Sample records for high power ultrasonic

  1. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology. (United States)

    Wang, Zhenjun; Xu, Yuanming


    With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers

  2. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)


    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...

  3. Resonance tracking and vibration stablilization for high power ultrasonic transducers. (United States)

    Kuang, Y; Jin, Y; Cochran, S; Huang, Z


    Resonant frequency shift and electrical impedance variation are common phenomena in the application of high power ultrasonic transducers, e.g. in focused ultrasound surgery and in cutting. They result in low power efficiency and unstable vibration amplitude. To solve this problem, a driving and measurement system has been developed to track the resonance of high power transducers and to stabilise their vibration velocity. This has the ability to monitor the operating and performance parameters of the ultrasonic transducers in real time. The configuration of the system, with its control algorithm implemented in LabVIEW (National Instruments, Newbury, UK), ensures flexibility to suit different transducers and load conditions. In addition, with different programs, it can be utilised as a high power impedance analyser or an instantaneous electrical power measurement system for frequencies in the MHz range. The effectiveness of this system has been demonstrated in detailed studies. With it, high transducer performance at high power can be achieved and monitored in real time. Copyright © 2013. Published by Elsevier B.V.

  4. High-Powered, Ultrasonically Assisted Thermal Stir Welding (United States)

    Ding, Robert


    distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  5. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)


    substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...... of acoustic energy by at least one ultrasonic high intensity and high power gas-jet acoustic wave generator (101), where said ultrasonic high intensity and high power acoustic waves are directed to propagate towards said plasma (104) so that at least a part of said predetermined amount of acoustic energy...

  6. Optimization design of high power ultrasonic circular ring radiator in coupled vibration. (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu


    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding. (United States)

    Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman


    Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification. (United States)

    Dong, Zhengya; Yao, Chaoqun; Zhang, Xiaoli; Xu, Jie; Chen, Guangwen; Zhao, Yuchao; Yuan, Quan


    The combination of ultrasound and microreactor is an emerging and promising area, but the report of designing high-power ultrasonic microreactor (USMR) is still limited. This work presents a robust, high-power and highly efficient USMR by directly coupling a microreactor plate with a Langevin-type transducer. The USMR is designed as a longitudinal half wavelength resonator, for which the antinode plane of the highest sound intensity is located at the microreactor. According to one dimension design theory, numerical simulation and impedance analysis, a USMR with a maximum power of 100 W and a resonance frequency of 20 kHz was built. The strong and uniform sound field in the USMR was then applied to intensify gas-liquid mass transfer of slug flow in a microfluidic channel. Non-inertial cavitation with multiple surface wave oscillation was excited on the slug bubbles, enhancing the overall mass transfer coefficient by 3.3-5.7 times.

  9. Viability of common wine spoilage organisms after exposure to high power ultrasonics. (United States)

    Luo, Hua; Schmid, Frank; Grbin, Paul R; Jiranek, Vladimir


    Microbial spoilage of wine can lead to significant economic loss. At present sulfur dioxide is the main additive to juice/must/wine to prevent and control microbial spoilage. As an alternative, or complement to SO(2), high power ultrasonics (HPU) may be used to control microbes. Several wine spoilage yeasts and bacteria were treated with HPU in saline (0.9% w/v NaCl), juice and red wine to assess their susceptibility to HPU. Significant killing was seen across several yeasts and bacteria commonly associated with winemaking and wine spoilage. In general the viability of yeast was more affected than that of bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A high-power linear ultrasonic motor using longitudinal vibration transducers with single foot. (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun


    A high-power linear ultrasonic motor using longitudinal vibration transducers with single foot was proposed in this paper. The stator of proposed motor contains a horizontal transducer and a vertical transducer. Longitudinal vibrations are superimposed in the stator and generate an elliptical trajectory at the driving foot. The sensitivity analysis of structural parameters to the resonance frequencies of two working modes of the stator was performed using the finite element method. The resonance frequencies of two working modes were degenerated by adjusting the structural parameters. The vibration characteristics of stator were studied and discussed. A prototype motor was fabricated and measured. Typical output of the prototype is a no-load speed of 1160 mm/s and maximum thrust force of 20 N at a voltage of 200 V(rms).

  11. Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction

    Directory of Open Access Journals (Sweden)

    Mortaza Aghbashlo


    Full Text Available In this study, a novel low power, high frequency piezoelectric-based ultrasonic reactor was developed and evaluated for intensifying the transesterification process. The reactor was equipped with an automatic temperature control system, a heating element, a precise temperature sensor, and a piezoelectric-based ultrasonic module. The conversion efficiency and specific energy consumption of the reactor were examined under different operational conditions, i.e., reactor temperature (40‒60 °C, ultrasonication time (6‒10 min, and alcohol/oil molar ratio (4:1‒8:1. Transesterification of waste cooking oil (WCO was performed in the presence of a base-catalyst (potassium hydroxide using methanol. According to the obtained results, alcohol/oil molar ratio of 6:1, ultrasonication time of 10 min, and reactor temperature of 60 °C were found as the best operational conditions. Under these conditions, the reactor converted WCO to biodiesel with a conversion efficiency of 97.12%, meeting the ASTM standard satisfactorily, while the lowest specific energy consumption of 378 kJ/kg was also recorded. It should be noted that the highest conversion efficiency of 99.3 %, achieved at reactor temperature of 60 °C, ultrasonication time of 10 min, and alcohol/oil molar ratio of 8:1, was not favorable as the associated specific energy consumption was higher at 395 kJ/kg. Overall, the low power, high frequency piezoelectric-based ultrasonic module could be regarded as an efficient and reliable technology for intensifying the transesterification process in terms of energy consumption, conversion efficiency, and processing time, in comparison with high power, low frequency ultrasonic system reported previously. Finally, this technology could also be considered for designing, developing, and retrofitting chemical reactors being employed for non-biofuel applications as well.

  12. Synthesis of strontium substituted barium titanate nanoparticles by mechanical alloying and high power ultrasonication destruction

    Energy Technology Data Exchange (ETDEWEB)

    Yustanti, Erlina, E-mail: [Graduate Program of Material Science, Faculty of Mathematics and Natural Sciences University of Indonesia Jl. Salemba Raya No. 04 Jakarta 10430 (Indonesia); Department of Metallurgy, Faculty of Engineering University of Sultan AgengTirtayasa Jl. Jenderal Sudirman KM 03 Cilegon-Banten 65134 (Indonesia); Hafizah, Mas Ayu Elita, E-mail:; Manaf, Azwar, E-mail: [Graduate Program of Material Science, Faculty of Mathematics and Natural Sciences University of Indonesia Jl. Salemba Raya No. 04 Jakarta 10430 (Indonesia)


    This paper reports the particle and crystallite size characterizations of mechanically alloyed Ba{sub (1-x)}Sr{sub x}TiO{sub 3} (BST) with x = 0.3 and 0.7 prepared with the assistance of a high-power sonicator. Analytical grade BaCO{sub 3}, TiO{sub 2} and SrCO{sub 3} precursors with a purity of greater than 99 wt.% were mixed and milled using a planetary ball mill to a powder weight ratio of 10:1. Powders obtained after 20 hours of milling time were then sintered at 1200°C for 4 hours to form crystalline powders.These powders were further treated ultrasonically under a fixed 6.7 gr/l particle concentration in demineralized water for 1, 3, 5, 7 hours and a fixed ultrasonic irradiation time of 1 hour to the dispersion of 6.7; 20; 33.3 gr/l concentrations. As to the results of crystallite size characterization, it is demonstrated that the mean crystallite size of BST with x = 0.3 and 0.7 undergo a slight change after the first 1 hour irradiation time and then remain almost unchanged. This was in contrary to the particle size in which the mean particle size of BST with x = 0.3 increased from 765 nm to 1405 nm after 7 hours irradiation time, while that of x = 0.7 increased from 505 nm to 1298 nm after 3 hours and then reduced back to the initial size after 7 hours ultra sonication time. The increase in particle size was due to large of cohesive forces among fine particles. It is also demonstrated that the concentration of particles in a dispersion with anionic surfactant do not effective to reduce the particle sizes ultrasonically. Nanoparticles with the mean size respectively 40 and 10 times larger than their respective crystallite size were successfully obtained respectively in x = 0.3 and x = 0.7.

  13. Long-range measurement system using ultrasonic range sensor with high-power transmitter array in air. (United States)

    Kumar, Sahdev; Furuhashi, Hideo


    A long-range measurement system comprising an ultrasonic range sensor with a high-power ultrasonic transmitter array in air was investigated. The system is simple in construction and can be used under adverse conditions such as fog, rain, darkness, and smoke. However, due to ultrasonic waves are well absorbed by air molecules, the measurable range is limited to a few meters. Therefore, we developed a high-power ultrasonic transmitter array consisting of 144 transmitting elements. All elements are arranged in the form of a 12×12 array pattern. The sound pressure level at 5m from the transmitter array was >30dB higher than that of a single element. A measuring range of over 25m was achieved using this transmitter array in conjunction with a receiver array having 32 receiving elements. The characteristics of the transmitter array and range sensor system are discussed by comparing simulation and experimental results. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Measurement of mechanical quality factors of polymers in flexural vibration for high-power ultrasonic application. (United States)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro


    A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering the effect of the thickness on the estimation error. In the experimental setup, a 1-mm-thick polymer-based bar was used as a sample and fixed on the top of a longitudinal transducer. Using transducers of different lengths, flexural waves in the frequency range of 20-90kHz were generated on the bar. The vibration strain in the experiment reached 0.06%. According to the Bernoulli-Euler model, the reactive energy and dissipated energy were estimated from the vertical velocity distribution on the bar, and the Q factors were measured as the driving frequency and strain were varied. The experimental results showed that the Q factors decrease as the driving frequencies and strains increase. At a frequency of 28.30kHz, the Q factor of poly(phenylene sulfide) (PPS) reached approximately 460 when the strain was smaller than 0.005%. PPS exhibited a much higher Q factor than the other tested polymers, which implies that it is a potentially applicable material as the elastomer for high-power ultrasonic devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. High power ultrasonics as a novel tool offering new opportunities for managing wine microbiology. (United States)

    Jiranek, Vladimir; Grbin, Paul; Yap, Andrew; Barnes, Mark; Bates, Darren


    Industrial scale food and beverage processes that utilize microorganisms are typically faced with issues related to the exclusion, suppression or elimination of spoilage organisms. Yet the use of traditional anti-microbial treatments such as heat, chemical biocides or sterile filtration may themselves be restricted by regulations or else be undesirable due to their adverse sensory impacts on the product. High power ultrasound (HPU) is a technology whose application has been evaluated if not exploited in several food and beverage processes but has yet to be introduced into the wine industry. This review examines the research findings from related industries and highlights possible applications and likely benefits of the use of HPU in winemaking.

  16. Percutaneous nephrolithotomy for staghorn stones: a randomised trial comparing high-power holmium laser versus ultrasonic lithotripsy. (United States)

    El-Nahas, Ahmed R; Elshal, Ahmed M; El-Tabey, Nasr A; El-Assmy, Ahmed M; Shokeir, Ahmed A


    To compare high-power holmium laser lithotripsy (HP-HLL) and ultrasonic lithotripsy (US-L) for disintegration of staghorn stones during percutaneous nephrolithotomy (PCNL). A non-inferiority randomised controlled trial was conducted between August 2011 and September 2014. Inclusion criteria were patients' aged >18 years who had complete staghorn stones (branching to the three major calyces), without contraindications to PCNL. Eligible patients were randomised between two groups: HP-HLL and US- . A standard PCNL in the prone position was performed for all patients. The only difference between the treatment groups was the method of stone disintegration. In the first group (HP-HLL), a laser power of 40-60 W (2 J, 20-30 Hz) was used to pulverise the staghorn stone into very small fragments, which could pass through the Amplatz sheath with the irrigation fluid. US-L,with suction of the fragments, was used in the second group. The primary outcome (stone-free rate) was evaluated with non-contrast computed tomography after 3 months. Secondary outcomes of complications, blood transfusion, operative time, and haemoglobin deficit were compared. The outcome assessor was 'blinded' to the treatment arm. The study included 70 patients (35 in each group). The baseline characteristics (age, sex, body mass index, side, stone volume, and density) and operative technique (number, size of tracts, and need for second PCNL session) were comparable for both groups. Operative time was significantly shorter in US-L group, at a mean (SD) of 130 (34) vs 148.7 (35) min (P = 0.028). The haemoglobin deficit was significantly more with in the US-L group, at a mean (SD) of 1.7 (0.9) vs 1.3 (0.6) g/dL (P = 0.037). The differences in blood transfusion (17% for US-L vs 11% for HP-HLL) and the complication rates (34% for US-L vs 23% for HP-HLL) were not significant (P = 0.495 and P = 0.290, respectively). The stone-free rates at 3 months were comparable (60% for US-L and 66% for HPL-L; P = 0

  17. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging. (United States)

    Ji, Hongjun; Zhou, Junbo; Liang, Meng; Lu, Huajun; Li, Mingyu


    Sintering of low-cost Cu nanoparticles (NPs) for interconnection of chips to substrate at low temperature and in atmosphere conditions is difficult because they are prone to oxidation, but dramatically required in semiconductor industry. In the present work, we successfully synthesized Cu@Ag NPs paste, and they were successfully applied for joining Cu/Cu@Ag NPs paste/Cu firstly in air by the ultrasonic-assisted sintering (UAS) at a temperature of as low as 160 °C. Their sintered microstructures featuring with dense and crystallized cells are completely different from the traditional thermo-compression sintering (TCS). The optimized shear strength of the joints reached to 54.27 MPa, exhibiting one order of magnitude higher than TCS at the same temperature (180 °C) under the UAS. This ultra-low sintering temperature and high performance of the sintered joints were ascribed to ultrasonic effects. The ultrasonic vibrations have distinct effects on the metallurgical reactions of the joints, resulting in the contact and growth of Cu core and the stripping and connection of Ag shell, which contributes to the high shear strength. Thus, the UAS of Cu@Ag NPs paste has a great potential to be applied for high-temperature power device packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Methods for measuring acoustic power of an ultrasonic neurosurgical device. (United States)

    Petosić, Antonio; Ivancević, Bojan; Svilar, Dragoljub; Stimac, Tihomir; Paladino, Josip; Oresković, Darko; Jurjević, Ivana; Klarica, Marijan


    Measurement of the acoustic power in high-energy ultrasonic devices is complex due to occurrence of the strong cavitation in front of the sonotrode tip. In our research we used three methods for characterization of our new ultrasonic probe for neuroendoscopic procedures. The first method is based on the electromechanical characterization of the device measuring the displacement of the sonotrode tip and input electrical impedance around excitation frequency with different amounts of the applied electrical power The second method is based on measuring the spatial pressure magnitude distribution of an ultrasound surgical device produced in an anechoic tank. The acoustic reciprocity principle is used to determinate the derived acoustic power of equivalent ultrasound sources at frequency components present in the spectrum of radiated ultrasonic waves. The third method is based on measuring the total absorbed acoustic power in the restricted volume of water using the calorimetric method. In the electromechanical characterization, calculated electroacoustic efficiency factor from equivalent electrical circuits is between 40-60%, the same as one obtained measuring the derived acoustic power in an anechoic tank when there is no cavitation. When cavitation activity is present in the front of the sonotrode tip the bubble cloud has a significant influence on the derived acoustic power and decreases electroacoustic efficiency. The measured output acoustic power using calorimetric method is greater then derived acoustic power, due to a large amount of heat energy released in the cavitation process.

  19. Power spectrum of fluctuation for ultrasonic cavitation process in glycerin (United States)

    Skokov, V. N.; Koverda, V. P.; Reshetnikov, A. V.; Vinogradov, A. V.


    Experiments were carried out on ultrasonic cavitation in glycerin. The zone near the emitter has a structure from interacting gas-vapor bubbles; this structure takes the form of fractal clusters. The photometry of passed laser emission was the tool for studying dynamics of fluctuations. In transitive mode, the power spectrum of fluctuation varies by the law inversely proportional to frequency. Distributions of local fluctuations are different from Gaussian and exhibit the property of scale invariance. The qualitative behavior of the frequency dependence of the spectral fluctuation density was tested while varying the power of the ultrasonic emitter. It was demonstrated that the growth of the high-frequency margin of flicker-type behavior evidences for growing instability and can be considered as a forerunner of possible large-scale outbursts.

  20. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail:; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)


    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  1. Power Harvesting Capabilities of SHM Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    Christophe Delebarre


    Full Text Available The aim of this work is to show that classical Structural Health Monitoring ultrasonic sensors may provide some power harvesting capabilities from a wide variety of vibration sources. In other words, the authors developed an integrated piezoelectric energy harvesting sensor capable of operating a dual mode, that is, carrying out vibration power harvesting and Structural Health Monitoring. First, vibrations signals of an A380 aircraft recorded during different phases of flight are presented to show the need of a wideband piezoelectric energy harvester. Then, the voltage response of a piezoelectric power harvester bonded onto an aluminium cantilever plate and excited by an electromechanical shaker is measured. A finite element model of the energy harvester system is also presented. This model provides the voltage response of the harvester due to a mechanical excitation of the host structure and allows a better understanding of the energy harvesting process. In many cases, a good agreement with the experimental results is obtained. A power measurement also showed the ability of piezoelectric SHM sensors to harvest power over an extended frequency range present in spectra collected in aircrafts. This result could lead to numerous applications even though this kind of power harvester sensor has been initially designed to operate onboard aircrafts.

  2. Power ultrasonic transducers with extensive radiators for industrial processing. (United States)

    Gallego-Juárez, J A; Rodriguez, G; Acosta, V; Riera, E


    High-power ultrasonics (HPU) is a green emerging technology that offers a great potential for a wide range of industrial processes. Nevertheless such potential have remained restricted during many years to a limited number of applications which reached commercial development. The possible major problem for extending the range of HPU industrial applications has been the lack of power ultrasonic transducers for large-scale application, adapted to the requirements of each specific problem with high efficiency and power capacity. A new family of HPU transducers with extensive radiators have been recently introduced. It comprises a variety of transducer types designed with the radiators adapted to different specific uses in fluids and multi-phase media. Such transducers implement high power capacity, high efficiency and radiation pattern control. In addition, their design incorporate strategies to eliminate or reduce modal interactions produced at high power as a consequence of their nonlinear behaviour. The introduction of such new transducers has significantly contributed to the development at semi-industrial and industrial level of a number of processes in the food and beverage industry, in environment and in manufacturing. This paper deals with the basic structure and main characteristics of such transducers as well as their performance in the developed application processes. Copyright 2009 Elsevier B.V. All rights reserved.

  3. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications. (United States)

    Gao, Zheng; Gui, Ping


    In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%.

  4. The power of sound: miniaturized medical implants with ultrasonic links (United States)

    Wang, Max L.; Chang, Ting Chia; Charthad, Jayant; Weber, Marcus J.; Arbabian, Amin


    Miniaturized wirelessly powered implants capable of operating and communicating deep in the body are necessary for the next-generation of diagnostics and therapeutics. A major challenge in developing these minimally invasive implants is the tradeoff between device size, functionality, and operating depth. Here, we review two different wireless powering methods, inductive and ultrasonic power transfer, examine how to analyze their power transfer efficiency, and evaluate their potential for powering implantable medical devices. In particular, we show how ultrasonic wireless power transfer can address these challenges due to its safety, low attenuation, and millimeter wavelengths in the body. Finally, we demonstrate two ultrasonically powered implants capable of active power harvesting and bidirectional communication for closed-loop operation while functioning through multiple centimeters of tissue.

  5. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips. (United States)

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien


    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  6. Ultrasonic friction power during Al wire wedge-wedge bonding (United States)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.


    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  7. Recent advances in automated ultrasonic inspection of Magnox power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, A.B. [Magnox Electric, South Glos (United Kingdom). Oldbury Training Centre


    Magnox Electric operates a number of Magnox nuclear power stations, some of which have presented difficult inspection challenges. This paper will describe recent advances in automated ultrasonic techniques which have enabled additional, fully effective and qualified inspections to be introduced. The examples chosen involve phased array inspection of fillet welds and the introduction of 3D data display and analysis using NDT Workbench. Ultrasonic phased arrays have been optimised for inspection of fillet welded structures where physical access for the operator is very awkward and the surfaces available for probe scanning are very restricted. In addition to controlling the beam direction and focus depth, the systems have also optimised the depth of field by varying the number of phased array elements fired at a given time. These phased array inspections are substantially superior in quality, reliability and speed compared with that achievable by conventional manual inspection. Analysis of automated ultrasonic data can be very time-consuming if defects are complex. NDT Workbench significantly improves data analysis for complex geometries and defects primarily because of the 3D data displays of multiple beams and automated logging of measurements. This system has been used in 2005 for data analysis of complex defects where sizing accuracy was particularly important. Both these inspection procedures have been formally qualified using the ENIQ (European Network for Inspection Qualification) Methodology. Such qualification was achieved more easily because of the rigorous in house training programmes established in each case and because the Technical Justifications referred to evidence from previous related qualifications whenever appropriate. The timely achievement of inspection qualification demonstrates that the new systems have reached sufficient maturity to be used with confidence for high quality inspections. (orig.)

  8. A micromachined ultrasonic power receiver for biomedical implants (United States)

    Basaeri, Hamid; Roundy, Shad


    Bio-implantable medical devices need a reliable and stable source of power to perform effectively. Although batteries can be the first candidate to power implantable devices as they provide high energy density, they cannot supply power for long periods of time and therefore, they must be periodically replaced or recharged. Battery replacement is particularly difficult as it requires surgery. In this paper, we develop a micromachined ultrasonic power generating receiver with a size of 3.5mmx3.5mm capable of providing sufficient power for implantable medical devices. The ultrasound receiver takes the form of a unimorph diaphragm consisting of PZT on silicon. We dice bulk PZT with a thickness of 127 μm and bond the diced pieces to a silicon wafer. In order to get a 50 μm thick PZT layer, which is needed for optimal power transfer, we mechanically lap and polish the bonded PZT. We numerically investigate the performance of the fabricated receiver with inner and outer electrodes on the surface of the PZT. Using COMSOL simulations, we analyze the effect of different sizes of inner and outer electrodes under the actuation of the inner electrode in order to find the optimum electrode sizes. We show that when the transmitter is generating an input power less than Food and Drug Administration limits, the receiver can provide sufficient voltage and power for many implantable devices. Furthermore, the process developed can be used to fabricate significantly smaller devices than the one characterized, which enables further miniaturization of bio-implanted systems.

  9. Resonant ultrasonic wireless power transmission for bio-implants (United States)

    Lee, Sung Q.; Youm, Woosub; Hwang, Gunn; Moon, Kee S.; Ozturk, Yusuf


    In this paper, we present the ultrasonic wireless power transmission system as part of a brain-machine interface (BMI) system in development to supply the required electric power. Making a small-size implantable BMI, it is essential to design a low power unit with a rechargeable battery. The ultrasonic power transmission system has two piezoelectric transducers, facing each other between skin tissues converting electrical energy to mechanical vibrational energy or vice versa. Ultrasound is free from the electromagnetic coupling effect and medical frequency band limitations which making it a promising candidate for implantable purposes. In this paper, we present the design of piezoelectric composite transducer, the rectifier circuit, and rechargeable battery that all packaged in biocompatible titanium can. An initial prototype device was built for demonstration purpose. The early experimental results demonstrate the prototype device can reach 50% of energy transmission efficiency in a water medium at 20mm distance and 18% in animal skin tissue at 18mm distance, respectively.

  10. Research on the static experiment of super heavy crude oil demulsification and dehydration using ultrasonic wave and audible sound wave at high temperatures. (United States)

    Wang, Zhenjun; Gu, Simin; Zhou, Long


    In this paper, the static experiment of super heavy crude oil demulsification and dehydration using ultrasonic irradiation at high temperatures is carried out. How the all factors, such as ultrasonic frequency, sound intensity, ultrasonic power, ultrasonic treatment time, sedimentation time, temperature and water ratio, affect ultrasonic crude oil demulsification and dehydration are summarized though this experiment. In addition, recent progress on ultrasonic demulsification equipment in China are reviewed. The purpose of this paper is to provide equipment and technical support for the extensive application of the technique of ultrasonic demulsification and dehydration. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)


    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  12. Increasing average power in medical ultrasonic endoscope imaging system by coded excitation (United States)

    Chen, Xiaodong; Zhou, Hao; Wen, Shijie; Yu, Daoyin


    Medical ultrasonic endoscope is the combination of electronic endoscope and ultrasonic sensor technology. Ultrasonic endoscope sends the ultrasonic probe into coelom through biopsy channel of electronic endoscope and rotates it by a micro pre-motor, which requires that the length of ultrasonic probe is no more than 14mm and the diameter is no more than 2.2mm. As a result, the ultrasonic excitation power is very low and it is difficult to obtain a sharp image. In order to increase the energy and SNR of ultrasonic signal, we introduce coded excitation into the ultrasonic imaging system, which is widely used in radar system. Coded excitation uses a long coded pulse to drive ultrasonic transducer, which can increase the average transmitting power accordingly. In this paper, in order to avoid the overlapping between adjacent echo, we used a four-figure Barker code to drive the ultrasonic transducer, which is modulated at the operating frequency of transducer to improve the emission efficiency. The implementation of coded excitation is closely associated with the transient operating characteristic of ultrasonic transducer. In this paper, the transient operating characteristic of ultrasonic transducer excited by a shock pulse δ(t) is firstly analyzed, and then the exciting pulse generated by special ultrasonic transmitting circuit composing of MD1211 and TC6320. In the final part of the paper, we designed an experiment to validate the coded excitation with transducer operating at 5MHz and a glass filled with ultrasonic coupling liquid as the object. Driven by a FPGA, the ultrasonic transmitting circuit output a four-figure Barker excitation pulse modulated at 5MHz, +/-20 voltage and is consistent with the transient operating characteristic of ultrasonic transducer after matched by matching circuit. The reflected echo from glass possesses coded character, which is identical with the simulating result by Matlab. Furthermore, the signal's amplitude is higher.

  13. High-intensity, focused ultrasonic fields

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø


    The use of extracorporeal shock wave lithotripsy (ESWL) for disintegration of body stones has increased considerably during recent years. A worldwide activity in this field is reflected in a growing number of international publications and in the development and manufacturing of several ESWL...... machines marketed by companies in Germany and France, in particular. Two main types of ESWL systems are prevailing, the spark gap-based and the piezoelectric disk-based systems. This paper is introduced by a brief reconsideration of the features of pressure waves in water produced by an electrical...... distribution, etc. involving nonlinearity, diffraction, and absorption in the high-intensity focused ultrasonic fields produced by an ellipsoid as well as a spherical cap focusing geometry. Data from the development of an ESWL of the piezoelectric disk type are reported including demands to transducers...

  14. Modal analysis and nonlinear characterization of an airborne power ultrasonic transducer with rectangular plate radiator. (United States)

    Andrés, R R; Acosta, V M; Lucas, M; Riera, E


    Some industrial processes like particle agglomeration or food dehydration among others can be enhanced by the use of power ultrasonic technologies. These technologies are based on an airborne power ultrasonic transducer (APUT) constituted by a pre-stressed Langevin-type transducer, a mechanical amplifier and an extensive plate radiator. In order to produce the desired effects in industrial processing, the transducer has to vibrate in an extensional mode driving an extensive radiator in the desired flexural mode with high amplitude displacements. Due to the generation of these high amplitude displacements in the radiator surfaces, non-linear effects like frequency shifts, hysteresis or modal interactions, among others, may be produced in the transducer behavior. When any nonlinear effect appears, when applying power, the stability and efficiency of this ultrasonic technology decreases, and the transducer may be damaged depending on the excitation power level and the nature of the nonlinearity. In this paper, an APUT with flat rectangular radiator is presented, as the active part of an innovative system with stepped reflectors. The nonlinear behavior of the APUT has been characterized numerically and experimentally in case of the modal analysis and experimentally in the case of dynamic analysis. According to the results obtained after the experiments, no modal interactions are expected, nor do other nonlinear effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    NARCIS (Netherlands)

    Costa-Felix, R.P.B.; Alvarenga, A.V.; Hekkenberg, R.


    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement)

  16. Recent advances in automated ultrasonic inspection of Magnox power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, A.B. [Magnox Electric Ltd., Gloucestershire (United Kingdom). Oldbury Technical Centre


    This paper describes recent advances in automated ultrasonic techniques which have enabled fully effective and qualified inspections to be introduced for nuclear power stations. In the first example, ultrasonic phased arrays have been introduced for inspection of fillet welded structures where physical access for the operator is very awkward and the surface available for probe scanning are very restricted. The system has optimised the depth of field by varying the number of phased array elements fired at a given time and the inspections are substantially faster and more reliable than conventional manual inspection. In the second example, NDT Workbench significantly improves data analysis for complex geometries and defects by using 3D data displays of multiple beams and automated logging of measurements. Both examples have been formally qualified using the ENIQ (European Network for Inspection Qualification) Methodology. This was achieved more easily because of the rigorous in-house training programmes and because the Technical Justifications referred to evidence from previous related qualifications whenever appropriate. (orig.)

  17. Experimental study of defoaming by air-borne power ultrasonic technology (United States)

    Rodríguez, Germán; Riera, Enrique; Gallego-Juárez, Juan A.; Acosta, Víctor M.; Pinto, Alberto; Martínez, Ignacio; Blanco, Alfonso


    Foam is a dispersion of gas in a liquid in which the distances between the gas bubbles are very small. Foams are frequently generated in the manufacture of many products as result from the aeration and agitation of liquids, from the vaporization of the liquid and also from biological or chemical reactions. Foams are generally an unwanted product in industrial processes because they cause difficulties in process control and in equipment operation. The most efficient conventional method for defoaming is the use of chemical agents but they contaminate the product. High-intensity ultrasonic waves offer a clean procedure to break foam bubbles. The potential use of ultrasound for foam breaking that was known since many years has been recently reinforced by the application of a new type of ultrasonic defoamer based on the stepped-plate high-power transducers to generate air-borne ultrasound. This defoamer has been successfully applied in several industrial problems such as the control of excess foam produced during the filling operation of bottles and cans on high-speed canning lines and in fermenting vessels and other reactors of great dimensions. The treatment of such industrial problems requires the proper characterization and quantification of the main parameters involved in the mechanisms of the defoaming effect. This paper deals with an experimental study about the separate influence of such parameters with the aim of improving the application of the stepped-plate power ultrasonic generators for the production of the defoaming action on industrial processes

  18. Ultrasonic depth gauge for liquids under high pressure (United States)

    Zuckerwar, Allan J. (Inventor); Mazel, David S. (Inventor)


    The invention relates to an ultrasonic depth gauge for liquids under high pressure and is particularly useful in the space industry where it is necessary to use a pressurized gas to transfer a liquid from one location to another. Conventional liquid depth gauges do not have the capability to operate under extreme high pressure (i.e., exceeding 300 psi). An ultrasonic depth gauge capable of withstanding high pressure according to the present invention is comprised of a transducer assembly and a supporting electronics unit. The former is mounted in to the bottom wall of a storage vessel with its resonating surface directly exposed to the highly pressurized liquid in the vessel. In operation, the ultrasonic pulse propagates upward through the liquid to the liquid-gas interface in the storage vessel. When the ultrasonic echo returns from the liquid-gas interface, it re-excites the composite resonator into vibration. The supporting electronics unit measures the round-trip transmit time for the ultrasonic pulse and its return echo to traverse the depth of the highly pressurized liquid. The novelty of the invention resides in the use of a conventional transducer rigidly bonded to the inside wall of a bored out conventional high-pressure plug to form a composite resonator capable of withstanding extremely high pressure.

  19. Experimental investigation by laser ultrasonics for high speed train axle diagnostics. (United States)

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P


    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression (United States)

    Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael


    This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.

  1. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method. (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu


    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)


    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  3. High temperature integrated ultrasonic transducers for engine condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Jen, C.K. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Wu, K.T. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Bird, J.; Galeote, B. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Aerospace Research; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station


    Piezoelectric ultrasonic transducers (UTs) are used for real-time, in-situ or off-line nondestructive evaluation (NDE) of large metallic structures such as airplanes, automobiles, ships, pressure vessels and pipelines because of their subsurface inspection capability, fast inspection speed, simplicity and cost-effectiveness. The objective of this study was to develop and evaluate effective integrated ultrasonic transducers (IUT) technology to perform non-intrusive engine NDE and structural health monitoring (SHM). High temperature IUTs made of bismuth titanate piezoelectric film greater than 50 {mu}m in thickness were coated directly onto a modified CF700 turbojet engine outer casing, oil sump and supply lines and gaskets using sol-gel spray technology. The assessment was limited to temperatures up to 500 degrees C. The center frequencies of the IUTs were approximately 10 to 17 MHz. Ultrasonic signals obtained in pulse/echo measurements were excellent. High temperature ultrasonic performance will likely be obtained in the transmission mode as well. The potential applications of the developed IUTs include non-intrusive real-time temperature, lubricant oil quality and metal debris monitoring within a turbojet engine environment. 9 refs., 13 figs.

  4. Miniature, high efficiency transducers for use in ultrasonic flow meters (United States)

    Saikia, Meghna

    This thesis is concerned with the development of a new type of miniature, high efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is fabricated for the generation and detection of plate acoustic waves. When immersed in a fluid medium, this device can convert energy from plate acoustic waves (PAWs) into bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling principle can be used to realize efficient transducers for use in ultrasonic flow meters. This transducer can be mounted flush with the walls of the pipe through which fluid is flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these transducers has been designed and fabricated. The characteristics of this device have been measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in good agreement with theory. Another attractive property of the new transducers is that they can be used to realize remotely read, passive, wireless flow meters. Details of methods that can be used to develop this wireless capability are described. The research carried out in this thesis has applications in several other areas such as ultrasonic nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for developing wireless capability in a variety of other acoustic wave sensors.

  5. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Jeff Bird


    Full Text Available The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and sump lines were measured during engine operation. Results have shown that the amplitude of the ultrasonic waves is sensitive to the presence of air bubbles in the oil and that the ultrasound velocity is linearly dependent on oil temperature. In the second part of the work, the sensitivity of ultrasound to engine lubricant oil degradation was investigated by using an ultrasonically equipped and thermally-controlled laboratory testing cell and lubricant oils of different grades. The results have shown that at a given temperature, ultrasound velocity decreases with a decrease in oil viscosity. Based on the results obtained in both parts of the study, ultrasound velocity measurement is proposed for monitoring oil degradation and transient oil temperature variation, whereas ultrasound amplitude measurement is proposed for monitoring air bubble content.

  6. Implementation of a Multi-channel Ultrasonic Thickness Monitoring Technique for a High Temperature Pipe Thinning

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Kim, Kyung Mo; Kim, Dong Jin [KAERI, Daejeon (Korea, Republic of); Oh, Se Beom [Dankook Univ., Cheonan (Korea, Republic of)


    Currently pipe thinning has occurred in the carbon steel piping in nuclear power plants. In order to monitor a FAC(Flow Accelerated Corrosion) in a pipe, there is a need to monitor the pipe wall thickness at a high temperature. An ultrasonic thickness measurement method is a well-known and most commonly used nondestructive testing technique for wall thickness monitoring of a piping or plate. However, conventional ultrasonic thickness gauging techniques cannot be applied to high temperatures of above 200 .deg. C, because conventional piezo-ceramic becomes depolarized at temperatures above the Curie temperature as well as the difference of thermal expansion of the substrate, couplant, and piezoelectric materials may cause a failure. In addition, this manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. Multi-channel ultrasonic wall thickness monitoring system for pipe thinning at high temperature is developed. The pitch-catch method was used with two shear horizontal waveguides. A clamping device for dry coupling contact between the end of waveguide and pipe surface is developed. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was developed. Measurement errors were minimized by a moving gate control with temperature variation, normalization of signal amplitude, automatic determination of ultrasonic flight time, and temperature compensation capabilities.

  7. High temperature flexible ultrasonic transducers for structural health monitoring and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Jen, C.K.; Tatibouet, J. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station


    Ultrasonic techniques are often used for non-destructive testing (NDT) and structural health monitoring (SHM) of pipes in nuclear and fossil fuel power plants, petrochemical plants and other structures as a method to improve safety and extend the service life of the structure. In such applications, ultrasonic transducers (UTs) must be able to operate at high temperature, and must come in contact with structures that have surfaces with different curvatures. As such, flexible UTs (FUTs) are most suitable because they ensure self-alignment to the object's surface. The purpose of this study was to develop FUTs that have high flexibility similar to commercially available polyvinylidene fluoride PVDF FUTs, but which can operate at up to at least 150 degrees C and have a high ultrasonic performance comparable to commercial broadband UTs. The fabrication of the FUT consisted of a sol-gel based sensor fabrication process. The substrate was a 75 {mu}m thick titanium (Ti) membrane, a piezoelectric composite with a thickness larger than 85 {mu}m and a top electrode. The ultrasonic performance of the FUT in terms of signal strength was found to be at least as good as commercially available broadband ultrasonic transducers at room temperature. Onsite gluing and brazing installation techniques which bond the FUTs onto steel pipes for SHM and NDT purposes up to 100 and 150 degrees C were developed, respectively. The best thickness measurement accuracy of FUT at 150 degrees C was estimated to be 26 {mu}m. 18 refs., 2 tabs., 6 figs.

  8. Development of ultrasonic high temperature system for severe accidents research

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil Mo; Kang, Kyung Ho; Kim, Young Ro and others


    The aims of this study are to find a gap formation between corium melt and the reactor lower head vessel, to verify the principle of the gap formation and to analyze the effect of the gap formation on the thermal behavior of corium melt and the lower plenum. This report aims at suggesting development of a new high temperature measuring system using an ultrasonic method which overcomes the limitations of the present thermocouple method used for severe accident experiments. Also, this report describes the design and manufacturing method of the ultrasonic system. At that time, the sensor element is fabricated to a reflective element using 1mm diameter and 50 mm and 80 mm long tungsten alloy wires. This temperature measuring system is intended to measure up to 2800 deg C.

  9. High temperature, high power piezoelectric composite transducers. (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart


    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  10. Research on a Composite Power-Superimposed Ultrasonic Vibrator for Wire Drawing

    Directory of Open Access Journals (Sweden)

    Shen Liu


    Full Text Available Vibration power and amplitude are essential factors in ultrasonic drawing processes, especially for difficult-to-draw materials like titanium and its alloys. This paper presents a new composite power-superimposed ultrasonic vibrator for wire drawing which was driven by three separate ultrasonic transducers. The transducers were uniformly distributed around the circular cross section of the vibrator, with their axes along the radial direction and pointing to the center. The vibrator can concentrate the vibrational energy of multiple transducers and transform the radial vibration into a longitudinal vibrator because of the Poisson effect and therefore output larger vibration power and amplitude. In the paper, the four-terminal network method was used to establish the vibration equations of the vibrator. The FE model was established in ANSYS to investigate its characteristics under various excitation conditions. A prototype was manufactured and measurements were performed to verify the validation of FEA results. The results matched well with the theoretical results. It was found that the composite vibrator achieved an amplitude of about 40 μm when driven by square wave signals with 120° in phase difference, which implies a potential way of applying ultrasonic vibration to the processing of difficult-to-draw materials.

  11. High Temperature Ultrasonic Transducer for Real-time Inspection (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  12. Ultrasonic level sensors for liquids under high pressure (United States)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.


    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  13. Development of BS-PT based high temperature ultrasonic transducer (United States)

    Bilgunde, Prathamesh; Bond, Leonard J.


    High temperature (HT) environment in liquid metal cooled reactors poses major challenges towards development of ultrasonic transducer which is a key enabling technology for safety of reactors. In the current work, BS-PT (BiScO3- PbTiO3) piezoelectric material based ultrasonic transducer is proposed for the structural health monitoring at HT. Physics based model using finite element method simulates effect of temperature increase on the transduction ability of the BSPT piezoelectric material. Pulse-echo contact measurements are performed up to 260C which is the hot stand by temperature for liquid metal cooled reactors, to study the performance of the acoustic coupling agent and the BS-PT piezoelectric material bonded to a low-carbon steel sample. Experimental contact measurements indicate 6dB reduction in amplitude of the first backwall echo from 20C to 260C. Also, 0.1 MHz reduction in the fundamental and third harmonic resonance is observed in the spectral analysis of the first backwall echo.

  14. Review of High Level Waste Tanks Ultrasonic Inspection Data

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B


    A review of the data collected during ultrasonic inspection of the Type I high level waste tanks has been completed. The data was analyzed for relevance to the possibility of vapor space corrosion and liquid/air interface corrosion. The review of the Type I tank UT inspection data has confirmed that the vapor space general corrosion is not an unusually aggressive phenomena and correlates well with predicted corrosion rates for steel exposed to bulk solution. The corrosion rates are seen to decrease with time as expected. The review of the temperature data did not reveal any obvious correlations between high temperatures and the occurrences of leaks. The complex nature of temperature-humidity interaction, particularly with respect to vapor corrosion requires further understanding to infer any correlation. The review of the waste level data also did not reveal any obvious correlations.

  15. Highly efficient ultrasonic vibrothermography for detecting impact damage in hybrid composites (United States)

    Derusova, D. A.; Vavilov, V. P.; Sfarra, S.; Sarasini, F.; Druzhinin, N. V.; Nekhoroshev, V. O.


    The use of wide frequency band piezoelectric transducers in ultrasonic infrared thermography allows analyzing material structural defects under low power ultrasonic stimulation compared to single-frequency stimulation which is performed, for example, by means of powerful magnetostrictive stimulation. Defect resonance frequencies can be determined through the detailed analysis of material surface vibrations by using a technique of laser vibrometry in a wide range of frequencies. This paper describes the approach to analyze ultrasonic resonances in samples with hidden defects by using resonant piezoelectric transducers. The effectiveness of the method is assessed by discussing some key examples of impact damaged graphite/epoxy composite samples hybridized with flax fibers. Optical and powerful ultrasonic stimulation have been also used as alternative inspection techniques.

  16. CSTI High Capacity Power (United States)

    Winter, Jerry M.


    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  17. High resolution miniaturized stepper ultrasonic motor using differential composite motion. (United States)

    Chu, Xiangcheng; Xing, Zengping; Li, Longtu; Gui, Zhilun


    Experiments show that there is a limited minimum stepped angle in ultrasonic motors (USM). The research on the minimum angle of stepper USM with 15 mm in diameter and wobbling mode is being carried out. This paper presents a novel way to decrease the minimum stepped angle of USM based on the principle of differential composite motion (DCM), i.e. clockwise and counterclockwise rotation. The prototype was fabricated and experiments proved that this method is useful and also keeps a high torque for a large stepped angle. The stator of the prototype is steel, and rotor is fiberglass, antifriction material or steel. The prototype can operate well over 150 h with a 5 kHz wide frequency band. The minimum stepped angle is 46" using a coventional method while 12" using DCM method proposed in this paper.

  18. Operational measurements of stack flow rates in a nuclear power plant with ultrasonic anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Voelz, E. [E.ON Kernkraft GmbH, Hannover (Germany); Kirtzel, H.-J. [Metek GmbH, Elmshorn (Germany); Ebenhoech, E. [Kernkraftwerk Wuergassen (Germany)


    The calculation of the impact of radio nuclides within the surroundings of nuclear power stations requires quantitative measurements of the stack emission. As a standard method, propeller anemometers have been installed inside the stack, but due to the wear and tear of the moving parts in such conventional sensors the servicing and maintenance are costly and may cause restrictions in the operation of the stack. As an alternative to propeller anemometers ultrasonic sensors have been applied which employ no moving parts and are almost free of maintenance. Furthermore, any shifts in internal calibration parameters can be identified by the sensor electronics with on-line plausibility checks. The tests have proven that ultrasonic systems are able to measure adequately and reliably the flow inside the stack. (orig.)

  19. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss, HJ


    Full Text Available This presentation aims at the following: to develop new techniques to mount laser crystals; compare the laser properties of two equally doped, high power Nd:YVO4 and Nd: GdVO4 lasers; build a 1um vanadate laser with average output power exceeding...

  20. High Power Electronics (United States)

    Pendharker, Sameer

    High Power Electronics Future Trends: New process, circuit and packaging technologies over the last 5 years have led to significant innovation and technological developments in high power electronics. In this topic, the trends and performance improvements achieved in the industry will be discussed with focus on gallium-nitride (GaN) and silicon carbide (SiC). Both GaN and SiC technologies have been around for many years but have seen limited adoption and proliferation in high power systems. With the improved transistor performance, power conversion efficiencies and densities previously unrealizable are now available leading to new applications and new system. Trends in these technologies will also be reviewed and remaining challenges to overcome before true mass market adoption can be expected.

  1. Mesoporous silica matrices derived from sol-gel process assisted by low power ultrasonic activation

    Directory of Open Access Journals (Sweden)

    Václav Štengl


    Full Text Available The present work contributes to elucidating the differences between silica gels obtained by low doses ultrasonic activation, and those obtained by the conventional method, termed as classical sol gel. Silica matrices were produced by sol-gel synthesis process, assisted and non-assisted by an ultrasonic fi eld, and subsequently characterized by various methods. Nitrogen adsorption and small-angle neutron scattering (SANS measurements provided texture and microstructure of the dried gels. The adsorption results show that the sample sonicated for 2 hours presents the most ordered microstructure, characterized by pore shape close to spherical and the narrowest size distribution – about 90 % of the pores for this sample fall into the mesopore range (2–50 nm. SANS data reveal the formation of primary structural units of sizes around 1.5–2 nm which are small linear or branched polymeric species of roughly spherical shape and with rough surface. They are generated in the very early stage of sol gel process, as a result of hydrolysis and condensation reactions. The aggregated primary units form the secondary porous structure which can be described as a rough surface with fractal dimension above 2. The best porosity characteristics were obtained for the sample activated for 2 hours, indicating the optimal doses of sonication in the present conditions. Our results demonstrate the possibility of tailoring the pore size distribution using a low power ultrasonic bath.

  2. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy


    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  3. The Analysis of the Field Application Methodology of Electromagnetic Ultrasonic Testing for Piping in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chi Seung; Joo, Keum Jong; Choi, Jung Kweun; Um, Byung Kook; Park, Jea Suk [Korea Advanced Ispection Technology Co., Daejeon (Korea, Republic of)


    Nuclear plant piping is classified as the safety class and non-safety class piping in usual. Safety class piping has been examined in accordance with ASME Section XI and V during PSI/ISI using RT, UT, PT, ECT, etc and evaluated periodically for integrity. But failures in piping had reported at non-welded parts and non-safety class pipings as well as the safety class pipings. The existing NDT methods are suitable for the specific parts for instance weldments to inspect but difficult to examine all parts (total coverage) of pipe line and very expensive in cost and consume the time. And also inspection using those methods is difficult and limited for the parts which are complex configuration, embedded under ground and installed at high radiation area in nuclear power plants. In order to inspect all parts of long range piping systems and reduce the inspection time and cost, the electromagnetic ultrasonic inspection technology is suitable and effective. The electromagnetic ultrasonic method can cover more than 50 m apart from sensor at one time without moving the sensor and examined the parts which are in difficulties for accessibility, for example, high radiation area, insulated components and embedded under ground.

  4. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O


    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  5. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi


    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.


    Directory of Open Access Journals (Sweden)

    PORAV Viorica


    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  7. Effect of Thermal Degradation on High Temperature Ultrasonic Transducer Performance in Small Modular Reactors (United States)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    Prototype ultrasonic NDT transducers for use in immersion in coolants for small modular reactors have shown low signal to noise ratio. The reasons for the limitations in performance at high temperature are under investigation, and include changes in component properties. This current work seeks to quantify the issue of thermal expansion and degradation of the piezoelectric material in a transducer using a finite element method. The computational model represents an experimental set up for an ultrasonic transducer in a pulse-echo mode immersed in a liquid sodium coolant. Effect on transmitted and received ultrasonic signal due to elevated temperature (∼200oC) has been analysed.

  8. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Slah Yaacoubi


    Full Text Available This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  9. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices (United States)

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo


    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues – large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm2 to 3.75 μW/cm2 at input ultrasound intensity of 1 mW/cm2 when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications. PMID:27112530

  10. Ultrasonic-promoted rapid TLP bonding of fine-grained 7034 high strength aluminum alloys. (United States)

    Guo, Weibing; Leng, Xuesong; Luan, Tianmin; Yan, Jiuchun; He, Jingshan


    High strength aluminum alloys are extremely sensitive to the thermal cycle of welding. An ultrasonic-promoted rapid TLP bonding with an interlayer of pure Zn was developed to join fine-grained 7034 aluminum alloys at the temperature of lower 400°C. The oxide film could be successfully removed with the ultrasonic vibration, and the Al-Zn eutectic liquid phase generated once Al and Zn contacted with each other. Longer ultrasonic time can promote the diffusion of Zn into the base metal, which would shorten the holding time to complete isothermal solidification. The joints with the full solid solution of α-Al can be realized with the ultrasonic action time of 60s and holding time of only 3min at 400°C, and the shear strength of joints could reach 223MPa. The joint formation mechanism and effects of ultrasounds were discussed in details. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich


    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  12. High Temperature Ultrasonic Probe and Pulse-Echo Probe Mounting Fixture for Testing and Blind Alignment on Steam Pipes (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Lih, Shyh-Shiuh (Inventor); Sherrit, Stewart (Inventor); Takano, Nobuyuki (Inventor); Ostlund, Patrick N. (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor)


    A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.

  13. Automatic ultrasonic inspection system for wear determination in calandria tubes of Embalse Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Katchadjian, Pablo, E-mail:; Desimone, Carlos, E-mail:; Garcia, Alejandro, E-mail: [Comisión Nacional de Energía Atómica, Depto. ENDE - INEND, Av. Gral. Paz 1499, Buenos Aires (Argentina); Antonaccio, Carlos; Schroeter, Fernando; Molina, Héctor [Nucleoeléctrica Argentina-SA, Arribeños 3619, Buenos Aires (Argentina)


    Embalse Nuclear Power Plant (CNE) (CANDU design) is reaching its end of life and due to elapsed operating time the problem of deformation by accelerated creep occurs in the pressure tubes (PT), leading to a possible contact between calandria tubes (CT), concentric to the PT, and some Liquid Injection Shutdown System (LISS) nozzles that pass underneath them. With determination of CT wear, after the predicted contact occurs, the wear rate of the TC could be determined and thus take less conservative measures over the remaining life of the component. This paper presents the development of an ultrasonic technique for measuring wear in CT, with nominal thickness of 1.34 mm. Because the only access is through the interior of PT, to perform this measurement it is necessary to pass through three different interfaces.

  14. Ultrasonic tomography of multilayer structures of high contrast materials (United States)

    Doyle, T. E.


    Ultrasonic tomography was investigated for the testing of alternating layers of fiber-reinforced composite and rubber bonded between two steel components. The method used nonparallel linear arrays in a crosswell configuration and an iterative reconstruction technique. A waveform and spectrum analysis method was also developed to provide greater sensitivity to material variations. The results show that these structures can be inspected with excellent spatial and material property definition using elementary tomography and signal processing approaches.

  15. High power coaxial ubitron (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  16. High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.


    In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200°C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

  17. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    Energy Technology Data Exchange (ETDEWEB)

    Hodnett, M; Zeqiri, B [National Physical Laboratory, Queens Road, Teddington, Middlesex, TW11 0LW (United Kingdom)


    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies ({<=} 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  18. Ultrasonic Stir Welding (United States)

    Nabors, Sammy


    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  19. Multi-energy optimized processing: The use of high intensity ultrasonic and electromagnetic radiation for biofuel production processes (United States)

    Kropf, Matthew Mason

    This work aimed to improve the understanding of the use of microwaves and ultrasound for chemical processes. Using biodiesel production as the case for study, the non-linear effects of high intensity ultrasonics, electromagnetic loss, and microwave heating were explored. Cavitation and atomization phenomena were used to describe the process of ultrasonic emulsification. The dielectric loss mechanisms pertinent to the biodiesel production materials were described as the connection to between the effects of ultrasonic emulsification and microwave heating. Superheating and anisothermal heating phenomena were identified as the specific advantages afforded by microwave heating. High intensity ultrasonics was found to be capable of creating emulsions of biodiesel reactants with uniform dispersed phase droplets. Through optical microscopy, the ability to control the dispersed phase droplet size by altering the frequency and intensity of ultrasound was confirmed. This ultrasonic technique was investigated by measuring complex permittivity of the emulsions from 500 MHz and 5 GHz. The dielectric loss of emulsions consisting of methanol and soybean oil indicated that ultrasonic treatments could be used to alter the microwave absorption. Microwave heating tests of ultrasonically formed emulsions confirmed the permittivity results practically. The superheated boiling point of methanol and heating rate of methanol was extended to higher temperatures and rates in ultrasonically formed emulsions. Microwave heating of ultrasonically mixed emulsions was shown to result in faster transesterification relations than microwave heating of conventionally mixed emulsions. Finally, utilizing ultrasonics to optimize microwave absorption was shown capable of transesterification without catalyst.

  20. [Improvement on high frame rate ultrasonic imaging system based on linear frequency-modulated signal]. (United States)

    Han, Xuemei; Peng, Hu; Cai, Bo


    The high frame rate (HFR) ultrasonic imaging system based on linear frequency-modulated (LFM) signal constructs images at a high frame rate; the signal-to-noise ratio (SNR) of this system can also be improved. Unfortunately, such pulse compression methods that increase the SNR usually cause range sidelobe artifacts. In an imaging situation, the effects of the sidelobes extending on either side of the compressed pulse will be self-noise along the axial direction and masking of weaker echoes. The improvement on high frame rate ultrasonic imaging system based on LFM signal is considered in this paper. In this proposed scheme, a predistorted LFM signal is used as excited signal and a mismatched filter is applied on receiving end. The results show that the proposed HFR ultrasonic imaging system can achieve higher SNR and the axial resolution is also improved.

  1. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    .uk. Abstract. The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump ...

  2. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    and maximum output power. In chapter 3, a detailed analysis of dominant loss factors in high power converters for low voltage applications is presented. The analysis concludes that: • Power transformers for low voltage high power, if properly designed, will have extremely low leakage inductance......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based....... • If optimally designed, boost converters will be much more efficient than comparable buck type converters for high power low voltage applications. • The use of voltage clamp circuits to protect primary switches in boost converters is no longer needed for device protection. On the other hand...

  3. Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam

    NARCIS (Netherlands)

    Lu, Yuan; Katz, Joseph; Prosperetti, Andrea


    In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line

  4. Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication (United States)

    Karmakar, S.; Biswas, S.; Kumbhakar, P.


    Here, we have unveiled low power continuous-wave nonlinear optical properties of a few layer (4-12L) Molybdenum disulfide (MoS2) dispersion in N, N-dimethylformamide (DMF) by using spatial self-phase modulation technique. The effective third-order nonlinear susceptibility of the monolayer has been estimated to be as high as ∼10-8 esu. Also a low power technique of syntheses of stable and a few-layer (4-12L) MoS2 dispersion in DMF has been demonstrated here by utilizing ultrasonication bath treatment combined with the natural gravitation sedimentation effect starting from the bulk MoS2 powder. The synthesized samples are exhibiting interesting linear optical absorption and photoluminescence (PL) after exfoliation to a few layer nanosheets (NSs) and the exciton binding energies have been determined from PL emission data in association with 2D hydrogenic Bohr-exciton model. The specific capacitances (Csp) of the electrode prepared with MoS2 NSs have been measured by electrochemical measurement and the highest value of Csp is 382 Fg-1 for 4L sample. The reported intensity driven change of Csp in the presence of light emitted from light emitting diodes of various colours is unprecedented. The demonstrated technique can be scaled up for large scale and easy synthesis of other 2D materials having applications in optoelectronics and energy devices.

  5. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    . A detailed analysis of dominant loss factors in high power converters for low voltage applications is presented. The analysis concludes that: • Power transformers for low voltage high power, if properly designed, will have extremely low leakage inductance. • If optimally designed, boost converters......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, if a converter is properly designed, primary side voltage clamp circuits will not even work in low voltage high power converters. • Very high conversion efficiency can be achieved. Peak efficiency of 98% and worst case minimum efficiency of 96.8% are demonstrated on a 1.5 kW converter. The ability...

  6. Ultrasonic characterization of GRC with high percentage of fly ash substitution. (United States)

    Genovés, V; Gosálbez, J; Miralles, R; Bonilla, M; Payá, J


    New applications of non-destructive techniques (NDT) with ultrasonic tests (attenuation and velocity by means of ultrasonic frequency sweeps) have been developed for the characterization of fibre-reinforced cementitious composites. According to new lines of research on glass-fibre reinforced cement (GRC) matrix modification, two similar GRC composites with high percentages of fly ash and different water/binder ratios will be studied. Conventional techniques have been used to confirm their low Ca(OH)(2) content (thermogravimetry), fibre integrity (Scanning Electron Microscopy), low porosity (Mercury Intrusion Porosimetry) and good mechanical properties (compression and four points bending test). Ultrasound frequency sweeps allowed the estimation of the attenuation and pulse velocity as functions of frequency. This ultrasonic characterization was correlated successfully with conventional techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. J., E-mail:; Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W. [Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhang, H. J. [Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)


    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  8. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)


    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  9. Steel castings Ultrasonic examination, Part 2: Steel castings for highly stressed components

    CERN Document Server

    International Organization for Standardization. Geneva


    This European Standard specifies the requirements for the ultrasonic examination of steel castings (with ferritic structure) for highly stressed components and the methods for determining internal discontinuities by the pulse echo technique. This European Standard applies to the ultrasonic examination of steel castings which have usually received a grain refining heat treatment and which have wall thicknesses up to and including 600 mm. For greater wall thicknesses, special agreements apply with respect to test procedure and recording levels. This European Standard does not apply to austenitic steels and joint welds.

  10. High-Efficiency Power Module (United States)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)


    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  11. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank


    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  12. Ultrasonics: Fundamentals, Technologies, and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, Dale; Bond, Leonard J.


    This is a new edition of a bestselling industry reference. Discusses the science, technology, and applications of low and high power ultrasonics, including industrial implementations and medical uses. Reviews the basic equations of acoustics, starting from basic wave equations and their applications. New material on property determination, inspection of metals (NDT) and non-metals, imaging, process monitoring and control. Expanded discussion of transducers, transducer wave-fields, scattering, attenuation and measurement systems and models. New material that discusses high power ultrasonics - in particular using mechanical effects and sonochemistry, including applications to nano-materials. Examines diagnosis, therapy, and surgery from a technology and medical physics perspective.

  13. High power evaluation of X-band high power loads

    CERN Document Server

    Matsumoto, Shuji; Syratchev, Igor; Riddone, Germana; Wuensch, Walter


    Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and few units showed possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented

  14. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)


    compact and efficient new devices, it noted increase in the number of electrical loads that some kind of electronic ... in electric machines and capacitors,. HIGH POWER FACTOR. HIGH POWER FACTOR HYBRID ...... Auxiliary DC-DC Converter for Hybrid Vehicles ”,. IEEE Transactions on Power Electronics vol. 23, no. 6, pp.

  15. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. (United States)

    Khawas, Prerna; Deka, Sankar C


    In the present study, culinary banana peel was explored as a source of raw material for production of cellulose nanofibers (CNFs). For isolation of CNFs, first the peel flour was subjected to different chemical treatments to eliminate non-cellulosic compounds. The obtained chemically treated cellulose fibers were then mechanically tailored and separated into nanofibers using high-intensity ultrasonication at different output power ranging from 0 to 1000 W. The presences of nanofibers in all samples were confirmed by TEM. Increasing output power of ultrasonication reduced size of CNFs and generated more thinner and needle-like structure. SEM, FT-IR and XRD results indicated chemical treatment employed was effective in removing compounds other than cellulose fibers. Thermal analyses evinced the developed CNFs enhanced thermal properties which serve the purpose as an effective reinforcing material to be used as bionanocomposites. Hence, the production of CNFs from this underutilized agro-waste has potential application in commercial field that can add high value to culinary banana. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of ultrasonic and high-speed air-driven devices on pulp–dentin reactions: An animal study

    Directory of Open Access Journals (Sweden)

    Ming-Shu Lee


    Conclusion: We conclude that the ultrasonic device causes less damage to the dental pulp tissue in comparison with the high-speed air-driven bur. Moreover, we expect that the ultrasonic device can be applied to vital pulp therapy—such as direct pulp capping, pulptotomy, or pulpectomy—due to its safe approach.

  17. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  18. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S. [Seoul National Univ., Seoul (Korea); Lee, J.H. [Pusan National Univ., Pusan (Korea); Kim, J.T. [Korea Atomic Energy Research Inst. (KAERI), Daejon (Korea); Luk, V. [Sandia National Labs., Albuquerque, NM (United States)


    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  19. Ultrasonic measurement of the elastic properties of ultra-high performance concrete (UHPC) (United States)

    Washer, Glenn; Fuchs, Paul; Rezai, Ali; Ghasemi, Hamid


    This paper discusses research to develop ultrasonic methods for materials characterization of an innovative new material known as Reactive Powder Concrete (RPC). Also known as Ultra-high performance concrete (UHPC), this relatively new material has been proposed for the construction of civil structures. UHPC mix designs typically include no aggregates larger than sand, and include steel fibers 0.2 mm in diameter and 12 mm in length. These steel fibers increase the strength and toughness of the UHPC significantly relative to more traditional concretes. Compressive strengths of 200 to 800 MPa have been achieved with UHPC, compared with maximum compressive strength of 50 to 100 MPa for more traditional concrete materials. Young"s modulus of 50 to 60 GPa are common for UHPC. However, the curing methods employed have a significant influence on the strength and modulus of UHPC. This paper reports on the development of ultrasonic methods for monitoring the elastic properties of UHPC under a series of curing scenarios. Ultrasonic velocity measurements are used to estimate the bulk elastic modulus of UHPC and results are compared with traditional, destructive methods. Measurements of shear moduli and Poisson's ratio based on ultrasonic velocity are also reported. The potential for the development of quality control techniques for the future implementation of UHPC is discussed.

  20. An Empirical Study on Ultrasonic Testing in Lieu of Radiography for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L.; Pardini, Allan F.; Ramuhalli, Pradeep; Prowant, Matthew S.; Mathews, Royce


    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for inspecting nuclear power plant (NPP) components. A primary objective of this work is to evaluate UT techniques to assess their ability to detect, locate, size, and characterize fabrication flaws in typical NPP weldments. This particular study focused on the evaluation of four carbon steel pipe-to-pipe welds on specimens that ranged in thicknesses from 19.05 mm (0.75 in.) to 27.8 mm (1.094 in.) and were 355.6 mm (14.0 in.) or 406.4 mm (16.0 in.) in diameter. The pipe welds contained both implanted (intentional) fabrication flaws as well as bonus (unintentional) flaws throughout the entire thickness of the weld and the adjacent base material. The fabrication flaws were a combination of planar and volumetric flaw types, including incomplete fusion, incomplete penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array UT (PA UT) techniques applied primarily for detection and length sizing of the flaws. Radiographic examinations were also conducted on the specimens with RT detection and length sizing results being used to establish true state. This paper will discuss the comparison of UT and RT (true state) detection results conducted to date along with a discussion on the technical gaps that need to be addressed before these methods can be used interchangeably for repair and replacement activities for NPP components.

  1. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique (United States)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar


    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  2. High-powered manoeuvres

    CERN Multimedia

    Anaïs Schaeffer


    This week, CERN received the latest new transformers for the SPS. Stored in pairs in 24-tonne steel containers, these transformers will replace the old models, which have been in place since 1981.     The transformers arrive at SPS's access point 4 (BA 4). During LS1, the TE-EPC Group will be replacing all of the transformers for the main converters of the SPS. This renewal campaign is being carried out as part of the accelerator consolidation programme, which began at the start of April and will come to an end in November. It involves 80 transformers: 64 with a power of 2.6 megavolt-amperes (MVA) for the dipole magnets, and 16 with 1.9 MVA for the quadrupoles. These new transformers were manufactured by an Italian company and are being installed outside the six access points of the SPS by the EN-HE Group, using CERN's 220-tonne crane. They will contribute to the upgrade of the SPS, which should thus continue to operate as the injector for the LHC until 2040....

  3. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yan-Rui Li


    Full Text Available During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.

  4. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers. (United States)

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung


    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness.


    Driver, G.E.


    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  6. Calculation of high frequency ultrasonic signals for shear wave insonification in solid material. (United States)

    Schmitz, V; Langenberg, K J; Chakhlov, S


    The goal of the theoretical part is to simulate an automatic ultrasonic inspection with contact technique shear wave probes, where the high frequency signals are captured and used to perform a reconstruction based on the synthetic aperture focusing method "SAFT". Therefore the ultrasonic probe, the scanning path and the defects are parameters in a CAD model. The scattering behavior of the defect is calculated by the Kirchhoff approximation in its elastodynamic version. The result of the simulation--the high frequency data--and the result of the SAFT-reconstructions are compared with experimental results on a steel test block with side drilled and flat bottom holes. The model is validated by the experiment. One of the applications of the model is to identify multiple reflections.

  7. The use of ultrasonic methods for corrosion inspection of nuclear-power station equipment and piping

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Yu.V.; Glek, Yu.S.; Grebennikov, V.V.; Grigor' ev, M.V.


    The experience is presented of using non-destructive ultrasonic inspection to determine the general corrosion rate of the basic support structures during operation. It is also used to detect and measure the depth of cracks in equipment and piping made of austenitic steel OKh18N10T. Also presented are the basic technical characteristics of the following ultrasonic instruments: UZTTs-1 thickness gage, the ADMT-20U multi-channel defectoscope, the UZDM-1 and UZDM-2 twin-frequency defectoscopes, and the ADMT-10U defect gage.

  8. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen


    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  9. Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide. (United States)

    Soltani, Tayyebeh; Lee, Byeong-Kyu


    High quality graphene oxide (GO) with low layer number (less than five layers) and large inter-layer space was produced via a new and efficient method using environmentally friendly, fast and economic ultrasonic radiation. The ultrasonic method neither generated any toxic gas nor required any NaNO 3 , which have been the main drawbacks of the Hummers methods. The major obstacles of the recently reported improved Hummers method for GO synthesis, such as high reaction temperature (50°C) and long reaction time (12h), were successfully solved using a low intensity-ultrasonic bath for 45min at 30°C, which significantly reduced the reaction time and energy consumption for GO synthesis. Furthermore, ultrasonic GO exhibited higher surface area, higher crystallinity and higher oxidation efficiency with many hydrophilic groups, fewer sheets with higher spaces between them, a higher sp 3 /sp 2 ratio, and more uniform size distribution than classically prepared GO. Therefore, the new ultrasonic method could be applicable for the sustainable and large-scale production of GO. The production yield of the ultrasonic-assisted GO was 1.25-fold greater than the GO synthesized with the improved Hummers method. Furthermore, the required production cost based on total energy consumption for ultrasonic GO was only 6.5% of that for classical GO. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. High-power downhole motor

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.H.; Maurer, W.C.; Evans, C.R. [Maurer Engineering Inc., Houston, TX (United States); Westcott, P.A. [Gas Research Inst., Chicago, IL (United States)


    New high power motors are being developed by the Gas Research Institute (GRI) in an attempt to reduce drilling costs in deep gas wells. Conventional 2 3/8-in. (60-mm) and 3 3/8-in. (86-mm) motors operated in overpowered conditions (i.e., high flow rates and high differential pressures) drill 2 to 3 times faster than conventional motors. A new high-power 3 3/8-in. (86-mm) motor is being developed that utilizes additional stages and tighter interference between the rotor and stator to increase motor pressure drop, torque, and power output. This new high-power motor delivers up to 238 hp (177 kW) compared to 50 hp (37 kW) for a conventional 3 3/8-in. (86-mm) motor operating at rated operating conditions. Temperature probes showed that temperatures in different stages of motors vary considerably, showing that some sections do more work than others. A better understanding of temperatures within the stators is needed because thermal degradation and ``chunking`` of the rubber is a leading cause of failures in motors operating at high power levels. These tests were very encouraging, demonstrating the feasibility of developing reliable, high-power motors.

  11. EURISOL High Power Targets

    CERN Document Server

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department


    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  12. High Power Betavoltaic Technology Project (United States)

    National Aeronautics and Space Administration — The proposed innovation will dramatically improve the performance of tritium-powered betavoltaic batteries through the development of a high-aspect ratio, expanded...

  13. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  14. Actuator design for vibration assisted machining of high performance materials with ultrasonically modulated cutting speed (United States)

    Rinck, Philipp M.; Sitzberger, Sebastian; Zaeh, Michael F.


    In vibration assisted machining, an additional high-frequency oscillation is superimposed on the kinematics of the conventional machining process. This generates oscillations on the cutting edge in the range of a few micrometers, thereby causing a high-frequency change in the cutting speed or the feed. Consequently, a reduction of cutting forces, an increase of the tool life as well as an improvement of the workpiece quality can be achieved. In milling and grinding it has been shown that these effects are already partially present in the case of a vibration excitation in axial direction relative to the workpiece, which is perpendicular to the cutting direction. Further improvements of the process results can be achieved by superimposing a vibration in cutting direction and thus modifying the cutting speed at high frequency. The presented work shows the design of an ultrasonic actuator that enables vibration-assisted milling and grinding with ultrasonically modulated cutting speed. The actuator system superimposes a longitudinal torsional ultrasonic oscillation to the milling or grinding tool. It uses a bolt clamped Langevin transducer and a helically slotted horn, which degenerates the longitudinal vibration into a combined longitudinal torsional (L-T) vibration at the output surface. A finite element analysis is used to determine the vibration resonance frequency and mode shapes to maximize the torsional output. Afterwards, the simulation has been experimentally validated.

  15. High resolution ultrasonic scanning of animal and human tissue in-vivo

    Energy Technology Data Exchange (ETDEWEB)

    Roswell, R. L.; Goans, R. E.; Cantrell, Jr., J. H.


    Burns impose one of the most serious injuries to the skin due to the organ's function within the body system and to the body as a whole. In an effort to better deal with the burn wound by the immediate excision and grafting of third degree burns, a high resolution (approximately 0.2 mm) ultrasonic pulse-echo technique was developed for determining burn depth. The experimental subjects were Yorkshire pigs because of the histological similarity between human and porcine skin. Burn depths were readily identifiable immediately postburn with the ultrasonic techniques, as were general trends concerning the burn-viable and viable-fat interfaces. The tissue characteristics, density and acoustic attenuation, effecting the impedance mismatch at the burn-viable tissue interface were investigated. The methods of fluid displacements and specific gravities yielded density values, while spectrum analyses produced attenuation measurements for normal, viable and burned tissue samples.

  16. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. (United States)

    Chang, Yanjiao; Yan, Xiaoxia; Wang, Qian; Ren, Lili; Tong, Jin; Zhou, Jiang


    The purpose of this work was to develop an approach to produce size controlled starch nanoparticles (SNPs), via precipitation with high efficiency and low cost. High concentration starch aqueous pastes (up to 5wt.%) were treated by ultrasound. Viscosity measurements and size exclusion chromatography characterization revealed that, after 30min ultrasonic treatment, viscosity of the starch pastes decreased two orders of magnitude and the weight average molecular weight of the starch decreased from 8.4×107 to 2.7×106g/mol. Dynamic light scattering measurements and scanning electron microscopy observations showed that the SNPs prepared from the starch pastes with ultrasonic treatments were smaller (∼75nm) and more uniform. Moreover, SNPs could be obtained using less non-solvents. X-ray diffraction results indicated that effect of the ultrasonic treatment on crystalline structure of the SNPs was negligible. Ultrasound can be utilized to prepare smaller SNPs through nanoprecipitation with higher efficiency and lower cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding. (United States)

    Nguyen, Huu-Tu; Nguyen, Hai-Dang; Uan, Jun-Yen; Wang, Dung-An


    A new horn with high displacement amplification for ultrasonic welding is developed. The profile of the horn is a nonrational B-spline curve with an open uniform knot vector. The ultrasonic actuation of the horn exploits the first longitudinal displacement mode of the horn. The horn is designed by an optimization scheme and finite element analyses. Performances of the proposed horn have been evaluated by experiments. The displacement amplification of the proposed horn is 41.4% and 8.6% higher than that of the traditional catenoidal horn and a Bézier-profile horn, respectively, with the same length and end surface diameters. The developed horn has a lower displacement amplification than the nonuniform rational B-spline profiled horn but a much smoother stress distribution. The developed horn, the catenoidal horn, and the Bézier horn are fabricated and used for ultrasonic welding of lap-shear specimens. The bonding strength of the joints welded by the open uniform nonrational B-spline (OUNBS) horn is the highest among the three horns for the various welding parameters considered. The locations of the failure mode and the distribution of the voids of the specimens are investigated to explain the reason of the high bonding strength achieved by the OUNBS horn. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. High Power Amplifier and Power Supply (United States)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew


    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  19. High power switching and other high power devices (United States)

    Gundersen, Martin


    High power thyratrons and devices such as high power microwave sources have cathode-related performance limits. Research is described of a simple, robust 'super-emissive' cathode that produces greater than 10,000 A/sq cm from a macroscopic area (approx. 1 sq cm), and operates with a low pressure (approx. 0.1 torr), spatially uniform glow plasma (density greater than 1015 cu cm). The cathode also can operate as a hollow cathode, and is at the heart of the operation of the pseudospark and back-lighted thyratron. The physics of this hollow and super-emissive cathode is very rich. The hollow cathode geometry traps electrons in the hollow cathode backspace. The lifetime of these electrons enables them to ionize a spatially homogeneous high density glow, and this hollow cathode mode of operation is responsible for certain types of electron and ion beam behavior. A plasma cathode sheath that is formed during this phase leads to super-emissive behavior, which is responsible for high current emission. Super-emissive cathode thyratron-type switches (with higher peak current, voltage, di/dt) being developed for pulsed power switching of lasers, accelerators, high current and high coulomb transfer, Marx bank operation, transfer of technology to commercial applications, high current electron beams, and millimeter wave generation (1 to 100 GHz) are described.

  20. High-frequency ultrasonic arrays for ocular imaging (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.


    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  1. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment (United States)

    Gatsa, O.; Combette, P.; Rozenkrantz, E.; Fourmentel, D.; Destouches, C.; Ferrandis, J. Y. AD(; )


    In the contemporary world, the measurements in hostile environment is one of the predominant necessity for automotive, aerospace, metallurgy and nuclear plant. The measurement of different parameters in experimental reactors is an important point in nuclear power strategy. In the near past, IES (Institut d'Électronique et des Systèmes) on collaboration with CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) have developed the first ultrasonic sensor for the application of gas quantity determination that has been tested in a Materials Testing Reactor (MTR). Modern requirements state to labor with the materials that possess stability on its parameters around 350°C in operation temperature. Previous work on PZT components elaboration by screen printing method established the new basis in thick film fabrication and characterization in our laboratory. Our trials on Bismuth Titanate ceramics showed the difficulties related to high electrical conductivity of fabricated samples that postponed further research on this material. Among piezoceramics, the requirements on finding an alternative solution on ceramics that might be easily polarized and fabricated by screen printing approach were resolved by the fabrication of thick film from Sodium Bismuth Titanate (NBT) piezoelectric powder. This material exhibits high Curie temperature, relatively good piezoelectric and coupling coefficients, and it stands to be a good solution for the anticipated application. In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor

  2. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries (United States)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  3. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications (United States)

    Bhardwaj, Mahesh C.


    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  4. Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J. [Iowa State Univ., Ames, IA (United States); Bowler, John R. [Iowa State Univ., Ames, IA (United States)


    The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-service inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO3-xPbTiO3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.

  5. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound. (United States)

    Zhang, Siyuan; Li, Chong; Zhou, Fanyu; Wan, Mingxi; Wang, Supin


    This work explored the feasibility of using ultrasonic Nakagami imaging to enhance the contrast between thermal lesions and bubbles induced by high-intensity focused ultrasound (US) in a transparent tissue-mimicking phantom at different acoustic power levels. The term "lesion-to-bubble ratio" was proposed and defined as the ratio of the scattered power from the thermal lesion to the scattered power from the bubbles calculated in the various monitoring of images for high-intensity focused US. Two-dimensional radiofrequency data backscattered from the exposed region were captured by a modified diagnostic US scanner to estimate the Nakagami statistical parameter, m, and reconstruct the ultrasonic B-mode images and Nakagami parameter images. The dynamic changes in the lesion-to-bubble ratio over the US exposure procedure were calculated simultaneously and compared among video photos, B-mode images, and Nakagami images for monitoring of high-intensity focused US. After a small thermal lesion was induced by high-intensity focused US in the phantom, the lesion-to-bubble ratio values corresponding to the video photo, B-mode image, and Nakagami image were 5.3, 1, and 9.8 dB, respectively. When a large thermal lesion appeared in the phantom, the ratio values increased to 7.2, 3, and 14 dB. During US exposure, the ratio values calculated for the video photo, B-mode image, and Nakagami image began to increase gradually and rose to peak values of 8.3, 2.9, and 14.8 dB at the end of the US exposure. This preliminary study on a tissue-mimicking phantom suggests that Nakagami imaging may have a potential use in enhancing the lesion-to-bubble ratio for monitoring high-intensity focused US. Further studies in vivo and in vitro will be needed to evaluate the potential applications for high-intensity focused US. © 2014 by the American Institute of Ultrasound in Medicine.

  6. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)


    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  7. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A


    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  8. Optic nerve surface temperature during intradural anterior clinoidectomy: a comparison between high-speed diamond burr and ultrasonic bone curette. (United States)

    Kshettry, Varun R; Jiang, Xiaobing; Chotai, Silky; Ammirati, Mario


    Ultrasonic bone curettes are increasingly used in cranial base surgery. The heat generated by these devices during anterior clinoidectomy has not been evaluated. The purpose of this study was to compare the optic nerve surface temperature during intradural anterior clinoidectomy using the drill and ultrasonic bone curette. Ten fresh cadaver heads were used. During intradural clinoidectomy and optic nerve unroofing with either a 2-mm diamond burr drill or ultrasonic bone curette, temperature was measured along the medial cisternal and proximal intracanalicular segments of the optic nerve. Additional experiments were performed to determine optimal ultrasonic bone curette settings for anterior clinoidectomy. At the lateral cisternal segment, peak and mean temperature were significantly higher with the ultrasonic bone curette (peak 38.8 vs 29.3 °C, p = 0.03, mean 29.5 vs 22.6 °C, p = 0.003). At the proximal intracanalicular segment, only peak temperature was significantly higher with the ultrasonic bone curette (peak 32.0 vs 23.5 °C, p = 0.02, mean 26.9 vs 22.4 °C, p = 0.07). Using standard company settings, room temperature irrigation fluid was heated by the oscillating tip to peak temperature 36.1 °C without drilling. In order to maintain emitted irrigation fluid at room temperature, optimal settings were power 70 %, cool irrigation (5 °C) at 40 mL/min. Using these settings, the ultrasonic bone curette generated optic nerve surface temperature measurements similar to the drill. Further work is necessary to translate these findings into the operating room.

  9. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation. (United States)

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan


    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dBm input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dBm at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dBm at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dBm input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dBm input

  10. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation

    Directory of Open Access Journals (Sweden)

    Hojong Choi


    Full Text Available A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (−1.8 and −0.96 dB, respectively compared to that of the HVPA without the power MOSFET linearizer (−2.95 and −3.0 dB, respectively when 70 and 80 MHz, three-cycle, and 26 dBm input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity of the HVPA with power MOSFET linearizer (24.17 and 26.19 dBm at 70 and 80 MHz, respectively at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dBm at 70 and 80 MHz, respectively. To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dBm input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (−48.34, −44.21, −48.34, and −46.56 dB, respectively were lower than that of the HVPA without the power MOSFET linearizer (−45.61, −41.57, −45.01, and −45.51 d

  11. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures. (United States)

    Masserey, Bernard; Raemy, Christian; Fromme, Paul


    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Scanning high-power continuous wave laser-generated bulk acoustic waves. (United States)

    Li, Zheng; Yan, Shiling; Xie, Qingnan; Ni, Chenyin; Shen, Zhonghua


    The ultrasonic bulk waves generated by a high-power continuous laser scanning along the surface of aluminum material were theoretically investigated. Although the temperature rise generated by this scanning laser irradiation was small, it provided a large temperature gradient, which was able to generate measurable ultrasonic waves. Detailed discussions were given to the influence of scanning speed on the generation propagation direction and the amplitude of the wavefront. The longitudinal and transverse waves would be generated in the material only when the scanning speeds reached a certain range. What's more, the amplitude of the wavefronts were significantly enhanced if the wavefront angle controlled by the scanning speed matched with the propagation direction of the ultrasound. In summary, it expounded a method to obtain the ultrasonic signal of direction, controlled from the perspective of numerical simulation, as long as the scanning speed met the requirements.

  13. High power gas laser amplifier (United States)

    Leland, Wallace T.; Stratton, Thomas F.


    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  14. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu


    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  15. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium. (United States)

    Soltani, Tayyebeh; Lee, Byeong-Kyu


    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyan, E-mail: [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Chen, Jiahua [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Wang, Wei [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing (China); Lu, GongXuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Hao, Lingyun [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Ni, Yaru; Lu, Chunhua; Xu, Zhongzi [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing (China)


    Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe{sub 3}O{sub 4}@SiO{sub 2}, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe{sub 3}O{sub 4}@SiO{sub 2} microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become “visible” to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe{sub 3}O{sub 4}@SiO{sub 2} microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment. - Graphical abstract: The Graphical abstract shows the sensitive magneto-chromatic ability, the acid resistance ability as well as the magneto-chromatic mechanism of the Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}@SiO{sub 2} suspension. - Highlights: • Sensitive and reversible robust magneto-chromatic property under magnetic attraction. • Morphology of magnetic field “visible” to naked eyes. • Enhance acid resistance and surface-oxidation resistance. • Ultrasonic effect largely shorten the synthesis time of high uniform microspheres.

  17. [The effect of high-frequency current and ultrasonic wave on selected indicators of body weight]. (United States)

    Kiełczewska, Magdalena; Szymczyk, Jerzy; Leszczyńsk, Ryszard; Błaszczyk, Jan


    Effective change the appearance of the body through available both invasive and non-invasive methods such as treatment has been documented in numerous clinical trials. Liposuction and lipoplasty are currently the most widely used methods of reducing fat deposits. Technological advances made has become increasingly popular use of invasive procedures using energy fields and high-frequency ultrasonic wave. It is now one of the most effective and safe methods of treatment, based on the principle of mechanical and thermal stimulation of the physiological processes leading to the reduction of locally accumulated fat. The aim of the study was to evaluate the behavior of selected parameters of body weight in patients undergoing fat reduction BTL Exilis device. IThe study included a 50-group of women who are patients of the Specialist Outpatient Clinic Al-Med in Kolobrzeg. Taken twice the measurement of body weight, waist circumference and thickness measurement of skinfolds before the first treatment, and after a series of treatments. Treatment consisted of 4 sessions while maintaining the 10-day interval between treatments. In the study a statistically significant reduction in the studied parameters such as actual body weight, waist circumference, fat mass and thickness of the skinfolds were showed. The effect of treatment with the energy field of highfrequency ultrasonic wave in a reduction in the size of fat body mass and improving the contour shape. Willingness to continue participation examined in this type of surgery proves positive reception of therapy and its effectiveness. © 2015 MEDPRESS.

  18. Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions

    CERN Document Server

    Bates, Richard; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Da Riva, Enrico; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz


    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 ×10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to proce...

  19. An experimental study of ultrasonic vibration and the penetration of granular material (United States)

    Firstbrook, David; Worrall, Kevin; Timoney, Ryan; Suñol, Francesc; Gao, Yang


    This work investigates the potential use of direct ultrasonic vibration as an aid to penetration of granular material. Compared with non-ultrasonic penetration, required forces have been observed to reduce by an order of magnitude. Similarly, total consumed power can be reduced by up to 27%, depending on the substrate and ultrasonic amplitude used. Tests were also carried out in high-gravity conditions, displaying a trend that suggests these benefits could be leveraged in lower gravity regimes. PMID:28293134

  20. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation. (United States)

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na


    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Combined microfluidization and ultrasonication: a synergistic protocol for high-efficient processing of SWCNT dispersions with high quality

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sida, E-mail: [Beihang University, School of Mechanical Engineering and Automation (China); Liu, Tao, E-mail: [Florida State University, High-Performance Materials Institute (United States); Wang, Yong; Li, Liuhe [Beihang University, School of Mechanical Engineering and Automation (China); Wang, Guantao; Luo, Yun [China University of Geosciences, Center of Safety Research, School of Engineering and Technology (China)


    High-efficient and large-scale production of high-quality CNT dispersions is necessary for meeting the future needs to develop various CNT-based electronic devices. Herein, we have designed novel processing protocols by combining conventional ultrasonication process with a new microfluidization technique to produce high-quality SWCNT dispersions with improved processing efficiency. To judge the quality of SWCNT dispersions, one critical factor is the degree of exfoliation, which could be quantified by both geometrical dimension of the exfoliated nanotubes and percentage of individual tubes in a given dispersion. In this paper, the synergistic effect of the combined protocols was systematically investigated through evaluating SWCNT dispersions with newly developed characterization techniques, namely preparative ultracentrifuge method (PUM) and simultaneous Raman scattering and photoluminescence spectroscopy (SRSPL). The results of both techniques draw similar conclusions that as compared with either of the processes operated separately, a low-pass microfluidization followed by a reasonable duration of ultrasonication could substantially improve the processing efficiency to produce high-quality SWCNT dispersions with averaged particle length and diameter as small as ~600 and ~2 nm, respectively.Graphical abstract.

  2. Dissimilar ultrasonic spot welding of Mg-Al and Mg-high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    V.K. Patel


    Full Text Available Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW, which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg-Al and Mg-high strength low alloy (HSLA steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg-Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.

  3. Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. (United States)

    Cairós, Carlos; Schneider, Julia; Pflieger, Rachel; Mettin, Robert


    The sonoluminescence spectra from acoustic cavitation in aqueous NaCl solutions are systematically studied in a large range of ultrasonic frequencies under variation of electrical power and argon sparging. At the same time, bubble dynamics are analysed by high-speed imaging. Sodium line and continuum emission are evaluated for acoustic driving at 34.5, 90, 150, 365, and 945kHz in the same reactor vessel. The results show that the ratio of sodium line to continuum emission can be shifted by the experimental parameters: an increase in the argon flow increases the ratio, while an increase in power leads to a decrease. At 945kHz, the sodium line is drastically reduced, while the continuum stays at elevated level. Bubble observations reveal a remarkable effect of argon in terms of bubble distribution and stability: larger bubbles of non-spherical shapes form and eject small daughter bubbles which in turn populate the whole liquid. As a consequence, the bubble interactions (splitting, merging) appear enhanced which supports a link between non-spherical bubble dynamics and sodium line emission. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ultrasonic corona sensor study (United States)

    Harrold, R. T.


    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  5. High-speed biometrics ultrasonic system for 3D fingerprint imaging (United States)

    Maev, Roman G.; Severin, Fedar


    The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.

  6. Optics assembly for high power laser tools (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.


    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  7. Fabrication of highly reproducible polymer solar cells using ultrasonic substrate vibration posttreatment (United States)

    Xie, Yu; Zabihi, Fatemeh; Eslamian, Morteza


    Organic solar cells are usually nonreproducible due to the presence of defects in the structure of their constituting thin films. To minimize the density of pinholes and defects in PEDOT:PSS, which is the hole transporting layer of a standard polymer solar cell, i.e., glass/ITO/PEDOT:PSS/P3HT:PCBM/Al, and to reduce scattering in device performance, wet spun-on PEDOT:PSS films are subjected to imposed ultrasonic substrate vibration posttreatment (SVPT). The imposed vibration improves the mixing and homogeneity of the wet spun-on films, and consequently the nanostructure of the ensuing thin solid films. For instance, our results show that by using the SVPT, which is a mechanical, single-step and low-cost process, the average power conversion efficiency of 14 identical cells increases by 25% and the standard deviation decreases by 22% indicating that the device photovoltaic performance becomes more consistent and significantly improved. This eliminates several tedious and expensive chemical and thermal treatments currently performed to improve the cell reproducibility.

  8. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe


    This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  9. High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures (United States)

    Chan, Henry; Masserey, Bernard; Fromme, Paul


    Especially for ageing aircraft the development of fatigue cracks at fastener holes due to stress concentration and varying loading conditions constitutes a significant maintenance problem. High frequency guided waves offer a potential compromise between the capabilities of local bulk ultrasonic measurements with proven defect detection sensitivity and the large area coverage of lower frequency guided ultrasonic waves. High frequency guided waves have energy distributed through all layers of the specimen thickness, allowing in principle hidden (2nd layer) fatigue damage monitoring. For the integration into structural health monitoring systems the sensitivity for the detection of hidden fatigue damage in inaccessible locations of the multi-layered components from a stand-off distance has to be ascertained. The multi-layered model structure investigated consists of two aluminium plate-strips with an epoxy sealant layer. During cyclic loading fatigue crack growth at a fastener hole was monitored. Specific guided wave modes (combination of fundamental A0 and S0 Lamb modes) were selectively excited above the cut-off frequencies of higher modes using a standard ultrasonic wedge transducer. Non-contact laser measurements close to the defect were performed to qualify the influence of a fatigue crack in one aluminium layer on the guided wave scattering. Fatigue crack growth monitoring using laser interferometry showed good sensitivity and repeatability for the reliable detection of small, quarter-elliptical cracks. Standard ultrasonic pulse-echo equipment was employed to monitor hidden fatigue damage from a stand-off distance without access to the damaged specimen layer. Sufficient sensitivity for the detection of fatigue cracks located in the inaccessible aluminium layer was verified, allowing in principle practical in situ ultrasonic monitoring of fatigue crack growth.

  10. Determination of orientin in Trollius chinensis using ultrasound-assisted extraction and high performance liquid chromatography: Several often-overlooked sample preparation parameters in an ultrasonic bath. (United States)

    Wei, Mengxia; Yang, Lei


    The erratic pressure intensities and cavitation exhibited in an ultrasonic bath pose various during practical application. To achieve the most efficient experimental design, this manuscript aims to discover violently sites that are subject to the effect of slight changes in position on cavitation and ultrasound intensity distributed in the ultrasonic bath. In addition, optimization several often over-looked ultrasound parameters and experimental conditions, are intended to place the reaction vessel properly and operate under suitable experimental conditions to obtain the maximum yield of target analyte. In this study, an investigation of the various ultrasound intensities and cavitation in ultrasonic bath space were conducted with the help of the orientin yield using ultrasound-assisted extraction. Conventional parameters such as the volume fraction of ethanol, liquid-solid ratio, ultrasound irradiation power, time and frequency, and reaction temperature were investigated, all of which affect the extractive yield factors. Also several often over-looked parameters such as the extraction vessel position in the ultrasonic bath base, the distance between the bottom of the extraction vessel and the ultrasonic bath base, the diameter, the shape and the texture of the extraction vessel, height of the liquid medium and the ultrasound propagating medium salt concentration in the ultrasonic bath were tested exhaustively in this study. These results can therefore serve as a guide to optimize the usage of the ultrasonic bath for future applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.


    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  12. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup (United States)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert


    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  13. High Power Fiber Laser Test Bed (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  14. Experimental study on viscosity reduction for residual oil by ultrasonic. (United States)

    Huang, Xintong; Zhou, Cuihong; Suo, Quanyu; Zhang, Lanting; Wang, Shihan


    Because of characteristics of large density, high viscosity and poor mobility, the processing and transportation of residual oil are difficult and challenging, viscosity reduction of residual oil is of great significance. In this paper, the effects of different placement forms of ultrasonic transducers on the sound pressure distribution of ultrasonic inside a cubic container have been simulated, the characteristics of oil bath heating and ultrasonic viscosity reduction were compared, viscosity reduction rule of residual oil was experimentally analyzed by utilizing Response Surface Method under conditions of changing ultrasonic exposure time, power and action mode, the mechanism of viscosity reduction was studied by applying Fourier transform infrared spectrometer, the viscosity retentivity experiment was carried out at last. Experiments were conducted using two kinds of residual oil, and results show that ultrasonic effect on the viscosity reduction of residual oil is significant, the higher viscosity of residual oil, the better effect of ultrasonic, ultrasonic power and exposure time are the significant factors affecting the viscosity reduction rate of residual oil. The maximum viscosity reduction rate is obtained under condition of ultrasonic power is 900W, exposure time is 14min and action mode of exposure time is 2s and interrupting time is 2s, viscosity reduction rate reaching up to 63.95%. The infrared spectroscopy results show that light component in residual oil increased. The viscosity retentivity experiment results show that the viscosity reduction effect remains very well. This paper can provide data reference for the application of ultrasonic in the field of viscosity reduction for residual oil. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. High power RF solid state power amplifier system (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)


    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  16. High Power Performance of Rod Fiber Amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben


    An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....

  17. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping


    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  18. Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats. (United States)

    Mittal, N; Thakore, N; Bell, R L; Maddox, W T; Schallert, T; Duvauchelle, C L


    Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28kHz and 50-55kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2weeks), 4-h EtOH Access (4weeks), 24-h EtOH Access (4weeks) and Abstinence (2weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22-28kHz and 50-55kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50-55kHz FM and 22-28kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience. Published by Elsevier Inc.

  19. Laser Ultrasonic System for Surface Crack Visualization in Dissimilar Welds of Control Rod Drive Mechanism Assembly of Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yun-Shil Choi


    Full Text Available In this paper, we propose a J-groove dissimilar weld crack visualization system based on ultrasonic propagation imaging (UPI technology. A full-scale control rod drive mechanism (CRDM assembly specimen was fabricated to verify the proposed system. An ultrasonic sensor was contacted at one point of the inner surface of the reactor vessel head part of the CRDM assembly. Q-switched laser beams were scanned to generate ultrasonic waves around the weld bead. The localization and sizing of the crack were possible by ultrasonic wave propagation imaging. Furthermore, ultrasonic spectral imaging unveiled frequency components of damage-induced waves, while wavelet-transformed ultrasonic propagation imaging enhanced damage visibility by generating a wave propagation video focused on the frequency component of the damage-induced waves. Dual-directional anomalous wave propagation imaging with adjacent wave subtraction was also developed to enhance the crack visibility regardless of crack orientation and wave propagation direction. In conclusion, the full-scale specimen test demonstrated that the multiple damage visualization tools are very effective in the visualization of J-groove dissimilar weld cracks.

  20. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    Directory of Open Access Journals (Sweden)

    Tingting Gang


    Full Text Available A micro-fiber-optic Fabry-Perot interferometer (FPI is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF. The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs, especially to the high-frequency (up to 10 MHz UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  1. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models. (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce


    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  2. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce


    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction. PMID:27983639

  3. Ultrasonic measurement of the effects of adhesive application and power density on the polymerization behavior of core build-up resins. (United States)

    Sunada, Noriatsu; Ishii, Ryo; Shiratsuchi, Koji; Shimizu, Yusuke; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi


    To use ultrasonic measurements to monitor the effects of adhesive application and power density on the polymerization behavior of dual-cured core build-up resins. Ultrasonic measurements were carried out using a pulser-receiver, transducers and an oscilloscope. The core build-up resins were mixed, inserted into a transparent mold and then placed onto a sample stage with or without self-etch adhesive. Power densities of 0 (no light irradiation), 200 and 600 mW/cm(2) were used for curing. The transit time through the core build-up resin disk was divided by the specimen thickness to obtain the longitudinal sound velocity (V). Light irradiation of the core build-up resins at a power density of 600 mW/cm(2) caused V values to rise to an initial plateau of 1550-1650 m/s, then to rise rapidly to a second plateau of 2800-3200 m/s. The rate of V increase was slower when the resin cements were light-irradiated and became faster when irradiated at a higher power density. There were no significant differences between the groups with or without adhesive. The polymerization behavior of the core build-up resins was affected by the power density of the curing unit. The influence of adhesive application differed among the core build-up resins tested.

  4. First Experience Of Application Of High-Intensity Focused Ultrasonic Ablation (Hifu In Prostate Cancer Treatment

    Directory of Open Access Journals (Sweden)

    A.V. Stativko


    Full Text Available The scientific article points out that 40 sessions of HIFU prostate ablation have been performed for estimation of clinical efficiency. Average frequency of influences presents 628±164 impulses; average volume of tissues subjected to influence during one procedure is 33,8±16,3 smi (132 % of prostate volume; average operation time constitutes 150 minutes (from 90 to 200 minutes. During the operation no complications have been occurred. In the first days after the session of HIFU there was a peak of PSA increase and then during 1,5-3 months there was decrease to the lowest index. Minimal PSA level was reached in 10-12 weeks after treatment and it constituted from 0,04 till 1,1 ngml depending on the disease state. Reduction of prostate volume occurred in average from the 30th day of postoperative period and lasted for 6 months, reaching in average 50 % from initial volume. Postoperative period varied from 10 till 16 days and constituted in average 12±0,8 days. Thus application of high-intensity focused ultrasonic ablation allows treating successfully various stages of prostate cancer with minimal number of side-effects and makes possible the early estimation of treatment efficiency

  5. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high temperatures. (United States)

    Shih, Jeanne-Louise; Kobayashi, Makiko; Jen, Cheng-Kuei


    Piezoelectric films have been deposited by a sol-gel spray technique onto 75-μm-thick titanium and stainless steel (SS) membranes and have been fabricated into flexible ultrasonic transducers (FUTs). FUTs using titanium membranes were glued and those using SS membranes brazed onto steel pipes, procedures that serve as on-site installation techniques for the purpose of offering continuous thickness monitoring capabilities at up to 490 °C. At 150 °C, the thickness measurement accuracy of a pipe with an outer diameter of 26.6 mm and a wall thickness of 2.5 mm was estimated to be 26 μm and the center frequency of the FUT was 10.8 MHz. It is demonstrated that the frequency bandwidth of the FUTs and SNR of signals using glue or brazing materials as high-temperature couplant for FUTs are sufficient to inspect the steel pipes even with a 2.5 mm wall thickness.

  6. Adaptation of a High Frequency Ultrasonic Transducer to the Measurement of Water Temperature in a Nuclear Reactor (United States)

    Zaz, G.; Calzavara, Y.; Le Clézio, E.; Despaux, G.

    Most high flux reactors possess for research purposes fuel elements composed of plates. Their relative distance is a crucial parameter, particularly concerning the irradiation history. For the High Flux Reactor (RHF) of the Institute Laue-Langevin (ILL), the measurement of this distance with a microscopic resolution becomes extremely challenging. To address this issue, a specific ultrasonic transducer, presented in a first paper, has been designed and manufactured to be inserted into the 1.8 mm width channel existing between curved fuel plates. It was set on a blade yielding a total device thickness of 1 mm. To achieve the expected resolution, the system is excited with frequencies up to 70 MHz and integrated into a set of high frequency acquisition instruments. Thanks to a specific signal processing, this device allows the distance measurement through the evaluation of the ultrasonic wave time of fight. One of the crucial points is then the evaluation of the local water temperature inside the water channel. To obtain a precise estimation of this parameter, the ultrasonic sensor is used as a thermometer thanks to the analysis of the spectral components of the acoustic signal propagating inside the sensor multilayered structure. The feasibility of distance measurement was proved during the December 2013 experiment in the RHF fuel element of the ILL. Some of the results will be presented as well as some experimental constraints identified to improve the accuracy of the measurement in future works.

  7. Development of an Ultrasonic Resonator for Ballast Water Disinfection (United States)

    Osman, Hafiiz; Lim, Fannon; Lucas, Margaret; Balasubramaniam, Prakash

    Ultrasonic disinfection involves the application of low-frequency acoustic energy in a water body to induce cavitation. The implosion of cavitation bubbles generates high speed microjets >1 km/s, intense shock wave >1 GPa, localized hot spots >1000 K, and free-radicals, resulting in cell rupture and death of micro-organisms and pathogens. Treatment of marine ballast water using power ultrasonics is an energy-intensive process. Compared with other physical treatment methods such as ultraviolet disinfection, ultrasonic disinfection require 2 to 3 orders of magnitude more energy to achieve similar rate of micro-organism mortality. Current technology limits the amount of acoustic energy that can be transferred per unit volume of fluid and presents challenges when it comes to high-flow applications. Significant advancements in ultrasonic processing technology are needed before ultrasound can be recognized as a viable alternative disinfection method. The ultrasonic resonator has been identified as one of the areas of improvement that can potentially contribute to the overall performance of an ultrasonic disinfection system. The present study focuses on the design of multiple-orifice resonators (MOR) for generating a well-distributed cavitation field. Results show that the MOR resonator offers significantly larger vibrational surface area to mass ratio. In addition, acoustic pressure measurements indicate that the MOR resonators are able to distribute the acoustic energy across a larger surface area, while generating 2-4 times higher pressures than existing ultrasonic probes.

  8. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies. (United States)

    Chowdhury, M A K; Sharif Ullah, A M M; Anwar, Saqib


    Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the automotive and aerospace industry. A great deal of effort has been made to develop and improve the machining operations of Ti6Al4V alloys. This paper presents an experimental study that systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle speed, and tool diameter) on the performance parameters (cutting force, tool wear, overcut error, and cylindricity error), while drilling high precision holes on the workpiece made of Ti6Al4V alloys using rotary ultrasonic machining (RUM). Numerical results were obtained by conducting experiments following the design of an experiment procedure. The effects of the machining conditions on each performance parameter have been determined by constructing a set of possibility distributions (i.e., trapezoidal fuzzy numbers) from the experimental data. A possibility distribution is a probability-distribution-neural representation of uncertainty, and is effective in quantifying the uncertainty underlying physical quantities when there is a limited number of data points which is the case here. Lastly, the optimal machining conditions have been identified using these possibility distributions.

  9. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array. (United States)

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk


    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9×9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm(2) with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Development of a method to characterize high-protein dairy powders using an ultrasonic flaw detector. (United States)

    Hauser, M; Amamcharla, J K


    Dissolution behavior of high-protein dairy powders plays a critical role for achieving functional and nutritional characteristics of a finished food product. Current methods for evaluating powder dissolution properties are time consuming, difficult to reproduce, and subjective. Ultrasound spectroscopy is a rapid and precise method, but requires expensive equipment and skilled technicians to carry out the tests. In the present study, an ultrasonic flaw detector (UFD) was used as an economical alternative to characterize the powder dissolution properties. The objective of study was to develop a method to characterize the dissolution behavior of milk protein concentrate (MPC) using a UFD. The experimental setup included a UFD connected to a 1-MHz immersion transducer that was kept a constant distance from a reflector plate. To validate the method, 2 batches of MPC80 from a commercial manufacturer were procured and stored at 25 and 40°C for 4 wk. Focus beam reflectance measurement and solubility index were used as reference methods. Relative ultrasound velocity and ultrasound attenuation were acquired during the dissolution of MPC samples. To characterize the MPC dissolution, 4 parameters including standard deviation of relative velocity, area under the attenuation curve, and peak attenuation were extracted from ultrasound data. As the storage temperature and time increased, the area under the attenuation curve and peak height decreased, indicating a loss of solubility. The proposed UFD-based method was able to capture the changes in dissolution of MPC during storage at 25 and 40°C. It was observed that a high-quality MPC had a low standard deviation and a larger area under the attenuation curve. As the MPC aged at 40°C, the particle dispersion rate decreased and, consequently, an increase in standard deviation and reduction in area were observed. Overall, the UFD can be a low-cost method to characterize the dissolution behavior of high-protein dairy powders

  11. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes (United States)

    Daavari, Morteza; Vanini, Seyed Ali Sadough


    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  12. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements. (United States)

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina


    For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used-rectangular or non-rectangular-with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to

  13. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys


    Full Text Available For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was

  14. Ultrasonic physics

    CERN Document Server

    Richardson, E G


    Ultrasonic Physics, Second Edition, provides an introduction to the fundamental principles of ultrasonic physics. The book opens with a discussion of the sources of ultrasound. This is followed by separate chapters on the properties and detection of ultrasonic radiation; measurement of propagation constants, i.e., the velocity and absorption, of ultrasound; ultrasound propagation in gases, liquids, and solids; and ultrasound propagation in aerosols, suspensions, and emulsions. The final chapter covers miscellaneous physical and physico-chemical actions, including dispersion and coagulation of

  15. Hand Gesture Recognition Using Ultrasonic Waves

    KAUST Repository

    AlSharif, Mohammed Hussain


    Gesturing is a natural way of communication between people and is used in our everyday conversations. Hand gesture recognition systems are used in many applications in a wide variety of fields, such as mobile phone applications, smart TVs, video gaming, etc. With the advances in human-computer interaction technology, gesture recognition is becoming an active research area. There are two types of devices to detect gestures; contact based devices and contactless devices. Using ultrasonic waves for determining gestures is one of the ways that is employed in contactless devices. Hand gesture recognition utilizing ultrasonic waves will be the focus of this thesis work. This thesis presents a new method for detecting and classifying a predefined set of hand gestures using a single ultrasonic transmitter and a single ultrasonic receiver. This method uses a linear frequency modulated ultrasonic signal. The ultrasonic signal is designed to meet the project requirements such as the update rate, the range of detection, etc. Also, it needs to overcome hardware limitations such as the limited output power, transmitter, and receiver bandwidth, etc. The method can be adapted to other hardware setups. Gestures are identified based on two main features; range estimation of the moving hand and received signal strength (RSS). These two factors are estimated using two simple methods; channel impulse response (CIR) and cross correlation (CC) of the reflected ultrasonic signal from the gesturing hand. A customized simple hardware setup was used to classify a set of hand gestures with high accuracy. The detection and classification were done using methods of low computational cost. This makes the proposed method to have a great potential for the implementation in many devices including laptops and mobile phones. The predefined set of gestures can be used for many control applications.

  16. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment. (United States)

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro


    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  17. High power laser perforating tools and systems (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F


    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  18. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui


    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  19. Automated System Tests High-Power MOSFET's (United States)

    Huston, Steven W.; Wendt, Isabel O.


    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  20. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V


    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  1. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves. (United States)

    Nan, Tianxiang; Yang, Jianguang; Chen, Bing


    Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A novel contra propagating ultrasonic flowmeter using glad buffer rods for high temperature measurement. Application to the oil and gas industries

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Demartonne R. [Brasilia Univ., DF (Brazil). Dept. de Engenharia Eletrica; Cheng-Kuei Jen; Yuu Ono [National Research Council (NRC), Quebec (Canada). Industrial Materials Institute


    Ultrasonic techniques are attractive for process monitoring and control because they are non-intrusive, robust and inexpensive. Two common concerns limiting the high temperature performance of conventional ultrasonic systems for flow measurement are related to transducers and couplants. A suitable approach to overcoming this drawback is to insert a thermal isolating buffer rod with good ultrasonic performance (e.g., high signal-to-noise ratio). This requirement is important because, a priori, the noises generated in the buffer rod may bury the desired signals, so that no meaningful information is extracted. Besides protecting the ultrasonic transducers from overheating in applications such as high temperature flow measurements, buffer rods are also a solution for the couplant between the probe and tested sample, since their probing end can be directly wetted by fluids. Here, we propose clad buffer rods driven by shear transducers as the main building block of contra propagating ultrasonic flowmeters for high temperature application. It is demonstrated that the superior signal-to-noise ratio exhibit by clad buffer rods compared to the reported non-clad counterparts improve precision in transit-time measurement, leading to more accurate flow speed determination. In addition, it is shown that clad buffer rods generate specific ultrasonic signals for temperature calibration of flowmeters, allowing temperature variation while still measuring accurately the flow speed. These results are of interest for the oil and gas industries. (author)

  3. Evaluation of high-voltage, high-power, solid-state remote power controllers for amps (United States)

    Callis, Charles P.


    The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.

  4. High power ultrashort pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M.D.


    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  5. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar


    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  6. Heatsink Design of High Power Converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Ki [Chungang University (Korea)


    Various ways of designing heat sink are available for commercial high power converters and among them, the method of air cooling is the most popular and practical method than any other ones. In this paper, a practical method of cooling high power converter, which includes a method of reducing noise and vibration caused by the fan and a method of estimating the gap and contact resistances existing between the thyristor and heat sink, is presented. Finally, the heat transfer analysis and implementation methods of heat sink for high power converter is presented. (author). 14 refs., 11 figs., 3 tabs.

  7. High current and high power superconducting rectifiers

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Bunk, P.B.; Britton, R.B.; van de Klundert, L.J.M.


    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly.

  8. Assessment of visual function based on IOL-Master comparing with traditional ultrasonic biometry for intraocular lens calculation in high myopia patients

    Directory of Open Access Journals (Sweden)

    Lu Zhang


    Full Text Available AIM: To evaluate the clinical feasibility of using a new optical coherence interferometry(IOL-Master, comparing with traditional ultrasonic biometry and manual keratometry in the accuracy and characteristics for intraocular lens calculation of high myopia.METHODS: The measurement of axial length was performed in 60 eyes(30 eyes for each groupwith senile cataract of high myopia(≥-6.00Dusing IOL-Master and ultrasonic biometry. The measurement of corneal power(Kwas also performed in the patient using IOL-Master and manual keratometry preoperatively. Phacoemulsification and foldable lens implantation were done on the patients. IOL power calculation was carried out according to the SRK/T formula on the basis of the group-related data. Best corrected visual acuity, refraction, contrast sensitivity and wave front aberration root mean square(RMSwere re-tested after 3 months postoperatively.RESULTS: Significant difference between the two methods in axial length measurement which was 29.81±1.53mm by ultrasound and 29.63±1.81mm by IOL-Master(P=0.001. And in corneal power measurement which was 43.22±1.67K by manual keratometry and 44.27±1.39K by IOL-Master(P=0.006. There was a significant difference between the two groups(P=0.001. 63.0% vs 31.2% had a mean absolute refractive error(MAREwithin ±0.50 diopter for the IOL-Master and A-scan groups, respectively(χ2=3.1, Pth order aberration, 4th order spherical aberration and total high order aberration in the IOL-Master group were lower than those in the A-scan group at 6mm pupil diameter 3 months later. CONCLUSION: IOL-Master is a non-contact, accurate, safe and reliable tool for calculating IOL power and it is more accurate on the design of the IOL in the cataract surgery on the high myopia patients.

  9. An introduction to high power microwaves (United States)

    Benford, James; Swegle, John


    The area of high power microwaves has emerged in recent years as a new technology allowing new applications and offering innovative approaches to existing applications. The great leap in microwave power levels has been driven by a mix of sources that either push conventional microwave device physics in new directions or employ altogether new interaction mechanisms. Running counter to the trend in conventional microwave electronics toward miniaturization with solid-state devices intrinsically limited in their peak power capability, high power microwave generation taps the immense power and energy reservoirs of modern intense relativistic electron beam technology. The term high power microwaves (HPM) is used to denote devices that exceed 100 MW in peak power and span the cm- and mm-wave range of frequencies between 1 and 300 GHz. This definition is arbitrary, but does cleanly divide the conventional microwave devices, which do not exceed 100 MW, from a collection of microwave-generating devices that have now reached powers as high as 15 GW.

  10. Driver Circuit For High-Power MOSFET's (United States)

    Letzer, Kevin A.


    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  11. Highly-efficient high-power pumps for fiber lasers (United States)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.


    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  12. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)


    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  13. Ozone production in a dielectric barrier discharge with ultrasonic irradiation

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Kusano, Yukihiro; Leipold, Frank


    Ozone production has been investigated using an atmospheric pressure dielectric barrier discharge in pure O2 at room temperature with and without ultrasonic irradiation. It was driven at a frequency of either 15 kHz or 40 kHz. The ozone production was highly dependent on the O2 flow rate...... and the discharge power. Furthermore, powerful ultrasonic irradiation at a fundamental frequency of 30 kHz with the sound pressure level of 150 dB into the discharge can improve the ozone production efficiency, particularly when operated at the frequency of 15 kHz at the flow rate of 15 L/min....

  14. High power regenerative laser amplifier (United States)

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.


    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  15. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria


    A gliding arc is a plasma generated between diverging electrodes and extended by a high speed gas flow. It can be operated in air at atmospheric pressure. It potentially enables selective chemical processing with high productivity, and is useful for adhesion improvement of material surfaces....... The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...... that ultrasonic irradiation reduced the OH rotational temperature of the gliding arc. The wettability of the GFRP surface was significantly improved by the plasma treatment without ultrasonic irradiation, and tended to improve furthermore at higher power to the plasma. Ultrasonic irradiation during the plasma...

  16. Piezoelectric Transformers for a High Power Module

    National Research Council Canada - National Science Library

    Ezaki, T


    .... Here, in order to obtain compact and high-power AC-DC adaptors, we explored suitable designs for a multi-layered piezoelectric transformer, by taking into account the effect of the mechanical quality...

  17. High Power Helicon Plasma Propulsion Project (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  18. High Power Helicon Plasma Propulsion Project (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  19. The High Frequency Ultrasonic Diagnostic System for Hard and Soft Tissue Specific Assessments in Dentistry (United States)

    Slak, Bartosz

    The numerical assessment of dental tissues is essential when selecting a relevant treatment protocol in the field of dentistry. This will have significant ramifications on the restoration quality of dental tissues. The aim of the research study presented in this thesis was to validate applicability and obtain non-invasively, quantitative data for hard and soft tissue thickness in dental applications. An ultrasonic system was developed and assembled for the purpose of these experiments. Numerous laboratory trials were conducted to validate system performance against traditional and destructive methods of assessment. Ultrasonic measurements were found to yield similar values to those obtained from invasive methods. Results obtained in these experiments have validated potentials of ultrasound as a supplementary diagnostic tool for dental healthcare.

  20. CoSn-graphite electrode material prepared by using the polyol method and high-intensity ultrasonication

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jose R. [Laboratorio de Quimica Inorganica, Universidad de Cordoba, Edificio C3, Campus de Rabanales, 14071 Cordoba (Spain); Alcantara, Ricardo, E-mail: [Laboratorio de Quimica Inorganica, Universidad de Cordoba, Edificio C3, Campus de Rabanales, 14071 Cordoba (Spain); Nacimiento, Francisco; Tirado, Jose L. [Laboratorio de Quimica Inorganica, Universidad de Cordoba, Edificio C3, Campus de Rabanales, 14071 Cordoba (Spain)


    Highlights: > New anode materials are prepared by combined polyol and ultrasonication methods. > Highly-dispersed, amorphous nano-CoSn/ultrathin graphite composites can be obtained. > Ultrasonication under Ar-flow and LiPAA-binder leads to high Coulombic efficiency. - Abstract: Composite electrode materials containing nanoparticles of nearly amorphous CoSn and ultrathin layers of graphite are prepared here. For this purpose, Sn(II) and Co(II) ions in tetraethyleneglycol are reduced with NaBH{sub 4} in the presence of ball-milled graphite while high-intensity ultrasonication is continuously applied. The followed preparative route is a combination of the polyol and sonochemical methods. The observed capacity value for CoSn-ball milled graphite is over 400 mAh/g after 40 cycles (this is superior to graphite). The good electrochemical cycling behavior is connected to the small particle size of CoSn, the low crystallinity of CoSn and the dispersion of the CoSn particles in an optimized carbon matrix. The selected binder (polyvinylidene fluoride or lithium polyacrylate) also can contribute to improve the cycling behavior. The low electrochemical efficiency, particularly in the first cycles, may be related to the spontaneous oxidation of the metallic particles surface and irreversible electrolyte consumption. The use of inert atmosphere (Ar-flow) results in a decrease of the tin oxide content, as determined by using {sup 119}Sn Moessbauer spectroscopy, an increase of the initial electrochemical efficiency up to a maximum of 90.4%, and higher capacities (507 mAh/g after 40 cycles).

  1. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge. (United States)

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito


    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  2. Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. (United States)

    Chandrapala, Jayani; Martin, Gregory J O; Kentish, Sandra E; Ashokkumar, Muthupandian


    The effect of shear on the solubilization of a range of dairy powders was investigated. The rate of solubilization of low solubility milk protein concentrate and micellar casein powders was examined during ultrasonication, high pressure homogenization and high-shear rotor-stator mixing and compared to low-shear overhead stirring. The high shear techniques were able to greatly accelerate the solubilization of these powders by physically breaking apart the powder agglomerates and accelerating the release of individual casein micelles into solution. This was achieved without affecting the structure of the solubilized proteins. The effect of high shear on the re-establishment of the mineral balance between the casein micelles and the serum was examined by monitoring the pH of the reconstituted skim milk powder after prior exposure to ultrasonication. Only minor differences in the re-equilibration of the pH were observed after sonication for up to 3 min, suggesting that the localized high shear forces exerted by sonication did not significantly affect the mass transfer of minerals from within the casein micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing

    Energy Technology Data Exchange (ETDEWEB)

    Sanjib, Das [University of Tennessee, Knoxville (UTK); Yang, Bin [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK); Joshi, Pooran C [ORNL; Ivanov, Ilia N [ORNL; Rouleau, Christopher [ORNL; Aytug, Tolga [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL


    Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was used to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.

  4. The NASA CSTI high capacity power project (United States)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.


    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  5. Analysis of Vehicle Detection with WSN-Based Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    Youngtae Jo


    Full Text Available Existing traffic information acquisition systems suffer from high cost and low scalability. To address these problems, the application of wireless sensor networks (WSNs has been studied, as WSN-based systems are highly scalable and have a low cost of installing and replacing the systems. Magnetic, acoustic and accelerometer sensors have been considered for WSN-based traffic surveillance, but the use of ultrasonic sensors has not been studied. The limitations of WSN-based systems make it necessary to employ power saving methods and vehicle detection algorithms with low computational complexity. In this paper, we model and analyze optimal power saving methodologies for an ultrasonic sensor and present a computationally-efficient vehicle detection algorithm using ultrasonic data. The proposed methodologies are implemented and evaluated with a tiny microprocessor on real roads. The evaluation results show that the low computational complexity of our algorithm does not compromise the accuracy of vehicle detection.

  6. Analysis of vehicle detection with WSN-based ultrasonic sensors. (United States)

    Jo, Youngtae; Jung, Inbum


    Existing traffic information acquisition systems suffer from high cost and low scalability. To address these problems, the application of wireless sensor networks (WSNs) has been studied, as WSN-based systems are highly scalable and have a low cost of installing and replacing the systems. Magnetic, acoustic and accelerometer sensors have been considered for WSN-based traffic surveillance, but the use of ultrasonic sensors has not been studied. The limitations of WSN-based systems make it necessary to employ power saving methods and vehicle detection algorithms with low computational complexity. In this paper, we model and analyze optimal power saving methodologies for an ultrasonic sensor and present a computationally-efficient vehicle detection algorithm using ultrasonic data. The proposed methodologies are implemented and evaluated with a tiny microprocessor on real roads. The evaluation results show that the low computational complexity of our algorithm does not compromise the accuracy of vehicle detection.

  7. High-frequency guided ultrasonic waves for the detection of hidden defects in multi-layer aerospace structures (United States)

    Masserey, B.; Raemy, C.; Fromme, P.


    High-frequency guided ultrasonic waves allow for the non-destructive testing of aerospace structures. This type of structure often contains multi-layer components subjected to cyclic loading conditions, where fatigue cracks and localized disbonds can develop. Using standard ultrasonic transducers, high frequency guided wave modes were generated in a model structure consisting of two adhesively bonded aluminum plates. This type of waves propagates along the structure and penetrates through the complete thickness. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with 2D finite element simulations was found. Two types of hidden defects were considered: localized lacks of sealant and small defects in the aluminum layer facing the sealant. The interaction of the high frequency guided waves with the hidden defects was investigated. Standard pulseecho measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulation results. The high frequency guided waves have the potential for fatigue crack growth monitoring at critical and difficult to access fastener locations in aerospace structures from a stand-off distance.

  8. Protection Related to High-power Targets

    CERN Document Server

    Plum, M.A.


    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  9. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000× optical power gain. (United States)

    Ma, Cheng; Xu, Xiao; Wang, Lihong V


    Recent breakthrough in wavefront engineering shows great promises in controlling light propagation inside scattering media. At present, the digital approaches enjoy high gain, while their speeds are slow because of high data throughputs. In contrast, the analog approaches are intrinsically fast but suffer from poor efficiencies and small gains. Further improvements in both speed and gain are necessary to advance the existing technologies toward real-world applications. Here, we report analog time-reversal of acousto-optically tagged photons with a flux amplification of over 33,000 times (45 dB) at a target location inside scattering media. Such a substantial power gain enhancement is achieved when the temporal width of the time-reversed photon packet is squeezed below the carrier-recombination-limited hologram decay time in a photorefractive crystal. Despite a focusing energy gain below unity, the unprecedented power gain is expected to enable new optical imaging, sensing, manipulation and treatment applications.

  10. High power diode laser Master Oscillator-Power Amplifier (MOPA) (United States)

    Andrews, John R.; Mouroulis, P.; Wicks, G.


    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  11. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... drive solution, which is applicable in cases when there are at least two power stages, and with minimal additional hardware requirements. It is experimentally confirmed that the method is suitable for both parallel and serial input configurations. Compared to state-of-the-art solutions, the proposed...

  12. Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. (United States)

    Vasanelli, Emilia; Colangiuli, Donato; Calia, Angela; Sileo, Maria; Aiello, Maria Antonietta


    UPV as non-destructive technique can effectively contribute to the low invasive in situ analysis and diagnosis of masonry elements related to the conservation, rehabilitation and strengthening of the built heritage. The use of non-destructive and non-invasive techniques brings all the times many advantages in diagnostic activities on pre-existing buildings in terms of sustainability; moreover, it is a strong necessity with respect to the conservation constraints when dealing with the historical-architectural heritage. In this work laboratory experiments were carried out to investigate the effectiveness of ultrasonic pulse velocity (UPV) in evaluating physical and mechanical properties of Lecce stone, a soft and porous building limestone. UPV and selected physical-mechanical parameters such as density and uniaxial compressive strength (UCS) were determined. Factors such as anisotropy and water presence that induce variations on the ultrasonic velocity were also assessed. Correlations between the analysed parameters are presented and discussed. The presence of water greatly affected the values of the analysed parameters, leading to a decrease of UPV and to a strong reduction of the compressive strength. A discussion of the role of the water on these results is provided. Regression analysis showed a reliable linear correlation between UPV and compressive strength, which allows a reasonable estimation of the strength of Lecce stone by means of non-destructive testing methods such as the ultrasonic wave velocity. Low correlation between UPV and density was found, suggesting that other factors than density, related to the fabric and composition, also influence the response of the selected stone to the UPV. They have no influence on the UCS, that instead showed to be highly correlated with the packing density. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Monitoring imaging of lesions induced by high intensity focused ultrasound based on differential ultrasonic attenuation and integrated backscatter estimation. (United States)

    Zhong, Hui; Wan, Ming-Xi; Jiang, Yi-Feng; Wang, Su-Pin


    We investigated the feasibility of two monitoring imaging methods to visualize and evaluate the high intensity focused ultrasound (HIFU) induced lesions in vitro during and after their formation, which were based on differential ultrasonic parameter estimation. Firstly, ultrasonic attenuation slope of tissue sample was estimated based on the spectral analysis of ultrasound RF backscattered signals. The differential attenuation slope maps were acquired, which were interpreted as the differences between the pretreatment image and those obtained in different stages during HIFU therapy. Secondly, ultrasonic integrated backscatter (IBS), defined as the frequency average of the backscatter transfer function over the useful bandwidth, was proposed quantitatively to evaluate the extent of lesions with the same RF signals as the first method. Differential IBS maps were also acquired to visualize temporal evolution of lesion formation. It was found in pig liver in vitro that more precise definition of the treated area was obtained from the differential IBS images than from differential attenuation slope images. Dramatic increase in both attenuation and IBS value was observed during the therapy, which may be related to dramatic enhancement of cavitation due to boiling and accompanying tissue damage. Two methods to obtain one differential image were compared and the cumulative differential image was found to be able to eliminate noises and artifacts to some extent, which was the cumulation of a series of differential images acquired from the differences between the temporally adjacent RF data frames. Moreover, we presented a bidirectional color code for identification of the artifacts due to tissue movements caused by HIFU radiation force. We conclude that cumulative differential IBS images have the potential to monitor the formation of HIFU-induced lesions.

  14. The NASA CSTI High Capacity Power Program (United States)

    Winter, Jerry M.


    NASA's Civil Space Technology Initiative (CSTI) has as its primary goal the improvement of space nuclear power-related technologies and their interactions with the given mission environment. The CSTI High Capacity Power Program supports and advances all nonnuclear aspects of the national SP-100 Space Nuclear Reactor Program, including the demonstration of a 1050 K Stirling Space Power System capable of employing the full output capability of the SP-100 reactor. Thermoelectric technology capable of reaching Z values of 0.001/K with SiGe/GaP will be demonstrated in the course of the program.

  15. High-voltage power supply unit

    CERN Document Server

    Garipov, G K; Silaev, A A; Shirokov, A V


    A unit comprising four high-voltage power sources (HPS) is designed for power supply of four independent photomultipliers. Each HPS comprises a pulse-width modulator, digital-to-analog converter, base voltage source and digital interface. HPS unit supplies up to 2000 V output voltage, up to 2.5 mA current and long-term stability equal to +- 0.03%

  16. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant


    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  17. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce


    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  18. Application and development of ultrasonics in dentistry

    Directory of Open Access Journals (Sweden)

    Yen-Liang Chen


    Full Text Available Since the 1950s, dentistry's ultrasonic instruments have developed rapidly. Because of better visualization, operative convenience, and precise cutting ability, ultrasonic instruments are widely and efficiently applied in the dental field. This article describes the development and improvement of ultrasonic instruments in several dental fields. Although some issues still need clarification, the results of previous studies indicate that ultrasonic instruments have a high potential to become convenient and efficient dental tools and deserve further development.

  19. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart


    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  20. Chemical coloring on stainless steel by ultrasonic irradiation. (United States)

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin


    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    systems and the electron deflection systems. Power operational amplifiers have ... approach is cost and availability of high voltage devices in chip form. 2.2 Amplifier with opamp input stage .... power opamp, using chip passive components, semiconductor bare dice minimizes the size while increasing the reliability.

  2. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter


    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio....... Experimentally, we generate transverse current profiles by using standard lithography to define a digitated contact pad. Experimental results confirm that the current density is significantly altered and show completely filamentation-free operation up to 34 times threshold....

  3. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)


    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  4. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft


    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  5. Germanate Glass Fiber Lasers for High Power (United States)


    AFRL-AFOSR-JP-TR-2016-0020 Germanate glass fiber lasers for high power David Lancaster THE UNIVERSITY OF ADELAIDE Final Report 01/04/2016...COVERED (From - To) 01-07-2014 to 30-06-2015 4. TITLE AND SUBTITLE Germanate glass fiber lasers for high power 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...germanate based glasses with a specific focus on glass stability during thermal-cycling which is representative of the steps required to fabricate a doped

  6. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. (United States)

    Noman, Muhammad Tayyab; Wiener, Jakub; Saskova, Jana; Ashraf, Muhammad Azeem; Vikova, Martina; Jamshaid, Hafsa; Kejzlar, Pavel


    Cotton-titania nanocomposites with multifunctional properties were synthesized through ultrasonic acoustic method (UAM). Ultrasonic irradiations were used as a potential tool to develop cotton-titania (CT) nanocomposites at low temperature in the presence of titanium tetrachloride and isopropanol. The synthesized samples were characterized by XRD, SEM, EDX and ICP-OES methods. Functional properties i.e. Ultraviolet protection factor (UPF), self-cleaning, washing durability, antimicrobial and tensile strength of the CT nanocomposites were evaluated by different methods. Central composite design and response surface methodology were employed to evaluate the effects of selected variables on responses. The results confirm the simultaneous formation and incorporation of anatase TiO2 with average crystallite size of 4nm on cotton fabric with excellent photocatalytic properties. The sustained self-cleaning efficiency of CT nanocomposites even after 30 home launderings indicates their excellent washing durability. Significant effects were obtained during statistical analysis for selected variables on the formation and incorporation of TiO2 nanoparticles (NPs) on cotton and photocatalytic properties of the CT nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detection of crack in a shallow layer of mortar by using a harmonic component of very high intensity aerial ultrasonic waves (United States)

    Osumi, Ayumu; Ogita, Masashi; Okitsu, Kazuya; Ito, Youichi


    We developed a noncontact, nondestructive method of imaging defects in solid objects with high-intensity aerial ultrasonic waves and optical equipment. The method detects defects in the imaged area by analyzing the velocity distribution on the surface of an object continuously irradiated with aerial ultrasonic waves. In this study, we attempted to detect a crack in a shallow layer of mortar. We used the nonlinearity of high-intensity sound waves and we imaged a rectangular defect imitating a crack (width: 1 mm) using harmonic components of the vibration velocity. Our method successfully imaged the rectangular defect, showing the possibility of its application to the detection of actual cracks.

  8. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring. (United States)

    Tsai, Wei-Yu; Huang, Guan-Rong; Wang, Kuang-Kuo; Chen, Chin-Fu; Huang, J C


    Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.

  9. High impact data visualization with Power View, Power Map, and Power BI

    CERN Document Server

    Aspin, Adam


    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  10. High-Yield Preparation and Electrochemical Properties of Few-Layer MoS2 Nanosheets by Exfoliating Natural Molybdenite Powders Directly via a Coupled Ultrasonication-Milling Process. (United States)

    Dong, Huina; Chen, Deliang; Wang, Kai; Zhang, Rui


    Cost-effective and scalable preparation of two-dimensional (2D) molybdenum disulfide (MoS2) has been the bottleneck that limits their applications. This paper reports a novel coupled ultrasonication-milling (CUM) process to exfoliate natural molybdenite powders to achieve few-layer MoS2 (FL-MoS2) nanosheets in the solvent of N-methyl-2-pyrrolidone (NMP) with polyvinylpyrrolidone (PVP) molecules. The synergistic effect of ultrasonication and sand milling highly enhanced the exfoliation efficiency, and the precursor of natural molybdenite powders minimizes the synthetic cost of FL-MoS2 nanosheets. The exfoliation of natural molybdenite powders was conducted in a home-made CUM system, mainly consisting of an ultrasonic cell disruptor and a ceramic sand mill. The samples were characterized by X-ray diffraction, UV-vis spectra, Raman spectra, FT-IR, SEM, TEM, AFM, and N2 adsorption-desorption. The factors that influence the exfoliation in the CUM process, including the initial concentration of natural molybdenite powders (C in, 15-55 g L(-1)), ultrasonic power (P u, 200-350 W), rotation speed of sand mill (ω s, 1500-2250 r.p.m), exfoliation time (t ex, 0.5-6 h), and the molar ratio of PVP unit to MoS2 (R pm, 0-1), were systematically investigated. Under the optimal CUM conditions (i.e., C in = 45 g L(-1), P u = 280 W, ω s = 2250 r.p.m and R pm = 0.5), the yield at t ex = 6 h reaches 21.6 %, and the corresponding exfoliation rate is as high as 1.42 g L(-1) h(-1). The exfoliation efficiency of the CUM mode is much higher than that of either the ultrasonication (U) mode or the milling (M) mode. The synergistic mechanism and influencing rules of the CUM process in exfoliating natural molybdenite powders were elaborated. The as-obtained FL-MoS2 nanosheets have a high specific surface area of 924 m(2) g(-1) and show highly enhanced electrocatalytic performance in hydrogen evolution reaction and good electrochemical sensing property in

  11. Charging-discharging system with high power factor, high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Joe, Kee Yeon; Byun, Young Bok; Koo, Heun Hoi [Korea Electrotechnology Research Institute (Korea, Republic of)


    This paper presents equipment for charging and discharging with high power factor and high efficiency. This equipment is consisted of 3{Phi} SPWM AC/DC converter for improving input current waveform and input power factor, and bidirectional DC/DC converter for electric isolation in the DC link Part. Therefore, Input power factor and the total efficiency in the proposed system can be increased more than in the conventional phase-controlled thyristor charging-discharging System. (author). 7 refs., 14 figs., 1 tab.

  12. Development of a high power femtosecond laser

    CSIR Research Space (South Africa)

    Neethling, PH


    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  13. High power Ar-Xe laser

    NARCIS (Netherlands)

    Witteman, W.J.; Gielkens, S.W.A.; Tskhai, V.N.; Peters, P.J.M.


    The discharge conditions of the multi-atmospheric e-beam sustained Ar-Xe laser are investigated. It is observed that the quasi-stationary period of a laser pulse depends on the e-beam current, the discharge power deposition and the gas density. The laser efficiency can be as high as 8%. The pulse

  14. Ultrasonic neuromodulation (United States)

    Naor, Omer; Krupa, Steve; Shoham, Shy


    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  15. High power beta electron device - Beyond betavoltaics. (United States)

    Ayers, William M; Gentile, Charles A


    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 1013Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  16. Gain of electromagnetic radiation traveling in a semiconductor subjected to magnetic and ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.G.; Boyakhchyan, G.P.; Mirzabekyan, E.G.


    A calculation is made of the gain experienced by an electromagnetic wave in a semiconductor subjected to magnetic field and ultrasonic fields. It is shown that the gain can be 1--500 for a wide range of the parameters. Analytic expressions are obtained for the frequency depencence of the real part of the high-frequency conductivity when the pump power, ultrasonic wavelength, and temperature of the semiconductor are varied.

  17. Using Silver Nano-Particle Ink in Electrode Fabrication of High Frequency Copolymer Ultrasonic Transducers: Modeling and Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Adit Decharat


    Full Text Available High frequency polymer-based ultrasonic transducers are produced with electrodes thicknesses typical for printed electrodes obtained from silver (Ag nano-particle inks. An analytical three-port network is used to study the acoustic effects imposed by a thick electrode in a typical layered transducer configuration. Results from the network model are compared to experimental findings for the implemented transducer configuration, to obtain a better understanding of acoustical effects caused by the additional printed mass loading. The proposed investigation might be supportive of identification of suitable electrode-depositing methods. It is also believed to be useful as a feasibility study for printed Ag-based electrodes in high frequency transducers, which may reduce both the cost and production complexity of these devices.

  18. Geothermal Ultrasonic Fracture Imager

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Doug [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States); Leggett, Jim [Baker-Hughes Oilfield Operation Inc., Houston, TX (United States)


    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  19. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing. (United States)

    Yoon, Hyung-In; Noh, Hyo-Mi; Park, Eun-Jin


    This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, Pscaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, Pscaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.

  20. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing (United States)

    Noh, Hyo-Mi


    PURPOSE This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, Pscaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, Pscaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate. PMID:28680550

  1. Laminar composite structures for high power actuators (United States)

    Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.


    Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.

  2. High specific power lithium polymer rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.Y.; De Jonghe, L.; Visco, S. [PolyPlus Battery Co., Berkeley, CA (United States)


    PolyPlus Battery Company (PPBC) is developing an advanced lithium polymer rechargeable battery based on its proprietary positive electrode. This battery offers high steady-state (> 250 W/kg) and peak power densities (3,000 W/kg), in a low cost and environmentally benign format. This PolyPlus lithium polymer battery also delivers high specific energy. The first generation battery has an energy density of 100 Wh/kg (120 Wh/l) and subsequent generations increases the performance in excess of 500 Wh/kg (600 Wh/l). The high power and energy densities, along with the low toxicity and low cost of materials used in the PolyPlus solid-state cell makes this battery exceptionally attractive for both hybrid and electric vehicle applications.

  3. Effects of high power ultrasound on all-E-β-carotene, newly formed compounds analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry. (United States)

    Carail, Michel; Fabiano-Tixier, Anne-Sylvie; Meullemiestre, Alice; Chemat, Farid; Caris-Veyrat, Catherine


    To study effects of high power ultrasound treatment (20 kHz) on β-carotene degradation, a second-order central composite design (CCD) was performed to investigate maximum β-carotene loss with three independent factors (ultrasonic intensity, sonication time, and temperature). Results based on variance analysis and Pareto chart have shown that sonication time is the most important factor, followed by ultrasonic intensity level. The evolved degradation products have been tentatively identified using ultra high performance liquid chromatography coupled to both diode array detector and a mass spectrometer (UHPLC-DAD-MS). The main degradation products, tentatively identified, are three Z-isomers of β-carotene and seven β-apo-carotenals/ones. Hypothesis on the degradation mechanism of carotenoids are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone (United States)

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Okada, Nagaya; Koda, Shinobu; Yasuda, Keiji


    Effect of ultrasonic cavitation on sound pressure at the fundamental, second harmonic, and first ultraharmonic frequencies was investigated from low to high ultrasonic intensities. The driving frequencies were 22, 304, and 488 kHz. Sound pressure was measured using a needle-type hydrophone and ultrasonic cavitation was estimated from the broadband integrated pressure (BIP). With increasing square root of electric power applied to a transducer, the sound pressure at the fundamental frequency linearly increased initially, dropped at approximately the electric power of cavitation inception, and afterward increased again. The sound pressure at the second harmonic frequency was detected just below the electric power of cavitation inception. The first ultraharmonic component appeared at around the electric power of cavitation inception at 304 and 488 kHz. However, at 22 kHz, the first ultraharmonic component appeared at a higher electric power than that of cavitation inception.

  5. Non-contact feature detection using ultrasonic Lamb waves (United States)

    Sinha, Dipen N [Los Alamos, NM


    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  6. Website Design Guidelines: High Power Distance and High Context Culture

    Directory of Open Access Journals (Sweden)

    Tanveer Ahmed


    Full Text Available This paper aims to address the question of offering a culturally adapted website for a local audience. So far, in the website design arena the vast majority of studies examined mainly Western and the American (low power distance and low context culture disregarding possible cultural discrepancies. This study fills this gap and explores the key cultural parameters that are likely to have an impact on local website design for Asian-Eastern culture high power distance and high context correlating with both Hofstede’s and Hall’s cultural dimensions. It also reviews how website localisation may be accomplished more effectively by extracting the guidelines from two different yet compatible cultural dimensions: high power distance and high context.

  7. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation. (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah


    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. MULTIPULSE - high resolution and high power in one TDEM system (United States)

    Chen, Tianyou; Hodges, Greg; Miles, Philip


    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  9. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert


    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  10. Power balance in highly loaded fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Lister, G G [Osram Sylvania, 71 Cherry Hill Drive, Beverly, MA 01915 (United States); Curry, J J [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8422 (United States); Lawler, J E [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States)


    Discrepancies reported in the literature between numerical predictions and experimental measurements in low-pressure Hg discharges at high current densities are considered. Elements of a one-dimensional fluid model and recent spectroscopic and Langmuir probe measurements are combined in a semi-empirical way to individually examine components of the positive column power balance and the discharge conductivity. At a Hg vapour pressure of 0.81 Pa (6.1 mTorr) and a current density of 300 mA cm{sup -2}, previous discrepancies in the power balance and discharge conductivity are simultaneously resolved by assuming a higher electron density than that obtained from the Langmuir probe measurements. This conclusion is supported by independent measurements of ion density reported in a companion paper. The importance of radial cataphoresis under these conditions, particularly with regard to radiation transport, is highlighted. This work is of particular interest for the design of fluorescent lamps operating at high current densities.

  11. Methods for High Power EM Pulse Measurement

    Directory of Open Access Journals (Sweden)

    P. Fiala


    Full Text Available There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday's induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized.

  12. Present and Future Trends in High Power Generation

    NARCIS (Netherlands)

    Heijster, R.M.E.M. van; Schouten, J.M.


    Modern warfare requires high levels of microwave power for various applications. Semiconductors are only suitable for low and medium power levels, for high power generation microwave tubes are still the most effective solution.

  13. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.


    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  14. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.


    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  15. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar


    . For this purpose, the power system model has been developed that represents the relevant dynamic features of power plants and compensates for power imbalances caused by the forecasting error during critical weather conditions. The regulating power plan, as an input time series for the developed power system model......Secure power system operation of a highly wind power integrated power system is always at risk during critical weather conditions, e.g. in extreme high winds. The risk is even higher when 50% of the total electricity consumption has to be supplied by wind power, as the case for the future Danish......, is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor...

  16. High Power Argon, Nitrogen Plasma Torches (United States)

    Hakki, A.; Kashapov, N.; Sadikov, K.


    The paper describes a high power supply for Argon and Nitrogen plasma torches. A high frequency was used in order to drive the pulse width modulation circuit. The average output current consumption (AOCC) was modified from 20A up to 80A by increasing the pulse width from 2μsec up to 3μsec for Argon gas plasma torches. The (AOCC) was reduced from 70A down to 25A by increasing the pulse width from 6μsec up to 8μsec in the case of Nitrogen gas plasma torches.

  17. High Voltage Power Supply With High Output Current and Low Power Consumption for Photomultiplier Tubes (United States)

    Cunha, José Paulo V. S.; Begalli, Marcia; Bellar, Maria Dias


    In some applications, photomultiplier tubes (PMTs) are powered by battery based circuits, where the available energy is severely limited. The most simple approach to design high voltage power supplies (HVPS) for PMTs has considered resistive voltage dividers in order to bias the dynodes. However, this approach usually results in high power losses and, consequently, this undermines the PMT performance. In this work, the proposed solution is the use of a power circuit based on the forward converter connected to a transformer built with several secondary windings. Each secondary voltage is rectified and filtered to eliminate voltage ripple. Each dynode voltage is supplied by a rectified secondary voltage. The proposed topology provides low power consumption as well as low sensitivity of the PMT gain with respect to the dynode currents. Taking into account the Waste Electrical and Electronic Equipment Directive (WEEE), this HVPS has been designed to allow the recycling of old PMTs.

  18. High peak power diode stacks for high energy lasers (United States)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg


    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  19. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D


    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  20. Optimized VCSELs for high-power arrays (United States)

    Moench, Holger; Kolb, Johanna S.; Engelhardt, Andreas P.; Gerlach, Philipp; Jaeger, Roland; Pollmann-Retsch, Jens; Weichmann, Ulrich; Witzigmann, Bernd


    High-power VCSEL systems with multi kilowatt output power require a good electro-optical efficiency at the point of operation i.e. at elevated temperature. The large number of optimization parameters can be structured in a way that separates system and assembly considerations from the minimization of electrical and optical losses in the epitaxially grown structure. Temperature dependent functions for gain parameters, internal losses and injection efficiency are derived from a fit to experimental data. The empirical description takes into account diameter dependent effects like current spreading or temperature dependent ones like voltage drops over hetero-interfaces in the DBR mirrors. By evaluating experimental measurements of the light output and voltage characteristics over a large range of temperature and diameter, wafer-characteristic parameters are extracted allowing to predict the performance of VCSELs made from this material in any array and assembly configuration. This approach has several beneficial outcomes: Firstly, it gives a general description of a VCSEL independent of its geometry, mounting and detuning, secondly, insights into the structure and the underlying physics can be gained that lead to the improvement potential of the structure and thirdly the performance of the structure in arrays and modules can be predicted. Experimental results validate the approach and demonstrate the significantly improved VCSEL efficiency and the benefit in high power systems.

  1. Influence of ultrasonic stimulation on the germination of barley seed ...

    African Journals Online (AJOL)

    In this study, the influence of ultrasonic stimulation was investigated on the germination of barley and alpha-amylase activity grains in the dry state before steeping. All experiments have been performed using an ultrasonic horn operating at a fixed frequency of 20 KHz in 3 different ultrasonic power (20, 60 and 100% setting ...

  2. Digitally Controlled High Availability Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    MacNair, David; /SLAC


    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  3. Earthquake Triggering by High Power Electric Pulses (United States)

    Novikov, Victor; Konev, Yuri; Zeigarnik, Vladimir


    The study carried out by the Joint Institute for High Temperatures in cooperation with the Institute of Physics of the Earth and the Research Station in Bishkek of Russian Academy of Sciences in 1999-2008 showed a response of weak seismicity at field experiments with electric pulsed power systems, as well as acoustic emission of rock specimens under laboratory conditions on high-power electric current pulses applied to the rocks. It was suggested that the phenomenon discovered may be used in practice for partial release of tectonic stresses in the Earth crust for earthquake hazard mitigation. Nevertheless, the mechanism of the influence of man-made electromagnetic field on the regional seismicity is not clear yet. One of possible cause of the phenomenon may be pore fluid pressure increase in the rocks under stressed conditions due to Joule heat generation by electric current injected into the Earth crust. It is known that increase of pore fluid pressure in the fault zone over a critical pressure of about 0.05 MPa is sufficient to trigger an earthquake if the fault is near the critical state due to accumulated tectonic deformations. Detailed 3D-calculaton of electric current density in the Earth crust of the Northern Tien Shan provided by pulsed electric high-power system connected to grounded electric dipole showed that at the depth of earthquake epicenters (over 5 km) the electric current density is lower than 10-7 A/m2 that is not sufficient for increase of pressure in the fluid-saturated porous geological medium due to Joule heat generation, which may provide formation of cracks resulting in the fault propagation and release of tectonic stresses in the Earth crust. Nevertheless, under certain conditions, when electric current will be injected into the fault through the casing pipes of two deep wells with preliminary injection of conductive fluid into the fault, the current density may be high enough for significant increase of mechanic pressure in the porous two

  4. High power ultrasound effects on lipid oxidation of refined sunflower oil. (United States)

    Chemat, F; Grondin, I; Costes, P; Moutoussamy, L; Sing, A Shum Cheong; Smadja, J


    The effects of high power ultrasound treatment (20 kHz) on some components of refined sunflower oil were studied in order to verify if and to what extent modifications in the lipidic fraction can occur. Traditional parameters including free acidity, total polar compounds, peroxide value, and conjugated dienes concentration were determined in refined sunflower oil samples before, immediately after the ultrasonic treatment and during storage. Differences between treated and untreated samples were detected only for peroxide values (PV). The PV increased from 5.38 meq. O2/kg oil for untreated oil to 6.33 meq. O2/kg oil for sunflower oil sonicated (20 kHz; 150 W; 2 min). The fatty acid composition was obtained by high resolution gas chromatography. No significant changes were observed regarding the decrease in fatty acid composition before and immediately after the treatment. Regarding the volatile fraction, some off-flavour compounds for example hexanal and limonene resulting from the ultrasonic degradation of sunflower oil were identified by gas chromatography coupled to mass spectrometry (GC-MS).

  5. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared...... to traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...

  6. High power singlemode edge-emitting master oscillator power amplifier (United States)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.


    An edge-emitting monolithically integrated master oscillator power amplifier (M-MOPA) has been fabricated by integrating a distributed Bragg reflector laser with a 500 microns long single mode amplifier. The M-MOPA contains a strained InGaAs quantum well in the active region and operates at about 981.5 nm in an edge-emitting fashion with maximum powers in excess of 175 mW. Single longitudinal and transverse mode operation is maintained to powers in excess of 110 mW CW.

  7. Photovoltaics for high capacity space power systems (United States)

    Flood, Dennis J.


    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  8. Recent progress in high power ultrafast MIXSELs (United States)

    Alfieri, C. G. E.; Waldburger, D.; Link, S. M.; Gini, E.; Golling, M.; Tilma, B. W.; Mangold, M.; Keller, U.


    The modelocked integrated external-cavity surface emitting laser (MIXSEL) is the most compact technology of ultrafast semiconductor disk laser, combining in the same epitaxial structure an active region and a saturable absorber for stable and self-starting passive modelocking in a linear straight cavity. Here we present the first MIXSEL structure able to produce sub-300-fs pulses at an average output power of 235 mW and 3.35 GHz pulse repetition rate, resulting in a record-high peak power of 240 W. At 10 GHz repetition rate the same MIXSEL generated 279-fs pulses with 310 mW of average output power. An optimized antireflection coating for dispersion minimization together with a reduced field enhancement inside the structure enabled the sensible improvement and the record performances of this novel MIXSEL. Furthermore, thanks to the development of suitable saturable absorbers with fast recovery dynamics and low saturation fluence, we demonstrate the first entirely MOVPE-grown MIXSEL.

  9. Improved superconducting properties of MgB2 thin films fabricated by ultrasonic spray pyrolysis method at high temperature (United States)

    Yakinci, M. Eyyuphan; Yakinci, Z. Deniz; Aksan, M. Ali; Balci, Yakup


    High quality MgB2 superconducting thin films have been successfully prepared by 2.4 MHz ultrasonic spray pyrolysis (USP) system on single crystal Al2O3 (0 0 1) substrates. The microstructure, electrical and magnetic properties of approximately 500-600 nm thick films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with the energy dispersive X-ray analysis (EDX), resistance versus temperature (R-T) and magnetization measurements (M-H) under different magnetic fields and transport critical current density (Jc). Films were first heat treated in situ in the spraying chamber with an extra Mg powder during deposition to compensate excess evaporation of Mg from the films and then additionally heat treated in Ar atmosphere at 700 °C for a short time. According to the results obtained, orientation on any particular direction for the crystal growth was not seen. Homogeneous, highly dense and highly smooth surface morphology and low resistance have been achieved under optimum conditions. Optimally treated films exhibited relatively high transport critical current density of 2.37 × 105 A cm-2. These results have been also compared with the Jcmag results calculated from the M-H curves. The electrical resistance property of the best samples was obtained to be 39.5 and 37.4 K for Tc and Tzero, respectively.

  10. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication. (United States)

    Xiao, Shaoliang; Gao, Runan; Gao, LiKun; Li, Jian


    This work was aimed at fabricating and characterizing poly(vinyl alcohol) films that were reinforced by nanofibrillated corn husk celluloses using a combination of chemical pretreatments and ultrasonication. The obtained nanofibrillated celluloses (NFCs) possessed a narrow width ranging from 50 to 250 nm and a high aspect ratio (394). The crystalline type of NFC was cellulose I type. Compared with the original corn husks, the NCF crystallinity and thermal stability increased due to the removal of the hemicelluloses and lignin. PVA films containing different NFC concentrations (0.5%, 1%, 3%, 5%, 7% and 9%, w/w, dry basis) were examined. The 1% PVA/NFC reinforced films exhibited a highly visible light transmittance of 80%, and its tensile strength and the tensile strain at break were increased by 1.47 and 1.80 times compared to that of the pure PVA film, respectively. The NFC with high aspect ratio and high crystallinity is beneficial to the improvement of the mechanical strength and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. High-power converters and AC drives

    CERN Document Server

    Wu, Bin


    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  12. Low power, scalable multichannel high voltage controller (United States)

    Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX


    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  13. Computer-aided ultrasonic inspection of steam turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H.; Weber, M.; Weiss, M. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)


    As the output and economic value of power plants increase, the detection and sizing of the type of flaws liable to occur in the rotors of turbines using ultrasonic methods assumes increasing importance. An ultrasonic inspection carried out at considerable expense is expected to bring to light all safety-relevant flaws and to enable their size to be determined so as to permit a fracture-mechanics analysis to assess the reliability of the rotor under all possible stresses arising in operation with a high degree of accuracy. The advanced computer-aided ultrasonic inspection of steam turbine rotors have improved reliability, accuracy and reproducibility of ultrasonic inspection. Further, there has been an improvement in the resolution of resolvable group indications by applying reconstruction and imagine methods. In general, it is also true for the advanced computer-aided ultrasonic inspection methods that, in the case of flaw-affected forgings, automated data acquisition provides a substantial rationalization and a significant documentation of the results for the fracture mechanics assessment compared to manual inspection. (orig.) 8 refs.

  14. Ultrasonic meters in the feedwater flow to recover thermal power in the reactor of nuclear power plant of Laguna Verde U1 and U2; Medidores ultrasonicos en el flujo de agua de alimentacion para recuperar potencia termica en el reactor de la Central Nuclear Laguna Verde U1 and U2

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F. [CFE, Central Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)]. e-mail:


    The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)

  15. Towards non-invasive high-resolution 3D nano-tomography by ultrasonic scanning probe microscopy (United States)

    Sharahi, Hossein J.; Shekhawat, Gajendra; Dravid, Vinayak; Egberts, Philip; Kim, Seonghwan


    Nanoscale imaging techniques that can be used to visualize and characterize local aggregations of the embedded nanoparticulates with sufficient resolution have attracted a great deal of interest. Ultrasonic scanning probe microscopy (SPM) and its derivatives are nondestructive techniques that can be used to elucidate subsurface nanoscale features and mechanical properties. Although many different ultrasonic methods have been used for subsurface imaging, the mechanisms and crucial parameters associated with the contrast formation in subsurface imaging are still unclear. Here, the impact of mechanical properties of the nanoparticulates/matrix, size of the nanoparticulates, buried depth of the nanoparticulates, and the ultrasonic excitation frequency on the developed ultrasonic SPM images have been investigated. To verify our theoretical model, experimental measurements of scanning near-field ultrasound holography (SNFUH) have been recreated in our theoretical analysis to reveal comparable variations in phase contrast measured in SNFUH while scanning over the nanoparticulates embedded in bacteria.

  16. Ultrasonic Transducer Irradiation Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Paul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States); Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States); Rempe, Joy [Rempe and Associates, Idaho Falls, ID (United States)


    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  17. Fibrous zinc anodes for high power batteries (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  18. Design of motion adjusting system for space camera based on ultrasonic motor (United States)

    Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan


    Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.

  19. High Pressure Microwave Powered UV Light Sources (United States)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.


    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  20. Design and characterization of a novel power over fiber system integrating a high power diode laser (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry


    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  1. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion (United States)

    Sommerer, Timothy J.


    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  2. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified...

  3. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)


    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  4. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens


    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  5. High-Power Helicon Double Gun Thruster (United States)

    Murakami, Nao

    While chemical propulsion is necessary to launch a spacecraft from a planetary surface into space, electric propulsion has the potential to provide significant cost savings for the orbital transfer of payloads between planets. Due to extended wave particle interactions, a plasma thruster that can operate in the 100 kW to several MW power regime can only be attained by increasing the size of the thruster, or by using an array of plasma thrusters. The High-Power Helicon (HPH) Double Gun thruster experiment examines whether firing two helicon thrusters in parallel produces an exhaust velocity higher than the exhaust velocity of a single thruster. The scaling law that relates the downstream plasma velocity with the number of helicon antennae is derived, and compared with the experimental result. In conjunction with data analysis, two digital filtering algorithms are developed to filter out the noise from helicon antennae. The scaling law states that the downstream plasma velocity is proportional to square root of the number of helicon antennae, which is in agreement with the experimental result.

  6. Temperature measurements of high power LEDs (United States)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei


    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  7. Innovations in high power fiber laser applications (United States)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank


    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  8. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao; 10.1103/PhysRevSTAB.10.091001


    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  9. High power solid state laser modulator (United States)

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.


    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  10. Large scale production of highly-qualified graphene by ultrasonic exfoliation of expanded graphite under the promotion of (NH4)2CO3 decomposition. (United States)

    Wang, Yunwei; Tong, Xili; Guo, Xiaoning; Wang, Yingyong; Jin, Guoqiang; Guo, Xiangyun


    Highly-qualified graphene was prepared by the ultrasonic exfoliation of commercial expanded graphite (EG) under the promotion of (NH4)2CO3 decomposition. The yield of graphene from the first exfoliation is 7 wt%, and it can be increased to more than 65 wt% by repeated exfoliations. Atomic force microscopy, x-ray photoelectron spectroscopy and Raman analysis show that the as-prepared graphene only has a few defects or oxides, and more than 95% of the graphene flakes have a thickness of ~1 nm. The electrochemical performance of the as-prepared graphene is comparable to reduced graphene oxide in the determination of dopamine (DA) from the mixed solution of ascorbic acid, uric acid and DA. These results show that the decomposition of (NH4)2CO3 molecules in the EG layers under ultrasonication promotes the exfoliation of graphite and provides a low-priced route for large scale production of highly-quality graphene.

  11. High-temperature alloys for high-power thermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang S.; Jacobson, D.L.; D' cruz, L.; Luo, Anhua; Chen, Bor-Ling.


    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  12. Facet engineering of high power single emitters (United States)

    Yanson, Dan; Levi, Moshe; Shamay, Moshe; Tesler, Renana; Rappaport, Noam; Don, Yaroslav; Karni, Yoram; Schnitzer, Itzhak; Sicron, Noam; Shusterman, Sergey


    The ever increasing demand for high-power, high-reliability operation of single emitters at 9xx nm wavelengths requires the development of laser diodes with improved facet regions immune to both catastrophic and wear-out failure modes. In our study, we have evaluated several laser facet definition technologies in application to 90 micron aperture single emitters in asymmetric design (In)GaAs/AlGaAs based material emitting at 915, 925 and 980nm. A common epitaxy and emitter design makes for a straightforward comparison of the facet technologies investigated. Our study corroborates a clear trend of increasing difficulty in obtaining reliable laser operation from 980nm down to 915nm. At 980nm, one can employ dielectric facet passivation with a pre-clean cycle delivering a device lifetime in excess of 3,000 hours at increasing current steps. At 925nm, quantum-well intermixing can be used to define non-absorbing mirrors giving good device reliability, albeit with a large efficiency penalty. Vacuum cleaved emitters have delivered excellent reliability at 915nm, and can be expected to perform just as well at 925 and 980nm. Epitaxial regrowth of laser facets is under development and has yet to demonstrate an appreciable reliability improvement. Only a weak correlation between start-of-life catastrophic optical mirror damage (COMD) levels and reliability was established. The optimized facet design has delivered maximum powers in excess of 19 MW/ (rollover limited) and product-grade 980nm single emitters with a slope efficiency of >1 W/A and a peak efficiency of >60%. The devices have accumulated over 1,500 hours of CW operation at 11W. A fiber-coupled device emits 10W ex-fiber with 47% efficiency.

  13. Inorganic plugs removal using ultrasonic waves (United States)

    Khan, Nasir; Pu, Chunsheng; Xu, Li; Lei, Zhang


    It is essential to recover the lost productivity caused by formation damage in the proximity of the wellbore during different well operations. In comparison to conventionally used methods, the efficiency, reliability, environment friendly, and simple and convenient technique of ultrasonic waves make it more attractive in petroleum industries. In current study, ultrasonic waves were applied to mitigate the formation damage caused by deposition of calcium carbonate (CaCO3) nearby well bore. Results showed that 100 minutes exposure time could efficiently recover 38.1% of original productivity but further increase in irradiation time (120mins) would decrease the recovery to 37.1%. This aberration can be attributed to the particle-bridge formation formed by larger particles at later stages and tendency of acoustic wave to push back the fluid flow. Moreover, ultrasonic waves transducer#2 (Frequency 20KHz and Power 1000W) could recovery maximum recovery of 36.3%, however, high frequency transducer was not effective in this recovery. This inorganic removal can be attributed to the cavitation and thermal energy produced through three different ways including cavitation, boundary friction and transformation upon hitting the medium.

  14. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter


    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits use...


    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Saravanan; Kuczynska, Agnieszka; Hume, Scott; Mulgundmath, Vinay; Freeman, Charles; Bearden, Mark; Remias, Joe; Ambedkar, Balraj; Salmon, Sonja; House, Alan


    The results of the preliminary techno-economic assessment for integrating a process utilizing low-energy solvents for carbon dioxide (CO2) capture enabled by a combination of enzymes and ultrasonics with a subcritical pulverized coal (PC) power plant are presented. Four cases utilizing the enzyme-activated solvent are compared using different methodologies of regeneration against the DOE/NETL reference MEA case. The results are shown comparing the energy demand for post-combustion CO2 capture and the net higher heating value (HHV) efficiency of the power plant integrated with the post-combustion capture (PCC) plant. A levelized cost of electricity (LCOE) assessment was performed showing the costs of the options presented in the study. The key factors contributing to the reduction of LCOE were identified as enzyme make-up rate and the capability of the ultrasonic regeneration process. The net efficiency of the integrated PC power plant with CO2 capture changes from 24.9% with the reference Case 10 plant to between 24.34% and 29.97% for the vacuum regeneration options considered, and to between 26.63% and 31.41% for the ultrasonic regeneration options. The evaluation also shows the effect of the critical parameters on the LCOE, with the main variable being the initial estimation of enzyme dosing rate. The LCOE ($/MWh) values range from 112.92 to 125.23 for the vacuum regeneration options and from 108.9 to 117.50 for the ultrasonic regeneration cases considered in comparison to 119.6 for the reference Case 10. A sensitivity analysis of the effect of critical parameters on the LCOE was also performed. The results from the preliminary techno-economic assessment show that the proposed technology can be investigated further with a view to being a viable alternative to conventional CO2 scrubbing technologies.

  16. Design and Manufacture an Ultrasonic Dispersion System with Automatic Frequency Adjusting Property

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM


    Full Text Available This paper a novel ultrasonic dispersion system for the cleaning application or dispersing of particles which are mixed in liquid has been proposed. The frequency band of designed system is 30 kHz so that the frequency of ultrasonic wave sweeps from 30 kHz to 60 kHz with 100 Hz steps. One of the superiority of manufactured system in compare with the other similar systems which are available in markets is that this system can transfer the maximum and optimum energy of ultrasonic wave inside the liquid tank with the high efficiency in the whole of the usage time of the system. The used ultrasonic transducers in this system as the generator of ultrasonic wave is the type of air coupled ceramic ultrasonic piezoelectric with the nominal maximum power 50 Watt. The frequency characteristic of applied piezoelectric is that it produces the maximum amplitude of ultrasonic wave on the resonance frequency, so this system is designed to work on resonance frequency of piezoelectric, continuously. This is done by the use of control system which is consisted of two major parts, sensing part and controlling part. The manufactured ultrasonic dispersion system is consisted of 9 piezoelectrics so that it can produce 450 watt ultrasonic energy, totally. The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  17. Switching transients in high-frequency high-power converters using power MOSFET's (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.


    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  18. Comparing and studying crack formation during apical cavity preparation using ultrasonic instruments

    Directory of Open Access Journals (Sweden)

    Zarrabian M.


    Full Text Available One of the major goals of periradicular surgery is to create a good apical sea! at the apex. This"nis done by sectioning of 2 to 3mm from the apex, preparation of a class I cavity and filling with a"nbiocompatible material."nThe purpose of this in vitro study was to determine whether ultrasonic units used for root end"npreparations could change the surface & structure of resected root ends, as competed to common"nmethods of retropreparation. Eighty-five extracted single rooted teeth were divided into five similar"ngroups. Then instrumented and filled with lateral condensation method. Then three millimeter of apex"nwas resected, retropreparaiions in two groups were done with low speed handpiece and round V ^ur"nand cavities in two other groups prepared with the highest power of dentspiay ultrasonic unit with TFI-"n10 tip and in one other group prepared with the highest power of neo sonic ultrasonic unit with diamond"ncoated CT-1 retro tip."nFollowing root resection and retropreparation the surface of resected root ends were examined for the"npresence of any cracks or structural changes on the surface of resected root ends with stereo microscope"n50x."nThe results of this study showed thai high power settings of ultrasonic units can increase the potential of"ncrack formation on resected root surfaces. In conclusion it is better to use low power setting of ultrasonic"nfor retropreparation.

  19. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.


    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  20. Stand-Alone Front-End System for High-Frequency, High-Frame-Rate Coded Excitation Ultrasonic Imaging (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K. Kirk


    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 Vpp. The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO3) single-element lightweight (<0.28 g) transducers were utilized. The wire target measurement showed that the −6-dB axial resolution of a chirp-coded excitation was 50 µm and lateral resolution was 120 µm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation. PMID:23443698

  1. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M


    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  2. Using Self-Reliance Factors to Decide How to Share Control Between Human Powered Wheelchair Drivers and Ultrasonic Sensors. (United States)

    Sanders, David A


    A shared-control scheme for a powered wheelchair is presented. The wheelchair can be operated by a wheelchair driver using a joystick, or directed by a sensor system, or control can be combined between them. The wheelchair system can modify direction depending on the local environment. Sharing the control allows a disabled wheelchair driver to drive safely and efficiently. The controller automatically establishes the control gains for the sensor system and the human driver by calculating a self-reliance factor for the wheelchair driver. The sensor system can influence the motion of the wheelchair to compensate for some deficiency in a disabled driver. Practical tests validate the proposed techniques and designs.

  3. Controlled Compact High Voltage Power Lines


    Postolati V.; Bycova Е.; Suslov V.; Timashova L.; Shakarian Yu.; Kareva S.


    Nowadays modern overhead transmission lines (OHL) constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL), appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced ...

  4. Inactivation, aggregation, secondary and tertiary structural changes of germin-like protein in Satsuma mandarine with high polyphenol oxidase activity induced by ultrasonic processing. (United States)

    Huang, Nana; Cheng, Xi; Hu, Wanfeng; Pan, Siyi


    The inhibition of Polyphenol oxidase (PPO) in plants has been widely researched for their important roles in browning reaction. A newly found germin-like protein (GLP) with high PPO activity in Satsuma mandarine was inactivated by low-frequency high-intensity ultrasonic (20 kHz) processing. The effects of ultrasound on PPO activity and structure of GLP were investigated using dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM), circular dichroism (CD) spectral measurement and fluorescence spectral measurement. The lowest PPO activity achieved was 27.4% following ultrasonication for 30 min at 400 W. DLS analysis showed ultrasound caused both aggregation and dissociation of GLP particles. TEM images also demonstrated protein aggregation phenomena. CD spectra exhibited a certain number of loss in α-helix structure content. Fluorescence spectra showed remarkable increase in fluorescence intensity with tiny blue-shift following ultrasonication. In conclusion, ultrasound applied in this study induced structural changes of GLP and eventually inactivated PPO activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming


    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...

  6. Studies on an ultrasonic atomization feed direct methanol fuel cell. (United States)

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao


    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Utilization of Ultrasonic Consolidation in Fabricating Satellite Decking


    George, Joshua L.


    A fundamental investigation of the use of ultrasonic consolidation (UC) to produce deck panels for small satellites was undertaken. Several fabrication methods for producing structural panels and decking were analyzed. Because of its ability to create aluminum objects in an additive fashion, and at near-room temperatures, UC was found to be a powerful solution for creating highly integrated and modular satellite panels. It also allowed a lightweight and stiff deck to be fabricated without the...

  8. Technical Letter Report - Analysis of Ultrasonic Data on Piping Cracks at Ignalina Nuclear Power Plant Before and After Applying a Mechanical Stress Improvement Process, JCN-N6319, Task 2

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Cumblidge, Stephen E.; Crawford, Susan L.


    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in piping systems previously analyzed for leak-before-break (LBB). Part of this work involves determining whether inspections alone are sufficient or if inspections plus mitigation techniques are needed. The work described in this report addresses the reliability of ultrasonic phased-array (PA) examinations for inspection of cracks that have been subjected to the mitigation method of mechanical stress improvement process (MSIP). It is believed that stresses imparted during MSIP may make ultrasonic crack responses in piping welds more difficult to detect and accurately characterize. To explore this issue, data were acquired, both before and after applying MSIP, and analyzed from cracked areas in piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. This work was performed under NRC Project JCN-N6319, PWSCC in Leak-Before-Break Systems.

  9. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation


    Hojong Choi; Park Chul Woo; Jung-Yeol Yeom; Changhan Yoon


    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reduci...

  10. Power Moves Beyond Complementarity: A Staring Look Elicits Avoidance in Low Power Perceivers and Approach in High Power Perceivers (United States)

    Weick, Mario; McCall, Cade; Blascovich, Jim


    Sustained, direct eye-gaze—staring—is a powerful cue that elicits strong responses in many primate and nonprimate species. The present research examined whether fleeting experiences of high and low power alter individuals’ spontaneous responses to the staring gaze of an onlooker. We report two experimental studies showing that sustained, direct gaze elicits spontaneous avoidance tendencies in low power perceivers and spontaneous approach tendencies in high power perceivers. These effects emerged during interactions with different targets and when power was manipulated between-individuals (Study 1) and within-individuals (Study 2), thus attesting to a high degree of flexibility in perceivers’ reactions to gaze cues. Together, the present findings indicate that power can break the cycle of complementarity in individuals’ spontaneous responding: Low power perceivers complement and move away from, and high power perceivers reciprocate and move toward, staring onlookers. PMID:28903712

  11. Test of a High Power Target Design

    CERN Multimedia


    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  12. The SPES High Power ISOL production target (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.


    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  13. High Precision Current Measurement for Power Converters

    CERN Document Server

    Cerqueira Bastos, M


    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  14. An ultrasonic technique for measuring stress in fasteners (United States)

    Stevens, K. J.; Day, P.; Byron, D.


    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring the stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.

  15. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A


    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  16. Radiation of long and high power arcs (United States)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.


    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  17. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V


    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  18. High-power converters for space applications (United States)

    Park, J. N.; Cooper, Randy


    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  19. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence (United States)


    power. The PPSLT chip was placed in a home-made mount whose temperature was controlled with a thermo- electric cooler (TEC) and monitored with a...main optical damage mechanisms need to be assessed when dealing with cw lasers, namely (1) optical surface damage arising from the high electric ...Yuen, H. P. Bae, M. A. Wistey, A. Moto , and J. S. Harris Jr., "Enhanced Luminescence in GaInNAsSb Quantum Wells Through Variation of the Arsenic and

  20. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe


    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... demand is chosen as the studied case. The results show that an optimal operation of PEV in both spot market and regulation market can not only decrease the energy costs for PEV owners, but also significantly decrease the power deviations between West Denmark and Union for the Coordination of Electricity...

  1. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger


    to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable....... This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...

  2. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting–receiving system in the presence of intense high frequency (a few MHz) ...

  3. Power MOSFET-diode-based limiter for high-frequency ultrasound systems. (United States)

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk


    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  4. Thermoelectric Powered High Temperature Wireless Sensing (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  5. Solvent extraction of cadmium and zinc from sulphate solutions: Comparison of mechanical agitation and ultrasonic irradiation. (United States)

    Daryabor, Mahboubeh; Ahmadi, Ali; Zilouei, Hamid


    This research was conducted to evaluate the potential of ultrasonic irradiation during the solvent extraction of metals, and comparing its efficiency with a mechanically stirred system (MSSX). The simultaneous extraction of zinc and cadmium from sulphate solutions was investigated by di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an organic extractant which was diluted (20%) in kerosene at the organic: aqueous phase ratio of 1:1 and the temperature of 25°C. The influence of some critical parameters, including contact time, solution pH, ultrasonic power, and zinc/cadmium ratio were investigated on the extraction of the metals. Results show that D2EHPA selectively extract zinc rather than cadmium in both mechanically and ultrasonically mixed systems. It was also found that increase of ultrasonic power from 10 to 120W cause a small decrease in zinc extraction; while, at low and high levels of the induced power, cadmium extraction was significantly decreased. Results also show that maximum extraction amounts of zinc (88.7%) and cadmium (68.2%) by the MSSX system occurred at the pH of 3 and the contact times of 3 and 20min, respectively. Although capability of extraction in the ultrasonically assisted solvent extraction (USAX) system for both metals was higher, the selectivity was lower than that of MSSX system under different conditions especially in high zinc/cadmium ratios. It can be concluded that physical effects (i.e. mixing) inducing at low ultrasonic powers (below 60W) mainly results in increasing solvent extraction rate, while the chemical actions applied at the higher powers have a negative outcome on the extraction rate particularly for cadmium. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer (United States)

    Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk


    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm−1 MHz−1 corresponding to an increase in Young’s modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse–echo test showed that a good performance in sensitivity was maintained after the vibration test. PMID:19759408

  7. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.-C. [Department of Electronic Engineering, Fu Jen Catholic University, Taipei 24205, Taiwan (China); Chen Ruimin; Zhou Qifa; Shung, K Kirk [NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Tsui, P.-H. [Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Humayun, Mark S [Doheny Retina Institute, Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)], E-mail:


    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 {+-} 0.02 to 0.520 {+-} 0.06 dB mm{sup -1} MHz{sup -1} corresponding to an increase in Young's modulus from 6 {+-} 0.4 to 96 {+-} 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  8. Unique Power Dense, Configurable, Robust, High-Voltage Power Supplies Project (United States)

    National Aeronautics and Space Administration — Princeton Power will develop and deliver three small, lightweight 50 W high-voltage power supplies that have a configurable output voltage range from 500 to 50 kVDC....

  9. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.


    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  10. A High Power Frequency Doubled Fiber Laser (United States)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute


    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  11. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhihua; Zou, Qingze, E-mail: [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States); Tan, Jun; Jiang, Wei [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)


    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the “writing” (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the “writing” speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be

  12. Advanced Capacitors for High-Power Applications Project (United States)

    National Aeronautics and Space Administration — As the consumer and industrial requirements for compact, high-power-density, electrical power systems grow substantially over the next decade; there will be a...

  13. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment

    Directory of Open Access Journals (Sweden)

    Gatsa O.


    In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor device operating at high temperature level (400°. Piezoelectric parameters enhancement and loss reduction at elevated temperatures are envisaged to be optimized. Further sensor development and test in MTR are expected to be realized in the near future.

  14. Effect of microplastic deformation on the electron ultrasonic absorption in high-purity molybdenum monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal' -Val' , P.P.; Kaufmann, Kh.J.


    The low temperature (100-6 K) linear absorption of ultrasound (88 kHz) by high purity molybdenum single crystals have been studied. Both unstrained samples and samples sub ected to microplastic deformation (epsilon<=0.45%) were used. Unstrained samples displayed at T<30 K a rapid increase in the absorption with lowering temperature which is interpreted as an indication of electron viscosity due to electron-phonon collisions. After deformation this part of absorption disappeared. This seems to suggest that microplastic deformation brings about in the crystal a sufficiently large number of defects that can compete with phonons in restricting the electron mean free path. A low temperature dynamic annealing has been revealed in strained samples, that is almost complete recovery of the absorption nature under irradiation with high amplitude sound, epsilon/sub 0/ approximately 10/sup -4/, during 10 min, at 6 K. A new relaxation peak of absorption at 10 K has been found in strained samples.

  15. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk


    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  16. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei


    Power system restoration is very significant for the operation reliability. Although a totally blackout in today's power system rarely happens, the operators still have to make the restoration strategies in advance by using their experience or some strategy supportive systems. Nowadays, as distri...... System. The testing system was modified by replacing traditional generators with wind farms to create a high wind penetration system....... and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration...

  17. Three-dimensional high-resolution ultrasonic imaging of the eye (United States)

    Silverman, Ronald H.; Lizzi, Frederick L.; Kalisz, Andrew; Coleman, D. J.


    Very high frequency (50 MHz) ultrasound provides spatial resolution on the order of 30 microns axially by 60 microns laterally. Our aim was to reconstruct the three-dimensional anatomy of the eye in the full detail permitted by this fine- scale transducer resolution. We scanned the eyes of human subjects and anesthetized rabbits in a sequence of parallel planes 50 microns apart. Within each scan plane, vectors were also spaced 50 microns apart. Radio-frequency data were digitized at a rate of 250 MHz or higher. A series of spectrum analysis and segmentation algorithms was applied to data acquired in each plane; the outputs of these procedures were used to produce color-coded 3-D representations of the sclera, iris and ciliary processes to enhance 3-D volume rendered presentation. We visualized the radial pattern of individual ciliary processes in humans and rabbits and the geodetic web of supporting connections between the ciliary processes and iris that exist only in the rabbit. By acquiring data such that adjacent vectors and planes are separated by less than the transducer's lateral resolution, we were able to visualize structures, such as the ciliary web, that had not been seen before in-vivo. Our techniques offer the possibility of high- precision imaging and measurement of anterior segment structures. This would be relevant in monitoring of glaucoma, tumors, foreign bodies and other clinical conditions.

  18. Comparison of high definition oscillometric and Doppler ultrasonic devices for measuring blood pressure in anaesthetised cats. (United States)

    Petric, Aleksandra Domanjko; Petra, Zrimsek; Jerneja, Sredensek; Alenka, Seliskar


    Indirect blood pressure measurements using high definition oscillometric (HDO) and Doppler devices were compared in 50 anaesthetised client-owned cats presented for various surgical procedures. Sites of cuff placement for Doppler were identified as forelimb and hindlimb and for HDO as forelimb and tail. Oscillometric and Doppler readings were obtained in 90.05% and 100% of attempts, respectively. Both devices enabled precise measurement of systolic arterial pressure (SAP), although the Doppler device gave higher precision. In the low pressure group (SAP150 mmHg; n=62), 86.7% and 75.0% of discrepancy, respectively, were lower than 10 mmHg. Frequency of discrepancy at the range of 15 mmHg showed similar differences between pressure groups. There were significantly higher discrepancies when the cuff was positioned on the tail rather than on the leg. The SAP value obtained by HDO can be calculated from the Doppler measurement from SAP (HDO)=0.8515 × SAP (Doppler)+19.221 mmHg. Compared to Doppler, HDO overestimated low pressure and underestimated high pressure values. Copyright © 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  19. 21 CFR 892.1540 - Nonfetal ultrasonic monitor. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonfetal ultrasonic monitor. 892.1540 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1540 Nonfetal ultrasonic monitor. (a) Identification. A nonfetal ultrasonic monitor is a device that projects a continuous high-frequency sound wave...

  20. Systematic Approach for Design of Broadband, High Efficiency, High Power RF Amplifiers

    National Research Council Canada - National Science Library

    Mohadeskasaei, Seyed Alireza; An, Jianwei; Chen, Yueyun; Li, Zhi; Abdullahi, Sani Umar; Sun, Tie


    ...‐AB RF amplifiers with high gain flatness. It is usually difficult to simultaneously achieve a high gain flatness and high efficiency in a broadband RF power amplifier, especially in a high power design...

  1. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    Normally power opamps can deliver current more than 50 mA and can operate on the supply voltage more than ±25 V. This paper gives the details of one of the power opamps developed to drive the Piezo Actuators for Active Vibration Control (AVC) of aircraft/aerospace structures. The designed power opamp will work on ...

  2. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)


    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  3. Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves. (United States)

    Xu, Kailiang; Minonzio, Jean-Gabriel; Ta, Dean; Hu, Bo; Wang, Weiqi; Laugier, Pascal


    The 2-D Fourier transform analysis of multichannel signals is a straightforward method to extract the dispersion curves of guided modes. Basically, the time signals recorded at several positions along the waveguide are converted to the wavenumber-frequency space, so that the dispersion curves (i.e., the frequency-dependent wavenumbers) of the guided modes can be extracted by detecting peaks of energy trajectories. In order to improve the dispersion curve extraction of low-amplitude modes propagating in a cortical bone, a multiemitter and multireceiver transducer array has been developed together with an effective singular vector decomposition (SVD)-based signal processing method. However, in practice, the limited number of positions where these signals are recorded results in a much lower resolution in the wavenumber axis than in the frequency axis. This prevents a clear identification of overlapping dispersion curves. In this paper, a sparse SVD (S-SVD) method, which combines the signal-to-noise ratio improvement of the SVD-based approach with the high wavenumber resolution advantage of the sparse optimization, is presented to overcome the above-mentioned limitation. Different penalty constraints, i.e., l1 -norm, Frobenius norm, and revised Cauchy norm, are compared with the sparse characteristics. The regularization parameters are investigated with respect to the convergence property and wavenumber resolution. The proposed S-SVD method is investigated using synthetic wideband signals and experimental data obtained from a bone-mimicking phantom and from an ex-vivo human radius. The analysis of the results suggests that the S-SVD method has the potential to significantly enhance the wavenumber resolution and to improve the extraction of the dispersion curves.

  4. Performance demonstration and personnel qualification for ultrasonic examination in service inspection of nuclear power plants; Ultraaeaenitestauksen menetelmaekokeet ja henkiloestoen paetevoeinti ydinvoimalaitosten maeaeraeaikaistarkastuksissa

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaeae, J.; Saerkiniemi, P.


    The ASME Code section XI (App. VII and VIII) requires that ultrasonic examination procedures, equipment and personnel used to detect and size flaws in reactor vessels, piping welds, bolts and studs shall be qualified by performance demonstration. The requirements for the qualifications of ultrasonic testing personnel and also the requirements for specimens, rules for the conduct of performance demonstrations and acceptance criteria have been clarified in this report. The preparation for these requirements is in progress and the situation in different countries e.g. US and England has been discussed. Also the possibilities to fulfill the requirements of Appendix VIII in Finland are dealt with. (29 refs., 7 figs., 5 tabs.).

  5. Design of signal reception and processing system of embedded ultrasonic endoscope (United States)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin


    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  6. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift. (United States)

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa


    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. © 2015 by the Society for Personality and Social Psychology, Inc.

  7. New high power CW klystrons at TED

    CERN Document Server

    Beunas, A; Marchesin, R


    Thales Electron Devices (TED) has been awarded a contract by CERN to develop and produce 20 units of the klystrons needed to feed the Large Hadrons Collider (LHC). Each of these delivers 300 kW of CW RF power at 400 MHz. Three klystrons have been delivered to CERN up to now.

  8. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes


    -Port-Converters respectively for 1-10Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power for the 10 Wp version. Furthermore, a modelling tool for L2L products has been developed and a laboratory for feeding in component data not available in the datasheets to the model is described....

  9. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    -Port-Converters respectively for 1-10Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power for the 10 Wp version. Furthermore, a modelling tool for L2L products has been developed and a laboratory for feeding in component data not available in the datasheets to the model is described....

  10. High power for rotors; Rotor unter Starkstrom

    Energy Technology Data Exchange (ETDEWEB)

    Marter, H.J.


    Tidal energy is going strong: A new tidal power plant is projected off the coast of southern England. Of the envisaged underwater rotors, one has been installed for test purposes. (orig.) [German] Wellenenergie ist en vogue: Vor der Kueste Suedenglands wird ein neuartiges Tidenkraftwerk getestet. Die starke Stroemung soll maechtige Unterwasser-Rotoren antreiben. Zum Test dreht sich erst einmal nur einer. (orig.)

  11. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation (United States)

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng


    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.

  12. High specific power flexible integrated IMM photovoltaic blanket Project (United States)

    National Aeronautics and Space Administration — Originally designed for space applications, multi-junction solar cells have a high overall power conversion efficiency (>30%) which compares favorably to...

  13. High Efficiency Hall Thruster Discharge Power Converter Project (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  14. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole


    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  15. Design High Efficiency PWM Boost Converter for Wind Power Generation

    National Research Council Canada - National Science Library



    ...; it is offer high efficiency performance andprovides power management circuit designers with theability to approach a broad range of designapplications with flexible and easy-to-implementsolutions...

  16. High Efficiency Thermoelectric Radioisotope Power Systems (United States)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry


    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  17. Simultaneous high-pressure high-temperature elastic velocity measurement system up to 27 GPa and 1873 K using ultrasonic and synchrotron X-ray techniques (United States)

    Higo, Yuji; Irifune, Tetsuo; Funakoshi, Ken-ichi


    A new pulse-echo interferometry system has been developed for measurements of sound velocity at simultaneous high pressure and temperature corresponding to those of the Earth's lower mantle, using synchrotron X-ray techniques at SPring-8. A combination of a low-noise high-frequency amplifier and a high-speed solid-state relay system allowed us to clearly detect the ultrasonic echoes of a small sample (<1.0 mm in diameter and length) in multi-anvil apparatus. A new high-pressure cell has also been introduced for precise measurement of the length of the tiny sample by X-ray radiography imaging under very high pressure and temperature. The new system was tested by measuring elastic velocities of α-Al2O3 over wide pressure and temperature ranges of up to 27 GPa and 1873 K, respectively. The resultant adiabatic bulk modulus, shear modulus, and pressure and temperature derivatives of α-Al2O3 are K0S = 251.2 (18) GPa, ∂ KS/∂ P = 4.21 (10), ∂ KS/∂ T = -0.025 (1), G = 164.1 (7), ∂ G/∂ P = 1.59 (3), ∂ G/∂ T = -0.021 (1). These values are consistent with those previously reported based on experiments at high temperatures at ambient pressure and high pressures at room temperature. The present system allows precise measurements of the elastic velocities of minerals under the pressures and temperatures corresponding to the lower mantle for the first time, which should greatly contribute to our understanding of mineralogy of the whole mantle.

  18. Sexual aggression when power is new: Effects of acute high power on chronically low-power individuals. (United States)

    Williams, Melissa J; Gruenfeld, Deborah H; Guillory, Lucia E


    Previous theorists have characterized sexually aggressive behavior as an expression of power, yet evidence that power causes sexual aggression is mixed. We hypothesize that power can indeed create opportunities for sexual aggression-but that it is those who chronically experience low power who will choose to exploit such opportunities. Here, low-power men placed in a high-power role showed the most hostility in response to a denied opportunity with an attractive woman (Studies 1 and 2). Chronically low-power men and women given acute power were the most likely to say they would inappropriately pursue an unrequited workplace attraction (Studies 3 and 4). Finally, having power over an attractive woman increased harassment behavior among men with chronic low, but not high, power (Study 5). People who see themselves as chronically denied power appear to have a stronger desire to feel powerful and are more likely to use sexual aggression toward that end. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Design High Efficiency PWM Boost Converter for Wind Power Generation




    The uses of renewable power source toprovide electric power as an alternative become amajor consideration than the costly classical powersources. However, due to research on very lowmaintenancedesigns, small wind turbines becomingmore popularity than economical ways to bring thebenefits of power production to home.The efficiency, size, and cost are the primaryadvantages of switching DC-DC boost powerconverters; it is offer high efficiency performance andprovides power management circuit desig...

  20. High-power CSI-fed induction motor drive with optimal power distribution based control (United States)

    Kwak, S.-S.


    In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM-VSI) and capacitors. Due to the PWM-VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM-VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM-VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.

  1. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen


    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... two different calorimetric measuring systems, one for power losses up to 50 W and one for power losses up to 1500 W. These differ in size and also the systems which can be analysed. The basic concept of calorimetry is discussed and the overall performance of the two systems is specified. Methods...

  2. Planar Rotary Motor Using Ultrasonic Horns (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Chang, Zensheu; Geiyer, Daniel; Allen, Phillip; Ostlund, Patrick; Bar-Cohen, Yoseph


    One of the first piezoelectric motor designs with significant rotational speeds was outlined by Barth. This device used extensional piezoelectric elements to produce a time varying force at a distance r from the center of a centrally supported disk. These extensional actuators produced micro-steps at a high frequency with the end result being macroscopic rotation of the disk and high torque. The rotation direction is controlled by the choice of the actuators and the direction of the extension about the rotor center. A recent advancement in producing pre-stressed power ultrasonic horns using flexures allows for the development of high torque ultrasonic motors based on the Barth's idea that can be fabricated in a 2D plate or in more complicated 3D structures. In addition to the pre-stress flexures the design also allows for the use of flexures to produce the rotor/horn normal force. The torque can be controlled by the number of actuators in the plane and the amplitude of the normal force. This paper will present analytical and experimental results obtained from testing prototype planar motors.

  3. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.


    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  4. Laser Cooled High-Power Fiber Amplifier


    Nemova, Galina


    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence ...

  5. Self-commutating converters for high power applications

    CERN Document Server

    Arrillaga, Jos; Watson, Neville R; Murray, Nicholas J


    For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultr

  6. Ultrasonic methods of testing austenite weld joints and identifying defects

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, V.V.; Glek, Yu.S.; Grigor' ev, M.V.; Gurvich, A.K.; Markelova, E.A.; Matynova, N.A.; Zakharov, Yu.V.


    Testing welds with an austenitic structure and determining the nature of the defect by ultrasonic methods are the most complex and urgent problems in non-destructive testing of nuclear power station equipment and in many other engineering fields. A dual-frequency method and device for ultrasonic testing of austenitic welds are described. A method is presented for identifying the defects, based on ultrasonic-wave diffraction on the defect tips.

  7. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr


    are developed through this methodology. Furthermore, the probability of reducing this frequency containment reserve requirement is investigated through this methodology with activation of different volumes and speed of frequency restoration reserve. Wind power generation for 2020 and 2030 scenarios......In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...... imbalances caused due to high penetration of wind power. An algorithm is proposed and developed to estimate the power imbalances due to wind power forecast error following activation of different operating reserves. Frequency containment reserve requirements for mitigating these power imbalances...

  8. Low reflectance high power RF load

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Mizuhara, Yosuke M.


    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  9. 3-D Printed High Power Microwave Magnetrons (United States)

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad


    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  10. Linear and nonlinear filters under high power microwave conditions

    Directory of Open Access Journals (Sweden)

    F. Brauer


    Full Text Available The development of protection circuits against a variety of electromagnetic disturbances is important to assure the immunity of an electronic system. In this paper the behavior of linear and nonlinear filters is measured and simulated with high power microwave (HPM signals to achieve a comprehensive protection against different high power electromagnetic (HPEM threats.

  11. Terahertz radiation source using a high-power industrial electron ...

    Indian Academy of Sciences (India)

    We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial ...

  12. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.


    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  13. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove


    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  14. Enhanced boron adsorption onto synthesized MgO nanosheets by ultrasonic method. (United States)

    Li, Ping; Liu, Chuang; Zhang, Li; Zheng, Shili; Zhang, Yi


    MgO nanosheets with high adsorption performance were fabricated by an ultrasonic method. It was revealed that, nest-like MgO was formed from the magnesium salt solution precipitation and further calcination. Then the nest-like MgO was exfoliated by ultrasonic waves to obtain MgO nanosheets with approximately a lateral of 200-600nm and a thickness of 10nm. Adjusting the ultrasonic time and power, the specific surface areas of MgO nanosheets could be tuned in a range of 79-168m2/g. The synthesized MgO nanosheets were used as adsorbents to remove boron from aqueous solution, and the maximum boron adsorption capacity of these MgO nanosheets reached 87mgg-1. The high uptake capability of the MgO nanosheets makes it potentially adsorbent for the removal of boron from wastewaters. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Plasma Surface Modification of Glass-Fibre-Reinforced Polyester Enhanced by Ultrasonic Irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander


    .295, 0.385 and 0.447, respectively. This indicated that the plasma treatment oxidized and roughened the GFRP surface, and the ultrasonic irradiation further enhanced the oxidation. It is concluded that plasma treatment efficiency for adhesion improvement of GFRPs is enhanced by the ultrasonic irradiation.......During atmospheric pressure plasma treatment, reactive species generated in the plasma diffuse through a boundary gas layer which is adsorbed at the material surface. Many of the reactive species become inactivated before reaching the surface due to their short lifetime. The efficiency of plasma...... treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation of the treating surface, because the delivered acoustic energy can reduce the thickness of the boundary gas layer. Here surfaces of glass-fibre-reinforced polyester (GFRP) plates were treated using an atmospheric pressure...

  16. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan


    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  17. Low power, high voltage power supply with fast rise/fall time (United States)

    Bearden, Douglas B. (Inventor)


    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  18. 1.55 Micron High Peak Power Fiber Amplifier Project (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a 1.55 micron single frequency high energy and high peak power fiber amplifier by developing an innovative...

  19. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)


    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  20. High power UV and VUV pulsed excilamps (United States)

    Tarasenko, V.; Erofeev, M.; Lomaev, M.; Rybka, D.


    Emission characteristics of a nanosecond discharge in inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was sim 45 mJ/cm^3, and the FWHM of a radiation pulse was sim 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed radiant exitance of inert gases halogenides excited by VDIAEB was sim 4.5 kW/cm^2 at efficiency up to 5.5 %.

  1. Effect on the use of ultrasonic cavitation for biodiesel production from crued Jatropha curcas L. seed oil with a high content of free fatty acid (United States)

    Worapun, Ittipon; Pianthong, Kulachate; Thaiyasuit, Prachasanti; Thinvongpituk, Chawalit


    A typical way to produce biodiesel is the transesterification of plant oils. This is commonly carried out by treating the pre-extracted oil with an appropriate alcohol in the presence of an acidic or alkaline catalyst over one or two hours in a batch reactor.Because oils and methanol are not completely miscible. It has been widely demonstrated that low-frequency ultrasonic irradiation is an effective tool for emulsifying immiscible liquids. The objective of this research is to investigate the optimum conditions for biodiesel production from crude Jatropha curcas oil with short chain alcohols by ultrasonic cavitation (at 40 kHz frequency and 400 Watt) assisted, using two step catalyst method. Usually, the crude Jatropha curcas oil has very high free fatty acid which obstructs the transesterification reaction. As a result it provides low yield of biodiesel production. In the first step, the reaction was carried out in the presence of sulfuric acid as an acid catalyst. The product was then further transesterified with potassium hydroxide in the second step. The effects of different operating parameters such as molar ratio of reactants, catalyst quantity, and operating temperature, have been studied with the aim of process optimization. It has been observed that the mass transfer and kinetic rate enhancements were due to the increase in interfacial area and activity of the microscopic and macroscopic bubbles formed. For example, the product yield levels of more than 90% have been observed with the use of ultrasonic cavitation in about 60 minutes under room temperature operating conditions.

  2. Atmospheric contamination during ultrasonic scaling

    NARCIS (Netherlands)

    Timmerman, MF; Menso, L; Steinfort, J; van Winkelhoff, AJ; van der Weijden, GA

    Objective: The aim of this study was to determine the microbial atmospheric contamination during initial periodontal treatment using a piezoelectric ultrasonic scaler in combination with either high-volume evacuation (HVE) or conventional dental suction (CDS). Methods: The study included 17

  3. Eighth CW and High Average Power RF Workshop

    CERN Document Server


    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. ( CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  4. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.


    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  5. Overview on the high power excimer laser technology (United States)

    Liu, Jingru


    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  6. High-power femtosecond Raman frequency shifter. (United States)

    Vicario, Carlo; Shalaby, Mostafa; Konyashchenko, Aleksandr; Losev, Leonid; Hauri, Christoph P


    We report on the generation of broadband, high-energy femtosecond pulses centered at 1.28 μm by stimulated Raman scattering in a pressurized hydrogen cell. Stimulated Raman scattering is performed by two chirped and delayed pulses originating from a multi-mJ Ti:sapphire amplifier. The Stokes pulse carries record-high energy of 4.4 mJ and is recompressed down to 66 fs by a reflective grating pair. We characterized the short-wavelength mid-infrared source in view of energy stability, beam profile, and conversion efficiency at repetition rates of 100 and 10 Hz. The demonstrated high-energy frequency shifter will benefit intense THz sources based on highly nonlinear organic crystals.

  7. High-Power Triggered Gas Switches

    National Research Council Canada - National Science Library

    Giri, David


    .... There are several reasons to build triggered versions of the basic high-voltage spark gap. They include synchronization with an external event, timed-array antenna for steering directed energy systems etc...

  8. An overview of the reliability prediction related aspects of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Christian; Teodorescu, Remus; Blaabjerg, Frede


    Reliability is becoming more and more important as the size and number of installed Wind Turbines (WTs) increases. Very high reliability is especially important for offshore WTs because the maintenance and repair of such WTs in case of failures can be very expensive. WT manufacturers need...... to consider the reliability aspect when they design new power converters. By designing the power converter considering the reliability aspect the manufacturer can guarantee that the end product will ensure high availability. This paper represents an overview of the various aspects of reliability prediction...... of high power Insulated Gate Bipolar Transistors (IGBTs) in the context of wind power applications. At first the latest developments and future predictions about wind energy are briefly discussed. Next the dominant failure mechanisms of high power IGBTs are described and the most commonly used lifetime...

  9. Support for High Power Laser Ablation 2010 (United States)


    Spaces from the Ministry of Education, Culture, Sport , Science and Technology, Japan. 27 [24] An Analytical Model of Ablation in Gas Flow Leonid...Targets at 0.1-10 TW/cm2 John L. Remo Dept. of Astronomy and Dept. of Earth and Planetary Sciences, Harvard University, 20 Oxford St. and Harvard...modeling of planetary cores and high velocity impact. [43] Laser and Z-pinch Simulation of High Energy Density Planetary Interactions John L. Remo

  10. Thrust stand for high-power electric propulsion devices (United States)

    Haag, T. W.


    This paper describes a new high-power thrust stand developed for use with high-power (up to 250 kW) magnetoplasmadynamic (MPD) thrusters, which is installed in a high-vacuum MPD facility at Lewis Research Center. The design of the stand is based on inverted pendulum configuration, with the result of large displacements and high resolution. Calibration results showed that thrust measurements were linear and repeatable to within a fraction of 1 percent. The thrust stand was used for testing water-cooled MPD thrusters at power levels up to 125 kW. The thruster, however, is quite well suited for testing other types of electric propulsion devices.

  11. Coeliac cavity ultrasonic diagnosis apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ando, O.; Suwaki, T.


    A coeliac cavity ultrasonic diagnosis apparatus is disclosed which includes an ultrasonic transducer or scanner portion adapted to be inserted into a coeliac cavity to effect a sector scan of an ultrasonic beam to produce an ultrasonic image of internal tissues and in which the ultrasonic oscillator on the one hand and an ultrasonic reflecting mirror and rotary disc on the other hand are relatively rotated so as to effect the sector scan of the ultrasonic beam and the rotary angle of the rotary disc is detected so as to obtain a deflecting angle of the ultrasonic beam and a display on a cathode ray tube of a precise ultrasonic picture image.

  12. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II Project (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency...

  13. Determination of selected polybrominated diphenylethers and polybrominated biphenyl in polymers by ultrasonic-assisted extraction and high-performance liquid chromatography-inductively coupled plasma mass spectrometry. (United States)

    Mingwu, Shao; Chao, Wei; Yongjuan, Jia; Xinhua, Dai; Xiang, Fang


    A new method has been developed for the determination of selected polybrominated diphenylethers (PBDEs) and polybrominated biphenyl (PBB) in four polymers: high-density polyethylene (HDPE), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), and polypropylene (PP). PBDEs and PBB in the polymers were extracted with toluene, using ultrasonic-assisted extraction (UAE). The extracts were then determined by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), using external calibration (single-point). Extraction parameters of UAE and several ICP-MS parameters were optimized. Extraction efficiencies almost reached 100%. The relative standard deviations (RSDs) were in the range of 0.7%-5.4%. The results demonstrate that the method possesses advantages of good precision, as well as high extraction efficiency and accuracy. The method especially overcomes the problem of the thermal degradation of highly brominated PBDEs, such as PBDE-209.

  14. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes (United States)

    Hehr, Adam; Dapino, Marcelo J.


    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  15. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K


    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  16. Static reactive power compensators for high-voltage power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)


    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  17. Analysis of chaos in high-dimensional wind power system (United States)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping


    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  18. Laboratory ultrasonic generator. [characteristics of ultrasonic sound generator for experimental and industrial applications (United States)

    Tudose, C.; Dobrescu, F.


    The characteristics of an ultrasonic generator with magnetostrictive amplifiers are described. The generator was designed to supply an output power of about 400 watts at a consumption of about 1 kilowatt. The generator produces sound waves in the frequency range of 18 to 30 KHz. The circuit design is described and examples of the construction are illustrated. The generator is used to study different industrial processes such as the effect of ultrasonic radiation of the emulsification of liquids, the dispersion of solids, and ultrasonic filtration.

  19. High Power Silicon Carbide (SiC) Power Processing Unit Development (United States)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.


    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  20. Engineering Food Ingredients with High-Intensity Ultrasound (United States)

    Weiss, Jochen; Kristbergsson, Kristberg; Kjartansson, Gunnar Thor

    The use of ultrasound in the food industry has increased in the last decades. Ultrasound has been used both to analyze food structure and composition at low ultrasonic intensities and high frequencies and to modify ingredients at high ultrasonic intensities and low frequencies. Application of the latter is referred to as high-intensity (power) ultrasonication and is generally carried out at frequencies of =0.1 MHz and ultrasonic intensities of 10-100 W cm-2. In the food industry, power ultrasonication has proved to be a highly effective food processing and preservation technology, and use of high-intensity ultrasound with or without heat may be used, for example, to denature enzymes, aid in the extraction of valuable compounds from plants and seeds, tenderize meat, and homogenize or disperse two-phase systems such as emulsions or suspensions (Mason et al., 1996).

  1. Primary reserve studies for high wind power penetrated systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela


    With high penetration of non-synchronous wind generations replacing conventional generators, the inertia of power system will reduce. A large disturbance in such a power system can cause faster frequency change in this power system and might invoke emergency defence strategies like underfrequency....... This paper further explores the capabilities of wind turbines to provide support during underfrequency to prevent load shedding. Maximum wind penetration possible without causing load shedding following a large disturbance is also investigated....

  2. Modular high voltage power supply for chemical analysis (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA


    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  3. Overview of space power electronic's technology under the CSTI High Capacity Power Program (United States)

    Schwarze, Gene E.


    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  4. High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm (United States)

    Liu, Yan; Lai, Puxiang; Ma, Cheng; Xu, Xiao; Suzuki, Yuta; Grabar, Alexander A.; Wang, Lihong V.


    Time-reversed ultrasonically encoded (TRUE) optical focusing is an emerging technique that focuses light deep into scattering media by phase-conjugating ultrasonically encoded diffuse light. In previous work, the speed of TRUE focusing was limited to no faster than 1 Hz by the response time of the photorefractive phase conjugate mirror, or the data acquisition and streaming speed of the digital camera; photorefractive-crystal-based TRUE focusing was also limited to the visible spectral range. These time-consuming schemes prevent this technique from being applied in vivo, since living biological tissue has a speckle decorrelation time on the order of a millisecond. In this work, using a Tedoped Sn2P2S6 photorefractive crystal at a near-infrared wavelength of 793 nm, we achieved TRUE focusing inside dynamic scattering media having a speckle decorrelation time as short as 7.7 ms. As the achieved speed approaches the tissue decorrelation rate, this work is an important step forward toward in vivo applications of TRUE focusing in deep tissue imaging, photodynamic therapy, and optical manipulation.

  5. Novel power MOSFET-based expander for high frequency ultrasound systems. (United States)

    Choi, Hojong; Shung, K Kirk


    The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan


    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  7. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.


    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  8. Development of High-Power Hall Thruster Power Processing Units at NASA GRC (United States)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.


    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  9. High-power arrays of quantum cascade laser master-oscillator power-amplifiers. (United States)

    Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico


    We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

  10. High power and high energy electrodes using carbon nanotubes (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo


    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  11. CSTI high capacity power. [Civil Space Technology Initiative (United States)

    Winter, Jerry M.


    In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.

  12. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  13. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology (United States)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi


    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  14. 21 CFR 1050.10 - Ultrasonic therapy products. (United States)


    ... include, but is not limited to, a power supply, ultrasonic frequency oscillator, service controls... applicator, or can alter the calibration or accuracy of an indicator or operation control. (23) Ultrasonic... quantity. (5) Visual indicator. A means shall be incorporated to provide a clear, distinct, and readily...

  15. Controlled ultrasonic tissue erosion (United States)

    Cain, Charles


    Controlled ultrasonic tissue erosion has many clinical applications, including the placement of very precise sharply defined perforations in biological interfaces and membranes with focused ultrasound. With carefully chosen acoustic parameters, tissue can be rapidly eroded away at a constant etching rate. The maximum erosion rate for minimal propagated energy is obtained by using very short high intensity pulses. The etching rate is higher with shorter pulse durations. For short pulses less than 10 cycles of the drive frequency, an optimum pulse repetition rate exists which maximizes the etching rate. Higher gas saturation in the surrounding medium reduces the etching rate and reduces the spatial sharpness of the holes produced. Most of the erosion appears to be produced in the first several cycles of the therapy pulse. For example, a series of short (about 3 cycles) focused pulses of 2100 W/cm2 (Isppa) at 788 kHz can erode a very well defined 2 mm diameter hole in a 1 mm thick sample of fresh pork atrial posterior wall in about 1 min at the optimum pulse repetition rate (about 18 kHz). Controlled ultrasonic tissue erosion may provide an effective image guided noninvasive tool in treatment of neonatal patients with hypoplastic left heart syndrome. Without the mixing of oxygenated blood across perforations placed in the atrial septum, these infants do not survive.

  16. The Study on the Reliability of High Power LED Streetlights (United States)

    Dong-Ge, Yao; Jian-Xin, Chen


    This paper was about a reliable research on high-power LED lighting. Based on the samples of the self-developed high-power LED streetlights, an electrical stress ageing test was carried out and thermocouple method was used in the temperature test. The ageing test showed that the initial flux reduction was mainly due to the absorption of the light lamp or the block by some parts of the lighting. And the late light decling was mainly caused by the decay of the high-power LED light source itself. Some suggestions on improving the design of streetlights will be given according to my research.

  17. High performance protection circuit for power electronics applications (United States)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan


    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  18. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail:; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)


    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  19. Liquid state DNP using a 260 GHz high power gyrotron. (United States)

    Denysenkov, Vasyl; Prandolini, Mark J; Gafurov, Marat; Sezer, Deniz; Endeward, Burkhard; Prisner, Thomas F


    Dynamic nuclear polarization (DNP) at high magnetic fields (9.2 T, 400 MHz (1)H NMR frequency) requires high microwave power sources to achieve saturation of the EPR transitions. Here we describe the first high-field liquid-state DNP results using a high-power gyrotron microwave source (20 W at 260 GHz). A DNP enhancement of -29 on water protons was obtained for an aqueous solution of Fremy's Salt; in comparison the previous highest value was -10 using a solid-state microwave power source (maximum power 45 mW). The increased enhancements are partly due to larger microwave saturation and elevated sample temperature. These experimentally observed DNP enhancements, which by far exceed the predicted values extrapolated from low-field DNP experiments, demonstrate experimentally that DNP is possible in the liquid state also at high magnetic fields.

  20. Predicting High-Power Performance in Professional Cyclists. (United States)

    Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K


    To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.

  1. Supporting Control Room Operators in Highly Automated Future Power Networks

    DEFF Research Database (Denmark)

    Chen, Minjiang; Catterson, Victoria; Syed, Mazheruddin


    Operating power systems is an extremely challenging task, not least because power systems have become highly interconnected, as well as the range of network issues that can occur. It is therefore a necessity to develop decision support systems and visualisation that can effectively support the hu...

  2. High resolution, high precision, simultaneous measurements of δD and δ18O using a CRDS analyzer with an ultrasonic nebulizer sample preparation module. (United States)

    Gkinis, Vasileios; Morrie, Valerie; Jones, Tyler; Vaughn, Bruce; White, James


    The recent advent of commercial Cavity Ring Down Spectroscopy (CRDS) has initiated the development of numerous new Continuous Flow Analysis (CFA) methods for high resolution, high precision measurements of greenhouse gas concentrations and isotopic ratios of water from ice cores. Depending on the sample preparation method and the calibration schemes applied, these new systems have proved to be precise, accurate and extremely versatile, allowing for high quality measurements performed in the field. However there are still challenges to be addressed. Measurements need to be accurately calibrated with respect to international standards (SMOW - SLAP in the case of water). A proper characterization of the precision and the accuracy of a system is another task that needs to be performed. Apparent sample diffusion affects the produced signals in ways that are unique not only to different systems but also to different implementations of the same system, reducing the resolution that can be obtained. Parameters such as melt rate, sample flow, cavity volume and the method of sample preparation can significantly alter the performance of the analytical method. These effects can be accurately characterized with a series of experiments and consequently corrected for using spectral filtering techniques. Last but not least, proper monitoring of the melting process is necessary in order to assign an ice core depth scale on the data produced. In this work we present an integrated system for high resolution, high precision water isotopic analysis from a continuously melted ice core sample, using a commercial CRDS analyzer (Picarro L2130 -i) . The system utilizes an ultrasonic concentric nebulizer in order to achieve complete fractionation free vaporization of the continuous flow water sample. An adjacent home made calibration module allows for the injection of local standards accurately characterized with respect to the SMOW - SLAP scale. The system has been used for the high

  3. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions (United States)

    Mason, Lee S.


    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  4. Design of ultrasonic probe and evaluation of ultrasonic waves on E.coli in Sour Cherry Juice

    Directory of Open Access Journals (Sweden)

    B Hosseinzadeh Samani


    Full Text Available Introduction: The common method used for juice pasteurization is the thermal method since thermal methods contribute highly to inactivating microbes. However, applying high temperatures would lead to inefficient effects on nutrition and food value. Such effects may include vitamin loss, nutritional flavor loss, non-enzyme browning, and protein reshaping (Kuldiloke, 2002. In order to decrease the adverse effects of the thermal pasteurization method, other methods capable of inactivation of microorganisms can be applied. In doing so, non-thermal methods including pasteurization using high hydrostatic pressure processing (HPP, electrical fields, and ultrasound waves are of interest (Chen and Tseng, 1996. The reason for diminishing microbial count in the presence of ultrasonic waves could be due to the burst of very tiny bubbles developed by ultrasounds which expand quickly and burst in a short time. Due to this burst, special temperature and pressure conditions are developed which could initiate or intensify several physical and/or chemical reactions. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. Materials and methods: In order to supply uniform ultrasonic waves, a 1000 W electric generator (Model MPI, Switzerland working at 20±1 kHz frequency was used. The aim of this study is to evaluate the non-thermal ultrasonic method and its effective factors on the E.coli bacteria of sour cherry. For this purpose, a certain amount of sour cherry fruit was purchased from local markets. First, the fruits were washed, cleaned and cored. The prepared fruits were then dewatered using an electric juicer. In order to separate pulp suspensions and tissue components, the extracted juice was poured into a centrifuge with the speed of 6000 rpm for 20 min. For complete separation of the remaining suspended particles, the transparent portion of the extract was passed through a


    Directory of Open Access Journals (Sweden)

    Y. L. Anokhin


    Full Text Available Introduction. Determination of power quality indices in high-voltage power grids allows to find the reasons for the deterioration of the power quality. The relevant national and International Standards for power quality contain relevant norms of quality indices and requirements for their accuracy measurement. Problem. The most complicated part in the process of measuring the power quality indices at high voltage is the selection of the corresponding high-voltage scale voltage converters. Therefore, comparing the requirements of IEC 61000-4-30 to high voltage scale voltage converters is an important task. Goal. Analysis of the International Standard IEC 61000-4-30 requirements feasibility for measuring the indices of power quality in high-voltage electrical networks using different types of high-voltage scale voltage converters. Methodology. Comparison of the requirements of IEC 61000-4-30 Standard to high-voltage scale voltage converters, when measuring power quality indices, with the characteristics of high voltage electromagnetic transformers used in Ukraine, and with promising developments of high-voltage converters of other types. Results. It is shown in the study that in order to fulfill some of the requirements for class A of IEC 61000-4-30, the characteristics of electromagnetic voltage transformers should be determined in the substation conditions using mobile calibration high-voltage laboratories. To meet all the requirements for Class A IEC 61000-4-30, it is recommended to use broadband high-voltage dividers of resistive-capacitive type. Originality. In study it is shown firstly that all the requirements of the IEC 61000-4-30 Standard for high-voltage scale voltage converters can be performed on the basis of the use of broadband resistive-capacitive damped voltage dividers. Practical value. Expositions of specific types of resistive-capacitive high-voltage dividers are presented, their parameters are confirmed by the results of state

  6. Rapid Ag/Sn/Ag transient liquid phase bonding for high-temperature power devices packaging by the assistance of ultrasound. (United States)

    Shao, Huakai; Wu, Aiping; Bao, Yudian; Zhao, Yue; Liu, Lei; Zou, Guisheng


    Rapid transient liquid phase (TLP) bonding process on Ag/Sn/Ag system is achieved in air by the assistance of ultrasonic, which has great potential to be applied to high-temperature power devices packaging. In this study, the influence of ultrasonic effect on the morphology and growth kinetics of Ag3Sn grains, and the joint microstructure, mechanical property and thermal reliability were systematically investigated. Experimental results indicated that the rapid consumption of the "dynamic" transient liquid phase was attributed to the accelerated dissolution of Ag substrate and the extrusion of liquid Sn, which were entirely induced by the complex sonochemical effects on the liquid/solid intermetallic compounds (IMCs) interface. An elongated scallop-like morphology of Ag3Sn grains was developed during Ag/Sn interfacial reaction with ultrasonic, accompanied by widening of grooves between neighbored grains. This phenomenon is called as a strengthening thermal grooving, in which the grooves at grain boundaries provide stable molten channels for Ag atoms diffusion from the substrate. Consequently, the improved elemental diffusion was evaluated through the growth kinetics of Ag3Sn IMCs, with conservative estimation of 6-16.5 times faster than the traditional TLP process. In addition, both excellent mechanical property and thermal reliability of the Ag-Sn intermetallic joint were experimentally verified by shear test and high-temperature storage test, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. (United States)

    Gao, Shengpu; Lewis, Gillian D; Ashokkumar, Muthupandian; Hemar, Yacine


    The aim of this study was to determine the effects of high-intensity low-frequency (20 kHz) ultrasound treatment on the viability of bacteria suspension. More specifically, we have investigated the relationship between the deactivation efficiency and the physical (size, hydrophobicity) and biological (gram-status, growth phase) properties of the microbes. Enterobacter aerogenes, Bacillus subtilis, Staphylococcus epidermidis, S. epidermidis SK and Staphylococcus pseudintermedius were chosen for this study owing to their varying physical and biological properties. The survival ratio of the bacteria suspension was measured as a function of the ultrasound power (up to 13 W) for a constant sonication time of 20 min. Transmission electron microscopy was used to evaluate the ultrasound-induced damages to the microbes. Ultrasound treatment resulted in lethal damage to E. aerogenes and B. subtilis (up to 4.5-log reduction), whereas Staphylococcus spp. were not affected noticeably. Further, E. aerogenes suspensions were more sensitive to ultrasonication in exponential growth phase than when they were in stationary phase. The results of this study demonstrate that the main reason for bacterial resistance to ultrasonic deactivation is due to the properties of the bacterial capsule. Microbes with a thicker and "soft" capsule are highly resistant to ultrasonic deactivation process. Copyright © 2013. Published by Elsevier B.V.

  8. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing


    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  9. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold


    This paper presents a power supply using an increased switching frequency to minimize the size of energy storing components, thereby addressing the demands for increased power densities in power supplies. 100 MHz and higher switching frequencies have been used in resonant power converters, which...... simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  10. High power target developments at ISAC

    CERN Document Server

    Bricault, P G; Dowling, A; Lane, M


    TRIUMF, Canada's national research facility for particle and nuclear physics is currently operating the ISAC facility. A high-energy proton beam from the H sup - TRIUMF cyclotron is used to generate short-lived radioactive species in a thick target. An ion source at the target creates a radioactive beam, which is then injected into the ISAC beam lines and accelerator system. The ISAC facility is designed to accept proton beam intensity up to 100 mu A at 500 MeV. At present our target design can only sustains 40 mu A at maximum. Beyond this point the target has to be cooled. A new target equipped with fins has been developed that may sustain proton beam up to 100 mu A. The fined target has been tested off-line and a thermal simulation using ANSYS[reg] has been conducted and the results are reported here.

  11. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers (United States)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.


    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  12. High-power lasers for directed-energy applications. (United States)

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard


    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  13. Atmospheric propagation and combining of high-power lasers. (United States)

    Nelson, W; Sprangle, P; Davis, C C


    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  14. Simulation of High Power Amplifier Calculation in VSAT System

    Directory of Open Access Journals (Sweden)

    Indri Neforawati


    Full Text Available Arithmatical simulation of High Power Amplifier (HPA on VSAT system is a program which used to calculate the capacity of HPA as a working test of maximum power on each remote station of the VSAT network system, afterward can be obtained the available capacity value and power capacity used, therefore able to reallocate residual power below its available power spare. VSAT system can be used for several telecommunication application such as video broadcast, data broadcast,audio broadcast, banking operation, ATM and others. Due to the easy operational, maintanance and its instalment, VSAT system is more prifitable compare to ordinary terestrial band, its capability for multiservice application become more flexible in using its network. The software used is Visual Basic 6.0 version and database Microsoft Access. These software take a role as visualization and planning for remote station development and also power capasity needed for each remote in the calculation of HPA.

  15. Progress on high-power 808nm VCSELs and applications (United States)

    Zhou, Delai; Seurin, Jean-Francois; Xu, Guoyang; Van Leeuwen, Robert; Miglo, Alexander; Wang, Qing; Kovsh, Alexey; Ghosh, Chuni


    High power 808nm semiconductor lasers are widely used for pumping neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal to produce high-brightness lasing at 1064nm. In addition, there are growing interest to use such high power 808nm lasers in the field of automotive infra-red (IR) illumination and medical aesthetic treatment. Vertical-cavity surface-emitting lasers (VCSELs) have emerged as a promising candidate and attracted increased interests for those applications, due to their combined advantages of high efficiency, low diverging circular beam, narrow emission spectrum with reduced temperature sensitivity, low-cost manufacturability, simpler coupling optics, and increased reliability, especially at high temperatures. They can emit very high power with very high power density as they can be conveniently configured into large two-dimensional arrays and modules of arrays. We report recent development on such high-power, high-efficiency 808nm VCSELs with industrial leading 55% power conversion efficiency (PCE). Top emitting VCSELs were grown by MOCVD and processed into single devices and 2D arrays using selective wet oxidation process and substrate removal technique for efficient current confinement and heat removal. Peak PCE of 51% and peak power of 800W were achieved from 5x5mm array, corresponding to peak power density of 4kW/cm2. Pumped with new generation of 2.3kW VCSEL module, Q-switched laser pulse energy at 1064nm reached 46.9mJ, more than doubled from previously reported results.

  16. Beyond blue pico laser: development of high power blue and low power direct green (United States)

    Vierheilig, Clemens; Eichler, Christoph; Tautz, Sönke; Lell, Alfred; Müller, Jens; Kopp, Fabian; Stojetz, Bernhard; Hager, Thomas; Brüderl, Georg; Avramescu, Adrian; Lermer, Teresa; Ristic, Jelena; Strauss, Uwe


    There is a big need on R&D concerning visible lasers for projection applications. The pico-size mobile projection on the one hand awaits the direct green lasers with sufficiently long lifetimes at optical powers above 50mW. In this paper we demonstrate R&D-samples emitting at 519nm with lifetimes up to 10.000 hours. The business projection on the other hand requires high power operation and already uses blue lasers and phosphor conversion, but there is a strong demand for higher power levels. We investigate the power limits of R&D laser structures. In continuous wave operation, the power is limited by thermal roll-over. With an excellent power conversion efficiency of up to 29% the thermal roll-over is as high as 2.5W for a single emitter in TO56 can. We do not observe significant leakage at high currents. Driven in short pulse operation to prevent the laser from self heating, linear laser characteristics of optical power versus electrical current are observed up to almost 8W of optical power.

  17. A high-power versatile wireless power transfer for biomedical implants. (United States)

    Jiang, Hao; Zhang, Jun Min; Liou, Shy Shenq; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo


    Implantable biomedical actuators are highly desired in modern medicine. However, how to power up these biomedical implants remains a challenge since most of them need more than several hundreds mW of power. The air-core based radio-frequency transformer (two face-to-face inductive coils) has been the only non-toxic and non-invasive power source for implants for the last three decades [1]. For various technical constraints, the maximum delivered power is limited by this approach. The highest delivered power reported is 275 mW over 1 cm distance [2]. Also, the delivered power is highly vulnerable to the coils' geometrical arrangement and the electrical property of the medium around them. In this paper, a novel rotating-magnets based wireless power transfer that can deliver ∼10 W over 1 cm is demonstrated. The delivered power is significantly higher than the existing start-of-art. Further, the new method is versatile since there is no need to have the impedance matching networks that are highly susceptible to the operating frequency, the coil arrangement and the environment.

  18. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang


    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  19. High power laser-matter interaction

    CERN Document Server

    Mulser, Peter


    This book intended as a guide for scientists and students who have just discovered the field as a new and attractive area of research, and for scientists who have worked in another field and want to join now the subject of laser plasmas. In the first chapter the plasma dynamics is described phenomenologically by a two fluid model and similarity relations from dimensional analysis. Chapter 2 is devoted to plasma optics and collisional absorption in the dielectric and ballistic model. Linear resonance absorption at the plasma frequency and its mild nonlinearities as well as the self-quenching of high amplitude electron plasma waves by wave breaking are discussed in Chapter 3. With increasing laser intensity the plasma dynamics is dominated by radiation pressure, at resonance producing all kinds of parametric instabilities and out of resonance leading to density steps, self-focusing and filamentation, described in Chapters 4 and 5. A self-contained treatment of field ionization of atoms and related phenomena ar...

  20. High Power Uplink Amplifier for Deep Space Communications Project (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  1. High Power Room Temperature Terahertz Local Oscillator Project (United States)

    National Aeronautics and Space Administration — The motivation of the proposed SBIR is to develop, demonstrate and commercialize a compact, low-mass, high output power (1-10 milliwatt), tunable source of CW THz...

  2. High Power Room Temperature Terahertz Local Oscillator Project (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  3. Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy. (United States)

    Zhang, Libo; Guo, Wenqian; Peng, Jinhui; Li, Jing; Lin, Guo; Yu, Xia


    A major source of germanium recovery and also the source of this research is the by-product of lead and zinc metallurgical process. The primary purpose of the research is to investigate the effects of ultrasonic assisted and regular methods on the leaching yield of germanium from roasted slag containing germanium. In the study, the HCl-CaCl2 mixed solution is adopted as the reacting system and the Ca(ClO)2 used as the oxidant. Through six single factor (leaching time, temperature, amount of Ca(ClO)2, acid concentration, concentration of CaCl2 solution, ultrasonic power) experiments and the comparison of the two methods, it is found the optimum collective of germanium for ultrasonic-assisted method is obtained at temperature 80 °C for a leaching duration of 40 min. The optimum concentration for hydrochloric acid, CaCl2 and oxidizing agent are identified to be 3.5 mol/L, 150 g/L and 58.33 g/L, respectively. In addition, 700 W is the best ultrasonic power and an over-high power is adverse in the leaching process. Under the optimum condition, the recovery of germanium could reach up to 92.7%. While, the optimum leaching condition for regular leaching method is same to ultrasonic-assisted method, except regular method consume 100 min and the leaching rate of Ge 88.35% is lower about 4.35%. All in all, the experiment manifests that the leaching time can be reduced by as much as 60% and the leaching rate of Ge can be increased by 3-5% with the application of ultrasonic tool, which is mainly thanks to the mechanical action of ultrasonic. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High-Power Liquid-Metal Heat-Transfer Loop (United States)

    Bhandari, Pradeep; Fujita, Toshio


    Proposed closed-loop system for transfer of thermal power operates at relatively high differential pressure between vapor and liquid phases of liquid-metal working fluid. Resembles "capillary-pumped" liquid-metal heat-transfer loop except electric field across permselective barrier of beta alumina keeps liquid and vapor separate at heat-input end. Increases output thermal power, contains no moving parts, highly reliable and well suited to long-term unattended operation.

  5. High power laser workover and completion tools and systems (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F


    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  6. Apparatus for advancing a wellbore using high power laser energy (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.


    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  7. High power laser downhole cutting tools and systems (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F


    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  8. Thermally induced nonlinear mode coupling in high power fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas T.


    Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W.......Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W....

  9. Design of 1 MHz Solid State High Frequency Power Supply (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal


    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  10. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian


    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  11. High average power scaleable thin-disk laser (United States)

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.


    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  12. High Efficiency, High Linearity, Switch Mode Power Amplifiers for Varying envelop Signal Applications

    DEFF Research Database (Denmark)

    Tong, Tian; Sira, Daniel; Nielsen, Michael


    using switch-mode power amplifier aided by various linearization techniques can present a feasible way to achieve both high linearity and high power efficiency. In this paper two different implementations of the switch-mode power amplifier a re p resented for varying envelop applications: the RF pulse...

  13. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact


    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  14. High Performance Low Cost Digitally Controlled Power Conversion Technology

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes


    suited for digital control schemes involving multiple control loops such as digital control of a switch-mode power supply with several converter stages. Customised digital control solutions implemented in application specific integrated circuits are the best solution for high bandwidth digital control......Digital control of switch-mode power supplies and converters has within the last decade evolved from being an academic subject to an emerging market in the power electronics industry. This development has been pushed mainly by the computer industry that is looking towards digital power management...... of non-isolated DC-DC converters. A customised digital control solution for a voltage mode control scheme should include a digital pulse width modulator which can generate a pulse width modulated signal with high switching frequency and high resolution, a digital compensator with a short execution time...

  15. High Performance Plasma Channel Insulators for High Power Hall Thrusters Project (United States)

    National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...

  16. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems Project (United States)

    National Aeronautics and Space Administration — Fission-based power systems are anticipated for various planetary surface human base applications with power levels of 30?100+ kWe. The development of high...

  17. Site-specific sonoporation of human melanoma cells at the cellular level using high lateral-resolution ultrasonic micro-transducer arrays. (United States)

    Thein, Myo; Cheng, An; Khanna, Payal; Zhang, Chunfeng; Park, Eun-Joo; Ahmed, Daniel; Goodrich, Christopher J; Asphahani, Fareid; Wu, Fengbing; Smith, Nadine B; Dong, Cheng; Jiang, Xiaoning; Zhang, Miqin; Xu, Jian


    We developed a new instrumental method by which human melanoma cells (LU1205) are sonoporated via radiation pressures exerted by highly-confined ultrasonic waves produced by high lateral-resolution ultrasonic micro-transducer arrays (UMTAs). The method enables cellular-level site-specific sonoporation within the cell monolayer due to UMTAs and can be applicable in the delivery of drugs and gene products in cellular assays. In this method, cells are seeded on the biochip that employs UMTAs for high spatial resolution and specificity. UMTAs are driven by 30-MHz sinusoidal signals and the resulting radiation pressures induce sonoporation in the targeted cells. The sonoporation degree and the effective lateral resolution of UMTAs are determined by performing fluorescent microscopy and analysis of carboxylic-acid-derivatized CdSe/ZnS quantum dots passively transported into the cells. Models representing the transducer-generated ultrasound radiation pressure, the ultrasound-inflicted cell membrane wound, and the transmembrane transport through the wound are developed to determine the ultrasound-pressure-dependent wound size and enhanced cellular uptake of nanoparticles. Model-based calculations show that the effective wound size and cellular uptake of nanoparticles increase linearly with increasing ultrasound pressure (i.e., at applied radiation pressures of 0.21, 0.29, and 0.40 MPa, the ultrasound-induced initial effective wound radii are 150, 460, and 650 nm, respectively, and the post-sonoporation intracellular quantum-dot concentrations are 7.8, 22.8, and 29.9 nM, respectively) and the threshold pressure required to induce sonoporation in LU1205 cells is ∼0.12 MPa. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Water Vapour Propulsion Powered by a High-Power Laser-Diode (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  19. E-beam high voltage switching power supply (United States)

    Shimer, Daniel W.; Lange, Arnold C.


    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  20. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. At high specific...

  1. Enhanced stability of magnetoelectric gyrators under high power conditions (United States)

    Leung, Chung Ming; Zhuang, Xin; Gao, Min; Tang, Xiao; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.


    In this study, three different coil-based magnetoelectric (ME) gyrators of different geometries, including gyrators with high power output, have been designed and characterized. These included two magnetostrictive/piezoelectric/magnetostrictive (M-P-M) and one piezoelectric/magnetostrictive/piezoelectric (P-M-P) type ME gyrators, which consisted of nickel zinc ferrite (NZFO) and lead zirconate titanate (PZT) ceramic plates. Compared with M-P-M ME gyrators, the P-M-P ones exhibited a higher power efficiency (η) of 85% when operated at resonance under an optimal magnetic bias field (HBias) of 40 Oe at low power conditions. It retained a relatively high efficiency of η = 79% under a high input power density of 2.87 W/cm3. A low reduction in the magnetomechanical coupling and mechanical quality (k33,m and Qm) factors of the NZFO ferrite layer in the ME gyrator explains the resilience of the P-M-P type structure with increasing power drive. The findings open the possibility of using ME gyrators in high power applications.

  2. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.


    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  3. Ultrasonic/Sonic Anchor (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart


    The ultrasonic/sonic anchor (U/S anchor) is an anchoring device that drills a hole for itself in rock, concrete, or other similar material. The U/S anchor is a recent addition to a series of related devices, the first of which were reported in "Ultrasonic/Sonic Drill/Corers With Integrated Sensors"

  4. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor


    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  5. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob


    vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price......In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...

  6. Very-High Efficiency, High Power Laser Diodes Project (United States)

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this proposal entitled ?Very-High...

  7. A Lemon Cell Battery for High-Power Applications (United States)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.


    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  8. Iron loss in high-power arc steelmaking furnaces

    Directory of Open Access Journals (Sweden)

    V. P. Karasyov


    Full Text Available There is considered the power operating mode of a high-power arc steelmaking furnaces (ASMF in the period of the flat bath. It is revealed that electric energy is mainly spent for heating and overheating the foamed slag. Heat transferring from slag to metal is carried out by the convective agitation of the bath. For agitation there is used intensive purging of the bath with oxygen that causes increased iron losses with the running foamed slag. There are noted the negative points of working with the foamed slag. It is recommended to expand R&D in the field of optimizing the power operating mode of high-power ASMF.

  9. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg


    , 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation......This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses....

  10. High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study (United States)

    Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.


    This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.

  11. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.


    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  12. Very High Frequency Switch-Mode Power Supplies.:Miniaturization of Power Electronics.


    Madsen, Mickey Pierre; Andersen, Michael A. E.; Knott, Arnold


    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop ve...

  13. Multiple-pass amplifiers for high-power laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Jackel, S.; Givon, M.; Ludmirsky, A.; Eliezer, S.; Borowitz, J.L.; Arad, B.; Zigler, A.; Gazit, Y.


    Multiple-pass amplifiers were configured from Nd:glass rods using polarization and angular coupling techniques. Very high gain (>600) single beam triple-pass booster stages and high gain (30 or 15) single or double-beam double-pass amplifiers were combined to construct a very cost effective high-power (50 GW) pulsed laser system. These techniques were also effectively applied to smaller compact high repetition-rate systems.

  14. High power test of a 30 GHz planar accelerator

    CERN Document Server

    Braun, Hans Heinrich; Henke, H; Wuensch, Walter; Yu, D


    A 30-GHz muffin-tin, traveling-wave accelerating structure consisting of 37 cells was tested at high power using the CTF2 at CERN. The structure was fabricated with conventional milling and brazing, including tuning holes at cavity roofs. No special surface preparation or treatment was done to the structure. A maximum peak power in excess of 100 MW at a pulse width of 4 ns was transported through the structure before electron bursts were initiated. A maximum accelerating gradient of 60 MV/m was achieved with a peak RF power of 40 MW at a pulse width of 8 ns.

  15. High power, diode pumped Er:YAG for dentistry (United States)

    Hagen, C.; Heinrich, A.; Nussbaumer, B.


    Pantec Medical Laser presents a diode pumped Er:YAG laser for dental and hard tissue applications. The diode pumped laser is practically maintenance free and ensures reliable operation over several thousand hours. The high repetition rate with up to 15 W average output power, allows treatments otherwise not feasible with low repetition rate, lamp pumped Er:YAG systems. The variable pulse duration of 10 to 200 μs combined with the good beam quality ensures precise and fast treatment. First results on enamel ablation as well as the power scalability of the technology to 200 mJ and 30 W average power are also shown.

  16. Microfabricated Millimeter-Wave High-Power Vacuum Electronic Amplifiers (United States)

    2015-01-01 Microfabricated Millimeter-Wave High-Power Vacuum Electronic Amplifiers Figure 2. Results from the 220 GHz TWT . (a) Small signal...Completed tube under hot test. 220 GHz TWT Demonstration The 220 GHz TWT device was based on spare parts from a commercially available CPI VKY2444T G...existing parts, our TWT bested this COTS EIK performance by a factor of 12x in power and 50x in bandwidth for the same size, weight and prime power

  17. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh


    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  18. Active Photonic crystal fibers for high power applications

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin

    . This plays an important role in high power lasers and ampliers with respect to efficiency, packaging, and thermal handling. The third part of the work has involved developing tools for characterizing the mode quality and stability of large core bers. Stable, single-mode bers with larger cores are essential...... records have been set using this ber. An output power of 167 W has been achieved, which, at the time of writing, is the highest output power generated from ytterbium bers in this wavelength region and from photonic bandgap bers in general. The 1178 nm light has subsequently been frequency doubled to 589...

  19. High Power Operation of the JLab IR FEL Driver Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang


    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  20. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... band gap semiconductors and integrated power supplies. Afterwards a wide range of topologies suited for operation at very high frequencies is investigated and the most promising ones are tested experimentally. Through a comparison of these topologies the class DE inverter is found to be superior...... to the other alternatives, at least for converters with hundreds of volts as input and a few tens of watts output power. A class DE inverter does however require a high side gate drive, which have never been presented before for these frequencies and voltages. This thesis presents the worlds first high side...

  1. Reliability and Characterization of High Voltage Power Capacitors (United States)


    permittivity EVCS electric vehicle charging system GPIB general-purpose interface bus GW giga-watt HVST high voltage stress test IV current voltage...traditional fossil fuel . The typical solar power system requires multiple subsystems as well as the physical infrastructure to support the solar panels. The...that will last, reducing the militaries overall dependence on traditional fossil fuel . B. CONVERTER OVERVIEW The typical solar power system

  2. Highly Directive Reflect Array Antenna Design for Wireless Power Transfer (United States)


    Journal Publications (under review) 1. A Pattanayak and SP Duttagupta, “A Novel Broadband Reflect-array Design with sub-wavelength ring resonators...AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4076 5c.  PROGRAM ELEMENT NUMBER

  3. Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoefer, J.E.


    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

  4. Energy Efficient and Compact RF High-Power Amplifiers

    NARCIS (Netherlands)

    Calvillo Cortés, D.A.


    The main objectives of this thesis are to improve the energy efficiency and physical form-factor of high-power amplifiers in base station applications. As such, the focus of this dissertation is placed on the outphasing amplifier concept, which can offer high-efficiency, good linearity and excellent

  5. Quantum dot amplifiers with high output power and low noise

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper


    Quantum dot semiconductor optical amplifiers have been theoretically investigated and are predicted to achieve high saturated output power, large gain, and low noise figure. We discuss the device dynamics and, in particular, show that the presence of highly inverted barrier states does not limit...

  6. Cryostat for a high-temperature superconducting power cable

    NARCIS (Netherlands)

    Chevtchenko, O.A.; Smit, J.J.; Geschiere, A.


    Cryostat for a high-temperature superconducting power cable, comprising concentric tubes, an annular region between said tubes, wherein a multilayer thermal insulation and getter material for supporting high vacuum conditions are provided in said annular region, and wherein the multilayer insulation

  7. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules (United States)

    Elmes, John


    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  8. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)


    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  9. High-power 95 GHz pulsed electron spin resonance spectrometer (United States)

    Hofbauer, W.; Earle, K. A.; Dunnam, C. R.; Moscicki, J. K.; Freed, J. H.


    High-field/high-frequency electron spin resonance (ESR) offers improved sensitivity and resolution compared to ESR at conventional fields and frequencies. However, most high-field/high-frequency ESR spectrometers suffer from limited mm-wave power, thereby requiring long mm-wave pulses. This precludes their use when relaxation times are short, e.g., in fluid samples. Low mm-wave power is also a major factor limiting the achievable spectral coverage and thereby the multiplex advantage of Fourier transform ESR (FTESR) experiments. High-power pulses are needed to perform two-dimensional (2D) FTESR experiments, which can unravel the dynamics of a spin system in great detail, making it an excellent tool for studying spin and molecular dynamics. We report on the design and implementation of a high-power, high-bandwidth, pulsed ESR spectrometer operating at 95 GHz. One of the principal design goals was the ability to investigate dynamic processes in aqueous samples at physiological temperatures with the intent to study biological systems. In initial experiments on aqueous samples at room temperature, we achieved 200 MHz spectral coverage at a sensitivity of 1.1×1010√s spins and a dead time of less than 50 ns. 2D-electron-electron double resonance experiments on aqueous samples are discussed to demonstrate the practical application of such a spectrometer.

  10. Modular High-Energy Systems for Solar Power Satellites (United States)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.


    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  11. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. (United States)

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U


    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser.

  12. High-level power analysis and optimization techniques (United States)

    Raghunathan, Anand


    This thesis combines two ubiquitous trends in the VLSI design world--the move towards designing at higher levels of design abstraction, and the increasing importance of power consumption as a design metric. Power estimation and optimization tools are becoming an increasingly important part of design flows, driven by a variety of requirements such as prolonging battery life in portable computing and communication devices, thermal considerations and system cooling and packaging costs, reliability issues (e.g. electromigration, ground bounce, and I-R drops in the power network), and environmental concerns. This thesis presents a suite of techniques to automatically perform power analysis and optimization for designs at the architecture or register-transfer, and behavior or algorithm levels of the design hierarchy. High-level synthesis refers to the process of synthesizing, from an abstract behavioral description, a register-transfer implementation that satisfies the desired constraints. High-level synthesis tools typically perform one or more of the following tasks: transformations, module selection, clock selection, scheduling, and resource allocation and assignment (also called resource sharing or hardware sharing). High-level synthesis techniques for minimizing the area, maximizing the performance, and enhancing the testability of the synthesized designs have been investigated. This thesis presents high-level synthesis techniques that minimize power consumption in the synthesized data paths. This thesis investigates the effects of resource sharing on the power consumption in the data path, provides techniques to efficiently estimate power consumption during resource sharing, and resource sharing algorithms to minimize power consumption. The RTL circuit that is obtained from the high-level synthesis process can be further optimized for power by applying power-reducing RTL transformations. This thesis presents macro-modeling and estimation techniques for switching

  13. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa


    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  14. High Power Fiber Lasers and Applications to Manufacturing (United States)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas


    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  15. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark


    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  16. High power diode lasers for solid-state laser pumps (United States)

    Linden, Kurt J.; Mcdonnell, Patrick N.


    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  17. Mechanistic modeling of destratification in cryogenic storage tanks using ultrasonics. (United States)

    Jagannathan, T K; Mohanan, Srijith; Nagarajan, R


    Stratification is one of the main causes for vaporization of cryogens and increase of tank pressure during cryogenic storage. This leads subsequent problems such as cavitation in cryo-pumps, reduced length of storage time. Hence, it is vital to prevent stratification to improve the cost efficiency of storage systems. If stratified layers exist inside the tank, they have to be removed by suitable methods without venting the vapor. Sonication is one such method capable of keeping fluid layers mixed. In the present work, a mechanistic model for ultrasonic destratification is proposed and validated with destratification experiments done in water. Then, the same model is used to predict the destratification characteristics of cryogenic liquids such as liquid nitrogen (LN₂), liquid hydrogen (LH₂) and liquid ammonia (LNH₃). The destratification parameters are analysed for different frequencies of ultrasound and storage pressures by considering continuous and pulsed modes of ultrasonic operation. From the results, it is determined that use of high frequency ultrasound (low-power/continuous; high-power/pulsing) or low frequency ultrasound (continuous operation with moderate power) can both be effective in removing stratification. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. New thin film solar...

  19. Material Processing with High Power CO2-Lasers (United States)

    Bakowsky, Lothar


    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  20. High-Performance Control in Radio Frequency Power Amplification Systems

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod

    This thesis presents a broad study of methods for increasing the efficiency of narrow-band radio transmitters. The study is centered around the base station application and TETRA/TEDS networks. The general solution space studied is that of envelope tracking applied to linear class-A/B radio...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... and ripple voltage. It is found that the simple fourth-order filter buck converter is ideal for TETRA and TEDS envelope tracking power supplies. The problem of extracting maximum control bandwidth from a given power topology is given particular attention, with a range of, arguably new, insights resulting...