, 99% c.l.) over land is also found during the dry season. Regions of pronounced increased dry events include western and central U.S., northeastern Asia, and Southern Europe/Mediterranean.

  20. Sensitivities of dry season runoff to precipitation and temperature in southern Sierra Nevada streams

    Science.gov (United States)

    Safeeq, M.; Hunsaker, C. T.; Bales, R. C.

    2016-12-01

    In a mediterranean climate, dry season runoff sustains water supply and supports aquatic habitat and other ecosystems. Precipitation and temperature directly, by regulating recharge and evapotranspiration (ET), and indirectly, by regulating amount and timing of snowmelt, control the dry season runoff in the Sierra Nevada. Here, we explored relative impacts of precipitation and temperature variability on dry season runoff using path analysis. Specific objectives include: (i) to quantify the direct and indirect impacts of precipitation and temperature on 7-day average minimum flow (Qmin) and (ii) to explore the role of preceding year Qmin on fall season runoff (QF). We used daily runoff, air temperature, precipitation, and snow water equivalent (SWE) over 2004-2015 for the ten catchments in the Kings River Experimental Watersheds. For path analysis model of Qmin, we defined annual precipitation and temperature as exogenous variables and peak SWE, day of snow disappearance, and Qmin as endogenous variables. For QF, we defined current year fall precipitation and preceding year Qmin as exogenous variables and current year QF as an endogenous variable. Path analysis results for Qmin show precipitation as a dominant driver when compared to temperature, peak SWE, and day of snow disappearance. However, in half of the catchments that are mostly located at higher elevations the impact of temperature on Qmin was either comparable or exceeded that of precipitation. This relatively high sensitivity of Qmin to air temperature in high elevation catchments is consistent with the earlier findings of increased ET in proportion to warming. The direct effects of peak SWE and day of snow disappearance on Qmin were limited, and indirect effects of temperature and precipitation via peak SWE and day of snow disappearance were not significant. The preceding year Qmin and fall precipitation showed comparable impacts on QF, indicating that the storage in the preceding year modulates current

  1. Application of physical scaling towards downscaling climate model precipitation data

    Science.gov (United States)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  2. Are satellite products good proxies for gauge precipitation over Singapore?

    Science.gov (United States)

    Hur, Jina; Raghavan, Srivatsan V.; Nguyen, Ngoc Son; Liong, Shie-Yui

    2018-05-01

    The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000-2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate

  3. Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China.

    Science.gov (United States)

    Zhao, Yinjun; Xie, Qiongying; Lu, Yuan; Hu, Baoqing

    2017-06-01

    The accuracy of Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) daily accumulated precipitation products (3B42RTV7 and 3B42V7) was evaluated for a small basin (the Nanliu river basin). A direct comparison was performed against gauge observations from a period of 9 years (2000-2009) at temporal and spatial scales. The results show that the temporal-spatial precipitation characteristics of the Nanliu river basin are highly consistent with 3B42V7 relative to 3B42RTV7, with higher correlation coefficient (CC) approximately 0.9 at all temporal scales except for the daily scale and a lower relative bias percentage. 3B42V7 slightly overestimates precipitation at all temporal scales except the yearly scale; it slightly underestimates the precipitation at the daily spatial scale. The results also reveal that the precision of TMPA products increases with longer time-aggregated data, and the detection capability of daily TMPA precipitation products are enhanced by augmentation with daily precipitation rates. In addition, daily TMPA products were input into the Xin'anjiang hydrologic model; the results show that 3B42V7-based simulated outputs were well in line with actual stream flow observations, with a high CC (0.90) and Nash-Sutcliffe efficiency coefficient (NSE, 0.79), and the results adequately captured the pattern of the observed flow curve.

  4. Predictability of summer extreme precipitation days over eastern China

    Science.gov (United States)

    Li, Juan; Wang, Bin

    2017-08-01

    Extreme precipitation events have severe impacts on human activity and natural environment, but prediction of extreme precipitation events remains a considerable challenge. The present study aims to explore the sources of predictability and to estimate the predictability of the summer extreme precipitation days (EPDs) over eastern China. Based on the region- and season-dependent variability of EPDs, all stations over eastern China are divided into two domains: South China (SC) and northern China (NC). Two domain-averaged EPDs indices during their local high EPDs seasons (May-June for SC and July-August for NC) are therefore defined. The simultaneous lower boundary anomalies associated with each EPDs index are examined, and we find: (a) the increased EPDs over SC are related to a rapid decaying El Nino and controlled by Philippine Sea anticyclone anomalies in May-June; (b) the increased EPDs over NC are accompanied by a developing La Nina and anomalous zonal sea level pressure contrast between the western North Pacific subtropical high and East Asian low in July-August. Tracking back the origins of these boundary anomalies, one or two physically meaningful predictors are detected for each regional EPDs index. The causative relationships between the predictors and the corresponding EPDs over each region are discussed using lead-lag correlation analyses. Using these selected predictors, a set of Physics-based Empirical models is derived. The 13-year (2001-2013) independent forecast shows significant temporal correlation skills of 0.60 and 0.74 for the EPDs index of SC and NC, respectively, providing an estimation of the predictability for summer EPDs over eastern China.

  5. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, Raffaella, E-mail: balestrini@irsa.cnr.it [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Polesello, Stefano [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Sacchi, Elisa [Department of Earth and Environmental Sciences, University of Pavia and IGG-CNR, Via Ferrata 1, 27100 Pavia (Italy)

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH{sub 4}{sup +} and Ca{sup 2+}, whereas the main anion was HCO{sub 3}{sup −}, which constituted approximately 69% of the anions, followed by NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and Cl{sup −}. Data analysis suggested that Na{sup +}, Cl{sup −} and K{sup +} were derived from the long-range transport of marine aerosols. Ca{sup 2+}, Mg{sup 2+} and HCO{sub 3}{sup −} were related to rock and soil dust contributions and the NO{sub 3}{sup −} and SO{sub 4}{sup 2−} concentrations were derived from anthropogenic sources. Furthermore, NH{sub 4}{sup +} was derived from gaseous NH{sub 3} scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ{sup 18}O, and from − 0.8 to − 174‰ in δ{sup 2}H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha{sup −1} y{sup −1

  6. Precipitation hardening in dilute Al–Zr alloys

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Lamarão Souza

    2018-01-01

    Full Text Available The aim of this study was to investigate the effect of solute content (hipoperitectic Al–0.22 wt.%Zr and hiperperitectic Al–0.32 wt.%Zr on the precipitation hardening and microstructural evolution of dilute Al–Zr alloys isothermally aged. The materials were conventionally cast in a muffle furnace, solidified in a water-cooled Cu mold and subsequently heat-treated at the temperature of 650 K (377 °C for 4, 12, 24, 100 and 400 h. Mechanical characterization was performed at room temperature, using a microhardness tester and microstructural characterization was carried out on a Transmission Electron Microscope – TEM. The observed microhardness values increased during isothermal aging, due to the precipitation of nanometer-scale Al3Zr L12 particles. Peak strength was achieved within 100 h of aging. After aging for 400 h, microhardness values presented a slight decrease for both alloys, thus indicating overaging due to the coalescence of precipitates. Microhardness values increased with solute content, due to the precipitation of a higher number density of finer precipitates. After 400 h of heat-treating, coalescence was higher for the alloy with lower solute content and, also, the presence of antiphase boundaries – APBs, planar faults associated with the L12 to D023 structural transition, were observed. Comparing theoretical calculations of the increment in strength due to precipitation strengthening with experimental results, it was observed that their values are in reasonable agreement. The Orowan dislocation looping mechanism takes place during precipitation hardening for both alloys in the peak hardness condition.

  7. Regime-dependent forecast uncertainty of convective precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Christian; Craig, George C. [Muenchen Univ. (Germany). Meteorologisches Inst.

    2011-04-15

    Forecast uncertainty of convective precipitation is influenced by all scales, but in different ways in different meteorological situations. Forecasts of the high resolution ensemble prediction system COSMO-DE-EPS of Deutscher Wetterdienst (DWD) are used to examine the dominant sources of uncertainty of convective precipitation. A validation with radar data using traditional as well as spatial verification measures highlights differences in precipitation forecast performance in differing weather regimes. When the forecast uncertainty can primarily be associated with local, small-scale processes individual members run with the same variation of the physical parameterisation driven by different global models outperform all other ensemble members. In contrast when the precipitation is governed by the large-scale flow all ensemble members perform similarly. Application of the convective adjustment time scale confirms this separation and shows a regime-dependent forecast uncertainty of convective precipitation. (orig.)

  8. SST and circulation trend biases cause an underestimation of European precipitation trends

    NARCIS (Netherlands)

    Haren, van R.; Oldenborgh, van G.J.; Lenderink, G.; Collins, M.; Hazeleger, W.

    2013-01-01

    Clear precipitation trends have been observed in Europe over the past century. In winter, precipitation has increased in north-western Europe. In summer, there has been an increase along many coasts in the same area. Over the second half of the past century precipitation also decreased in southern

  9. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    Science.gov (United States)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  10. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    Science.gov (United States)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  11. Innovative precipitation in emulsion process: toward a non-nuclear industrial application

    International Nuclear Information System (INIS)

    Ollivier, M.; Borda, G.; Charton, S.; Flouret, J.

    2016-01-01

    A precipitation in emulsion process has been proposed by Borda et al. in 2008 for the continuous precipitation of lanthanides or actinides as oxalate, in order to either increase the production capacity or allow the precipitation of long-life radioactive elements under optimum safety conditions. During research/development tests, a strong correlation between the emulsion's properties and those of the particles produced have been evidenced, thus enabling the size and morphology of the powder to be tuned by varying the droplets properties, the latter being controlled by the column operating conditions. This process thus appears as an attractive alternative to conventional processes for the synthesis of high-value precipitates; as it offers interesting intensification capabilities. In this context, the feasibility of the precipitation of bismuth subnitrate (BSN), for which the emulsion route for precipitation seems to be particularly attractive, has been studied. Indeed, the division of the reacting volume into droplets may allow efficient temperature regulation of the exothermic reaction. In addition, an improvement of the product appearance is expected. This first phase of the feasibility study focused on the choice of the organic phase and the sensitivity of the droplets and solid particles properties to the operating conditions. Following the encouraging results observed in stirred-tank reactor, we successfully tested the implementation in a pulsed column, at lab-scale. (authors)

  12. Innovative precipitation in emulsion process: toward a non-nuclear industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Ollivier, M.; Borda, G.; Charton, S. [CEA, Centre de Marcoule, DEN,DTEC,SGCS, F-30207 Bagnols-sur-Ceze (France); Flouret, J. [OCM, ZI Quai Jean Jaures, 197 Avenue Marie Curie, 07800 La Voulte-sur-Rhone (France)

    2016-07-01

    A precipitation in emulsion process has been proposed by Borda et al. in 2008 for the continuous precipitation of lanthanides or actinides as oxalate, in order to either increase the production capacity or allow the precipitation of long-life radioactive elements under optimum safety conditions. During research/development tests, a strong correlation between the emulsion's properties and those of the particles produced have been evidenced, thus enabling the size and morphology of the powder to be tuned by varying the droplets properties, the latter being controlled by the column operating conditions. This process thus appears as an attractive alternative to conventional processes for the synthesis of high-value precipitates; as it offers interesting intensification capabilities. In this context, the feasibility of the precipitation of bismuth subnitrate (BSN), for which the emulsion route for precipitation seems to be particularly attractive, has been studied. Indeed, the division of the reacting volume into droplets may allow efficient temperature regulation of the exothermic reaction. In addition, an improvement of the product appearance is expected. This first phase of the feasibility study focused on the choice of the organic phase and the sensitivity of the droplets and solid particles properties to the operating conditions. Following the encouraging results observed in stirred-tank reactor, we successfully tested the implementation in a pulsed column, at lab-scale. (authors)

  13. Response of soil CO2 efflux to precipitation manipulation in a semiarid grassland.

    Science.gov (United States)

    Wei, Xiaorong; Zhang, Yanjiang; Liu, Jian; Gao, Hailong; Fan, Jun; Jia, Xiaoxu; Cheng, Jimin; Shao, Mingan; Zhang, Xingchang

    2016-07-01

    Soil CO2 efflux (SCE) is an important component of ecosystem CO2 exchange and is largely temperature and moisture dependent, providing feedback between C cycling and the climate system. We used a precipitation manipulation experiment to examine the effects of precipitation treatment on SCE and its dependences on soil temperature and moisture in a semiarid grassland. Precipitation manipulation included ambient precipitation, decreased precipitation (-43%), or increased precipitation (+17%). The SCE was measured from July 2013 to December 2014, and CO2 emission during the experimental period was assessed. The response curves of SCE to soil temperature and moisture were analyzed to determine whether the dependence of SCE on soil temperature or moisture varied with precipitation manipulation. The SCE significantly varied seasonally but was not affected by precipitation treatments regardless of season. Increasing precipitation resulted in an upward shift of SCE-temperature response curves and rightward shift of SCE-moisture response curves, while decreasing precipitation resulted in opposite shifts of such response curves. These shifts in the SCE response curves suggested that increasing precipitation strengthened the dependence of SCE on temperature or moisture, and decreasing precipitation weakened such dependences. Such shifts affected the predictions in soil CO2 emissions for different precipitation treatments. When considering such shifts, decreasing or increasing precipitation resulted in 43 or 75% less change, respectively, in CO2 emission compared with changes in emissions predicted without considering such shifts. Furthermore, the effects of shifts in SCE response curves on CO2 emission prediction were greater during the growing than the non-growing season. Copyright © 2016. Published by Elsevier B.V.

  14. Northern peatland Collembola communities unaffected by three summers of simulated extreme precipitation

    NARCIS (Netherlands)

    Krab, E.J.; Aerts, R.; Berg, M.P.; van Hal, J.R.; Keuper, F.

    2014-01-01

    Extreme climate events are observed and predicted to increase in frequency and duration in high-latitude ecosystems as a result of global climate change. This includes extreme precipitation events, which may directly impact on belowground food webs and ecosystem functioning by their physical impacts

  15. TREND OF PRECIPITATION VARIATION IN HUBEI PROVINCE SINCE THE 1960S

    Institute of Scientific and Technical Information of China (English)

    CHEN Zheng-hong; QIN Jun

    2003-01-01

    Through linear regression analysis to the trend of annual, seasonal and monthly precipitation of 72 meteorological stations in Hubei Province from 1961 to 1995, it is revealed that: l) annual precipitation was increasing by 61.0mm/10a in the eastern part of Hubei (112°E as a dividing line) and decreasing by 34.9mm/10a in the western part; 2) precipitation in winter and summer (January, February, March, June and July) was increasing in almost whole province which usually with non-uniformity of precipitation distribution from the south to the north. The precipitation in spring, autumn and winter (April, September, November and December) was decreasing in most of the areas which usually with non-uniformity of precipitation distribution from the east to the west. March and December were transition periods between two spatial distribution pattems mentioned above; 3) the eastem part of Hubei has beome one of precipitation increasing centers in China. The results was consistent with the trend that more frequent flood and drought events happened in Hubei Province which are more different in spatial and temporal scales.

  16. Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence

    International Nuclear Information System (INIS)

    Etoh, Y.; Shimada, S.

    1993-01-01

    Intermetallic precipitates in Zircaloy-2 and -4, recrystallized at the α-phase temperature, have been examined using analytical electron microscopy. The specimens were irradiated in BWRs up to a fast neutron fluence of 1.4x10 26 n/m 2 (E>1 MeV). Neutron irradiation induces a crystalline-to-amorphous transition, depleting Fe in the amorphous phase of Zr(Fe, Cr) 2 precipitates in the alloys. Amorphization starts from the periphery of the precipitates and all of them are totally amorphized at higher fluences than 1.2x10 26 n/m 2 . The width of the Fe-depleted zone increases in proportion to the 0.45 power of fluence. This result indicates that diffusion of Fe is the rate-controlling process for Fe depletion in Zr(Fe, Cr) 2 precipitates. Dissolution of Zr 2 (Fe, Ni) precipitates in Zircaloy-2 occurs during neutron irradiation. At a high fluence, such as 1.2x10 26 n/m 2 , Zr 2 (Fe, Ni) precipitates are almost completely dissolved into the matrix and the dissolution rate of Fe is faster than that of Ni. (orig.)

  17. Scaling and clustering effects of extreme precipitation distributions

    Science.gov (United States)

    Zhang, Qiang; Zhou, Yu; Singh, Vijay P.; Li, Jianfeng

    2012-08-01

    SummaryOne of the impacts of climate change and human activities on the hydrological cycle is the change in the precipitation structure. Closely related to the precipitation structure are two characteristics: the volume (m) of wet periods (WPs) and the time interval between WPs or waiting time (t). Using daily precipitation data for a period of 1960-2005 from 590 rain gauge stations in China, these two characteristics are analyzed, involving scaling and clustering of precipitation episodes. Our findings indicate that m and t follow similar probability distribution curves, implying that precipitation processes are controlled by similar underlying thermo-dynamics. Analysis of conditional probability distributions shows a significant dependence of m and t on their previous values of similar volumes, and the dependence tends to be stronger when m is larger or t is longer. It indicates that a higher probability can be expected when high-intensity precipitation is followed by precipitation episodes with similar precipitation intensity and longer waiting time between WPs is followed by the waiting time of similar duration. This result indicates the clustering of extreme precipitation episodes and severe droughts or floods are apt to occur in groups.

  18. An integrated computational tool for precipitation simulation

    Science.gov (United States)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  19. Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia

    KAUST Repository

    El Kenawy, Ahmed M.

    2015-08-29

    The performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)-3B42 version 7 product is assessed over north-eastern Iberia, a region with considerable topographical gradients and complexity. Precipitation characteristics from a dense network of 656 rain gauges, spanning the period from 1998 to 2009, are used to evaluate TMPA-3B42 estimates on a daily scale. A set of accuracy estimators, including the relative bias, mean absolute error (MAE), root mean square error (RMSE) and Spearman coefficient was used to evaluate the results. The assessment indicates that TMPA-3B42 product is capable of describing the seasonal characteristics of the observed precipitation over most of the study domain. In particular, TMPA-3B42 precipitation agrees well with in situ measurements, with MAE less than 2.5mm.day-1, RMSE of 6.4mm.day-1 and Spearman correlation coefficients generally above 0.6. TMPA-3B42 provides improved accuracies in winter and summer, whereas it performs much worse in spring and autumn. Spatially, the retrieval errors show a consistent trend, with a general overestimation in regions of low altitude and underestimation in regions of heterogeneous terrain. TMPA-3B42 generally performs well over inland areas, while showing less skill in the coastal regions. A set of skill metrics, including a false alarm ratio [FAR], frequency bias index [FBI], the probability of detection [POD] and threat score [TS], is also used to evaluate TMPA performance under different precipitation thresholds (1, 5, 10, 25 and 50mm.day-1). The results suggest that TMPA-3B42 retrievals perform well in specifying moderate rain events (5-25mm.day-1), but show noticeably less skill in producing both light (<1mm.day-1) and heavy rainfall thresholds (more than 50mm.day-1). Given the complexity of the terrain and the associated high spatial variability of precipitation in north-eastern Iberia, the results reveal that TMPA-3B42 data provide an

  20. Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia

    KAUST Repository

    El Kenawy, Ahmed M.; Lopez-Moreno, Juan I.; McCabe, Matthew; Vicente-Serrano, Sergio M.

    2015-01-01

    The performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)-3B42 version 7 product is assessed over north-eastern Iberia, a region with considerable topographical gradients and complexity. Precipitation characteristics from a dense network of 656 rain gauges, spanning the period from 1998 to 2009, are used to evaluate TMPA-3B42 estimates on a daily scale. A set of accuracy estimators, including the relative bias, mean absolute error (MAE), root mean square error (RMSE) and Spearman coefficient was used to evaluate the results. The assessment indicates that TMPA-3B42 product is capable of describing the seasonal characteristics of the observed precipitation over most of the study domain. In particular, TMPA-3B42 precipitation agrees well with in situ measurements, with MAE less than 2.5mm.day-1, RMSE of 6.4mm.day-1 and Spearman correlation coefficients generally above 0.6. TMPA-3B42 provides improved accuracies in winter and summer, whereas it performs much worse in spring and autumn. Spatially, the retrieval errors show a consistent trend, with a general overestimation in regions of low altitude and underestimation in regions of heterogeneous terrain. TMPA-3B42 generally performs well over inland areas, while showing less skill in the coastal regions. A set of skill metrics, including a false alarm ratio [FAR], frequency bias index [FBI], the probability of detection [POD] and threat score [TS], is also used to evaluate TMPA performance under different precipitation thresholds (1, 5, 10, 25 and 50mm.day-1). The results suggest that TMPA-3B42 retrievals perform well in specifying moderate rain events (5-25mm.day-1), but show noticeably less skill in producing both light (<1mm.day-1) and heavy rainfall thresholds (more than 50mm.day-1). Given the complexity of the terrain and the associated high spatial variability of precipitation in north-eastern Iberia, the results reveal that TMPA-3B42 data provide an

  1. Plasticity of alloys strengthened with nano-precipitation

    International Nuclear Information System (INIS)

    Praud, M.

    2012-01-01

    As part of the development of the new generation of nuclear power plant, especially sodium-cooled fast reactors (SFR), oxide dispersion strengthened (ODS) steels are considered as potential candidates for cladding materials. Their main advantages are their excellent dimensional stability under irradiation, thanks to their body centered cubic structure, and their high thermal creep resistance due to the nano-particles. The aim of this work is to understand the plasticity of such materials through a multiscale approach. First, the microstructure of 9% and 14% Cr ODS steels has been finely characterized. Then, their mechanical behavior has been studied through tensile tests and creep tests. In addition, in situ Transmission Electron Microscopy straining experiments have been carried out to observe the dynamic behavior at a finer scale. This work emphasizes an evolution of the deformation and damage mechanisms with temperature. At room temperature, a mechanism with a strong intragranular contribution is noticed. At high temperature, an increase in the intergranular component has been pointed out. Consequently, it leads to more severe damage. Finally, the hardening role of the precipitates on the mechanical properties and the plasticity has been evaluated thanks to a 'model' material, without precipitate. (author) [fr

  2. Electrostatic precipitators for coal thermal power plants energized by means of narrow pulse voltage

    Energy Technology Data Exchange (ETDEWEB)

    Dinelli, G.; Mattachini, F.; Bogani, V.; Baldacci, A.; Tarli, R. (ENEL-CRTN, Direzione Studi e Ricerche, Milan (Italy) ENEL, VDT Settore Tecnico, Direzione Produzione e Trasmissione, Rome (Italy))

    1990-09-01

    The efficiency of electrostatic precipitators, widely used in thermal power plants to clean flue gases from solid particulate, is strongly dependent both on the way particles are electrically charged and on the characteristics of the electric field within the interelectrodic space of the precipitator. Such operating may become inadequate under varying particle characteristics and operating conditions of the thermal plant, therefore bringing to a reduction in the precipitator collection efficiency. An innovative technique, by generating a pulsed corona in the precipitator, allows a substantial improvement of both the particle charging and the collection processes and an increase in the operation flexibility of the electrostatic precipitator. The narrow pulse voltage energization has been extensively tested at a coal thermal unit having the electrostatic precipitators equipped with both conventional and pulse power sets. The long duration tests confirmed the following results: 1) high reliability of the pulse power sets and a considerable improvement in the precipitator collection efficiency; 2) a decrease in the particulate emissions, with coals whose ashes are of difficult collection, ranging between 75% and 85% of those with conventional energization; 3) a reduction by a factor of about 5 in the consumption of electric power by the electrostatic precipitation process.

  3. Using GRACE to constrain precipitation amount over cold mountainous basins

    Science.gov (United States)

    Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.

    2017-01-01

    Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.

  4. Influence of γ' precipitates on Portevin–Le Chatelier effect of Ni-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yulong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027 (China); Tian, Chenggang [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Fu, Shihua, E-mail: fushihua@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027 (China); Han, Guoming [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cui, Chuanyong, E-mail: chycui@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Qingchuan, E-mail: zhangqc@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027 (China)

    2015-06-25

    The γ′ precipitate plays a critical role in improving the mechanical properties of Ni-based superalloys. An undesirable phenomenon referred to as the Portevin–Le Chatelier (PLC) effect always appears in Ni-based superalloys deformed within specific ranges of strain rate and temperature. In order to systematically investigate the influence of the γ′ precipitates on the PLC effect, four Ni-based superalloys with various γ′ contents were designed and fabricated. Microscopic observations from transmission electron microscopy (TEM) indicated that the volume fraction of the γ′ phase was consistent with the designed value. Furthermore, analysis of energy dispersive spectroscopy (EDS) results revealed that the γ matrix of all the alloys consisted of the same components. Uniaxial tensile tests were performed at strain rates and temperatures ranging from 1×10{sup −4} to 3×10{sup −3} s{sup −1} and 300–500 °C, respectively. We found that the ultimate strength increased while the elongation decreased with increasing γ′ content. In addition, the serration changed from type A to type B and to type C with increasing temperature, decreasing strain rate or increasing γ′ content; the amplitude of type B serrations was described by unimodal or bimodal distributions. Increasing volume fraction of γ′ precipitates shifted the region in which the PLC effect occurred, to the range of low temperatures and high strain rates. Moreover, the serration amplitude increased with increasing γ′ content at a given temperature, which indicated that the γ′ precipitate increases the dynamic strain ageing (DSA) effect.

  5. Increased Rotavirus Prevalence in Diarrheal Outbreak Precipitated by Localized Flooding, Solomon Islands, 2014.

    Science.gov (United States)

    Jones, Forrest K; Ko, Albert I; Becha, Chris; Joshua, Cynthia; Musto, Jennie; Thomas, Sarah; Ronsse, Axelle; Kirkwood, Carl D; Sio, Alison; Aumua, Audrey; Nilles, Eric J

    2016-05-01

    Flooding on 1 of the Solomon Islands precipitated a nationwide epidemic of diarrhea that spread to regions unaffected by flooding and caused >6,000 cases and 27 deaths. Rotavirus was identified in 38% of case-patients tested in the city with the most flooding. Outbreak potential related to weather reinforces the need for global rotavirus vaccination.

  6. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  7. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Malard, B.; Remy, B.; Scott, C.; Deschamps, A.; Chêne, J.; Dieudonné, T.; Mathon, M.H.

    2012-01-01

    Highlights: ► SANS was used to study the interaction between H and a Fe–Mn–C steel containing V. ► No interaction between H and V in solid solution has been detected. ► A reversible interaction between H and structural defects has been measured. ► 5 ppm wt. of H can be trapped in the VC nanoprecipitates. - Abstract: The trapping of hydrogen by VC precipitates and structural defects in high strength Fe–Mn–C steel was studied by small angle neutron scattering. No interaction between H and V in solid solution has been detected but a significant interaction between H and structural defects introduced by plastic deformation has been measured. This last effect was reversible upon outgassing of the H. Moreover a significant interaction between H and VC precipitates has been measured; 5 ppm wt. of H could be trapped in the precipitates. This is consistent with the homogeneous trapping of H within the precipitates rather than at the precipitate/matrix interface.

  8. A global gridded dataset of daily precipitation going back to 1950, ideal for analysing precipitation extremes

    Science.gov (United States)

    Contractor, S.; Donat, M.; Alexander, L. V.

    2017-12-01

    Reliable observations of precipitation are necessary to determine past changes in precipitation and validate models, allowing for reliable future projections. Existing gauge based gridded datasets of daily precipitation and satellite based observations contain artefacts and have a short length of record, making them unsuitable to analyse precipitation extremes. The largest limiting factor for the gauge based datasets is a dense and reliable station network. Currently, there are two major data archives of global in situ daily rainfall data, first is Global Historical Station Network (GHCN-Daily) hosted by National Oceanic and Atmospheric Administration (NOAA) and the other by Global Precipitation Climatology Centre (GPCC) part of the Deutsche Wetterdienst (DWD). We combine the two data archives and use automated quality control techniques to create a reliable long term network of raw station data, which we then interpolate using block kriging to create a global gridded dataset of daily precipitation going back to 1950. We compare our interpolated dataset with existing global gridded data of daily precipitation: NOAA Climate Prediction Centre (CPC) Global V1.0 and GPCC Full Data Daily Version 1.0, as well as various regional datasets. We find that our raw station density is much higher than other datasets. To avoid artefacts due to station network variability, we provide multiple versions of our dataset based on various completeness criteria, as well as provide the standard deviation, kriging error and number of stations for each grid cell and timestep to encourage responsible use of our dataset. Despite our efforts to increase the raw data density, the in situ station network remains sparse in India after the 1960s and in Africa throughout the timespan of the dataset. Our dataset would allow for more reliable global analyses of rainfall including its extremes and pave the way for better global precipitation observations with lower and more transparent uncertainties.

  9. Temporal variation of extreme precipitation events in Lithuania

    Directory of Open Access Journals (Sweden)

    Egidijus Rimkus

    2011-05-01

    Full Text Available Heavy precipitation events in Lithuania for the period 1961-2008 were analysed. The spatial distribution and dynamics of precipitation extremes were investigated. Positive tendencies and in some cases statistically significant trends were determined for the whole of Lithuania. Atmospheric circulation processes were derived using Hess & Brezowski's classification of macrocirculation forms. More than one third of heavy precipitation events (37% were observed when the atmospheric circulation was zonal. The location of the central part of a cyclone (WZ weather condition subtype over Lithuania is the most common synoptic situation (27% during heavy precipitation events. Climatic projections according to outputs of the CCLM model are also presented in this research. The analysis shows that the recurrence of heavy precipitation events in the 21st century will increase significantly (by up to 22% in Lithuania.

  10. Connecting Satellite-Based Precipitation Estimates to Users

    Science.gov (United States)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric

    2018-01-01

    Beginning in 1997, the Merged Precipitation Group at NASA Goddard has distributed gridded global precipitation products built by combining satellite and surface gauge data. This started with the Global Precipitation Climatology Project (GPCP), then the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and recently the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). This 20+-year (and on-going) activity has yielded an important set of insights and lessons learned for making state-of-the-art precipitation data accessible to the diverse communities of users. Merged-data products critically depend on the input sensors and the retrieval algorithms providing accurate, reliable estimates, but it is also important to provide ancillary information that helps users determine suitability for their application. We typically provide fields of estimated random error, and recently reintroduced the quality index concept at user request. Also at user request we have added a (diagnostic) field of estimated precipitation phase. Over time, increasingly more ancillary fields have been introduced for intermediate products that give expert users insight into the detailed performance of the combination algorithm, such as individual merged microwave and microwave-calibrated infrared estimates, the contributing microwave sensor types, and the relative influence of the infrared estimate.

  11. Precipitation trends over the Korean peninsula: typhoon-induced changes and a typology for characterizing climate-related risk

    International Nuclear Information System (INIS)

    Kim, Jong-Suk; Jain, Shaleen

    2011-01-01

    Typhoons originating in the west Pacific are major contributors to climate-related risk over the Korean peninsula. The current perspective regarding improved characterization of climatic risk and the projected increases in the intensity, frequency, duration, and power dissipation of typhoons during the 21st century in the western North Pacific region motivated a reappraisal of historical trends in precipitation. In this study, trends in the magnitude and frequency of seasonal precipitation in the five major river basins in Korea are analyzed on the basis of a separation analysis, with recognition of moisture sources (typhoon and non-typhoon). Over the 1966-2007 period, typhoons accounted for 21-26% of seasonal precipitation, with the largest values in the Nakdong River Basin. Typhoon-related precipitation events have increased significantly over portions of Han, Nakdong, and Geum River Basins. Alongside broad patterns toward increases in the magnitude and frequency of precipitation, distinct patterns of trends in the upper and lower quartiles (corresponding to changes in extreme events) are evident. A trend typology-spatially resolved characterization of the combination of shifts in the upper and lower tails of the precipitation distribution-shows that a number of sub-basins have undergone significant changes in one or both of the tails of the precipitation distribution. This broader characterization of trends illuminates the relative role of causal climatic factors and an identification of 'hot spots' likely to experience high exposure to typhoon-related climatic extremes in the future.

  12. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  13. Regional-scale relationships between aerosol and summer monsoon circulation, and precipitation over northeast Asia

    Science.gov (United States)

    Yoon, Soon-Chang; Kim, Sang-Woo; Choi, Suk-Jin; Choi, In-Jin

    2010-08-01

    We investigated the regional-scale relationships between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the regional-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001-2008, the increase of almost 40-50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anticyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies in July over the period 2001-2008, we found negative correlations over the areas encompassed by 105-115°E and 30-35°N and by 120-140°E and 35-40°N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.

  14. Bayesian quantitative precipitation forecasts in terms of quantiles

    Science.gov (United States)

    Bentzien, Sabrina; Friederichs, Petra

    2014-05-01

    Ensemble prediction systems (EPS) for numerical weather predictions on the mesoscale are particularly developed to obtain probabilistic guidance for high impact weather. An EPS not only issues a deterministic future state of the atmosphere but a sample of possible future states. Ensemble postprocessing then translates such a sample of forecasts into probabilistic measures. This study focus on probabilistic quantitative precipitation forecasts in terms of quantiles. Quantiles are particular suitable to describe precipitation at various locations, since no assumption is required on the distribution of precipitation. The focus is on the prediction during high-impact events and related to the Volkswagen Stiftung funded project WEX-MOP (Mesoscale Weather Extremes - Theory, Spatial Modeling and Prediction). Quantile forecasts are derived from the raw ensemble and via quantile regression. Neighborhood method and time-lagging are effective tools to inexpensively increase the ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Since an EPS provides a large amount of potentially informative predictors, a variable selection is required in order to obtain a stable statistical model. A Bayesian formulation of quantile regression allows for inference about the selection of predictive covariates by the use of appropriate prior distributions. Moreover, the implementation of an additional process layer for the regression parameters accounts for spatial variations of the parameters. Bayesian quantile regression and its spatially adaptive extension is illustrated for the German-focused mesoscale weather prediction ensemble COSMO-DE-EPS, which runs (pre)operationally since December 2010 at the German Meteorological Service (DWD). Objective out-of-sample verification uses the quantile score (QS), a weighted absolute error between quantile forecasts and observations. The QS is a proper scoring function and can be decomposed into

  15. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    Science.gov (United States)

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  16. Landscape runoff, precipitation variation and reservoir limnology

    OpenAIRE

    Geraldes, Ana Maria

    2010-01-01

    Landscape runoff potential impact on reservoir limnology was indirectly evaluated by assessing the effect of precipitation variation on several water quality parameters, on Anabaena (Cyanophyta) and crustacean zooplankton abundances. The obtained results showed that total phosphorus increased with strong precipitation events whereas water transparency presented an opposite trend. Wet periods followed by long dry periods favored Anabaena dominance, which induced a...

  17. The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation.

    Science.gov (United States)

    Xu, Mingjie; Wang, Huimin; Wen, Xuefa; Zhang, Tao; Di, Yuebao; Wang, Yidong; Wang, Jianlei; Cheng, Chuanpeng; Zhang, Wenjiang

    2017-08-30

    Deep understanding of the effects of precipitation on carbon budgets is essential to assess the carbon balance accurately and can help predict potential variation within the global change context. Therefore, we addressed this issue by analyzing twelve years (2003-2014) of observations of carbon fluxes and their corresponding temperature and precipitation data in a subtropical coniferous plantation at the Qianyanzhou (QYZ) site, southern China. During the observation years, this coniferous ecosystem experienced four cold springs whose effects on the carbon budgets were relatively clear based on previous studies. To unravel the effects of temperature and precipitation, the effects of autumn precipitation were examined by grouping the data into two pools based on whether the years experienced cold springs. The results indicated that precipitation in autumn can accelerate the gross primary productivity (GPP) of the following year. Meanwhile, divergent effects of precipitation on ecosystem respiration (Re) were found. Autumn precipitation was found to enhance Re in normal years but the same regulation was not found in the cold-spring years. These results suggested that for long-term predictions of carbon balance in global climate change projections, the effects of precipitation must be considered to better constrain the uncertainties associated with the estimation.

  18. Drought evolution characteristics and precipitation intensity changes during alternating dry-wet changes in the Huang-Huai-Hai River basin

    Science.gov (United States)

    Yan, D. H.; Wu, D.; Huang, R.; Wang, L. N.; Yang, G. Y.

    2013-03-01

    decreasing trend. The mountains with high attitude and Tibetan Plateau are located at high altitudes where the variation of different precipitation intensities with the increase in drought level is relatively complex. (3) As the drought frequency increases, areas I, II and V which are located on the coastal and in the river basin are vulnerable to extreme precipitation processes; areas III, IV, VI and VII are located in the inland area where heavier precipitation is not likely to occur.

  19. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    International Nuclear Information System (INIS)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 μ in diameter and contained numerous small voids (less than 0.3 μm) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 μm in diameter and contained large voids (approximately 1 μm). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost

  20. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 ..mu.. in diameter and contained numerous small voids (less than 0.3 ..mu..m) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 ..mu..m in diameter and contained large voids (approximately 1 ..mu..m). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost.

  1. Winter precipitation effect in a mid-latitude temperature-limited environment: the case of common juniper at high elevation in the Alps

    International Nuclear Information System (INIS)

    Pellizzari, Elena; Pividori, Mario; Carrer, Marco

    2014-01-01

    Common juniper (Juniperus communis L.) is by far the most widespread conifer in the world. However, tree-ring research dealing with this species is still scarce, mainly due to the difficulty in crossdating associated with the irregular stem shape with strip-bark growth form in older individuals and the high number of missing and wedging rings. Given that many different species of the same genus have been successfully used in tree-ring investigations and proved to be reliable climate proxies, this study aims to (i) test the possibility to successfully apply dendrochronological techniques on common juniper growing above the treeline and (ii) verify the climate sensitivity of the species with special regard to winter precipitation, a climatic factor that generally does not affect tree-ring growth in all Alpine high-elevation tree species. Almost 90 samples have been collected in three sites in the central and eastern Alps, all between 2100 and 2400 m in elevation. Despite cross-dating difficulties, we were able to build a reliable chronology for each site, each spanning over 200 years. Climate-growth relationships computed over the last century highlight that juniper growth is mainly controlled by the amount of winter precipitation. The high variability of the climate-growth associations among sites, corresponds well to the low spatial dependence of this meteorological factor. Fairly long chronologies and the presence of a significant precipitation signal open up the possibility to reconstruct past winter precipitation. (letter)

  2. Will the warmer temperature bring the more intensity precipitation?

    Science.gov (United States)

    Yutong, Z., II; Wang, T.

    2017-12-01

    Will the warmer temperature bring the more intensity precipitation?Over the past several decades, changes in climate are amplified over the Tibetan Plateau(TP), with warming trend almost being twice as large as the global average. In sharp contrast, there is a large spatial discrepancy of the variations in precipitation extremes, with increasing trends found in the southern and decreasing trends in central TP. These features motivate are urgent need for an observation-based understanding of how precipitation extremes respond to climate change. Here we examine the relation between precipitation intensity with atmospheric temperature, dew point temperature (Td) and convective available potential energy (CAPE) in Tibet Plateau. Owing to the influences of the westerlies and Indian monsoon on Tibetan climate, the stations can be divided into three sub-regions in TP: the westerlies region (north of 35°N, N = 28), the monsoon region (south of 30°N in TP, N = 31), and the transition region (located between 30°N and 35°N, N = 48). We found that the intensity precipitation does not follow the C-C relation and there is a mix of positive and negative slope. To better understand why different scaling occurs with temperature in district region, using the dew point temperature replace the temperature, although there is significant variability in relative humidity values, at most stations, there appears to be a general increase in relative humidity associated. It is likely that the observed rise in relative humidity can assist in explaining the negative scaling of extreme precipitation at westerlies domain and monsoon domain, with the primary reason why precipitation extremes expected to increase follows from the fact that a warmer atmosphere can "hold" more moisture. This suggests that not only on how much the moisture the atmosphere can hold, but on how much moisture exits in atmosphere. To understand the role of dynamic on extreme precipitation, we repeat the precipitation

  3. Study of Ca-ATMP precipitation in the presence of magnesium ion.

    Science.gov (United States)

    Tantayakom, V; Fogler, H Scott; de Moraes, F F; Bualuang, M; Chavadej, S; Malakul, P

    2004-03-16

    ATMP (aminotri(methylenephosphonic acid)), a phosphonate scale inhibitor used in the petroleum industry, was used as a model scale inhibitor in this study. One of the goals of this work was to determine the range of conditions under which Mg ions, which are formed in reservoir formations containing dolomite, modulate the formation of Ca-ATMP precipitate as a scale inhibitor. The results revealed that the amount of ATMP precipitated decreased with addition of Mg ions in solution at all values of the solution pH. Furthermore, an increase in both the solution pH and the concentration of the divalent cations in solution resulted in a change of the molar ratio of (Ca + Mg) to ATMP in the precipitates. At a low solution pH (pH 1.5), Mg ions had little effect on the composition of the Ca-ATMP precipitate. However, at higher values of the solution pH (pH 4 and 7), the Ca to ATMP molar ratio in the precipitates decreased with increasing concentration of the Mg. Here it was found that Mg ions replaced Ca ions on available reactive sites of ATMP molecules. These results determined the limits of the Mg ion concentration, which affects the precipitation of Ca-ATMP, Mg-ATMP, and (Ca + Mg)-ATMP. The dissolution of the scale inhibitors was studied using a rotating disk reactor. These experiments showed that the total divalent cation molar ratio (Ca + Mg) to ATMP in the precipitates is the primary factor that controls the rate of dissolution (release) of the phosphonate precipitates. The phosphonate precipitate dissolution rates decreased as the molar ratio of divalent cations to ATMP in the precipitates increased.

  4. Effect of heat treatment on the precipitation in Al-1 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Afify, N. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: afify@aun.edu.eg; Mostafa, M.S.; Abbady, Gh. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2009-05-27

    The fine-scale precipitates, that occurs during aging, the supersaturated Al-1.0 at.% Mg-x at.% Si (x = 0.6, 1.0 and 1.6) alloys have been investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The strength of the alloys increases as a high density of very fine {beta}'' coherent and {beta}' semicoherent precipitates nucleate. The precipitates compositions have been determined by analyzing the X-ray diffraction (XRD) charts, by using Scherrer equation. The obtained results showed that the {beta}'' and {beta}' precipitates size lies in the nanometer range (from {approx}5 nm to {approx}32 nm). In addition, increasing Si concentration has exhibited an increase in the density of the precipitates, which fortifies the physical properties.

  5. The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar; Skoko, Zeljko; Popovic, Stanko

    2006-01-01

    The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media was monitored by X-ray diffraction (XRD), 57 Fe Moessbauer and Fourier transform infrared (FT-IR) spectroscopies and field emission scanning electron microscopy (FE SEM). Acicular and monodisperse α-FeOOH particles were precipitated at a very high pH by adding a tetramethylammonium hydroxide solution to an aqueous solution of FeCl 3 . The XRD analysis of the samples precipitated in the presence of Zn 2+ ions showed the formation of solid solutions of α-(Fe, Zn)OOH up to a concentration ratio r = [Zn]/([Zn] + [Fe]) = 0.0909. ZnFe 2 O 4 was additionally formed in the precipitate for r = 0.1111, whereas the three phases α-FeOOH, α-Fe 2 O 3 and ZnFe 2 O 4 were formed for r 0.1304. In the corresponding FT-IR spectra, the Fe-OH and Fe-O stretching bands were sensitive to the Zn 2+ substitution, whereas the Fe-OH bending bands of α-FeOOH at 892 and 796 cm -1 were almost insensitive. The Moessbauer spectra showed a high sensitivity to the formation of α-(Fe, Zn)OOH solid solutions which were monitored on the basis of a decrease in B hf values in dependence on Zn-doping. A strictly linear decrease in B hf for α-FeOOH doped with Zn 2+ ions was measured up to r = 0.0291, whereas for r = 0.0476 and higher there was a deviation from linearity. The presence of α-(Fe, Zn)OOH, α-Fe 2 O 3 and ZnFe 2 O 4 phases in the samples was determined quantitatively by Moessbauer spectroscopy. Likewise, Moessbauer spectroscopy did not show any formation of the solid solutions of α-Fe 2 O 3 with Zn 2+ ions. FE SEM showed a strong effect of Zn-doping on the elongation of acicular α-FeOOH particles (∼500-700 nm in length) up to r = 0.1111. For r = 0.1304 the sizes of ZnFe 2 O 4 particles were around 30-50 nm, and those of α-Fe 2 O 3 particles were around 500 nm, whereas a relatively small number of very elongated α-(Fe, Zn)OOH particles was observed. A possible mechanism of the formation of

  6. Control of calcium carbonate precipitation in anaerobic reactors

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what

  7. Theoretical basis for convective invigoration due to increased aerosol concentration

    Directory of Open Access Journals (Sweden)

    Z. J. Lebo

    2011-06-01

    Full Text Available The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF model as a detailed high-resolution cloud resolving model (CRM with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments.

    A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be

  8. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    Science.gov (United States)

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  9. Gamma prime precipitation modeling and strength responses in powder metallurgy superalloys

    Science.gov (United States)

    Mao, Jian

    Precipitation-hardened nickel-based superalloys have been widely used as high temperature structural materials in gas turbine engine applications for more than 50 years. Powder metallurgy (P/M) technology was introduced as an innovative manufacturing process to overcome severe segregation and poor workability of alloys with high alloying contents. The excellent mechanical properties of P/M superalloys also depend upon the characteristic microstructures, including grain size and size distribution of gamma' precipitates. Heat treatment is the most critical processing step that has ultimate influences on the microstructure, and hence, on the mechanical properties of the materials. The main objective of this research was to study the gamma ' precipitation kinetics in various cooling circumstances and also study the strength response to the cooling history in two model alloys, Rne88DT and U720LI. The research is summarized below: (1) An experimental method was developed to allow accurate simulation and control of any desired cooling profile. Two novel cooling methods were introduced: continuous cooling and interrupt cooling. Isothermal aging was also carried out. (2) The growth and coarsening kinetics of the cooling gamma' precipitates were experimentally studied under different cooling and aging conditions, and the empirical equations were established. It was found that the cooling gamma' precipitate versus the cooling rate follows a power law. The gamma' precipitate size versus aging time obeys the LSW cube law for coarsening. (3) The strengthening of the material responses to the cooling rate and the decreasing temperature during cooling was investigated in both alloys. The tensile strength increases with the cooling rate. In addition, the non-monotonic response of strength versus interrupt temperature is of great interest. (4) An energy-driven model integrated with the classic growth and coarsen theories was successfully embedded in a computer program developed to

  10. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    Science.gov (United States)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  11. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    Science.gov (United States)

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  12. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  13. Risk assessment of precipitation extremes in northern Xinjiang, China

    Science.gov (United States)

    Yang, Jun; Pei, Ying; Zhang, Yanwei; Ge, Quansheng

    2018-05-01

    This study was conducted using daily precipitation records gathered at 37 meteorological stations in northern Xinjiang, China, from 1961 to 2010. We used the extreme value theory model, generalized extreme value (GEV) and generalized Pareto distribution (GPD), statistical distribution function to fit outputs of precipitation extremes with different return periods to estimate risks of precipitation extremes and diagnose aridity-humidity environmental variation and corresponding spatial patterns in northern Xinjiang. Spatiotemporal patterns of daily maximum precipitation showed that aridity-humidity conditions of northern Xinjiang could be well represented by the return periods of the precipitation data. Indices of daily maximum precipitation were effective in the prediction of floods in the study area. By analyzing future projections of daily maximum precipitation (2, 5, 10, 30, 50, and 100 years), we conclude that the flood risk will gradually increase in northern Xinjiang. GEV extreme value modeling yielded the best results, proving to be extremely valuable. Through example analysis for extreme precipitation models, the GEV statistical model was superior in terms of favorable analog extreme precipitation. The GPD model calculation results reflect annual precipitation. For most of the estimated sites' 2 and 5-year T for precipitation levels, GPD results were slightly greater than GEV results. The study found that extreme precipitation reaching a certain limit value level will cause a flood disaster. Therefore, predicting future extreme precipitation may aid warnings of flood disaster. A suitable policy concerning effective water resource management is thus urgently required.

  14. Dissolving of Nb and Ti carbonitride precipitates in microalloyed steels

    Institute of Scientific and Technical Information of China (English)

    Wenjin Nie; Shanwu Yang; Shaoqiang Yuan; Xinlai He

    2003-01-01

    The dissolving behaviour of Nb and Ti carbonitride precipitates in microalloyed steels during isothermal holding at 1300℃ was investigated by Transmission electron microscopy (TEM) and energy dispersion x-ray spectrum (EDX). It was found that all precipitates in Nb-Ti microalloyed steel are (Nb, Ti)(C,N). With holding time increasing, the atomic ratio of Nb/Ti in precipitates decrease gradually. These precipitates still existe even after holding for 48 h at 1300℃ while Nb(C,N) precipitates dissolve away in Nb microalloyed steel only after 4 h at the same temperature. These results show that formation and thermostability of precipitates are considerably influenced by interaction between Nb and Ti.

  15. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe

    Science.gov (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib

    2016-08-01

    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  16. Defect investigations of micron sized precipitates in Al alloys

    Science.gov (United States)

    Klobes, B.; Korff, B.; Balarisi, O.; Eich, P.; Haaks, M.; Kohlbach, I.; Maier, K.; Sottong, R.; Staab, T. E. M.

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) [1] in combination with the High Momentum Analysis (HMA) [2]. Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg2Si and Al2Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  17. Defect investigations of micron sized precipitates in Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B; Korff, B; Balarisi, O; Eich, P; Haaks, M; Kohlbach, I; Maier, K; Sottong, R [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, D-53115 Bonn (Germany); Staab, T E M, E-mail: klobes@hiskp.uni-bonn.de [Fraunhofer ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)

    2011-01-01

    A lot of light aluminium alloys achieve their favourable mechanical properties, especially their high strength, due to precipitation of alloying elements. This class of age hardenable Al alloys includes technologically important systems such as e.g. Al-Mg-Si or Al-Cu. During ageing different precipitates are formed according to a specific precipitation sequence, which is always directed onto the corresponding intermetallic equilibrium phase. Probing the defect state of individual precipitates requires high spatial resolution as well as high chemical sensitivity. Both can be achieved using the finely focused positron beam provided by the Bonn Positron Microprobe (BPM) in combination with the High Momentum Analysis (HMA). Employing the BPM, structures in the micron range can be probed by means of the spectroscopy of the Doppler broadening of annihilation radiation (DBAR). On the basis of these prerequisites single precipitates of intermetallic phases in Al-Mg-Si and Al-Cu, i.e. Mg{sub 2}Si and Al{sub 2}Cu, were probed. A detailed interpretation of these measurements necessarily relies on theoretical calculations of the DBAR of possible annihilation sites. These were performed employing the DOPPLER program. However, previous to the DBAR calculation the structures, which partly contain vacancies, were relaxed using the ab-initio code SIESTA, i.e. the atomic positions in presence of a vacancy were recalculated.

  18. The Relationships Between Insoluble Precipitation Residues, Clouds, and Precipitation Over California's Southern Sierra Nevada During Winter Storms

    Science.gov (United States)

    Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.

    2016-01-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.

  19. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  20. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    Science.gov (United States)

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  1. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  2. Future Simulated Intensification of Precipitation Extremes, CMIP5 Model Uncertainties and Dependencies

    Science.gov (United States)

    Bador, M.; Donat, M.; Geoffroy, O.; Alexander, L. V.

    2017-12-01

    Precipitation intensity during extreme events is expected to increase with climate change. Throughout the 21st century, CMIP5 climate models project a general increase in annual extreme precipitation in most regions. We investigate how robust this future increase is across different models, regions and seasons. We find that there is strong similarity in extreme precipitation changes between models that share atmospheric physics, reducing the ensemble of 27 models to 14 independent projections. We find that future simulated extreme precipitation increases in most models in the majority of land grid cells located in the dry, intermediate and wet regions according to each model's precipitation climatology. These increases significantly exceed the range of natural variability estimated from long equilibrium control runs. The intensification of extreme precipitation across the entire spectrum of dry to wet regions is particularly robust in the extra-tropics in both wet and dry season, whereas uncertainties are larger in the tropics. The CMIP5 ensemble therefore indicates robust future intensification of annual extreme rainfall in particular in extra-tropical regions. Generally, the CMIP5 robustness is higher during the dry season compared to the wet season and the annual scale, but inter-model uncertainties in the tropics remain important.

  3. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    Science.gov (United States)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite

  4. Responses of Mean and Extreme Precipitation to Deforestation in the Maritime Continent

    Science.gov (United States)

    Chen, C. C.; Lo, M. H.; Yu, J. Y.

    2017-12-01

    Anthropogenic land use and land cover change, including tropical deforestation, could have substantial effects on local surface energy and water budgets, and thus on the atmospheric stability which may result in changes in precipitation. Maritime Continent has undergone severe deforestation in recent decades but has received less attention than Amazon or Congo rainforests. Therefore, this study is to decipher the precipitation response to deforestation in the Maritime Continent. We conduct deforestation experiments using Community Earth System Model (CESM) and through converting the tropical rainforest into grassland. The results show that deforestation in Maritime Continent leads to an increase in both mean temperature and mean precipitation. Moisture budget analysis indicates that the increase in precipitation is associated with the vertically integrated vertical moisture advection, especially the dynamic component (changes in convection). In addition, through moist static energy (MSE) budget analysis, we find the atmosphere among deforested areas become unstable owing to the combined effects of positive specific humidity anomalies at around 850 hPa and anomalous warming extended from the surface to 750 hPa. This instability will induce anomalous ascending motion, which could enhance the low-level moisture convergence, providing water vapor from the surrounding warm ocean. To further evaluate the precipitation response to deforestation, we examine the precipitation changes under La Niña events and global warming scenario using CESM Atmospheric Model Intercomparison Project (AMIP) simulations and Representative Concentration Pathway (RCP) 8.5 simulations. We find that the precipitation increase caused by deforestation in Maritime Continent is comparable in magnitude to that generated by either natural variability or global warming forcing. Besides the changes in mean precipitation, preliminary results show the extreme precipitation also increases. We will further

  5. The physical drivers of historical and 21st century global precipitation changes

    International Nuclear Information System (INIS)

    Thorpe, Livia; Andrews, Timothy

    2014-01-01

    Historical and 21st century global precipitation changes are investigated using data from the fifth Coupled Model Intercomparison Project (CMIP5) Atmosphere-Ocean-General-Circulation-Models (AOGCMs) and a simple energy-balance model. In the simple model, precipitation change in response to a given top-of-atmosphere radiative forcing is calculated as the sum of a response to the surface warming and a direct ‘adjustment’ response to the atmospheric radiative forcing. This simple model allows the adjustment in global mean precipitation to atmospheric radiative forcing from different forcing agents to be examined separately and emulates the AOGCMs well. During the historical period the AOGCMs simulate little global precipitation change despite an increase in global temperature—at the end of the historical period, global multi-model mean precipitation has increased by about 0.03 mm day −1 , while the global multi-model mean surface temperature has warmed by about 1 K, both relative to the pre-industrial control means. This is because there is a large direct effect from CO 2 and black carbon atmospheric forcing that opposes the increase in precipitation from surface warming. In the 21st century scenarios, the opposing effect from black carbon declines and the increase in global precipitation due to surface warming dominates. The cause of the spread between models in the global precipitation projections (which can be up to 0.25 mm day −1 ) is examined and found to come mainly from uncertainty in the climate sensitivity. The spatial distribution of precipitation change is found to be dominated by the response to surface warming. It is concluded that AOGCM global precipitation projections are in line with expectations based on our understanding of how the energy and water cycles are physically linked. (letters)

  6. Changing characteristics and spatial differentiation of spring precipitation in Southwest China during 1961-2012

    Institute of Scientific and Technical Information of China (English)

    刘洪兰; 张强; 张俊国; 胡文超; 郭俊琴; 王胜

    2015-01-01

    In this study, we analyze spring precipitation from 92 meteorological stations spanning between 1961 and 2012 to understand temporal–spatial variability and change of spring precipitation over Southwest China. Various analysis meth-ods are used for different purposes, including empirical orthogonal function (EOF) analysis and rotated EOF (REOF) for analyzing spatial structure change of precipitation anomaly, and Mann–Kendall testing method to determine whether there were abrupt changes during the analyzed time span. We find that the first spatial mode of the precipitation has a domain uniform structure;the second is dominated by a spatial dipole;and the third contains five variability centers. 2000s is the decade of largest amount of precipitation while 1990s the decade of smallest amount of precipitation. Year-to-year differ-ence of that region is large:the amount of the largest precipitation year doubles that of the smallest precipitation year. We also find that spring precipitation in Southwest China experienced a few abrupt changes: sudden increase at 1966, sudden decrease at 1979, and sudden increase at 1995. We speculate that the spring precipitation will increase gradually in the next two decades.

  7. Global Precipitation Analyses at Time Scales of Monthly to 3-Hourly

    Science.gov (United States)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2002-01-01

    Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the Goodyear period. Monthly anomalies of precipitation are related to ENRON variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 degree latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based Based analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous OR observations and merges the various calibrated observations into a final, Baehr resolution map. This TRMM standard product will be available for the entire TRMM period (January Represent). A real-time version of this merged product is being produced and is available at 0.25 degree latitude-longitude resolution over the latitude range from 50 deg. N -50 deg. S. Examples will be shown, including its use in monitoring flood conditions.

  8. Effect of Scandium on the Interaction of Concurrent Precipitation and Recrystallization in Commercial AA3003 Aluminum Alloy

    Science.gov (United States)

    Tu, Yiyou; Qian, Huan; Zhou, Xuefeng; Jiang, Jianqing

    2014-04-01

    In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C. In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al3Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).

  9. Implications of a decrease in the precipitation area for the past and the future

    Science.gov (United States)

    Benestad, Rasmus E.

    2018-04-01

    The total area with 24 hrs precipitation has shrunk by 7% between 50°S–50°N over the period 1998–2016, according to the satellite-based Tropical Rain Measurement Mission data. A decrease in the daily precipitation area is an indication of profound changes in the hydrological cycle, where the global rate of precipitation is balanced by the global rate of evaporation. This decrease was accompanied by increases in total precipitation, evaporation, and wet-day mean precipitation. If these trends are real, then they suggest increased drought frequencies and more intense rainfall. Satellite records, however, may be inhomogeneous because they are synthesised from a number of individual missions with improved technology over time. A linear dependency was also found between the global mean temperature and the 50°S–50°N daily precipitation area with a slope value of ‑17 × 106 km 2/°C. This dependency was used with climate model simulations to make future projections which suggested a continued decrease that will strengthen in the future. The precipitation area evolves differently when the precipitation is accumulated over short and long time scales, however, and there has been a slight increase in the monthly precipitation area while the daily precipitation area decreased. An increase on monthly scale may indicate more pronounced variations in the rainfall patterns due to migrating rain-producing phenomena.

  10. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    Science.gov (United States)

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.

    2018-02-01

    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  11. Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China

    Directory of Open Access Journals (Sweden)

    Xinyang Yu

    2017-05-01

    Full Text Available Precipitation data from nine meteorological stations in arid oases of Hexi Corridor, northwest China during 1970–2012 were analyzed to detect trends in precipitation and Standardized Precipitation Index (SPI at multiple time scales using linear regression, Mann–Kendall and Spearman’s Rho tests. The results found that annual precipitation in the observed stations was rare and fell into the arid region category according to the aridity index analysis. The monthly analysis of precipitation found that three stations showed significant increasing trends in different months, while on the annual level, only Yongchang station had a significant increasing trend. The analysis of SPI-12 found three main drought intervals, i.e., 1984–1987, 1991–1992 and 2008–2011, and an extremely dry year among the stations was recorded in 1986; the southeast and middle portions of the study area are expected to have more precipitation and less dry conditions.

  12. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations

    Energy Technology Data Exchange (ETDEWEB)

    Di Luca, Alejandro; Laprise, Rene [Universite du Quebec a Montreal (UQAM), Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Departement des Sciences de la Terre et de l' Atmosphere, PK-6530, Succ. Centre-ville, B.P. 8888, Montreal, QC (Canada); De Elia, Ramon [Universite du Quebec a Montreal, Ouranos Consortium, Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal (Canada)

    2012-03-15

    Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions. (orig.)

  13. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    Science.gov (United States)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  14. First Evaluation of the Climatological Calibration Algorithm in the Real-time TMPA Precipitation Estimates over Two Basins at High and Low Latitudes

    Science.gov (United States)

    Yong, Bin; Ren, Liliang; Hong, Yang; Gourley, Jonathan; Tian, Yudong; Huffman, George J.; Chen, Xi; Wang, Weiguang; Wen, Yixin

    2013-01-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 degrees latitude to the latitude belts of 40 degrees N-50 degrees N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.

  15. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  16. Increase in socio-economic value of the fresh water fishery by reductions in the sulfur precipitation. [Norway]. Oekt samfunnsoekonomisk verdi av ferskvannsfisket ved reduksjoner i svovelnedfallet

    Energy Technology Data Exchange (ETDEWEB)

    Navrud, S

    1985-01-29

    A reduction of about 30% in the sulfur out-lets in Europe would lead to approximately the same reduction in acid precipitation in the South of Norway. The resulting improvement of water quality would facilitate improvements in the fish population. The report discussed various methods of measuring the socio-economic value of an assumed marginal increase of the amount of fresh water fish and recommends a ''parcel of methods'' in order to solve the estimation problem. A reduction of 30% in the acid precipitation would result in a total yearly socio-economic value increase of approximately 37 millions Norwegian kroners measured by the total willingness of payment by the Norwegian population - wich probably is an underestimation. 66 references, 22 drawings, 5 tables.

  17. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them.

    Science.gov (United States)

    Kumar Makineni, Surendra; Sugathan, Sandeep; Meher, Subhashish; Banerjee, Rajarshi; Bhattacharya, Saswata; Kumar, Subodh; Chattopadhyay, Kamanio

    2017-09-11

    Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.

  18. Precipitates and boundaries interaction in ferritic ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Sallez, Nicolas, E-mail: nicolas.sallez@simap.grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); Hatzoglou, Constantinos [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Delabrouille, Fredéric [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Sornin, Denis; Chaffron, Laurent [CEA, DEN, Service de Recherches Métallurgiques Appliqué, 91191 Gif-sur-Yvette (France); Blat-Yrieix, Martine [EDF–EDF R& D, Les Renardières, 77818 Moret-sur-Loing (France); Radiguet, Bertrand; Pareige, Philippe [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Normandie Université (France); Donnadieu, Patricia; Bréchet, Yves [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France)

    2016-04-15

    In the course of a recrystallization study of Oxide Dispersion Strengthened (ODS) ferritic steels during extrusion, particular interest was paid to the (GB) Grain Boundaries interaction with precipitates. Complementary and corresponding characterization experiments using Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and Atom Probe Tomography (APT) have been carried out on a voluntarily interrupted extrusion or extruded samples. Microscopic observations of Precipitate Free Zones (PFZ) and precipitates alignments suggest precipitate interaction with migrating GB involving dissolution and Oswald ripening of the precipitates. This is consistent with the local chemical information gathered by EDX and APT. This original mechanism for ODS steels is similar to what had been proposed in the late 80s for similar observation made on Ti alloys reinforced by nanosized yttrium oxides: An interaction mechanism between grain boundaries and precipitates involving a diffusion controlled process of precipitates dissolution at grain boundaries. It is believed that this mechanism can be of primary importance to explain the mechanical behaviour of such steels. - Highlights: • To study the microstructural evolution of a ferritic ODS steel during its extrusion, observations have been carried on samples resulting from a voluntarily interrupted extrusion and extruded materials. • A highly heterogeneous precipitate population have been observed. Nanosized coherent precipitates (2–5 nm) on both sides of the grain boundaries despite grain boundary migration after precipitation due to further thermo-mechanical processing as well as coarse precipitates (10–40 nm) alignments are observed on the grain boundaries and within the grains, parallel to the grain boundaries. • Asymmetrical PFZs can be observed around precipitates alignments and grain boundaries. Using TEM with EDX and APT we have been able to ensure that the PFZs are chemically depleted.

  19. Linkages between Icelandic Low position and SE Greenland winter precipitation

    Science.gov (United States)

    Berdahl, M.; Rennermalm, A. K.; Hammann, A. C.; Mioduszewski, J.; Hameed, S.; Tedesco, M.; Stroeve, J. C.; Mote, T. L.

    2015-12-01

    Greenland's largest flux of precipitation occurs in its Southeast (SE) region. An understanding of the mechanisms controlling precipitation in this region is lacking despite its disproportionate importance in the mass balance of Greenland and the consequent contributions to sea level rise. We use weather station data from the Danish Meteorological Institute to reveal the governing influences on precipitation in SE Greenland during the winter and fall. We find that precipitation in the fall is significantly correlated to the longitude of the Icelandic Low and the NAO. Winter precipitation is correlated with the strength and longitude of the Icelandic Low, as well as the NAO. We show that in years of extreme high precipitation, onshore winds dominate, thereby advecting more moisture inland. In low precipitation years, winds are more westerly, approaching the stations from land. Understanding the controls of SE Greenland precipitation will help us predict how future precipitation in this key region may change in a warming climate.

  20. Evaluation of CMIP5 models for projection of future precipitation change in Bornean tropical rainforests

    Science.gov (United States)

    Hussain, Mubasher; Yusof, Khamaruzaman Wan; Mustafa, Muhammad Raza Ul; Mahmood, Rashid; Jia, Shaofeng

    2017-10-01

    We present the climate change impact on the annual and seasonal precipitation over Rajang River Basin (RRB) in Sarawak by employing a set of models from Coupled Model Intercomparison Project Phase 5 (CMIP5). Based on the capability to simulate the historical precipitation, we selected the three most suitable GCMs (i.e. ACCESS1.0, ACCESS1.3, and GFDL-ESM2M) and their mean ensemble (B3MMM) was used to project the future precipitation over the RRB. Historical (1976-2005) and future (2011-2100) precipitation ensembles of B3MMM were used to perturb the stochastically generated future precipitation over 25 rainfall stations in the river basin. The B3MMM exhibited a significant increase in precipitation during 2080s, up to 12 and 8% increase in annual precipitation over upper and lower RRB, respectively, under RCP8.5, and up to 7% increase in annual precipitation under RCP4.5. On the seasonal scale, Mann-Kendal trend test estimated statistically significant positive trend in the future precipitation during all seasons; except September to November when we only noted significant positive trend for the lower RRB under RCP4.5. Overall, at the end of the twenty-first century, an increase in annual precipitation is noteworthy in the whole RRB, with 7 and 10% increase in annual precipitation under the RCP4.5 and the RCP8.5, respectively.

  1. Cooling γ precipitation behavior and strengthening in powder metallurgy superalloy FGH4096

    Institute of Scientific and Technical Information of China (English)

    TIAN Gaofeng; JIA Chengchang; WEN Yin; LIU Guoquan; HU Benfu

    2008-01-01

    Two cooling schemes (continuous cooling and interrupted cooling tests) were applied to investigate the cooling γ precipitation behavior in powder metallurgy superalloy FGH4096.The effect of cooling rate on cooling γ precipitation and the development of γ precipitates during cooling process were involved in this study.The ultimate tensile strength (UTS) of the specimens in various cooling circumstances was tested.The experiential equations were obtained between the average sizes of secondary and tertiary γ precipitates,the strength,and cooling rate.The results show that they are inversely correlated with the cooling rate as well as the grain boundary changes from serrated to straight,the shape of secondary γ precipitates changes from irregular cuboidal to spherical,while the formed tertiary γ precipitates are always spherical.The interrupted cooling tests show that the average size of secondary γ precipitates increases as a linear function of interrupt temperature for a fixed cooling rate of 24℃/min.The strength first decreases and then increases against interrupt temperature,which is fundamentally caused by the multistage nucleation of γ precipitates during cooling process.

  2. Re-examining the Non-Linear Moisture-Precipitation Relationship over the Tropical Oceans.

    Science.gov (United States)

    Rushley, S S; Kim, D; Bretherton, C S; Ahn, M-S

    2018-01-28

    Bretherton et al. (2004) used the Special Sensor Microwave Imager (SSM/I) version 5 product to derive an exponential curve that describes the relationship between precipitation and column relative humidity (CRH) over the tropical oceans. The curve, which features a precipitation pickup at a CRH of about 0.75 and a rapid increase of precipitation with CRH after the pickup, has been widely used in the studies of the tropical atmosphere. This study re-examines the moisture-precipitation relationship by using the version 7 SSM/I data, in which several biases in the previous version are corrected, and evaluates the relationship in the Coupled Model Intercomparison Project phase 5 (CMIP5) models. In the revised exponential curve derived using the updated satellite data, the precipitation pick-up occurs at a higher CRH (~0.8), and precipitation increases more slowly with CRH than in the previous curve. In most CMIP5 models, the precipitation pickup is too early due to the common model bias of overestimated (underestimated) precipitation in the dry (wet) regime.

  3. Extreme Precipitation in Poland in the Years 1951-2010

    Science.gov (United States)

    Malinowska, Miroslawa

    2017-12-01

    The characteristics of extreme precipitation, including the dominant trends, were analysed for eight stations located in different parts of Poland for the period 1951-2010. Five indices enabling the assessment of the intensity and frequency of both extremely dry and wet conditions were applied. The indices included the number of days with precipitation ≥10mm·d-1 (R10), maximum number of consecutive dry days (CDD), maximum 5-day precipitation total (R5d), simple daily intensity index (SDII), and the fraction of annual total precipitation due to events exceeding the 95th percentile calculated for the period 1961-1990. Annual trends were calculated using standard linear regression method, while the fit of the model was assessed with the F-test at the 95% confidence level. The analysed changes in extreme precipitation showed mixed patterns. A significant positive trend in the number of days with precipitation ≥10mm·d-1 (R10) was observed in central Poland, while a significant negative one, in south-eastern Poland. Based on the analysis of maximum 5-day precipitation totals (R5d), statistically significant positive trends in north-western, western and eastern parts of the country were detected, while the negative trends were found in the central and northeastern parts. Daily precipitation, expressed as single daily intensity index (SDII), increased over time in northern and central Poland. In southern Poland, the variation of SDII index showed non-significant negative tendencies. Finally, the fraction of annual total precipitation due to the events exceeding the 1961-1990 95th percentile increased at one station only, namely, in Warsaw. The indicator which refers to dry conditions, i.e. maximum number of consecutive dry days (CDD) displayed negative trends throughout the surveyed area, with the exception of Szczecin that is a representative of north-western Poland.

  4. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  5. Spatiotemporal Analysis of Extreme Hourly Precipitation Patterns in Hainan Island, South China

    Directory of Open Access Journals (Sweden)

    Wenjie Chen

    2015-05-01

    Full Text Available To analyze extreme precipitation patterns in Hainan Island, hourly precipitation datasets from 18 stations, for the period from 1967 to 2012, were investigated. Two precipitation concentration indices (PCI and 11 extreme precipitation indices (EPI were chosen. PCI1 indicated a moderate seasonality in yearly precipitation and PCI2 showed that at least 80% of the total precipitation fell in 20% of the rainiest hours. Furthermore, the spatial variations of PCI1 and PCI2 differed. Linear regression indicated increasing trends in 11 of the calculated EPI. Principal component analysis found that the first recalculated principal component represented the 11 EPI. The recalculated principal component revealed an increasing trend in precipitation extremes for the whole island (except the interior section. Trend stability analysis of several of EPI suggested that the southern parts of Hainan Island, and especially the city of Sanya, should receive more attention to establish the drainage facilities necessary to prevent waterlogging.

  6. Evaluating IPCC AR4 cool-season precipitation simulations and projections for impacts assessment over North America

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, Stephanie A. [The University of Arizona, Department of Geosciences, Tucson, AZ (United States); The Wilderness Society, Anchorage, AK (United States); Russell, Joellen L.; Goodman, Paul J. [The University of Arizona, Department of Geosciences, Tucson, AZ (United States)

    2011-12-15

    General circulation models (GCMs) have demonstrated success in simulating global climate, and they are critical tools for producing regional climate projections consistent with global changes in radiative forcing. GCM output is currently being used in a variety of ways for regional impacts projection. However, more work is required to assess model bias and evaluate whether assumptions about the independence of model projections and error are valid. This is particularly important where models do not display offsetting errors. Comparing simulated 300-hPa zonal winds and precipitation for the late 20th century with reanalysis and gridded precipitation data shows statistically significant and physically plausible associations between positive precipitation biases across all models and a marked increase in zonal wind speed around 30 N, as well as distortions in rain shadow patterns. Over the western United States, GCMs project drier conditions to the south and increasing precipitation to the north. There is a high degree of agreement between models, and many studies have made strong statements about implications for water resources and about ecosystem change on that basis. However, since one of the mechanisms driving changes in winter precipitation patterns appears to be associated with a source of error in simulating mean precipitation in the present, it suggests that greater caution should be used in interpreting impacts related to precipitation projections in this region and that standard assumptions underlying bias correction methods should be scrutinized. (orig.)

  7. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  8. Ecosystem functional response across precipitation extremes in a sagebrush steppe.

    Science.gov (United States)

    Tredennick, Andrew T; Kleinhesselink, Andrew R; Taylor, J Bret; Adler, Peter B

    2018-01-01

    Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels. We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years. Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments. Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response

  9. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust

    Science.gov (United States)

    Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun

    2018-02-01

    The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.

  10. Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant

    International Nuclear Information System (INIS)

    Zhang Kai; Liu Hezhou; Wu Yating; Hu Wenbin

    2008-01-01

    YAG:Ce precursors were co-precipitated using ammonia water and ammonium hydrogen carbonate as precipitants, respectively. Phase transition of the precursors during sintering was compared between the two precipitants. The precursors synthesized with ammonia water transformed to YAG at about 1000 deg. C via YAlO 3 phase. The precursors synthesized with ammonium hydrogen carbonate directly converted to pure YAG at about 900 deg. C. Comparing the powders produced with the two precipitants, the powders produced with ammonia hydrogen carbonate showed good dispersity. When sintered at 1600 deg. C, aggregation of the powders synthesized with the two precipitants both became severe. With increase the sintering temperature, the maximum wavelength of excitation and emission spectra of the phosphors synthesized with ammonium water hardly varied. While the maximum wavelength of excitation spectra of the phosphors synthesized with ammonium hydrogen carbonate unchanged, and the emission spectra showed red shift. Because of size effect and higher loss of cerium content, the emission intensity of phosphors prepared with ammonium hydrogen carbonate was lower than the phosphors prepared with ammonium water, when sintered at the same temperature

  11. Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation

    Science.gov (United States)

    Zyman, Z.; Rokhmistrov, D.; Glushko, V.

    2012-08-01

    A new insight on the conversion of an amorphous calcium phosphate, ACP, to hydroxyapatite, HA, has been proposed. The ACP has been precipitated under appropriate conditions of the nitrous method (low concentrations of reactants, pH>10, 25 °С, fast mixing). The ACP to HA conversion has been found to commence immediately after the ACP precipitation. The conversion reveals itself in the first detected shift of the diffuse maximum from 29.5° 2θ (ACP) to about 32° 2θ (the position of principal peaks of HA) in the XRD patterns for the precipitates of 2 min-6 h lifetimes. The precipitates are biphasic mixtures of ACP and nanocrystalline HA, nHA, with increasing nHA/ACP ratio for longer lifetimes. Characteristics of the simulated XRD profiles calculated proceeding on such a picture are excellently confirmed by experimental results. At the end of the conversion, HA nanocrystals start growing. This follows from the appearance of broadened diffraction maxima, which gradually sharpen, along with the appearance and gradual increase of splitting of the initially featureless υ3 and υ4PO43- bands in the IR spectra of precipitates with their aging (after 6 h of the precipitation). Based on the detected structural and compositional peculiarities of ACP in the early stage of precipitation, a cell model for the HA crystallization has been proposed. Proceeding on the model, the principal data in this and earlier studies, considering the ACP to HA conversion as an internal rearrangement process in the ACP particles, has been reasonably explained.

  12. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki, E-mail: tsukada@silky.numse.nagoya-u.ac.j [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Atsuhiro; Murata, Yoshinori [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Takaya, Shigeru [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan); Koyama, Toshiyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Morinaga, Masahiko [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2010-06-15

    The correlation of defect energies with precipitation of the ferromagnetic phase near M{sub 23}C{sub 6} carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M{sub 23}C{sub 6} carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  13. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    International Nuclear Information System (INIS)

    Tsukada, Yuhki; Shiraki, Atsuhiro; Murata, Yoshinori; Takaya, Shigeru; Koyama, Toshiyuki; Morinaga, Masahiko

    2010-01-01

    The correlation of defect energies with precipitation of the ferromagnetic phase near M 23 C 6 carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M 23 C 6 carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  14. Trends in extreme temperature and precipitation in Muscat, Oman

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana

    2014-09-01

    Full Text Available Changes in frequency and intensity of weather events often result in more frequent and intensive disasters such as flash floods and persistent droughts. In Oman, changes in precipitation and temperature have already been detected, although a comprehensive analysis to determine long-term trends is yet to be conducted. We analysed daily precipitation and temperature records in Muscat, the capital city of Oman, mainly focusing on extremes. A set of climate indices, defined in the RClimDex software package, were derived from the longest available daily series (precipitation over the period 1977–2011 and temperature over the period 1986–2011. Results showed significant changes in temperature extremes associated with cooling. Annual maximum value of daily maximum temperature (TX, on average, decreased by 1°C (0.42°C/10 year. Similarly, the annual minimum value of daily minimum temperature (TN decreased by 1.5°C (0.61°C/10 year, which, on average, cooled at a faster rate than the maximum temperature. Consequently, the annual count of days when TX > 45°C (98th percentile decreased from 8 to 3, by 5 days. Similarly, the annual count of days when TN < 15°C (2nd percentile increased from 5 to 15, by 10 days. Annual total precipitation averaged over the period 1977–2011 is 81 mm, which shows a tendency toward wetter conditions with a 6 mm/10 year rate. There is also a significant tendency for stronger precipitation extremes according to many indices. The contribution from very wet days to the annual precipitation totals steadily increases with significance at 75% level. When The General Extreme Value (GEV probability distribution is fitted to annual maximum 1-day precipitation, the return level of a 10-year return period in 1995–2011 was estimated to be 95 mm. This return level in the recent decade is about 70% higher than the return level for the period of 1977–1994. These results indicate that the long-term wetting signal apparent in total

  15. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  16. Investigating precipitation changes of anthropic origin: data and methodological issues

    Science.gov (United States)

    de Lima, Isabel; Lovejoy, Shaun

    2017-04-01

    There is much concern about the social, environmental and economic impacts of climate change that could result directly from changes in temperature and precipitation. For temperature, the situation is better understood; but despite the many studies that have been already dedicated to precipitation, change in this process - that could be associated to the transition to the Anthropocene - has not yet been convincingly proven. A large fraction of those studies have been exploring temporal (linear) trends in local precipitation, sometimes using records over only a few decades; other fewer studies have been dedicated to investigating global precipitation change. Overall, precipitation change of anthropic origin has showed to be difficult to establish with high statistical significance and, moreover, different data and products have displayed important discrepancies; this is valid even for global precipitation. We argue that the inadequate resolution and length of the data commonly used, as well as methodological issues, are among the main factors limiting the ability to identify the signature of change in precipitation. We propose several ways in which one can hope to improve the situation - or at least - clarify the difficulties. From the point of view of statistical analysis, the problem is one of detecting a low frequency anthropogenic signal in the presence of "noise" - the natural variability (the latter includes both internal dynamics and responses to volcanic, solar or other natural forcings). A consequence is that as one moves to longer and longer time scales, fluctuations are increasingly averaged and at some point, the anthropogenic signal will stand out above the natural variability noise. This approach can be systematized using scaling fluctuation analysis to characterizing different precipitation scaling regimes: weather, macroweather, climate - from higher to lower frequencies; in the anthropocene, the macroweather regime covers the range of time scales

  17. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    gauges in the model area. The spatio-temporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatio-temporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying onprecipitation output......Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...

  18. Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2017-01-01

    Full Text Available Precipitation is the main water source for vegetation survival in arid and semi-arid areas. However, previous studies always focus on the effects of precipitation in different time scales, but ignore the effects of precipitation in different spatial scales. To further study the effects of precipitation fluctuation in different spatial scales, we used the wavelet analysis method to analyze its temporal and spatial change based on data from eighteen meteorological stations during 1961–2015 in Horqin region. Results showed that: (1 from the overall tendency of precipitation changes, the precipitation inter-annual variations in Horqin region had the tendency of gradually decreasing from the southeast (District IV to the northwest; (2 the precipitation anomalies of District I–IV between 1960 and 1980 were small and approximate to the normal value; (3 in the time scale of 23–32 years, the cyclical fluctuations were very significant and the annual precipitation underwent two cyclical fluctuations from a period of low precipitation to a period of high precipitation; and (4 as results of analyzing the spatial wavelet variance of sub-region, the main cycle of precipitation in District I, District II and District III was between 10 and 11 years, while the main cycle of precipitation in District IV was 25 years. The main conclusions include the following. (1 This region tended to be arid, and the precipitation gradually decreased from the southeast (District IV to northwest (District I. (2 The influence of spatial differentiation characteristics on precipitation fluctuation in this region was cyclical fluctuation, which gradually decreased from the southeast to the northwest. The length of the cyclical change period gradually shortened. In the first main cycle, whose annual precipitation changes were most significant, the changing characteristic was District IV and District I decreased from 25 years to 10 years. (3 Predicated from the cyclical

  19. Edouard's (2014) Intensification: An Investigation of Precipitation and Thermodynamic Symmetrization Using a Cloud-Resolving Ensemble

    Science.gov (United States)

    Alvey, G., III; Zipser, E. J.

    2017-12-01

    Literature over the past 10 years has provided conflicting views about the relative importance of precipitation symmetry and convective intensity for tropical cyclone intensification. While several modeling studies (Braun et al. 2006, Guimond et al. 2010, Molinari et al. 2013, Rogers et al. 2013, 2015) have favored intense deep convection, satellite-based composite studies, on the other hand, have offered a differing pathway towards tropical cyclone intensification emphasizing shallow to moderate precipitation (Zagrodnik and Jiang 2014, Tao and Jiang 2015, Alvey et al. 2015). This has left fundamental questions unanswered regarding the relationships between precipitation and TC intensity change: What are the dominant precipitation types, their spatial distributions, and the timing of these features with respect to intensification? And what causes precipitation to symmetrize and increase in the upshear quadrants? One potentially important process, the humidification of upshear quadrants, has been identified to occur nearly coincidental with increased precipitation symmetry prior to and during Edouard's (2014) intensification (Zawislak et al. 2016). While observations from the Global Hawk and P-3 provided important snapshots throughout the life cycle of Edouard (2014), numerical simulations complement and reveal, in more detail, the processes behind these relationships through filling an 48-hour airborne observational gap during a crucial period of intensification between 12-14 Sept. We use a high resolution, full physics ensemble of Edouard (2014) simulated by the Weather Research and Forecasting (WRF) model - Advanced Research WRF (ARW; Skamarock et al., 2008). We deem the quantification of azimuthal variations — with a focus on the shear-relative quadrants — as particularly important, especially early in intensification when thermodynamic and precipitation distributions tend to be more asymmetric. Using a water vapor budget and trajectories we examine whether

  20. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method

    International Nuclear Information System (INIS)

    Chen, Zhi-Hui; Yang, Yun; Hu, Zhang-Gui; Li, Jiang-Tao; He, Shu-Li

    2007-01-01

    A hydrate precursor of yttrium aluminum garnet (YAG) was synthesized by a modified co-precipitation method, in which n-butanol was employed as a low-cost recyclable dehydration solvent. A mixed solution of ethanol and ammonia were used as precipitant. Pure YAG phase appeared after the as-prepared precursors being calcined at 850 o C for 2 h. The nanocrystalline YAG particles calcined at 1100 o C were well dispersed with average diameter of about 40 nm, which can be densified to transparency under vacuum sintering at 1700 o C for 5 h with TEOS as sintering additive