WorldWideScience

Sample records for high power production

  1. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    McKellar, Michael G.; Harvego, Edwin A.; Gandrik, Anastasia A.

    2010-01-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322 C and 750 C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  2. The SPES High Power ISOL production target

    Science.gov (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  3. Hydrogen Production System with High Temperature Electrolysis for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kentaro, Matsunaga; Eiji, Hoashi; Seiji, Fujiwara; Masato, Yoshino; Taka, Ogawa; Shigeo, Kasai

    2006-01-01

    Steam electrolysis with solid oxide cells is one of the most promising methods for hydrogen production, which has the potential to be high efficiency. Its most parts consist of environmentally sound and common materials. Recent development of ceramics with high ionic conductivity suggests the possibility of widening the range of operating temperature with maintaining the high efficiency. Toshiba is constructing a hydrogen production system with solid oxide electrolysis cells for nuclear power plants. Tubular-type cells using YSZ (Yttria-Stabilized- Zirconia) as electrolyte showed good performance of steam electrolysis at 800 to 900 deg C. Larger electrolysis cells with present configuration are to be combined with High Temperature Reactors. The hydrogen production efficiency on the present designed system is expected around 50% at 800 to 900 deg C of operating temperature. For the Fast Reactors, 'advanced cell' with higher efficiency at lower temperature are to be introduced. (authors)

  4. Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production

    International Nuclear Information System (INIS)

    PARMA JR, EDWARD J.; PICKARD, PAUL S.; SUO-ANTTILA, AHTI JORMA

    2003-01-01

    The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept

  5. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  6. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  7. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%

  8. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration

    International Nuclear Information System (INIS)

    Joergensen, Claus; Ropenus, Stephanie

    2008-01-01

    In liberalized power markets, there are significant power price fluctuations due to independently varying changes in demand and supply, the latter being substantial in systems with high wind power penetration. In such systems, hydrogen production by grid connected electrolysis can be cost optimized by operating an electrolyzer part time. This paper presents a study on the minimization of the hydrogen production price and its dependence on estimated power price fluctuations. The calculation of power price fluctuations is based on a parameterization of existing data on wind power production, power consumption and power price evolution in the West Danish power market area. The price for hydrogen is derived as a function of the optimal electrolyzer operation hours per year for four different wind penetration scenarios. It is found to amount to 0.41-0.45 EUR/Nm 3 . The study further discusses the hydrogen price sensitivity towards investment costs and the contribution from non-wind power sources. (author)

  9. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Claus [Materials Research Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ropenus, Stephanie [Systems Analysis Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2008-10-15

    In liberalized power markets, there are significant power price fluctuations due to independently varying changes in demand and supply, the latter being substantial in systems with high wind power penetration. In such systems, hydrogen production by grid connected electrolysis can be cost optimized by operating an electrolyzer part time. This paper presents a study on the minimization of the hydrogen production price and its dependence on estimated power price fluctuations. The calculation of power price fluctuations is based on a parameterization of existing data on wind power production, power consumption and power price evolution in the West Danish power market area. The price for hydrogen is derived as a function of the optimal electrolyzer operation hours per year for four different wind penetration scenarios. It is found to amount to 0.41-0.45 EUR/Nm{sup 3}. The study further discusses the hydrogen price sensitivity towards investment costs and the contribution from non-wind power sources. (author)

  10. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Claus [Materials Research Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ropenus, Stephanie [Systems Analysis Department, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2008-10-15

    In liberalized power markets, there are significant power price fluctuations due to independently varying changes in demand and supply, the latter being substantial in systems with high wind power penetration. In such systems, hydrogen production by grid connected electrolysis can be cost optimized by operating an electrolyzer part time. This paper presents a study on the minimization of the hydrogen production price and its dependence on estimated power price fluctuations. The calculation of power price fluctuations is based on a parameterization of existing data on wind power production, power consumption and power price evolution in the West Danish power market area. The price for hydrogen is derived as a function of the optimal electrolyzer operation hours per year for four different wind penetration scenarios. It is found to amount to 0.41-0.45 EUR/Nm{sup 3}. The study further discusses the hydrogen price sensitivity towards investment costs and the contribution from non-wind power sources. (author)

  11. Simultaneous production of high-quality water and electrical power from aqueous feedstock’s and waste heat by high-pressure membrane distillation

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Hanemaaijer, J.H.; Brouwer, H.; Medevoort, J. van; Jansen, A.; Altena, F.; Vleuten, P. van der; Bak, H.

    2015-01-01

    A new membrane distillation (MD) concept (MemPower) has been developed for the simultaneous production of high-quality water from various aqueous feedstocks with cogeneration of mechanical power (electricity). Driven by low-grade heat (waste, solar, geothermal, etc.) a pressurized distillate can be

  12. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  13. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    Science.gov (United States)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  14. An effective heuristic for combined heat-and-power production planning with power ramp constraints

    International Nuclear Information System (INIS)

    Rong, Aiying; Lahdelma, Risto

    2007-01-01

    Combined heat-and-power (CHP) production is an increasingly important technology for its efficient utilization of primary-energy resources and for reducing CO 2 emissions. In the CHP plant, the generation of heat-and-power follows a joint characteristic, which makes the determination of both the marginal power production cost (MPPC) and the feasible operating region for the plant more complicated than for the power-only generation plant. Due to the interdependence between heat and power production, the power-ramp constraints, which limit how much the power production of a CHP plant may increase or decrease between two successive periods, may also imply constraints on the heat production. In this paper, we investigate the impact of power-ramp constraints on CHP production planning and develop a robust heuristic for dealing with the power-ramp constraints based on the solution to the problem with relaxed ramp-constraints (RRC). Numerical results based on realistic production models show that the heuristic can generate high-quality solutions efficiently. (author)

  15. Powering the High-Luminosity Triplets

    Science.gov (United States)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  16. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  17. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; Sohal, M.S.; O'Brien, J.E.; Herring, J.S.

    2010-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  18. Computer study of isotope production for medical and industrial applications in high power accelerators

    Science.gov (United States)

    Mashnik, S. G.; Wilson, W. B.; Van Riper, K. A.

    2001-07-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes. These methods are readily applicable both to accelerator and reactor environments and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements that may be expanded to other reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures, is available on the Web at http://t2.lanl.gov/publications/.

  19. Statistics for products of traces of high powers of the frobenius class of hyperelliptic curves

    OpenAIRE

    Roditty-Gershon, Edva

    2011-01-01

    We study the averages of products of traces of high powers of the Frobenius class of hyperelliptic curves of genus g over a fixed finite field. We show that for increasing genus g, the limiting expectation of these products equals to the expectation when the curve varies over the unitary symplectic group USp(2g). We also consider the scaling limit of linear statistics for eigenphases of the Frobenius class of hyperelliptic curves, and show that their first few moments are Gaussian.

  20. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  1. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  2. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    Science.gov (United States)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  3. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  4. A computer study of radionuclide production in high power accelerators for medical and industrial applications

    Science.gov (United States)

    Van Riper, K. A.; Mashnik, S. G.; Wilson, W. B.

    2001-05-01

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  5. Production of High Intracavity UV Power From a CW Laser Source

    Science.gov (United States)

    David, R. T.; Chyba, T. H.; Keppel, C. E.; Gaskell, D.; Ent, R.

    1998-01-01

    The goal of this research project is to create a prototype high power CW source of ultraviolet (UV) photons for photon-electron scattering at the Thomas Jefferson National Accelerator Facility (TJNAF), Hall B. The facility will use optical resonant cavities to produce a high photon flux. The technical approach will be to frequency-double the 514.5 mn light from an Argon-Ion Laser to create 0.1 to 1.0 watt in the UV. The produced UV power will be stored in a resonant cavity to generate an high intracavity UV power of 102 to 103 watts. The specific aim of this project is to first design and construct the low-Q doubling cavity and lock it to the Argon-Ion wavelength. Secondly, the existing 514.5 nm high-Q build-up cavity and its locking electronics will be modified to create high intracavity UV power. The entire system will then be characterized and evaluated for possible beam line use.

  6. Voltage generators of high voltage high power accelerators

    International Nuclear Information System (INIS)

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  7. High-power liquid-lithium jet target for neutron production

    Science.gov (United States)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  8. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  9. On optimization of power production

    Energy Technology Data Exchange (ETDEWEB)

    Feltenmark, S.

    1997-01-01

    Short-term optimization of power production is treated. It concerns the problem of determining a production schedule for a power system, which minimizes the total cost of production, while satisfying various constraints. The thesis consists of an introductory chapter, four chapters that each concerns a specific problem area (economic dispatch, unit commitment, hydro power planning and cogeneration optimization), plus a chapter with relevant theory. The emphasis of the thesis is on the mathematical structures that arise in problems in this field, and how to exploit them algorithmically. A recurring theme is convexification, either implicit, by dualization, or explicit, as in our approach to hydro power optimization. 134 refs

  10. Special scientific programme on use of high energy accelerators for transmutation of actinides and power production

    International Nuclear Information System (INIS)

    1994-09-01

    Various techniques for the transmutation of radioactive waste through the use of high energy accelerators are reviewed and discussed. In particular, the present publication contains presentations on (i) requirements and the technical possibilities for the transmutation of long-lived radionuclides (background paper); (ii) high energy particle accelerators for bulk transformation of elements and energy generation; (iii) the resolution of nuclear energy issues using accelerator-driven technology; (iv) the use of proton accelerators for the transmutation of actinides and power production; (v) the coupling of an accelerator to a subcritical fission reactor (with a view on its potential impact on waste transmutation); (vi) research and development of accelerator-based transmutation technology at JAERI (Japan); and (vii) questions and problems with regard to accelerator-driven nuclear power and transmutation facilities. Refs, figs and tabs

  11. Wind power. Production in 2012; Vindkraft. Produksjon i 2012

    Energy Technology Data Exchange (ETDEWEB)

    Weir, David Edward; Nybakke, Karen

    2013-02-01

    In 2012 it was installed more wind power in Norway than in any year before. There was also production record with a total power generation from wind energy at ca. 1.57 TWh, equivalent to 1.1% of Norway's electricity production. 2012 was a relatively good 'wind year', with a production index of 107% for Norwegian wind farms as a whole. The length of time for wind was also relatively high compared to previous years with a national average of 2734 full load hours, corresponding to a capacity factor of 31%. Turbine availability also reached a record value of 95.6% in 2012 indicating more efficient operation of wind power plants in Norway.(eb)

  12. High prices on electric power now again?

    International Nuclear Information System (INIS)

    Doorman, Gerard

    2003-01-01

    Deregulation of the electric power market has yielded low prices for the consumers throughout the 1990s. Consumption has now increased considerably, but little new production has been added. This results in high prices in dry years, but to understand this one must understand price formation in the Nordic spot market. The high prices are a powerful signal to the consumers to reduce consumption, but they are also a signal to the producers to seize any opportunity to increase production. However, the construction of new dams etc. stirs up the environmentalists. Ordinary consumers may protect themselves against high prices by signing fixed-price contracts. For those who can tolerate price fluctuations, spot prices are a better alternative than the standard contract with variable price

  13. Science opportunities at high power accelerators like APT

    International Nuclear Information System (INIS)

    Browne, J.C.

    1996-01-01

    This paper presents applications of high power RF proton linear accelerators to several fields. Radioisotope production is an area in which linacs have already provided new isotopes for use in medical and industrial applications. A new type of spallation neutron source, called a long-pulse spallation source (LPSS), is discussed for application to neutron scattering and to the production and use of ultra-cold neutrons (UCN). The concept of an accelerator-driven, transmutation of nuclear waste system, based on high power RF linac technology, is presented along with its impact on spent nuclear fuels

  14. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  15. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  16. High speed and high functional inverter power supplies for plasma generation and control, and their performance

    International Nuclear Information System (INIS)

    Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro

    2003-01-01

    The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak. (author)

  17. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  18. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  19. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  20. Optimization of wind farm power production using innovative control strategies

    DEFF Research Database (Denmark)

    Duc, Thomas

    Wind energy has experienced a very significant growth and cost reduction over the past decade, and is now able to compete with conventional power generation sources. New concepts are currently investigated to decrease costs of production of electricity even further. Wind farm coordinated control...... deficit caused by the wake downstream, or yawing the turbine to deflect the wake away from the downwind turbine. Simulation results found in the literature indicate that an increase in overall power production can be obtained. However they underline the high sensitivity of these gains to incoming wind...... aligned wind turbines. The experimental results show that the scenarios implemented during the first measurement campaign did not achieve an increase in overall power production, which confirms the difficulty to realize wind farm power optimization in real operating conditions. In the curtailment field...

  1. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  2. High-power liquid-lithium jet target for neutron production

    OpenAIRE

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as ...

  3. Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-02-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances: the ability to generate maximal muscular power. Part 1, published in an earlier issue of Sports Medicine, focused on the factors that affect maximal power production while part 2 explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability to generate maximal power during complex motor skills is of paramount importance to successful athletic performance across many sports. A crucial issue faced by scientists and coaches is the development of effective and efficient training programmes that improve maximal power production in dynamic, multi-joint movements. Such training is referred to as 'power training' for the purposes of this review. Although further research is required in order to gain a deeper understanding of the optimal training techniques for maximizing power in complex, sports-specific movements and the precise mechanisms underlying adaptation, several key conclusions can be drawn from this review. First, a fundamental relationship exists between strength and power, which dictates that an individual cannot possess a high level of power without first being relatively strong. Thus, enhancing and maintaining maximal strength is essential when considering the long-term development of power. Second, consideration of movement pattern, load and velocity specificity is essential when designing power training programmes. Ballistic, plyometric and weightlifting exercises can be used effectively as primary exercises within a power training programme that enhances maximal power. The loads applied to these exercises will depend on the specific requirements of each particular sport and the type of movement being trained. The use of ballistic exercises with loads ranging from 0% to 50% of one-repetition maximum (1RM) and

  4. Latest development of high-power fiber lasers in SPI

    Science.gov (United States)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  5. Aluminium alloys welding with high-power Nd:YAG lasers

    International Nuclear Information System (INIS)

    Garcia Orza, J.A.

    1998-01-01

    Aluminium alloys have good mechanical properties (high strength-to-weight ratio, corrosion resistance) and good workability. their applications are growing up, specially in the transportation industry. Weldability is however poorer than in other materials; recent advances in high power YAG laser are the key to obtain good appearance welds and higher penetration, at industrial production rates. Results of the combination of high power YAG beams with small fiber diameters and specific filler wires are presented. It is also characterized the air bone particulate material, by-product of the laser process: emission rates, size distribution and chemical composition are given for several aluminium alloys. (Author) 6 refs

  6. Power and LPG production with LNG import

    International Nuclear Information System (INIS)

    Mak, J.Y.

    2004-01-01

    When used in power cogeneration, Liquefied Natural Gas (LNG) is both energy efficient and can eliminate seawater or fuel gas consumption as well as the associated environmental impacts of conventional regasification processes. However, some liquefied natural gas (LNG) sources have heating values higher than current North American natural gas pipelines can allow for. LNG from these cannot be injected into gas pipelines without several heating control processing steps. This paper outlines two new technologies developed to address this issue. The first is a power cogeneration process using LNG as a heat sink. The second technology involves a fractionation process removing Liquid Propane Gas (LPG) components from imported LNG, thereby controlling heat value. Both technologies are applicable in grassroots installations as well as being suitable for retrofitting to existing LNG regasification for power generation and LPG production. It was concluded that power cogeneration with a mixed fluid power cycle recovered a significant portion of energy in LNG liquefaction plants. Additionally, it was also possible to fractionate high quality LPG from LNG at a low cost, with the residue being further re-condensed and re-utilized for power generation. It was also concluded that the LNG fractionation process would add flexibility to the LNG receiving terminals, allowing the import of lower quality LNG to North America, while also generating additional revenues from LPG production. 3 refs., 5 tabs., 6 figs

  7. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S. James [Gas Technology Inst., Des Plaines, IL (United States)

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful

  8. Social power, product conspicuousness, and the demand for luxury brand counterfeit products.

    Science.gov (United States)

    Bian, Xuemei; Haque, Sadia; Smith, Andrew

    2015-03-01

    The aim of this article is twofold: (1) to achieve a better understanding of the psychological determinants of the demand for luxury brand counterfeit products (LBCP) through exploring the effects of social power; (2) to extend power literature by identifying boundary conditions of the relationship between social power and compensatory consumption identified by Rucker and Galinsky (2008, J. Consum. Res., 35, 257-267) and Rucker and Galinsky (2009, J. Exp. Soc. Psychol., 45, 549-555). Findings from three experiments demonstrate that social power holds key insights into understanding consumers' purchase propensity for LBCP; product conspicuousness moderates the effects of social power on purchase propensity for status products; these moderation effects are only observed when the status products are LBCP but not genuine products. This article, therefore, contributes to the literature regarding the demand for counterfeits as well as the social power and compensatory consumption literature. © 2014 The British Psychological Society.

  9. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  10. Considerations in the design of a high power medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, Russell M.; Nordyke, William H.; Brown, Roy

    2002-01-01

    For the low enriched aqueous homogeneous reactor to be economic in the production of medical isotopes, such as Mo-99 and Sr-89, the power level should be of the order of 100 kWth. This is double the earlier designs and this paper discusses the design changes which must be considered to meet this goal. The topics considered are: 1. Heat removal from the reactor solution; 2. Recombination of radiolytic gases; 3. Adequate radiation shielding; 4. Stability of reactor power with fluctuating reactivity; 5. Adequate cooling of the reflector; 6. Independent shutdown mechanisms; 7. Required volume of the reactor; 8. Economic implementation. (author)

  11. Reference costs of the electric power production

    International Nuclear Information System (INIS)

    2003-06-01

    This study periodically realized by the DGEMP aims to compare the competitiveness of the different channels of electric power production, for different utilization conditions. The first part ''reference costs of the 2003 electric power production'' examines the prices of the electric power produced by different channels in particular in the framework of the industrial implementing in 2015. The nuclear and thermal power plants are concerned. The second part is devoted to the decentralized production channels (wind energy, photovoltaic, cogeneration heat-electricity) is under construction and will be presented next year. (A.L.B.)

  12. The competitiveness of biofuels in heat and power production

    International Nuclear Information System (INIS)

    Kosunen, P.; Leino, P.

    1995-01-01

    The paper showed that natural gas is the most competitive fuel in all the energy production alternatives under review, ie both in separate heat production and electricity generation and in combined heat and power production. Even though the heavy fuel oil taxes have grown more rapidly than taxes on domestic fuels, oil continues to be cheaper than solid fuels in heating and steam plants. According to the feasibility calculations made, combined heat and power production is the least-cost production form of electricity, and the larger the plant unit, the lower the cost. Looking to the future, in respect of merely the development in fuel taxes the competitiveness of domestic fuels will improve markedly if the taxation structure remains unchanged. It seems that at smaller points of consumption, such as heating and steam plants and small-scale power plants, fuel chips would be the most competitive fuel. In larger units, such as heat and power production plants and condensing power plants, fuel peat, primarily milled peat, would be the most competitive. The competitiveness of fuel chips at larger plants will probably be limited by the supply of sufficient volumes from such an area where the delivery costs would not raise the price of fuel chips too high. Coal would remain competitive only if the real import price of coal rose clearly more slowly than the real prices of domestic fuels. It seems that heavy fuel oil will be used only as a start-up, support and back-up fuel. Evaluating the future competitiveness of natural gas is difficult, since the impact of new pipeline investments on the price of natural gas is not known

  13. High-power circulator test results at 350 and 700 MHz

    International Nuclear Information System (INIS)

    Roybal, W.; Bradley, J.T.; Rees, D.E.

    2000-01-01

    The high-power RF systems for the Accelerator Production of Tritium (APT) program require high-power circulators at 350 MHz and 700 MHz to protect 1 MW Continuous Wave (CW) klystrons from reflected power. The 350 MHz circulator is based on the CERN, EXF, and APS designs and has performed very well. The 700 MHz circulator is a new design. Prototype 700 MHz circulators have been high-power tested at Los Alamos National Laboratory (LANL). The first of these circulators has satisfied performance requirements. The circulator requirements, results from the testing, and lessons learned from this development are presented and discussed

  14. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  15. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  16. Enhanced Passive Cooling for Waterless-Power Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-14

    Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant, integrated energy systems are highly suitable for small grids, rural areas, and arid regions.

  17. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  18. Developing maximal neuromuscular power: Part 1--biological basis of maximal power production.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-01-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances, the ability to generate maximal muscular power. Part 1 focuses on the factors that affect maximal power production, while part 2, which will follow in a forthcoming edition of Sports Medicine, explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability of the neuromuscular system to generate maximal power is affected by a range of interrelated factors. Maximal muscular power is defined and limited by the force-velocity relationship and affected by the length-tension relationship. The ability to generate maximal power is influenced by the type of muscle action involved and, in particular, the time available to develop force, storage and utilization of elastic energy, interactions of contractile and elastic elements, potentiation of contractile and elastic filaments as well as stretch reflexes. Furthermore, maximal power production is influenced by morphological factors including fibre type contribution to whole muscle area, muscle architectural features and tendon properties as well as neural factors including motor unit recruitment, firing frequency, synchronization and inter-muscular coordination. In addition, acute changes in the muscle environment (i.e. alterations resulting from fatigue, changes in hormone milieu and muscle temperature) impact the ability to generate maximal power. Resistance training has been shown to impact each of these neuromuscular factors in quite specific ways. Therefore, an understanding of the biological basis of maximal power production is essential for developing training programmes that effectively enhance maximal power production in the human.

  19. Capabilities for managing high-volume production of electric engineering equipment at the Electrochemical Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Podlednev, V.M.

    1996-04-01

    The Electromechanical Production Plant is essentially a research center with experimental facilities and power full testing base. Major products of the plant today include heat pipes and devices of their basis of different functions and power from high temperature ranges to cryogenics. This report describes work on porous titanium and carbon-graphite current collectors, electrocatalyst synthesis, and electrocatalyst applications.

  20. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  1. Wind farm electrical power production model for load flow analysis

    International Nuclear Information System (INIS)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel

    2011-01-01

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  2. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  3. High power gyrotrons: a close perspective

    International Nuclear Information System (INIS)

    Kartikeyan, M.V.

    2012-01-01

    Gyrotrons and their variants, popularly known as gyrodevices are millimetric wave sources provide very high powers ranging from long pulse to continuous wave (CW) for various technological, scientific and industrial applications. From their conception (monotron-version) in the late fifties until their successful development for various applications, these devices have come a long way technologically and made an irreversible impact on both users and developers. The possible applications of high power millimeter and sub-millimeter waves from gyrotrons and their variants (gyro-devices) span a wide range of technologies. The plasma physics community has already taken advantage of the recent advances of gyrotrons in the areas of RF plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (LHCD) (8 GHz), electron cyclotron resonance heating (ECRH) (28-170-220 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering (CTS), heat-wave propagation experiments, and space-power grid (SPG) applications. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for the generation of multi- charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high frequency, broadband electron paramagnetic resonance (EPR) spectroscopy. Additional future applications await the development of novel high power gyro-amplifiers and devices for high resolution radar ranging and imaging in atmospheric and planetary science as well as deep space and specialized satellite communications, RF drivers for next generation high gradient linear accelerators (supercolliders), high resolution Doppler radar, radar ranging and imaging in atmospheric and planetary science, drivers for next-generation high-gradient linear accelerators

  4. ANALYSIS OF GROSS REGIONAL PRODUCT FLUCTUATIONS AND ELECTRIC POWER CONSUMPTION IN 2005- 2014. RESERVES FOR DECREASING ELECTRIC POWER PRICES

    Directory of Open Access Journals (Sweden)

    Suslov N. I.

    2016-09-01

    Full Text Available In this work we considered the trajectories of change in indicators characterizing the status of economics and power industry: gross regional product, electric power consumption, industrial production, energy prices and costs of delivering electric power to consumers in Russian regions for the last 10 years. Low global commodity prices and sanctions led to a sharp decrease of equipment import, which resulted in an acute problem of import substitution. The level of tariffs of natural monopolies is of great importance for industrial development. The goal of this work was to analyze possibilities for reducing electric power prices by changing the institutional and economic conditions of management. We analyzed not only the official information from Rosstat, but also government regulations, figures given in the official government publication «The Rossiyskaya Gazeta» as well as articles and interviews on economic problems of the electric power industry over the recent years published in «The Kommersant» newspaper. High tariffs of network marketing companies for electric energy transmission, state regulation of heating prices, financing the construction of new capacities by charging the payment in power provision contracts, high price of electric power of nuclear power plants lead to an annual increase in electric power prices for end users. In this work we considered possible solutions to limit the growth of electric power prices.

  5. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  6. Design of measurement equipment for high power laser beam shapes

    DEFF Research Database (Denmark)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten

    2013-01-01

    To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD-chip impleme...... by a commercial product has been done. The realised system might suffer from some thermal drift at high power; future work is to clarify this....

  7. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  8. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  9. Power technology complex for production of motor fuel from brown coals with power supply from NPPs

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Poplavskij, V.M.; Sidorov, G.I.; Bondarenko, A.V.; Chebeskov, A.N.; Chushkin, V.N.; Karabash, A.A.; Krichko, A.A.; Maloletnev, A.S.

    1998-01-01

    With the present-day challenge of efficient use of low-grade coals and current restructuring of coal industry in the Russian Federation, it is urgent to organise the motor fuel production by the synthesis from low grade coals and heavy petroleum residues. With this objective in view, the Institute of Physics and Power Engineering of RF Minatom and Combustible Resources Institute of RF Mintopenergo proposed a project of a standard nuclear power technology complex for synthetic liquid fuel (SLF) production using fast neutron reactors for power supply. The proposed project has two main objectives: (1) Engineering and economical optimization of the nuclear power supply for SLF production; and (2) Engineering and economical optimization of the SLF production by hydrogenisation of brown coals and heavy petroleum residues with a complex development of advanced coal chemistry. As a first approach, a scheme is proposed with the use of existing reactor cooling equipment, in particular, steam generators of BN-600, limiting the effect on safety of reactor facility operation at minimum in case of deviations and abnormalities in the operation of technological complex. The possibility to exclude additional requirements to the equipment for nuclear facility cooling was also taken into account. It was proposed to use an intermediate steam-water circuit between the secondary circuit sodium and the coolant to heat the technological equipment. The only change required for the BN-600 equipment will be the replacement of sections of intermediate steam superheaters at the section of main steam superheaters. The economic aspects of synthetic motor fuel production proposed by the joint project depend on the evaluation of integral balances: thermal power engineering, chemical technology, the development of advanced large scale coal chemistry of high profitability; utilisation of ash and precious microelements in waste-free technology; production of valuable isotopes; radical solution of

  10. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  11. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  12. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  13. Hydrogen as an energy carrier and its production by nuclear power

    International Nuclear Information System (INIS)

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world's energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat

  14. Hydrogen as an energy carrier and its production by nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world`s energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat Refs, figs, tabs

  15. Material Processing with High Power CO2-Lasers

    Science.gov (United States)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  16. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High-power klystrons

    Science.gov (United States)

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  18. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  19. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  20. Selling green power in California: Product, industry, and market trends

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

  1. Selling green power in California: Product, industry, and market trends

    International Nuclear Information System (INIS)

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California's residential marketplace

  2. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  3. Laser-powered dielectric-structures for the production of high-brightness electron and x-ray beams

    Science.gov (United States)

    Travish, Gil; Yoder, Rodney B.

    2011-05-01

    Laser powered accelerators have been under intensive study for the past decade due to their promise of high gradients and leveraging of rapid technological progress in photonics. Of the various acceleration schemes under examination, those based on dielectric structures may enable the production of relativistic electron beams in breadbox sized systems. When combined with undulators having optical-wavelength periods, these systems could produce high brilliance x-rays which find application in, for instance, medical and industrial imaging. These beams also may open the way for table-top atto-second sciences. Development and testing of these dielectric structures faces a number of challenges including complex beam dynamics, new demands on lasers and optical coupling, beam injection schemes, and fabrication. We describe one approach being pursued at UCLA-the Micro Accelerator Platform (MAP). A structure similar to the MAP has also been designed which produces periodic deflections and acts as an undulator for radiation production, and the prospects for this device will be considered. The lessons learned from the multi-year effort to realize these devices will be presented. Challenges remain with acceleration of sub-relativistic beams, focusing, beam phase stability and extension of these devices to higher beam energies. Our progress in addressing these hurdles will be summarized. Finally, the demands on laser technology and optical coupling will be detailed.

  4. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    Meibom, P. [Risoe National Lab., DTU, System Analysis Dept., Roskilde (Denmark); Weber, C. [Univ. Duisburg-Essen, Chai og Energy Management (Germany); Barth, R.; Brand, H. [Univ. of Stuttgart, Inst. of Energy Economics and the Rational Use of Energy (Germany)

    2007-05-15

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and unpredictability of wind power production. For large amounts of wind power production the expectation is that the operational costs of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing the operational costs in two power system configurations: with wind power production and with alternative production having properties like conventional production, i.e. being predictable and less variable. The choice of the characteristics of the alternative production is not straight forward and will therefore influence the operational costs induced by wind power production. This paper presents a method for calculating the change in operational costs due to wind power production using a stochastic optimization model covering the power systems in Germany and the Nordic countries. Two cases of alternative production are used to calculate the change in operational costs namely perfectly predictable wind power production enabling calculation of the costs connected to unpredictability, and constant wind power production enabling calculation of the operational costs connected to variability of wind power production. A 2010 case with three different wind power production penetration levels is analysed in the paper. (au)

  5. Cost allocation. Combined heat and power production

    International Nuclear Information System (INIS)

    Sidzikauskas, V.

    2002-01-01

    The benefits of Combined Heat and Power (CHP) generation are discussed. The include improvement in energy intensity of 1% by 2010, 85-90% efficiency versus 40-50% of condensation power and others. Share of CHP electricity production in ERRA countries is presented.Solutions for a development CHP cost allocation are considered. Conclusion are presented for CHP production cost allocation. (R.P.)

  6. Power Producer Production Valuation

    Directory of Open Access Journals (Sweden)

    M. Kněžek

    2008-01-01

    Full Text Available The ongoing developments in the electricity market, in particular the establishment of the Prague Energy Exchange (PXE and the associated transfer from campaign-driven sale to continuous trading, represent a significant change for power companies.  Power producing companies can now optimize the sale of their production capacities with the objective of maximizing profit from wholesale electricity and supporting services. The Trading Departments measure the success rate of trading activities by the gross margin (GM, calculated by subtracting the realized sales prices from the realized purchase prices and the production cost, and indicate the profit & loss (P&L to be subsequently calculated by the Control Department. The risk management process is set up on the basis of a business strategy defining the volumes of electricity that have to be sold one year and one month before the commencement of delivery. At the same time, this process defines the volume of electricity to remain available for spot trading (trading limits. 

  7. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  8. Development of wind power production in arctic climate

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E.; Kaas, J.; Aarnio, E. [Kemijoki Oy (Finland)

    1998-10-01

    The project Development of wind power production in arctic climate is a direct continuation of Arctic wind energy research project, which started in 1989. The main topics in 1996-97 have been production development and commercialising the blade heating systems, development of operation and maintenance practices of arctic wind power plants, preparations for new wind farms and various network connection and energy system studies. Practical operations have taken place in Pyhaetunturi test power plant and in Paljasselkae and Lammashovi power plants, which are in commercial operation

  9. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  10. High-power and highly reliable 638-nm band BA-LD for CW operation

    Science.gov (United States)

    Nishida, Takehiro; Kuramoto, Kyosuke; Abe, Shinji; Kusunoki, Masatsugu; Miyashita, Motoharu; Yagi, Tetsuya

    2018-02-01

    High-power laser diodes (LDs) are strongly demanded as light sources of display applications. In multiple spatial light modulator-type projectors or liquid crystal displays, the light source LDs are operated under CW condition. The high-power 638-nm band broad-area LD for CW operation was newly developed. The LD consisted of two stripes with each width of 75 μm to reduce both an optical power density at a front facet and a threshold current. The newly improved epitaxial technology was also applied to the LD to suppress an electron overflow from an active layer. The LD showed superior output characteristics, such as output of 1.77 W at case temperature of 55 °C with wall plug efficiency (WPE) of 23%, which was improved by 40% compared with the current product. The peak WPE at 25 °C reached 40.6% under the output power of 2.37 W, CW, world highest.

  11. Green certificates will lead to increased electric power production

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2004-01-01

    The implementation of green certificates will lead to increased electricity production from renewable energy sources and less risk of price crises. For the time being, a common market for green certificates will be established with Sweden from January 1, 2006. It is possible to realise a ''compulsory total quota'' of 20 TWh by 2016. Green certificates will imply a premium on the electricity bill. However, the quota system will imply increased power generation, which in turn tends to lower the price. Norway should in principle follow Sweden's definition of renewable energy: all new hydroelectric power, wind power, solar energy, wave and tidal power, biomass energy, and energy recovery. The certificate regime will apply to new investments in renewable power production. However, it would be natural to include the established renewable power production that is currently receiving support. Some critics fear that the consumers rather than the authorities will subsidize the production of green power. The point is being made that central EU countries may save great sums by investing in renewable energy in Norway

  12. Development of computer-aided design and production system for nuclear power plant

    International Nuclear Information System (INIS)

    Ishii, Masanori

    1983-01-01

    The technically required matters related to the design and production of nuclear power stations tended to increase from the viewpoint of the safety and reliability, and it is indispensable to cope with such technically required matters skillfully for the rationalization of the design and production and for the construction of highly reliable plants. Ishikawajima Harima Heavy Industries Co., Ltd., has developed the computer-aided design data information and engineering system which performs dialogue type design and drawing, and as the result, the design-production consistent system is developed to do stress analysis, production design, production management and the output of data for numerically controlled machine tools consistently. In this paper, mainly the consistent system in the field of plant design centering around piping and also the computer system for the design of vessels and others are outlined. The features of the design works for nuclear power plants, the rationalization of the design and production management of piping and vessels, and the application of the CAD system to other general equipment and improvement works are reported. This system is the powerful means to meet the requirement of heightening quality and reducing cost. (Kako, I.)

  13. Reference costs of the electric power production; Couts de reference de la production electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This study periodically realized by the DGEMP aims to compare the competitiveness of the different channels of electric power production, for different utilization conditions. The first part ''reference costs of the 2003 electric power production'' examines the prices of the electric power produced by different channels in particular in the framework of the industrial implementing in 2015. The nuclear and thermal power plants are concerned. The second part is devoted to the decentralized production channels (wind energy, photovoltaic, cogeneration heat-electricity) is under construction and will be presented next year. (A.L.B.)

  14. Wind Power - A Power Source Enabled by Power Electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe

    2004-01-01

    . The deregulation of energy has lowered the investment in bigger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production sources from......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. The production, distribution and the use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should be set up...... the conventional, fossil (and short term) based energy sources to renewable energy sources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...

  15. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Vilim, Michael; Botterud, Audun

    2014-01-01

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  16. CSTI High Capacity Power

    International Nuclear Information System (INIS)

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  17. Production of high power microwaves for particle acceleration with an FEL bunched electron beam

    CERN Document Server

    Gardelle, J; Marchese, G; Padois, M; Rullier, J L; Donohue, J T

    1999-01-01

    Among the studies in the framework of high gradient linear electron-positron collider research, the Two-Beam Accelerator (TBA) is a very promising concept, and two projects are in progress, the Compact Linear Collider project at CERN (W. Schnell, Report no. CERN SL/92-51 and CLIC note 184; K. Huebner, CERN/PS 92-43, CLIC note 176; S. Van der Meer, CERN/PS 89-50, CLIC note 97.) and the Relativistic Klystron-TBA project at LBNL (Technical Review Committee, International Linear Collider Technical Review Committee Report 1995, SLAC-R-95-471, 1995). In a TBA an extremely intense low-energy electron beam, called the drive beam, is bunched at the desired operating frequency, and upon passing through resonant cavities generates radio-frequency power for accelerating the main beam. Among the different approaches to the production of a suitable drive beam, the use of an FEL has been proposed and is under active study at CEA/CESTA.

  18. The present power production system would meet only 60% of the power demand in 2025

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    According to the head of EDF, H. Proglio, the power consumption in France would increase by 40% by 2025 because of the expected growth of the population (+9%) and of the economic growth and despite the efforts for energy sparing. The government's objective of only 50% of nuclear power in 2025 instead of today's 75% would be reached naturally without decommissioning other plant than Fessenheim. Nuclear power has shown its efficiency since electricity price in France is 40% less high than the European average price. EDF has launched a 50 billion euros investment program in order to replace main components of nuclear power plants by 2025. This program will generate 20.000 new jobs in addition to the 30.000 people hired to replace retired staff. For the head of EDF, the real question is more how to produce the future needed power than how to suppress existing means of production. (A.C.)

  19. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J [Elsam/Elkraft/TU Denmark (Denmark)

    1999-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  20. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  1. Optimum operation of a small power production facility

    Energy Technology Data Exchange (ETDEWEB)

    Capehart, B.L.; Mahoney, J.F.; Sivazlian, B.D.

    1983-09-01

    To help reduce the U.S.A.'s dependence on imported oil for electrical power generation, the 1978 National Energy Act established regulations to promote construction and operation of cogeneration and small power production facilities. Many of these facilities are presently under construction, with a great number planned. This paper examines the operation of a small power production facility with on-site generation and storage, on-site use, and connection to an electric utility grid system for the purpose of both selling excess power and buying power. It is assumed that the buying and selling price of electricity varies frequently during the day and that the relevant price and demand data may be accurately projected into the near future. With this system description, a mathematical model is formulated and solved by linear programming to obtain a series of periodic buy and sell decisions so as to maximize the profit from operating the small power production facility. Results are presented to illustrate the methodology for determining potential profits.

  2. Ownership and efficiency in nuclear power production

    International Nuclear Information System (INIS)

    Pollitt, M.G.

    1995-01-01

    This paper aims to contribute to the relatively small amount of academic literature on the efficiency of nuclear power production. The author draws on world-wide comparisons to illustrate the situation in the United Kingdom, where the nuclear generating capacity, conceived of and constructed as a public concern, has recently been privatised. The theory and evidence for links between ownership and productive efficiency is received. Efficiency measures used are explained as are the linear programs required to generate them. Data Envelopment Analysis (DEA) is used to analyse productive efficiency of nuclear power plants before and after privatisation. Results of the DEA are used to test the hypothesis that ownership has no effect on productive efficiency. (UK)

  3. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  4. Electricity production and SO{sub 2} emissions in Poland`s power industry

    Energy Technology Data Exchange (ETDEWEB)

    Salay, J.

    1996-09-01

    The report analyzes how the Polish power industry`s electricity production and SO{sub 2} emissions have changed between 1988 and 1994. It examines to what extent the Polish government`s reform of air pollution control and its reorganization of the power industry affected power plant`s SO{sub 2} emissions in the same period. SO{sub 2} emissions from Polish power plants fell by 37% in 1988-1994. The drop in emissions was partly a result of the fall in economic activity and electricity production in the early 1990s. The main reasons for the emission reduction were the introduction of hard budget constraints, increased coal prices, and stricter enforcement of air pollution control. These reforms created strong incentives for power plants to switch to high-quality coal with lower sulfur content and higher heating value. Improved efficiency of electricity generation also contributed to the fall in SO{sub 2} emissions. 32 refs, 15 figs, 1 tab

  5. New generation of compact high power disk lasers

    Science.gov (United States)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  6. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  7. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  8. Photovoltaic power production figures in 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Worldwide figures of photovoltaic power production (in Mw) along 1992 are presented. Worldwide production of modules per manufacturing technology and per manufacturing companies in Europe, USA and Japan are provided as well. The review has used the following sources: ''PV News'', ''PV insider's report'' and ''systems solars''. (Author)

  9. The structure of atomic power industry with allowance for energy production other than electricity

    International Nuclear Information System (INIS)

    Aleksandrov, A.P.; Legasov, V.A.; Sidorenko, V.A.; Ponomarev-Stepnoj, N.N.; Protsenko, A.N.; Grebennik, V.N.; Glushkov, E.S.

    1977-01-01

    The important tendency in the development of nuclear power is broadening the scope of its application for substitution of mineral fuel by the nuclear one not only at the electrical power production but in other energy consuming fields of industry. The development of large-scale nuclear power plants permits the provision of the significant part of energy supply of all kinds and save on oil and gas. Scales and rates of development of nuclear power are estimated for the model society on the basis of predicted need energy consumption per capita. The possible rates and scales of nuclear power development are determined at some alternative amounts of potential reserves of organic fuel (oil, gas) per capita and within the economically and ecologically reasonable scales of coal utilization. There has been given the analysis of possible scopes of application of nuclear power industry: for production of electricity, central heating, hydrogen generation, gasification of coals, metallurgy, chemistry by means of medium- and high-temperature reactors. The conceivable relation between electrical energy and heat production in energetics and the nuclear power industry and the dynamics of change in this relation is being forecasted. The promising development of high temperature helium reactors has been discussed. Considerations on possible effect of thorium cycle on the structure of nuclear power industry are outlined. The nuclear power industry is being developed mainly on the basis of nuclear power plants with thermal reactors and it should not be expected for the next decade that its structure is to change significantly. However, the development of only this type reactors will require, as early as the end of this century, the significant consumption of natural uranium and considerable increase in capacities of uranium output and uranium enrichment industry. Therefore, in the following stages of development of nuclear power industry it is necessary to introduce fast breeders

  10. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  11. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  12. State regulation and power plant productivity: background and recommendations

    International Nuclear Information System (INIS)

    1980-09-01

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements

  13. Influence of high burnup on the decay heat power of spent fuel at long-term storage

    International Nuclear Information System (INIS)

    Bergelson, B.; Gerasimov, A.; Tikhomirov, G.

    2005-01-01

    Development and application of advanced fuel with higher burnup is now in practice of NPP with light water reactors in an increasing number of countries. High burnup allows to decrease significantly consumption of uranium. However, spent fuel of this type contains increased amount of high active actinides and fission products in comparison with spent fuel of common-type burnup. Therefore extended time of storage, improved cooling system of the storage facility will be required along with more strong radiation protection during storage, transportation and processing. Calculated data on decay heat power of spent uranium fuel of light water VVER-1000 type reactor are discussed in the paper. Long-term storage of discharged fuel during 100000 years is considered. Calculations were made for burnups of 40-70 MW d/kg. In the initial 50-year period of storage, power of fission products is much higher than that of actinides. Power of gamma-radiation is mainly due to fission products. During subsequent storage power of fission products quickly decreases, the main contribution to the power is given by actinides rather than by fission products. (author)

  14. New products from the power merchant to customer with time measurements and load management

    International Nuclear Information System (INIS)

    Solem, Gerd; Doorman, Gerard; Grande, Ove S.

    2003-01-01

    The main aim is to develop products from the power merchants that improve the consumer flexibility. For the development of the products the basis is that the consumption is measured by hours and that a connection to a load management scheme is present. Calculations for four products are made where the risk exposure is different for the customer and the supplier. The four products are ''Spot price with mark-up'', ''The combination of constant price and spot price'', ''Constant price with disconnection'' and ''Effect subscription''. The customers are exposed to the spot price in the first two products and may through disconnection reduce the costs by adapting to the market signals. Remote disconnection of parts of the consumption may be offered as a service jointly by the network companies and the power suppliers through a two-way communication but it is not realistic that the customers may pay much for this. ''Spot price with mark-up'' implies that the customer carries the entire risk while constant price may place considerable risk at the power supplier by long high consumption combined with high spot prices. '' Constant price with disconnection'' gives the power supplier the possibilities of reducing the risks. A disconnection possibility that is committing to the customers may be part of the product specification. The customers may be offered a discount calculated out from the costs for alternative price securing. Also '' Effect subscription'' reduces the merchant risks considerably at the disconnection of the consumption. The ''combined product of constant and spot price'' may be interesting from the supplier's viewpoint due to considerable risk reductions compared to solely using the constant price. The product gives the customers a guaranteed price for a part of the product and has an additional possibility of adapting the consumption to the market signals. The network company routines for handling of the hour values are a large challenge. It is important to

  15. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    DEFF Research Database (Denmark)

    Meibom, Peter; Weber, C.; Barth, R.

    2009-01-01

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and partial predictability of wind power production. For large amounts of wind power production, the expectation is that the specific operational costs (fuel costs, start......-up costs, variable operation and maintenance costs, costs of consuming CO2 emission permits) of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing...... the operational costs in two power system configurations: with wind power production and with alternative wind production having properties such as conventional production, that is, being predictable and less variable. The choice of the characteristics of the alternative production is not straightforward...

  16. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  17. Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production

    International Nuclear Information System (INIS)

    Perna, Alessandra; Minutillo, Mariagiovanna; Jannelli, Elio

    2015-01-01

    Energy systems based on fuel cells technology can have a strategic role in the range of small-size power generation for the sustainable energy development. In order to enhance their performance, it is possible to recover the “waste heat” from the fuel cells, for producing or thermal power (cogeneration systems) or further electric power by means of a bottoming power cycle (combined systems). In this work an advanced system based on the integration between a HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) power unit and an ORC (organic Rankine cycle) plant, has been proposed and analysed as suitable energy power plant for supplying electric and thermal energies to a stand-alone residential utility. The system can operate both as cogeneration system, in which the electric and thermal loads are satisfied by the HT-PEMFC power unit and as electric generation system, in which the low temperature heat recovered from the fuel cells is used as energy source in the ORC plant for increasing the electric power production. A numerical model, able to characterize the behavior and to predict the performance of the HT-PEMFC/ORC system under different working conditions, has been developed by using the AspenPlus™ code. - Highlights: • The advanced plant can operate both as CHP system and as electric generation system. • The performance prediction of the integrated system is carried out by numerical modeling. • ORC thermodynamic optimization is carried out by a sensitivity analysis. • Thermal coupling between the HT-PEMC system and the ORC plant is analyzed. • Results are very promising in the field of the distributed generation

  18. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    International Nuclear Information System (INIS)

    KIm, Baek Joong; Yi, Chong Ku

    2017-01-01

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials

  19. Experimental study on the shrinkage properties and cracking potential of high strength concrete containing industrial by-products for nuclear power plant concrete

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Baek Joong; Yi, Chong Ku [School of Civil, Environmental and Architectural Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-15

    In Korea, attempts have been made to develop high strength concrete for the safety and design life improvement of nuclear power plants. In this study, the cracking potentials of nuclear power plant-high strength concretes (NPP-HSCs) containing industrial by-products with W/B 0.34 and W/B 0.28, which are being reviewed for their application in the construction of containment structures, were evaluated through autogenous shrinkage, unrestrained drying shrinkage, and restrained drying shrinkage experiments. The cracking potentials of the NPP-HSCs with W/B 0.34 and W/B 0.28 were in the order of 0.34FA25 > 0.34FA25BFS25 > 0.34BFS50 > 0.34BFS65SF5 and 0.28FA25SF5 >> 0.28BFS65SF5 > 0.28BFS45SF5 > 0.28 FA20BFS25SF5, respectively. The cracking potentials of the seven mix proportions excluding 0.28FA25SF5 were lower than that of the existing nuclear power plant concrete; thus, the durability of a nuclear power plant against shrinkage cracking could be improved by applying the seven mix proportions with low cracking potentials.

  20. Establishing and development of nuclear power production in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Zhotabayev, Zh.R.

    2007-01-01

    Full text: As it was stressed by the President of the Republic of Kazakhstan N. Nazarbaev in his address to people of Kazakhstan on February 28 2007, among the most important directions of domestic and foreign policy there is the need in development of power production and creation of conditions for nuclear power production. Intensive development of new and revived sectors such as machine-building, oil chemistry, nuclear, space, information, nano- and bio-technologies would inevitably require growth in power generation. That is why development of power production becomes a priority task. Growth of demand in power consumption worldwide, rise in prices for oil and natural gas, toughening of environmental regulations for utilization of organic fuel, concerns regarding energy supply security in many countries stipulate growth of interest to nuclear power production. International experience in power production shows the advantages and need in development of nuclear power production. In energy production, people currently use organic fuel, hydropower and alternative energy source; current share of nuclear production in the total rate of energy generation comprises about 17%. The Republic has considerable grounds for development of nuclear power production - well-developed uranium mining and processing National Company 'KazAtomProm' and a State Enterprise 'National Nuclear Center'. Creation of nuclear power production sector and development of nuclear power production in the country would help solving a set of inter-related problems aimed to satisfaction of demand in energy production by diversification of energy supply sources. This, in turn, would contribute to effective and balanced utilization of available mineral resources, improve export capacities of the country, assure environmental security at energy production; it would also preserve and develop science and technology in the country in the field of nuclear power production and nuclear industry. Objective and

  1. The JLab high power ERL light source

    International Nuclear Information System (INIS)

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered (superconducting) Linac (ERL). The machine has a 160MeV electron beam and an average current of 10mA in 75MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100fs pulses with >200W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10kW of average power in the IR from 1 to 14μm in 400fs pulses at up to 74.85MHz repetition rates and soon will produce similar pulses of 300-1000nm light at up to 3kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and

  2. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  3. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  4. Power Production and Economical Feasibility of Tideng Tidal Stream Power Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Frigaard, Peter; Kofoed, Jens Peter

    This report is a product of the contract between Aalborg University and TIDENG (by Bent Hilleke) on the evaluation and development of the TIDENG Tidal Energy Conversion System (TECS). The work has focused on the evaluation of the yearly power production of the device and its economical feasibility...

  5. Development of high-power diode lasers with beam parameter product below 2 mm×mrad within the BRIDLE project

    Science.gov (United States)

    Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.

    2015-03-01

    High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (BPP 50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.

  6. Production of highly charged ion beams with SECRAL

    International Nuclear Information System (INIS)

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe 37+ , 1 e μA of Xe 43+ , and 0.16 e μA of Ne-like Xe 44+ . To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi 31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi 31+ , 22 e μA of Bi 41+ , and 1.5 e μA of Bi 50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  7. Generic study on the design and operation of high power targets

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2014-02-01

    Full Text Available With the move towards beam power in the range of 1–10 MW, a thorough understanding of the response of target materials and auxiliary systems to high power densities and intense radiation fields is required. This paper provides insight into three major aspects related to the design and operation of high power solid targets: thermal stresses, coolant performance, and radiation damage. Where appropriate, a figure-of-merit approach is followed to facilitate the comparison between different target or coolant candidates. The section on radiation damage reports total and spatial variations of displacement-per-atom and helium production levels in different target materials.

  8. Short time ahead wind power production forecast

    International Nuclear Information System (INIS)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-01-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast. (paper)

  9. Short time ahead wind power production forecast

    Science.gov (United States)

    Sapronova, Alla; Meissner, Catherine; Mana, Matteo

    2016-09-01

    An accurate prediction of wind power output is crucial for efficient coordination of cooperative energy production from different sources. Long-time ahead prediction (from 6 to 24 hours) of wind power for onshore parks can be achieved by using a coupled model that would bridge the mesoscale weather prediction data and computational fluid dynamics. When a forecast for shorter time horizon (less than one hour ahead) is anticipated, an accuracy of a predictive model that utilizes hourly weather data is decreasing. That is because the higher frequency fluctuations of the wind speed are lost when data is averaged over an hour. Since the wind speed can vary up to 50% in magnitude over a period of 5 minutes, the higher frequency variations of wind speed and direction have to be taken into account for an accurate short-term ahead energy production forecast. In this work a new model for wind power production forecast 5- to 30-minutes ahead is presented. The model is based on machine learning techniques and categorization approach and using the historical park production time series and hourly numerical weather forecast.

  10. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  11. Economic evaluation of private power production under uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Weiguo Xing; Wu, F.F. [University of Hong Kong (China). Centre for Electrical Energy Systems

    2003-02-01

    Private power production is becoming an increasingly important source of electricity generation. In developing countries, build-operate-transfer (BOT) arrangement has emerged as a dominant form of private investment. Pricing private power production at its avoided cost is the breakeven point for the utility in economic evaluation, and uncertainties must be taken into account. In this paper, an approach of calculating the breakeven cost to the utility of a BOT power plant whose contract lasts for 10-25 years is proposed. The proposed approach requires the computation of production costs from long-term generation expansion planning (GEP) under future uncertainties. To facilitate the inclusion of constraints introduced by BOT plants in GEP and uncertainties, a genetic algorithm method is utilized in GEP. The breakeven cost is a useful measure in the economic evaluation of BOT power plants. An example is presented to illustrate the economic evaluation of BOT plants using the concept of breakeven cost.(author)

  12. Thermal electric power production

    International Nuclear Information System (INIS)

    Boehmer, S.

    2001-01-01

    The basic principle of a thermal power plant is to heat up water in the pipe system of a boiler to generate steam, which exits the boiler with high pressure and releases its energy to a tandem-arranged turbine. This energy is transmitted to a generator over a common shaft. The generated electricity is fed into the power supply system. The processed steam is condensed to water by means of a condenser and transferred back into the pipe system of the boiler (feed water circuit). In general the following techniques are applied for the combustion of solid, liquid and gaseous fuels: dry bottom boiler, wet bottom boiler, grate firing, fluidized bed combustion, gasification systems - integrated gasification combined cycle (IGCC), oil firing technique, gas firing technique. Residues from power plants are generated by the following processes and emission reduction measures: separation of bottom ash or boiler slag in the boiler; separation of fly ash (particulate matter) by means of filters or electric precipitators; desulphurization through lime additive processes, dry sorption or spray absorption processes and lime scrubbing processes; desulphurization according to Wellmann-Lord and to the Walther process; reduction of NO x emissions by selective catalytic reduction (SCR). In this case spent catalyst results as a waste unless it is recycled. No residues are generated by the following measures to reduce NO x emissions: minimization of nitrogen by selective non-catalytic reduction (SNCR); adaptations of the firing technology to avoid emissions - primary measures (low-NO x burners, CO reduction). However, this may change the quality of fly ash by increasing unburnt carbon. Combustion of fossil fuels (with the exception of gaseous fuels) and biomass generates large quantities of residues - with coal being the greatest contributor - either from the fuel itself in the form of ashes, or from flue gas cleaning measures. In coal-fired power plants huge amounts of inorganic residues

  13. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  14. Facing the challenges of distribution systems operation with high wind power penetration

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    power flow in 60kV distribution networks through controlling the ability of wind power plants (WPPs) to generate or absorb reactive power. This paper aims to understand the characteristics of a distribution network with high penetration of distributed generation. A detailed analysis of the active...... and reactive power flows in a real distribution network under different wind and load conditions based on actual measurements is performed in order to understand the correlation between the consumption, wind power production, and the network losses. Conclusive remarks are presented, briefly expressing......This paper addresses the challenges associated with the operation of a distribution system with high penetration of wind power. The paper presents some preliminary investigations of an ongoing Danish research work, which has as main objective to reduce the network losses by optimizing the reactive...

  15. High-power LEDs for plant cultivation

    Science.gov (United States)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  16. Water Stress on U.S. Power Production at Decadal Time Horizons

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Auroop R. [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.. Civil and Environmental Engineering Dept.; Ganguli, Poulomi [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.; Kumar, Devashish [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.

    2014-09-01

    Thermoelectric power production at risk, owing to current and projected water scarcity and rising stream temperatures, is assessed for the contiguous United States at decadal scales. Regional water scarcity is driven by climate variability and change, as well as by multi-sector water demand. While a planning horizon of zero to about thirty years is occasionally prescribed by stakeholders, the challenges to risk assessment at these scales include the difficulty in delineating decadal climate trends from intrinsic natural or multiple model variability. Current generation global climate or earth system models are not credible at the spatial resolutions of power plants, especially for surface water quantity and stream temperatures, which further exacerbates the assessment challenge. Population changes, which are difficult to project, cannot serve as adequate proxies for changes in the water demand across sectors. The hypothesis that robust assessments of power production at risk are possible, despite the uncertainties, has been examined as a proof of concept. An approach is presented for delineating water scarcity and temperature from climate models, observations and population storylines, as well as for assessing power production at risk by examining geospatial correlations of power plant locations within regions where the usable water supply for energy production happens to be scarcer and warmer. Our analyses showed that in the near term, more than 200 counties are likely to be exposed to water scarcity in the next three decades. Further, we noticed that stream gauges in more than five counties in the 2030s and ten counties in the 2040s showed a significant increase in water temperature, which exceeded the power plant effluent temperature threshold set by the EPA. Power plants in South Carolina, Louisiana, and Texas are likely to be vulnerable owing to climate driven water stresses. In all, our analysis suggests that under various combinations of plausible climate

  17. Innovative applications of technology for nuclear power plant productivity improvements

    International Nuclear Information System (INIS)

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  18. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  19. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    International Nuclear Information System (INIS)

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000 0 C for high efficiency. The design put forth in this study details a system that can accomplish that end

  20. Hydrogen co-production from subcritical water-cooled nuclear power plants in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gnanapragasam, N.; Ryland, D.; Suppiah, S., E-mail: gnanapragasamn@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-06-15

    Subcritical water-cooled nuclear reactors (Sub-WCR) operate in several countries including Canada providing electricity to the civilian population. The high-temperature-steam-electrolysis process (HTSEP) is a feasible and laboratory-demonstrated large-scale hydrogen-production process. The thermal and electrical integration of the HTSEP with Sub-WCR-based nuclear-power plants (NPPs) is compared for best integration point, HTSEP operating condition and hydrogen production rate based on thermal energy efficiency. Analysis on integrated thermal efficiency suggests that the Sub-WCR NPP is ideal for hydrogen co-production with a combined efficiency of 36%. HTSEP operation analysis suggests that higher product hydrogen pressure reduces hydrogen and integrated efficiencies. The best integration point for the HTSEP with Sub-WCR NPP is upstream of the high-pressure turbine. (author)

  1. McRunjob: A High Energy Physics Workflow Planner for Grid Production Processing

    OpenAIRE

    Graham, G E; Evans, D; Bertram, I

    2003-01-01

    McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core metadata into jobs submittable in a variety of environments. The powerful core...

  2. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  3. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  4. Nuclear power and health. The implications for health of nuclear power production

    International Nuclear Information System (INIS)

    1994-01-01

    Nuclear power production is, in principle, a safe technology when practised in accordance with the well established and very strict national and international rules and regulations. Yet management failures have occurred, resulting in injuries to personnel and, occasionally, escape of radioactive material. Such events may cause potential health problems, affecting physical, mental and social well-being. Public concern still tends to concentrate on nuclear-power-related facilities, yet the public's desire for a reduction in environmental pollution has led to increased demand for the development and use of low-waste or non-waste energy technologies. Nuclear energy production is one such technology, which has become established and well developed, particularly in highly industrialized countries. This was recognized by the WHO Regional Office for Europe as early as the 1970s, and led to a series of scientific working groups to discuss the most urgent issues related to the impact on health of the generation of electrical power by means of nuclear energy. Five major meetings took place between 1975 and 1985, resulting in five publications (1 - 5) covering various aspects of particular concern to the general public (and thus also to national authorities) such as handling plutonium, managing high-level radioactive waste, and preparing for accidental releases of radioactive material. The first such publication was issued in 1977. All five books were based on the collective knowledge and experience of groups of experts, and were published following the meetings of the respective working groups. The project was initiated at the request and with the support of the Government of Belgium, to study and discuss the effects of the nuclear power industry on people and the environment. The project served two objectives. First, it assisted Member States in developing the capacity to understand the public health implications of the widespread use of nuclear power. Second, it

  5. PowerShades II. Optimisation and validation of highly transparent photovoltaic. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-15

    The objective of the project is continued development and validation of a novel Danish photovoltaic product with the work title ''PowerShade''. The PowerShade insulating glazing unit (IGU) is a combination of a strong solar shading device and a power producing photovoltaic coating. The core technology in the PowerShade IGU is a thin film silicon photovoltaic generator applied to a micro structured substrate. The geometry of the substrate provides the unique combination of properties that characterizes the PowerShade module - strong progressive shading, high transparency, and higher electrical output than other semitransparent photovoltaic products with similar transparencies. The project activities fall in two categories, namely development of the processing/product and validation of the product properties. The development part of the project is focussed on increasing the efficiency of the photovoltaic generator by changing from a single-stack type cell to a tandem-stack type cell. The inclusion of PowerShade cells in insulating glazing (IG) units is also addressed in this project. The validation part of the project aims at validation of stability, thermal and optical properties as well as validation of the electrical yield of the product. The validation of thermal and optical properties has been done using full size modules installed in a test facility built during the 2006-08 ''PowerShades'' project. The achieved results will be vital in the coming realisation of a commercial product. Initial processing steps have been automated, and more efficient tandem-type solar cells have been developed. A damp heat test of an IGU has been carried out without any degradation of the solar cell. The PowerShade module assembly concept has been further developed and discussed with different automation equipment vendors and a pick-and-place tool developed. PowerShade's influence on the indoor climate has been modelled and verified by

  6. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  7. Maintenance in nuclear production power plants

    International Nuclear Information System (INIS)

    Lozano, J. M.

    2010-01-01

    This article highlights the importance and quality of maintenance in the complete phases of development, in a sector which has been often questioned by the public opinion, and that is always subject to national and international standards. The aim of maintenance is to guarantee the production of electric power in a reliable, safe, economic and friendly environmentally way, assuring a long-term production. (Author)

  8. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  9. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  10. Applications of magnetic power production and its assessment - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovski, A.; Vuarnoz, D.; Diebold, M.; Gonin, C.; Egolf, P. W.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done at the University of Applied Sciences of Western Switzerland in 2007 on a project involving power production based on magnetic effects. In this annual report, a selection of feasible and economic magnetic power conversion systems is listed. Magnetic 'power generators' based on permanent and superconducting magnets are analysed for several heat source temperatures, magnetic field strengths and machine rotational frequencies. The analysis uses a newly derived model, which permits the determination of thermodynamic efficiency and exergy efficiency of a magnetic power-conversion system. This study shows that magnetic power conversion is better than conventional technologies in many aspects, such as, for example, for low exergy heat sources, where most of the conventional energy conversion technologies cannot even operate. The authors state that, in contrast, magnetic power generation technology leads to a high exergy efficiency of energy conversion for such sources.

  11. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  12. Model for optimization of plant investments in combined power and heat production systems

    Energy Technology Data Exchange (ETDEWEB)

    Jantunen, E.; Sinisalo, A.; Koskelainen, L.

    1980-01-01

    A mathematical model is developed for optimal dimensioning and timing the investments of power and heat production system in a community. The required electric power may be purchased by different production systems, such as: thermal power plants, gas turbines, diesel plants, etc. or by delivering all or part of it from a national power company. Also the required heat may be produced in many different ways in single-purpose or combined plants. The model assumes the extent of the heating system fixed, and it is not optimized. It is assumed that the same company is responsible for supplying both the power and heat for the community. It's aim is to allocate the existing capital in an optimal way, and the model may be used for facilitating the decision in such questions as: what kind of production capacity should be purchased in future; how high should the heat and power capacities be; and when should this additional capacity be available. The report also reviews the methods for forecasting the demand of power and heat and their fluctuation during the planning period. The solution of this large-scale non-linear optimization problem is searched via successive linearizations by using the Method of Approximate Programming (MAP). It was found that the solution method is very suitable for this kind of multivariable problems. The computing times with the Functional Mathematical Programmin System (FMPS) in Univac 1108 computer were quite reasonable.

  13. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  14. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  15. Development of a high-power RF cavity for the PEP-II B factory

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Allen, M.A.; Saba, J.; Schwarz, H.

    1995-03-01

    The authors describe the development and fabrication of the first high-power RF cavity for PEP-II. Design choices and fabrication technologies for the first cavity and subsequent production cavities are described. Conditioning and high-power testing of the first and subsequent cavities are discussed, as well as integration of the cavity into modular RF systems for both high-energy and low-energy rings. Plans for installation of the cavity raft assemblies in the RF sections of the PEP tunnel are also considered

  16. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  17. Integrated approach to economical, reliable, safe nuclear power production

    International Nuclear Information System (INIS)

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation

  18. Production-integrated emission reduction: Examples from power plant engineering; Produktionsintegrierte Emissionsminderung - Beispiele aus der Kraftwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J.; Brueggendick, H. [STEAG AG, Essen (Germany)

    2002-07-01

    The contribution presents examples of how environmental protection can be integrated in the production process: 1. Low-NOx coal furnaces; 2. Flue gas desulphurisation; 3. Mercury in sludge from flue gas desulphurisation systems, 4. Production of acid aerosols in the power plant process; 5. Semi-dry flue gas desulphurisation. Apart from generating power, modern coal power stations also produce recycleable materials like gypsum, filter ash, granulates etc., all of which must meet certain quality specifications. Avoidance of residues is the main goal; if this is not possible, recycling is given priority over dumping. Recycling and utilisation of by-products can reduce the power generation cost by up to 15 %. The parameters concerned, i.e. fuels, furnace technology, flue gas purification technology, product utilisation, are weighted differently depending on the site. Solutions range form high-grade fuels and product requiring high investments (e.g. dust furnaces with limestone or ammonia scrubbers) to simple processes with lower investment cost (e.g. flue gas purification using dry or semi-dry processes). High investments and high-quality products are economically efficient only if there is an infrastructure for product sales and distribution. Coal power plants therefore must be optimised for the conditions of a given site. [German] Der Beitrag befasst sich mit einigen Beispielen fuer produktionsintegrierten Umweltschutz: 1. NO{sub x}-arme Steinkohlefeuerungen; 2. Rauchgasentschwefelung (REA); 3. Quecksilber in REA-Schlamm; 4. Sauere Aerosole und ihre Entstehung im Kraftwerksprozess; 5. Halbtrockene Rauchgasreinigung. Es wird resumiert, dass ein Kohlekraftwerk heute mehreren 'Meistern' gehorchen muss. Es erzeugt nicht nur Strom- und Waerme, sondern gleichzeitig noch Wertstoffe wie Gips, Filterasche, Granulat etc., die bestimmte Qualitaetsanforderungen erfuellen muessen. Der Grundsatz 'Vermeiden vor Verwerten vor Beseitigen' wird dabei nachdruecklich

  19. Fault analysis and strategy of high pulsed power supply for high power laser

    International Nuclear Information System (INIS)

    Liu Kefu; Qin Shihong; Li Jin; Pan Yuan; Yao Zonggan; Zheng Wanguo; Guo Liangfu; Zhou Peizhang; Li Yizheng; Chen Dehuai

    2001-01-01

    according to the requirements of driving flash-lamp, a high pulsed power supply (PPS) based on capacitors as energy storage elements is designed. The author analyzes in detail the faults of high pulsed power supply for high power laser. Such as capacitor internal short-circuit, main bus breakdown to ground, flashlamp sudden short or break. The fault current and voltage waveforms were given by circuit simulations. Based on the analysis and computation, the protection strategy with the fast fuse and ZnO was put forward, which can reduce the damage of PPS to the lower extent and provide the personnel safe and collateral property from the all threats. The preliminary experiments demonstrated that the design of the PPS can satisfy the project requirements

  20. Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility

    International Nuclear Information System (INIS)

    Tahir, N A; Weick, H; Iwase, H

    2005-01-01

    A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump

  1. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  2. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  3. A high-power versatile wireless power transfer for biomedical implants.

    Science.gov (United States)

    Jiang, Hao; Zhang, Jun Min; Liou, Shy Shenq; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2010-01-01

    Implantable biomedical actuators are highly desired in modern medicine. However, how to power up these biomedical implants remains a challenge since most of them need more than several hundreds mW of power. The air-core based radio-frequency transformer (two face-to-face inductive coils) has been the only non-toxic and non-invasive power source for implants for the last three decades [1]. For various technical constraints, the maximum delivered power is limited by this approach. The highest delivered power reported is 275 mW over 1 cm distance [2]. Also, the delivered power is highly vulnerable to the coils' geometrical arrangement and the electrical property of the medium around them. In this paper, a novel rotating-magnets based wireless power transfer that can deliver ∼10 W over 1 cm is demonstrated. The delivered power is significantly higher than the existing start-of-art. Further, the new method is versatile since there is no need to have the impedance matching networks that are highly susceptible to the operating frequency, the coil arrangement and the environment.

  4. The prospects for very high-power electron accelerators for processing bulk materials

    International Nuclear Information System (INIS)

    Cleland, M.R.; Thompson, C.C.; Malone, H.F.

    1977-01-01

    The recent growth in the industrial usage of ionizing radiation has been stimulated by the development of reliable, high-power, electron beam generators which operate in the beam power range of 10 to 100 kilowatts. This high output has reduced the costs of radiation processes to about 0.001 dollars per megarad-pound of product material. At this rate electron beam treatment is now less expensive than conventional methods for curing plastic and rubber products and sterilizing medical disposables. Future applications of electron beam radiation to bulk chemicals and waste materials will require even larger generators operating in the power range of 100 to 1000 kilowatts to handle greater material thruputs. Unit processing costs must be further reduced because of the lower intrinsic values of these materials. Fortunately, lower unit costs will follow the development of more powerful equipment because most of the cost factors do not increase in proportion to the output power. This is demonstrated by analyzing the downward trends in radiation processing costs as the machine voltage and the beam current are increased. The Dynamitron accelerator technology is reviewed to show that this could be one method of achieving the projected power levels. Several large-scale radiation processes are discussed to show that applications can be found for electron beam systems operating in the projected range. (author)

  5. Development of small and medium reactors for power and heat production

    International Nuclear Information System (INIS)

    Becka, J.

    1978-01-01

    Data are given on the current state of development of small and medium-power reactors designed mainly for electric power production in small power grids, for heat production for small- and medium-power desalination plants with possible electric power generation, for process steam production and heat development for district heating systems, again combined with electric power generation, and for propelling big and fast passenger ships. A diagram is shown of the primary system of an integrated PWR derived from the Otto Hahn reactor. The family is listed of the standard sizes of the integral INTERATOM company pressurized water reactors. Also listed are the specifications and design of CAS 2CG and AS 3G type reactors used mainly for long-distance heating systems. (J.B.)

  6. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    , is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor......Wind) model, where the wind turbine storm controllers are also implemented....

  7. Estimating generation costs for wind power production in France

    International Nuclear Information System (INIS)

    Benazet, J.F.; Probert, E.J.

    1997-01-01

    Wind power is being exploited in several European countries as one of a possible number of sources of renewable energy. However, in France there is a heavy reliance on nuclear and hydro-electric power and the potential of wind power as part of the energy mix has been virtually ignored. One of the reasons advanced for the under utilisation of this technology is that it is financially unattractive. In this paper the contribution which wind power could potentially make to overall power production levels in France is examined. A cost estimate model is developed which derives electricity generation costs and determines realistic levels of production for the future. The model automatically determines the associated number of wind turbines required and the geographical areas in which they should be located. (author)

  8. Pulsed high-power beams

    International Nuclear Information System (INIS)

    Reginato, L.L.; Birx, D.L.

    1988-01-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. This paper reports on a 70-MeV, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory that incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive of the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability

  9. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  10. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  11. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  12. Designing High Efficient Solar Powered OLED Lighting Systems

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    2016-01-01

    for the 10 Wp version. Furthermore, we present measurements of state-of-the-art commercial available OLED with regards to the luminous flux, luminous efficacy, luminance homogeneity, temperature dependency and IV characteristic of the OLED panels. In addition, solar powered OLED product concepts are proposed.......OLEDs used in solar powered lighting applications is a market of the future. This paper reports the development of electronic Three-Port-Converters for PV OLED product integration in the low-power area respectively for 1-10 Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power...

  13. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  14. DISTRIBUTED ELECTRICAL POWER PRODUCTION SYSTEM AND METHOD OF CONTROL THEREOF

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a distributed electrical power production system wherein two or more electrical power units comprise respective sets of power supply attributes. Each set of power supply attributes is associated with a dynamic operating state of a particular electrical power unit....

  15. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  16. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  17. Application of dynamic compaction technology for high performance and precision powder products

    International Nuclear Information System (INIS)

    Lee, Chang Kyu; Lee, Jung Gu; Lee, Min Ku; Uhm, Young Rang; Park, Jin Ju; Lee, Gyeong Ja; Hong, Soon Jik

    2011-06-01

    The automation technology of magnetic pulsed compaction (MPC) has been developed for mass production of high performance powder products by dynamic compaction method. The pulse power equipment in MPC system has been modified for improved lifetime and productivity, so the modified one can produce high-density compacts at a rate of 10 times/min with semipermanent lifetime. Using this modified pulse power equipment, two types of automated MPC apparatus were constructed, which are operated by mechanical and hydraulic driving systems, respectively. By repeated compaction operations at a rate of 5 times/min, durability and productivity of these automated apparatus have been proven to be suitable for mass production. In addition, the lifetime of mold and punch for MPC has been improved by optimizing design and material as well as employing new lubrication system. By applying such automated MPC apparatus, detailed mass production technologies have been developed for several powder products such as diamond drilling segments, ceramic targets for optical coating, silver coins for water disinfection and small powder products for automobile. The developed powder products showed improved performance as compared to commercial ones, so they will be mass-produced industrially before long

  18. What about improving the productivity of electric power plants

    International Nuclear Information System (INIS)

    Lawroski, H.; Knecht, P.D.; Prideaux, D.L.; Zahner, R.R.

    1976-01-01

    The FEA in April of 1974 established an Interagency Task Group on Power Plant Reliability, which was charged with the broad objective of improving the productivity of existing and planned large fossil-fueled and nuclear power plants. It took approximately 11 months for the task force to publish a report, ''Report on Improving the Productivity of Electrical Power Plants'' (FEA-263-G), a detailed analysis and comparison of successful and below-average-performance power plants. The Nuclear Service Corp. portion of this study examined four large central-station power plants: two fossil (coal) and two nuclear plants. Only plants with electrical generation capacities greater than 400 MWe were considered. The study included the following: staff technical skill, engineering support, QA program, plant/corporate coordination, operation philosophy, maintenance programs, federal/state regulations, network control, and equipment problems. Personnel were interviewed, and checklists providing input from some 21 or more plant and corporate personnel of each utility were utilized. Reports and other documentation were also reviewed. It was recognized early that productivity is closely allied to technical skills and positive motivation. For this reason, considerable attention was given to people in this study

  19. Applications of high power microwaves

    International Nuclear Information System (INIS)

    Benford, J.; Swegle, J.

    1993-01-01

    The authors address a number of applications for HPM technology. There is a strong symbiotic relationship between a developing technology and its emerging applications. New technologies can generate new applications. Conversely, applications can demand development of new technological capability. High-power microwave generating systems come with size and weight penalties and problems associated with the x-radiation and collection of the electron beam. Acceptance of these difficulties requires the identification of a set of applications for which high-power operation is either demanded or results in significant improvements in peRFormance. The authors identify the following applications, and discuss their requirements and operational issues: (1) High-energy RF acceleration; (2) Atmospheric modification (both to produce artificial ionospheric mirrors for radio waves and to save the ozone layer); (3) Radar; (4) Electronic warfare; and (5) Laser pumping. In addition, they discuss several applications requiring high average power than border on HPM, power beaming and plasma heating

  20. Power market model with energy- and power dimension

    International Nuclear Information System (INIS)

    Johnsen, T.A.; Larsen, B.M.

    1995-01-01

    This report discusses a mathematical model of the Norwegian power market. The year is divided into three seasons. Each season is subdivided into a high-load period and a low-load period according to the demand. High-load occurs in daytime on workdays while low-load occurs at night and on holidays. The model is intended to be a tool for studying variations in prices, production, demand and trade throughout the year in a market of free competition. The model establishes equilibrium prices of electricity in Norway in high-load and low-load periods. Equilibrium prices with added transport tariffs and charges give customer an indication of the cost of using electricity. And the equilibrium prices indicate to the power producers the value of further energy or power capacity. Examples of calculations using the model show that extended export and import between Norway and other countries affect power prices and production in Norway. In the examples, power intensive industry and wood processing are subjected to market prices on energy. World market prices which give unilateral power export in the high-load periods cause the Norwegian power prices to rise strongly. If to the export from Norway in periods of high-load there corresponds import in periods of low-load, then the pressure on the prices in the power market is significantly reduced. A more extensive power exchange implies that foreign power producers may use the Norwegian power system to avoid large variations in their thermal power production. 23 refs., 21 figs., 1 tab

  1. Major projects for the use of high power linacs

    International Nuclear Information System (INIS)

    Prome, M.

    1996-01-01

    A review of the major projects for high power linacs is given. The field covers the projects aiming at the transmutation of nuclear waste or the production of tritium, as well as the production of neutrons for hybrid reactors or basic research with neutron sources. The technologies which arc common to all the projects are discussed. Comments are made on the technical difficulties encountered by all the projects, and the special problems of the pulsed linacs are mentioned. Elements for a comparison of normal conducting linacs versus superconducting ones are given. Finally the technical developments being made in various laboratories are reviewed. (author)

  2. High gas dependence for power generation in Thailand: The vulnerability analysis

    International Nuclear Information System (INIS)

    Nakawiro, Thanawat; Bhattacharyya, Subhes C.

    2007-01-01

    Thailand uses 74% of its natural gas supply for power generation and 70% of its power comes from gas-based technology. High dependence on natural gas in power generation raises concerns about security of electricity supply that could affect competitiveness of Thai manufacturing and other industries at the global level. The effect of fuel dependence on security of electricity supply has received less emphasis in the literature. Given this gap, this research examines the economic impact of high dependence on natural gas for power generation in Thailand by analyzing the effect of changes in fuel prices (including fuel oil and natural gas) on electricity tariff in Thailand. At the same time, the research quantifies the vulnerability of the Thai economy due to high gas dependence in power generation. Our research shows that for every 10% change in natural gas price, electricity tariff in Thailand would change by 3.5%. In addition, we found that the gas bill for power generation consumed between 1.94% and 3.05% of gross domestic product (GDP) between 2000 and 2004 and in terms of GDP share per unit of energy, gas dependence in power generation is almost similar to that of crude oil import dependence. We also found that the basic metal industry, being an electricity intensive industry, is the most affected industry. Additionally, we find that volatility of gas price is the main factor behind the vulnerability concern. The research accordingly simulates two mitigation options of the problem, namely reducing gas dependence and increasing efficiency of gas-fired power plants, where the results show that these methods can reduce the vulnerability of the country from high gas dependence in power generation

  3. A high power ZnO thin film piezoelectric generator

    Science.gov (United States)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  4. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  6. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  7. High-Temperature Reactor For Power Generation and District Heating

    International Nuclear Information System (INIS)

    Herzberger, Karlheinz

    1987-01-01

    The multinational BBC Brown Brave Group, which has its head-quarters in Baden/Switzerland, was founded in 1891. Its German company is Brown, Brave and CIEs AGM, Mannheim. The field of operation covers wide areas of electrical engineering: These includes mainly the manufacture of installations and equipment for the generation, conversion, distribution and utilization of electric power, with special emphasis on the capital goods sector. BBC erects turnkey power plants and manufactures electrical equipment for industrial plants and urban transport and main line trains. Also of major importance are standard electrical products such as motors, switches, cables, semiconductor devices as well as measuring and control equipment. In the field of nuclear power BBC is engaged in particular in the development and construction of high-temperature reactors for the generation of electric power and process heat. The following presentation gives a short view on the milestones of the HTR development achieved in 1987

  8. MANAGING HIGH-END, HIGH-VOLUME INNOVATIVE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Gembong Baskoro

    2008-01-01

    Full Text Available This paper discuses the concept of managing high-end, high-volume innovative products. High-end, high-volume consumer products are products that have considerable influence to the way of life. Characteristic of High-end, high-volume consumer products are (1 short cycle time, (2 quick obsolete time, and (3 rapid price erosion. Beside the disadvantages that they are high risk for manufacturers, if manufacturers are able to understand precisely the consumer needs then they have the potential benefit or success to be the market leader. High innovation implies to high utilization of the user, therefore these products can influence indirectly to the way of people life. The objective of managing them is to achieve sustainability of the products development and innovation. This paper observes the behavior of these products in companies operated in high-end, high-volume consumer product.

  9. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  10. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  11. Medical Radioisotope Production in a Power-Flattened ADS Fuelled with Uranium and Plutonium Dioxides

    Directory of Open Access Journals (Sweden)

    Gizem Bakır

    2016-01-01

    Full Text Available This study presents the medical radioisotope production performance of a conceptual accelerator driven system (ADS. Lead-bismuth eutectic (LBE is selected as target material. The subcritical fuel core is conceptually divided into ten equidistant subzones. The ceramic (natural U, PuO2 fuel mixture and the materials used for radioisotope production (copper, gold, cobalt, holmium, rhenium, thulium, mercury, palladium, thallium, molybdenum, and yttrium are separately prepared as cylindrical rods cladded with carbon/carbon composite (C/C and these rods are located in the subzones. In order to obtain the flattened power density, percentages of PuO2 in the mixture of UO2 and PuO2 in the subzones are adjusted in radial direction of the fuel zone. Time-dependent calculations are performed at 1000 MW thermal fission power (Pth for one hour using the BURN card. The neutronic results show that the investigated ADS has a high neutronic capability, in terms of medical radioisotope productions, spent fuel transmutation and energy multiplication. Moreover, a good quasiuniform power density is achieved in each material case. The peak-to-average fission power density ratio is in the range of 1.02–1.28.

  12. How do users interact with photovoltaic-powered products? Investigating 100 'lead-users' and 6 PV products

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, Angelina H.M.E.

    2016-01-01

    In order to better understand how 'lead-users' interact with PV-powered products, the behaviour of 100 people interacting with six different PV-powered products in their daily life was analysed. The sample of respondents to be observed consisted of 20 groups, each one formed by five students of

  13. Industrial application of high power disk lasers

    Science.gov (United States)

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  14. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  15. Comparing costs of power and heat production by prospective and present sources

    International Nuclear Information System (INIS)

    Novak, S.

    1979-01-01

    Capital and running costs are compared of power and heat production from different sources. The lowest capital costs were found for coal-fired power plants followed by light water reactor power plants. The capital costs of other types of power plants, such as wind, geothermal, solar, thermonuclear power plants are significantly higher. The estimated specific cost for electric power production in 1985 for a nuclear power plant is lower than for a fossil-fuel power plant. It is estimated that in 1985 coal will be the cheapest heat source. (Ha)

  16. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  17. QED studies using high-power lasers

    International Nuclear Information System (INIS)

    Mattias Marklund

    2010-01-01

    Complete text of publication follows. The event of extreme lasers, which intensities above 10 22 W/cm 2 will be reached on a routine basis, will give us opportunities to probe new aspects of quantum electrodynamics. In particular, the non-trivial properties of the quantum vacuum can be investigated as we reach previously unattainable laser intensities. Effects such as vacuum birefringence and pair production in strong fields could thus be probed. The prospects of obtaining new insights regarding the non-perturbative structure of quantum field theories shows that the next generation laser facilities can be important tool for fundamental physical studies. Here we aim at giving a brief overview of such aspects of high-power laser physics.

  18. Application of the discounted value flows method in production cost calculations for Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Majer, P.

    1990-01-01

    The fundamentals are outlined of the discounted value flows method, which is used in industrial countries for calculating the specific electricity production costs. Actual calculations were performed for the first two units of the Temelin nuclear power plant. All costs associated with the construction, operation and decommissioning of this nuclear power plant were taken into account. With a high degree of certainty, the specific production costs of the Temelin nuclear power plant will lie within the range of 0.32 to 0.36 CSK/kWh. Nearly all results of the sensitivity analysis performed for the possible changes in the input values fall within this range. An increase in the interest rate to above 8% is an exception; this, however, can be regarded as rather improbable on a long-term basis. Sensitivity analysis gave evidence that the results of the electricity production cost calculations for the Temelin nuclear power plant can be considered sufficiently stable. (Z.M.). 7 figs., 2 tabs., 14 refs

  19. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  20. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  1. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are key to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices. In fact,...

  2. The effect of microwave power on the production of biodiesel from nyamplung

    Science.gov (United States)

    Qadariyah, L.; Mujaddid, F.; Raka; Dhonny, S. B.; Mahfud, M.

    2017-12-01

    Today, energy needs in Indonesia still rely on fossil energy sources that its availability in the world is increasingly depleted. Therefore, the research for alternative energy of petroleum must be developed, one of them is biodiesel. The use of microwave as energy source of biodiesel production can speed up the reaction time. So the microwave is considered more efficient. Seeds of nyamplung has an oil content of 71.4% (w/w) by weight. With the oil content of the nyamplung seeds has great potential when used as a raw material for biodiesel production. The aim of this research to study the effect of microwave power on the production of biodisel from nyamplung oil. Microwave power affects density, viscosity and yield of the product. The used of alkali catalyst, with higher the power, the lower the density and viscosity of the resulting product, but the resulting yield is 300 W. The power of more than 300 W is the opposite, resulting in the production of biodiesel using the optimum base catalyst at 300 W power.

  3. The design of a linear L-band high power amplifier for mobile communication satellites

    Science.gov (United States)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  4. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are one of the keys to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices....

  5. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  6. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis

    International Nuclear Information System (INIS)

    Huang, Yu-Fong; Chiueh, Pei-Te; Kuan, Wen-Hui; Lo, Shang-Lien

    2015-01-01

    Agricultural residues are abundant resources to produce renewable energy and valuable chemicals. This study focused on the effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis of agricultural residues. When agricultural residues were under microwave radiation within 10 min, the maximum temperatures of approximately 320, 420, and 530 °C were achieved at the microwave power levels of 300, 400, and 500 W, respectively. Gas yield increased with increasing microwave power level, whereas solid and liquid yields decreased. Besides, gaseous products with higher H 2 content and higher calorific values can be obtained at higher microwave power levels. In addition to microwave power level, lignocellulosic composition was also an important factor. H 2 and CO 2 yields increased with increasing hemicellulose content, whereas CH 4 and CO yields increased with increasing cellulose content. Four empirical equations were derived to present the contributions of lignocellulosic materials to the yields of gaseous components. - Highlights: • About 530 °C was reached within 10 min at a microwave power level of 500 W. • Gas yield increased with increasing microwave power level. • A high correlation between hemicellulose content and either H 2 or CO 2 yield. • A high correlation between cellulose content and either CH 4 or CO yield. • Empirical equations depict contribution of lignocellulosic content to gas yield

  7. Direct fuel cell - A high proficiency power generator for biofuels

    International Nuclear Information System (INIS)

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-01-01

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products

  8. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  9. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    Science.gov (United States)

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. © 2015 by the Society for Personality and Social Psychology, Inc.

  10. Improvement of uranium production efficiency to meet China's nuclear power requirements

    International Nuclear Information System (INIS)

    Zhang, R.

    1997-01-01

    Recently China put the Qinshan Nuclear Power Plant, with an installed capacity of 300 MW, in the province of Zhejiang and the Daya Bay Nuclear Power Plant, with a total installed capacity of 2 x 900 MW, in commercial operation. China plans a rapid growth in nuclear power from 1995 to 2010. China's uranium production will therefore also enter a new period with nuclear power increasing. In order to meet the demand of nuclear power for uranium special attention has been paid to both technical progress improvement using management with the aim of reducing the cost of uranium production. The application of the trackless mining technique has enhanced the uranium mining productivity significantly. China has produced a radiometric sorter, model 5421-2 for pre-concentrating uranium run-of-mine ore. This effectively increases the uranium content in mill feed and decreases the operating cost of hydrometallurgical treatment. The in situ leach technique after blasting is applied underground in the Lantian Mine, in addition to the surface heap leaching, and has obtained a perfect result. The concentrated acid-curing, and ferric sulphate trickle leaching process, will soon be used in commercial operation for treating uranium ore grading -5 to -7 mm in size. The annual production capability of the Yining Mine will be extended to 100 tonnes U using improving in situ leaching technology. For the purpose of improving the uranium production efficiency much work has been done optimizing the distribution of production centres. China plans to expand its uranium production to meet the uranium requirements of the developing nuclear power plants. (author). 4 tabs

  11. High-power light-emitting diode based facility for plant cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Tamulaitis, G [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Duchovskis, P [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Bliznikas, Z [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Breive, K [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Ulinskaite, R [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Brazaityte, A [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Novickovas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Zukauskas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania)

    2005-09-07

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  12. High-power light-emitting diode based facility for plant cultivation

    International Nuclear Information System (INIS)

    Tamulaitis, G; Duchovskis, P; Bliznikas, Z; Breive, K; Ulinskaite, R; Brazaityte, A; Novickovas, A; Zukauskas, A

    2005-01-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated

  13. Corrosion products in power generating systems

    International Nuclear Information System (INIS)

    Lister, D.H.

    1980-06-01

    The important mechanisms of corrosion and corrosion product movement and fouling in the heat transport systems of thermal electric generating stations are reviewed. Oil- and coal-fired boilers are considered, along with nuclear power systems - both direct and indirect cycle. Thus, the fireside and waterside in conventional plants, and the primary coolant and steam-raising circuits in water-cooled reactors, are discussed. Corrosion products in organic- and liquid-metal-cooled reactors also are shown to cause problems if not controlled, while their beneficial effects on the cooling water side of condensers are described. (auth)

  14. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  15. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  16. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  17. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  18. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  19. Experience in independent power production: Two projects that closed

    Energy Technology Data Exchange (ETDEWEB)

    Kappaz, M.H.

    1994-12-31

    K and M Engineering and Consulting Corporation`s experience in independent power production is outlined. The following topics are discussed: the KMR Power Corporation, K and M strengths and strategy, key success factors, project experience, selected projects, and capital structure.

  20. Utilization of agricultural waste in power production

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, J.C. [ELSAMPROJEKT A/S, Fredericia (Denmark); Rasmussen, I. [MIDTKRAFT Power Co., Aarhus (Denmark)

    1993-12-31

    It is a goal of the Danish energy policy for the last decade to reduce energy consumption and to introduce fuels for power production with less CO{sub 2} emission than coal. This measure has caused a considerable effort by the Danish utilities to develop technologies that reduce CO{sub 2} emissions without causing heavy cost increases of power. Agricultural waste in the form of surplus straw is available in an amount equivalent to 20% of the annual coal imports to Denmark. Straw firing is difficult due to its significant contents of alkaline components. Consequently, its utilization presupposes the development of new technologies. The biomass development program is concentrated on two ways which are (1) co-firing of existing coal fired power station with a modest amount of straw and (2) development of CFB technology that allows a high share of biomass as well as coal only. These options were tested in a coal fired 70 MW spreader stoker unit and a 125 MW PF unit. Approx. 4000 t of straw were burned. Additional tests will be launched this autumn, burning 35,000 t of straw at rates up to 20% straw. The CFB option is pursued from the platform of a 80 MWth unit, operational early `92. This plant burns a mix of 50% straw and 50% coal and consumes annually 70.000 t of straw. Future development is aiming towards CFBs of 250 MW(e), burning in excess of 50% biomass.

  1. Electric plant cost and power production expenses 1991

    International Nuclear Information System (INIS)

    1993-01-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels (CNEAF); Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  2. Electric plant cost and power production expenses 1990

    International Nuclear Information System (INIS)

    1992-06-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  3. New production of electric power when accelerating nuclear power phaseout

    International Nuclear Information System (INIS)

    1986-10-01

    This investigation states that it is possible to eliminate nuclear power to the beginning of the year 2000. In this case the time for planning and construction of large coal power plants with condenser turbines should be set at seven years. The production cost excluding fuel will be 0.12 to 0.19 SEK per kWh. Investment cost is estimated to 5 500 to 8 200 SEK per kW. When using wood chips the cost will be 0.30 SEK and 11 300 SEK, respectively. A large part of the increased cost will include substantial flue gas purification. The existing plant of Karlshamn should be maintained with a minimum of charges and extensions

  4. Reliability of offshore wind power production under extreme wind conditions. Deliverable D 9.5. Work Package 9: Electrical grid

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Zeni, Lorenzo

    years, with each year simulated with five random seeds, leading to a total of 25 annual wind power time series for six large offshore wind farms, summing up to a little over 330 wind turbines. Two storm control strategies were used. The analysis involved several aspects inspired from reliability studies....... The aspects investigated are storm events occurrences and durations, storm control strategy impact on the capacity factor (lost production), the loss of production (power produced from wind drops below a certain threshold due to high wind speeds and storm controller) and finally, the wind power production......Reliability of offshore wind production under extreme wind conditions was investigated in this report. The wind power variability from existing and future large offshore wind farms in Western Denmark were simulated using the Correlated Wind model developed at Risø. The analysis was done for five...

  5. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  6. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation.

    Science.gov (United States)

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-04-04

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input

  7. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  8. High impact data visualization with Power View, Power Map, and Power BI

    CERN Document Server

    Aspin, Adam

    2014-01-01

    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  9. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  10. Local power production at the end consumer - legal, political and economical external conditions

    International Nuclear Information System (INIS)

    Grinden, Bjoern; Hunnes, Arngrim; Naesje, Paal; Wangensteen, Ivar; Morch, Andrei Z.

    2002-12-01

    The report deals with the external conditions for local power production, suggested as a production close to or at the end consumer. The political, legal and economical frame conditions for such production including rating are discussed. The report shall together with a technical report regarding appropriate technologies for such production (A5712), serve as a basis for case studies and monitors later in the project. Through the case studies it will be uncovered how the external conditions are functioning which will make foundations for recommendations concerning possible alterations in the conditions in order to make the local power production more profitable. In the discussion on the political and legal external conditions the system of today is studied. From the political area the general development is described and a short analysis is made of what to expect from case handling procedures, and some challenges are pointed out At present there is a simplified handling of cases of minor and smaller power plants. In order to obtain a more realistic construction of such plants the requirements of license handling may need sharpening. The tariffing of energy deliverance is studied. The regulations for tariffing and income regulation in the distribution network is mainly designed with the consumer and the central power production in mind. A study is made of how the regulations work, to what extent precessions and additional rules are needed and to what extent alterations in the regulations are needed in order to incorporate the local power production in a rational way. While a local power producer at best, will want a price for power which is sold at the power market of the size of 20 oere/kWh, the power will increase in value further down in the voltage level. At the 230 V level the power price will be of the size of 60 oere/kWh all expenses included and the network rent (during normal precipitation conditions). Therefore the production for own consumption will be met

  11. Development of experimental method to simulate the corrosion products in the primary system of nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Jang, Chang Heui

    2005-01-01

    Corrosion products are recognized as one of the major sources of occupational radiation exposure for nuclear power plant workers. Numerous studies have been conducted on the primary water chemistry to reduce the amount of crud in the primary circuit to avoid the radioactivity build-up in the plant. However, experiments with crud are restricted in laboratory because the crud is highly radioactive material. The objective of this study is to develop the simulating method of corrosion product in nuclear power plant

  12. Natural gas for power production in Western Europe

    International Nuclear Information System (INIS)

    1993-01-01

    The third and last part of the Sub-Committee's study on natural gas for power generation is reprinted in this issue. This part addresses gas consumption in electricity production until the year 2010. The first part of the study dealing with combined cycle power plants was published in September and the 2nd part on regulatory and environmental issues in October 1992

  13. Methods for slow axis beam quality improvement of high power broad area diode lasers

    Science.gov (United States)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  14. Safety of power transformers, power supplies, reactors and similar products - Part 1: General requirements and tests

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1998-01-01

    This International Standard deals with safety aspects of power transformers, power supplies, reactors and similar products such as electrical, thermal and mechanical safety. This standard covers the following types of dry-type transformers, power supplies, including switch mode power supplies, and reactors, the windings of which may be encapsulated or non-encapsulated. It has the status of a group safety publication in accordance with IEC Guide 104.

  15. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  16. Slovenske elektrarne has fulfilled the plan of electric power production at 101 %

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    Slovenske elektrarne, a. s., produced in 2003 year the electric power in capacity 26,047.6 GWh, whereby they fulfilled business plan at 101 %. In compare with the last year it is a reduction in production by 1,397.3 GWh. The biggest share of production - till 68.6 % of overall production of the Slovenske elektrarne, was provided by nuclear sources. Nuclear power plants fulfilled business plan at 104 %, when Jaslovske Bohunice NPP has produced 11,625 GWh and Mochovce NPP 6,238 GWh. The share of other power plants on the electricity production is presented

  17. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  18. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)

    eobe

    increase in the number of electrical loads that some kind of ... components in the AC power system. Thus, suppl ... al output power; assuring reliability in ... distribution systems. This can be ...... Thesis- Califonia Institute of Technology, Capitulo.

  19. Production of ozone using nanosecond short pulsed power

    OpenAIRE

    Shimomura, N.; Wakimoto, M.; Togo, H.; Namihira, Takao; Akiyama, Hidenori; ナミヒラ, タカオ; アキヤマ, ヒデノリ; 浪平, 隆男; 秋山, 秀典

    2003-01-01

    Production of ozone is one of the most typical industrial and commercial applications of electrical discharge. The demand of ozone will be increasing for wholesome and environment-friendly sterilizations. The production of ozone using the pulsed power discharge will apply electron accelerations around the head of streamer discharge. The breakdowns in reactor, however, often limit the efficient production. The pulse shape should be controlled for dimension of the reactor. On the other hand, th...

  20. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  1. Resource-based optimization of electric power production (in Iran)

    International Nuclear Information System (INIS)

    Sadeghzadeh, Mohammad

    1999-01-01

    This paper is about electric power production optimization and chiefly discusses on the types of resources available in Iran. The modeling has been based on the marginal cost of different energy resources and types of technologies used. the computed costs are the basic standards for optimization of the production system of energy. the costs associated with environmental pollution and also pollution control are considered. the present paper also studied gas fossil fuel, hydro, nuclear, renewable and co-generation of heat and power. The results are discussed and reported at the last of the paper

  2. Power unit with GT-MHR reactor plant for electricity production and district heating

    International Nuclear Information System (INIS)

    Kiryushin, A.L.; Kodochigov, N.G.; Kuzavkov, N.G.; Golovko, V.F.

    2000-01-01

    Modular helium reactor with the gas turbine (GT-MHR) is a perspective power reactor plant for the next century. The project reactor is based on experience of operation more than 50 gas-cooled reactors on carbon dioxide and helium, and also on subsequent achievements in the field of realization direct gas turbine Brayton cycle. To the beginning of 90 years, achievements in technology of gas turbines, highly effective recuperators and magnetic bearings made it possible to start development of the reactor plant project combining a safe modular gas cooled reactor and a power conversion system, realizing the highly effective Brayton cycle. The conceptual project of the commercial GT-MHR reactor plant fulfilled in 1997 by joint efforts of international firms, combines a safe modular reactor with an annular active core of prismatic fuel blocks and a power conversion system with direct gas turbine cycle. The efficiency of GT-MHR gas turbine cycle at level of about 48% makes it competitive in the electricity production market in comparison with any fossil or nuclear power stations

  3. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  4. Sexual aggression when power is new: Effects of acute high power on chronically low-power individuals.

    Science.gov (United States)

    Williams, Melissa J; Gruenfeld, Deborah H; Guillory, Lucia E

    2017-02-01

    Previous theorists have characterized sexually aggressive behavior as an expression of power, yet evidence that power causes sexual aggression is mixed. We hypothesize that power can indeed create opportunities for sexual aggression-but that it is those who chronically experience low power who will choose to exploit such opportunities. Here, low-power men placed in a high-power role showed the most hostility in response to a denied opportunity with an attractive woman (Studies 1 and 2). Chronically low-power men and women given acute power were the most likely to say they would inappropriately pursue an unrequited workplace attraction (Studies 3 and 4). Finally, having power over an attractive woman increased harassment behavior among men with chronic low, but not high, power (Study 5). People who see themselves as chronically denied power appear to have a stronger desire to feel powerful and are more likely to use sexual aggression toward that end. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Switching transients in high-frequency high-power converters using power MOSFET's

    Science.gov (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  6. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  7. Power-law approach to modeling biological systems. II. Application to ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Voit, E O; Savageau, M A

    1982-01-01

    The use of the power-law formalism is illustrated by modeling yeast ethanol production in batch culture at high cell densities. Parameter values are estimated from experimental data. The results suggest that ethanol killing of viable cells and lysis of nonviable cells are major determinants of system behavior, whereas catabolism of ethanol and inhibition of cell growth by ethanol appear to be insignificant under these experimental conditions.

  8. High-power RF cavity R ampersand D for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Rimmer, R.; Lambertson, G.; Hodgson, J.

    1994-06-01

    We describe the development of a high-power test model of the 476 MHz RF cavity for the PEP-II B Factory. This cavity is designed to demonstrate the feasibility of a high-power design with higher-order mode (HOM) damping waveguides and the fabrication technologies involved, and it can also be used to evaluate aperture or loop couplers and various RF windows. Changes to the RF design to reduce peak surface heating are discussed and results of finite-element analyses of temperature and stress are presented. Fabrication methods for the prototype and subsequent production cavities are discussed

  9. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  10. Wind energy in electric power production. Preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Lento, R; Peltola, E

    1984-01-15

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics also estimates on the available wind energy were made. 800 wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics include is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions causes extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of a plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  11. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  12. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  13. High stability, high current DC-power supplies

    International Nuclear Information System (INIS)

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  14. High thermoelectric power factor in two-dimensional crystals of Mo S2

    Science.gov (United States)

    Hippalgaonkar, Kedar; Wang, Ying; Ye, Yu; Qiu, Diana Y.; Zhu, Hanyu; Wang, Yuan; Moore, Joel; Louie, Steven G.; Zhang, Xiang

    2017-03-01

    The quest for high-efficiency heat-to-electricity conversion has been one of the major driving forces toward renewable energy production for the future. Efficient thermoelectric devices require high voltage generation from a temperature gradient and a large electrical conductivity while maintaining a low thermal conductivity. For a given thermal conductivity and temperature, the thermoelectric power factor is determined by the electronic structure of the material. Low dimensionality (1D and 2D) opens new routes to a high power factor due to the unique density of states (DOS) of confined electrons and holes. The 2D transition metal dichalcogenide (TMDC) semiconductors represent a new class of thermoelectric materials not only due to such confinement effects but especially due to their large effective masses and valley degeneracies. Here, we report a power factor of Mo S2 as large as 8.5 mW m-1K-2 at room temperature, which is among the highest measured in traditional, gapped thermoelectric materials. To obtain these high power factors, we perform thermoelectric measurements on few-layer Mo S2 in the metallic regime, which allows us to access the 2D DOS near the conduction band edge and exploit the effect of 2D confinement on electron scattering rates, resulting in a large Seebeck coefficient. The demonstrated high, electronically modulated power factor in 2D TMDCs holds promise for efficient thermoelectric energy conversion.

  15. Automated System Tests High-Power MOSFET's

    Science.gov (United States)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  16. High Performance Computing - Power Application Programming Interface Specification Version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  17. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    Science.gov (United States)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  18. Geothermal power production in future electricity markets-A scenario analysis for Germany

    International Nuclear Information System (INIS)

    Purkus, Alexandra; Barth, Volker

    2011-01-01

    Development and diffusion of new renewable energy technologies play a central role in mitigating climate change. In this context, small-scale deep geothermal power has seen growing interest in recent years as an environmentally friendly, non-intermittent energy source with large technical potential. Following the first successful demonstration projects, the German geothermal industry is currently experiencing an internationally unparalleled growth. In this study we explore the factors driving this development, and the role geothermal power production could play in the future of the German electricity market. For this, we apply the scenario technique, based on literature analysis and interviews with companies operating actively in the field. Our findings highlight the importance of political support and framework conditions in the electricity market, with the best prospects in a decentralised energy system based on renewable energy sources, where high investment costs and the risk of discovery failure are balanced by the benefits of low-carbon base load power. - Research highlights: → Small scale geothermal plants could provide base load for RES based power systems. → New technologies allow its use even in geologically inactive regions like Germany. → Key factors for growth are political support and power market framework conditions. → Main investment barriers are comparatively high investment costs and discovery risks. → Scale of use depends on technological evolution and energy system structure.

  19. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  20. Integrated firewood production, ensures fuel security for self sustaining Biomass Power Plants reduces agricultural cost and provides livestock production

    International Nuclear Information System (INIS)

    Lim, Andre

    2010-01-01

    Growing concerns on the impact of climate change, constraints on fossil fuel electricity generation and the likelihood of oil depletion is driving unprecedented growth and investment in renewable energy across the world. The consistency of biomass power plants makes them capable of replacing coal and nuclear for base-load. However experience had shown otherwise, climate change reduces yields, uncontrolled approvals for biomass boilers increased demands and at times motivated by greedy farmers have raised price of otherwise a problematic agricultural waste to high secondary income stream forcing disruption to fuel supply to power plants and even their shutting down. The solution is to established secured fuel sources, fortunately in Asia there are several species of trees that are fast growing and have sufficient yields to make their harvesting economically viable for power production. (author)

  1. Highly-stabilized power supply for synchrotron accelerators. High speed, low ripple power supply

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kenji [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Kumada, Masayuki; Fukami, Kenji; Koseki, Shoichiro; Kubo, Hiroshi; Kanazawa, Toru

    1997-02-01

    In synchrotron accelerators, in order to utilize high energy beam effectively, those are operated by repeating acceleration and taking-out at short period. In order to accelerate by maintaining beam track stable, the tracking performance with the error less than 10{sup -3} in the follow-up of current is required for the power supply. Further, in order to maintain the intensity and uniformity of beam when it is taken out, very low ripple is required for output current. The power supply having such characteristics has been developed, and applied to the HIMAC and the SPring-8. As the examples of the application of synchrotrons, the accelerators for medical treatment and the generation of synchrotron radiation are described. As to the power supply for the deflection magnets and quadrupole magnets of synchrotron accelerators, the specifications of the main power supply, the method of reducing ripple, the method of improving tracking, and active filter control are reported. As to the test results, the measurement of current ripple and tracking error is shown. The lowering of ripple was enabled by common mode filter and the symmetrical connection of electromagnets, and high speed response was realized by the compensation for delay with active filter. (K.I.)

  2. High temperature blankets for the production of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Steinberg, M.; Fillo, J.; Makowitz, H.

    1977-01-01

    The application of very high temperature blankets to improved efficiency of electric power generation and production of H 2 and H 2 based synthetic fuels is described. The blanket modules have a low temperature (300 to 400 0 C) structure (SS, V, Al, etc.) which serves as the vacuum/coolant pressure boundary, and a hot (>1000 0 C) thermally insulated interior. Approximately 50 to 70% of the fusion energy is deposited in the hot interior because of deep penetration by high energy neutrons. Separate coolant circuits are used for the two temperature zones: water for the low temperature structure, and steam or He for the hot interior. Electric generation efficiencies of approximately 60% and H 2 production efficiencies of approximately 50 to 70%, depending on design, are projected for fusion reactors using these high temperature blankets

  3. Very high power THz radiation at Jefferson Lab

    International Nuclear Information System (INIS)

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-01-01

    We report the production of high power (20 watts average, ∼;1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement

  4. Hydrogen production system coupled with high-temperature gas-cooled reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2003-01-01

    On the HTTR program, R and D on nuclear reactor technology and R and D on thermal application technology such as hydrogen production and so on, are advanced. When carrying out power generation and thermal application such as hydrogen production and so on, it is, at first, necessary to supply nuclear heat safely, stably and in low cost, JAERI carries out some R and Ds on nuclear reactor technology using HTTR. In parallel to this, JAERI also carries out R and D for jointing nuclear reactor system with thermal application systems because of no experience in the world on high temperature heat of about 1,000 centigrade supplied by nuclear reactor except power generation, and R and D on thermochemical decomposition method IS process for producing hydrogen from water without exhaust of carbon dioxide. Here were described summaries on R and D on nuclear reactor technology, R and D on jointing technology using HTTR hydrogen production system, R and D on IS process hydrogen production, and comparison hydrogen production with other processes. (G.K.)

  5. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    1999-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≥ 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  6. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    2001-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≤30MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  7. Reactor G1: high power experiments

    International Nuclear Information System (INIS)

    Laage, F. de; Teste du Baillet, A.; Veyssiere, A.; Wanner, G.

    1957-01-01

    The experiments carried out in the starting-up programme of the reactor G1 comprised a series of tests at high power, which allowed the following points to be studied: 1- Effect of poisoning by Xenon (absolute value, evolution). 2- Temperature coefficients of the uranium and graphite for a temperature distribution corresponding to heating by fission. 3- Effect of the pressure (due to the coiling system) on the reactivity. 4- Calibration of the security rods as a function of their position in the pile (1). 5- Temperature distribution of the graphite, the sheathing, the uranium and the air leaving the canals, in a pile running normally at high power. 6- Neutron flux distribution in a pile running normally at high power. 7- Determination of the power by nuclear and thermodynamic methods. These experiments have been carried out under two very different pile conditions. From the 1. to the 15. of August 1956, a series of power increases, followed by periods of stabilisation, were induced in a pile containing uranium only, in 457 canals, amounting to about 34 tons of fuel. A knowledge of the efficiency of the control rods in such a pile has made it possible to measure with good accuracy the principal effects at high temperatures, that is, to deal with points 1, 2, 3, 5. Flux charts giving information on the variations of the material Laplacian and extrapolation lengths in the reflector have been drawn up. Finally the thermodynamic power has been measured under good conditions, in spite of some installation difficulties. On September 16, the pile had its final charge of 100 tons. All the canals were loaded, 1,234 with uranium and 53 (i.e. exactly 4 per cent of the total number) with thorium uniformly distributed in a square lattice of 100 cm side. Since technical difficulties prevented the calibration of the control rods, the measurements were limited to the determination of the thermodynamic power and the temperature distributions (points 5 and 7). This report will

  8. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  9. High Resolution Modeling of the Impacts of Exogenous Factors on Power Systems—Case Study of Germany

    Directory of Open Access Journals (Sweden)

    Antriksh Singh

    2015-12-01

    Full Text Available In order to reliably design the planning and operation of large interconnected power systems that can incorporate a high penetration of renewables, it is necessary to have a detailed knowledge of the potential impacts of exogenous factors on individual components within the systems. Previously, the assessment has often been conducted with nodes that are aggregated at the country or regional scale; this makes it impossible to reliably extrapolate the impact of higher penetration of renewables on individual transmission lines and/or power plants within an aggregated node. In order to be able to develop robust power systems this study demonstrates an integrated framework that employs high resolution spatial and temporal, physical modeling of power generation, electricity transmission and electricity demand, across the scale of a continent or country. Using Germany as a test case, an assessment of the impacts of exogenous factors, including local changes in ambient weather conditions, effect of timely implementation of policy, and contingency for scenarios in 2020 are demonstrated. It is shown that with the increased penetration of renewables, while the power production opportunities of conventional power plants are reduced, these power plants are required during periods of low renewables production due to the inherent variability of renewables. While the planned reinforcements in Germany, including high voltage direct current lines, reduce congestion on the grid and alleviate the differentials in power price across the country, on the other hand the reinforcements make the interconnected transmission system more vulnerable as local perturbations have a more widespread impact.

  10. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  11. Wind power - a power source now enabled by power electronics

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin

    2007-01-01

    energy at the end-user should be set up. Deregulation of energy has lowered the investment in larger power plants, which means the need for new electrical power sources may be increased in the near future. Two major technologies will play important roles to solve the future problems. One is to change......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. It is expected that it has to be doubled within 20 years. The production, distribution and use of the energy should be as technological efficient as possible and incentives to save...... the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most emerging...

  12. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  13. Study on the Simulation of Crud Formation using Piping Materials of Nuclear Power Plant in High Temperature Water

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Lee, Kun Jai

    2005-01-01

    High temperature - high pressure apparatus was developed to simulate nickel fewite corrosion products which were main compositions of the radioactive crud in the nuclear power plant. Corrosion product similar to the crud was obtained by a tube accumulator system. Nickel alloy (Inconel 690) and carbon steel (SA106 Gr. C) were corroded at 270 in the corrosion product generator. Ni ions and Fe ions dissolved by corrosion reaction were able to be transported to the accumulator because the crud generation mechanism was the solubility change with temperature. To evaluate the properties of simulated corrosion products, scanning electron microscope (SEM) observation and EDAX analysis were performed. SEM observation of corrosion product showed the needle like or crystal structure of oxide depending on precipitating location. The crystal oxide was the nickel ferrite, which was similar to the crud in nuclear power plants.

  14. Production planning of combined heat and power plants with regards to electricity price spikes : A machine learning approach

    OpenAIRE

    Fransson, Nathalie

    2017-01-01

    District heating systems could help manage the expected increase of volatility on the Nordic electricity market by starting a combined heat and power production plant (CHP) instead of a heat only production plant when electricity prices are expected to be high. Fortum Värme is interested in adjusting the production planning of their district heating system more towards high electricity prices and in their system there is a peak load CHP unit that could be utilised for this purpose. The econom...

  15. Novel pre-combustion power production : membrane Reactors

    NARCIS (Netherlands)

    Gallucci, F.; Van Sint Annaland, M.

    2015-01-01

    It is well known that conversion of fossil fuels for power production leads to an enormous amount of greenhouse gas emissions widely accepted as responsible for climate change. As fossil fuels will remain the primary energy source for the next decades, different studies are ongoing to make the

  16. Time Structure of Particle Production in the Merit High-Power Target Experiment

    CERN Document Server

    Efthymiopoulos, I; Palm, M; Lettry, J; Haug, F; Pereira, H; Pernegger, H; Steerenberg, R; Grudiev, A; Kirk, H G; Park, H; Tsang, T; Mokhov, N; Striganov, S; Carroll, A J; Graves, V B; Spampinato, P T; McDonald, K T; Bennett, J R J; Caretta, O; Loveridge, P

    2010-01-01

    The MERIT experiment is a proof-of-principle test of a target system for high power proton beam to be used as front-end for a neutrino factory complex or amuon collider. The experiment took data in autumn 2007 with the fast extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of about 30 × 1012 protons per pulse. We report results from the portion of the MERIT experiment in which separated beam pulses were delivered to a free mercury jet target with time intervals between pulses varying from 2 to 700 μs. The analysis is based on the responses of particle detectors placed along side and downstream of the target.

  17. Gate Drive For High Speed, High Power IGBTs

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  18. Gate Drive For High Speed, High Power IGBTs

    International Nuclear Information System (INIS)

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; SLAC

    2007-01-01

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3(micro)S with a rate of current rise of more than 10000A/(micro)S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt

  19. High power cable with internal water cooling 400 kV

    Science.gov (United States)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  20. Regulation of the wind power production. Contribution of the electric vehicles and other energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Carlos B. [Instituto de Meteorologia, Lisboa (Portugal); Estanqueiro, Ana [INETI/LNEG - National Laboratory for Energy and Geology, Lisbon (Portugal)

    2012-07-01

    The increase in penetration of variable renewable energy sources (RES) introduced additional difficulties regarding the management of the Portuguese Power System. This is mainly due to the high temporal variability and low controllability, characteristics of these kinds of sources. There is a real need to reduce the impact of non-dispatchable RES sources; maximizing their penetration and minimizing curtailment. This is especially true for wind power and run-of-the-river hydro (ROR); as it appears beneficial to combine their variable production with added capacity of energy storage and demand side management; thereby increasing the flexibility of the power system as a whole. This paper aims to assess the excess wind generation (and other non-dispatchable sources); this for periods of production's excess in a 2020 timeframe, and assuming different weather scenarios. The adjustment of wind power generation (WPG) profile to the load profile is also addressed; the result is computed in the form of the value of the energy temporally deferred, using Pumped Hydro Storage (PHS) power plants as well as electric Vehicles (EVs). (orig.)

  1. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  2. A game-theoretical model of private power production

    International Nuclear Information System (INIS)

    Xing, W.; Wu, F.F.

    2001-01-01

    Private power production has sprung up all over the world. The build-operate-transfer (BOT) arrangement has emerged as one of the most important options for private power production, especially in developing countries with rapidly growing demand and financial shortages. Based on oligopoly theory, the paper proposes a Stackelberg game model between a BOT investor and an electric utility whereby they can negotiate a long-term energy contract. Asymmetric pricing schemes are taken into account such that a host utility purchases electricity from a BOT company at its ''avoided cost'', and sells its electricity to end users at its ''average cost''. Our Stackelberg game model is transferred into a two-level optimization problem, and then solved by an iterative algorithm. The game model is demonstrated by an illustrative example. (author)

  3. Study of Heating and Fusion Power Production in ITER Discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Kritz, A. H.; Bateman, G.; Kessel, C.; McCune, D. C.; Budny, R. V.; Pankin, A. Y.

    2011-01-01

    ITER simulations, in which the temperatures, toroidal angular frequency and currents are evolved, are carried out using the PTRANSP code starting with initial profiles and boundary conditions obtained from TSC code studies. The dependence of heat deposition and current drive on ICRF frequency, number of poloidal modes, beam orientation, number of Monte Carlo particles and ECRH launch angles is studied in order to examine various possibilities and contingencies for ITER steady state and hybrid discharges. For the hybrid discharges, the fusion power production and fusion Q, computed using the Multi-Mode MMM v7.1 anomalous transport model, are compared with those predicted using the GLF23 model. The simulations of the hybrid scenario indicate that the fusion power production at 1000 sec will be approximately 500 MW corresponding to a fusion Q = 10.0. The discharge scenarios simulated aid in understanding the conditions for optimizing fusion power production and in examining measures of plasma performance.

  4. Impacts of reserve methodology on production cost in high-penetration renewable scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, G.; Lew, D.; Hummon, M.; Ibanez, E.; Ela, E.; Hodge, B.M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-07-01

    Prior to wind and solar penetration, electric power systems were designed to handle variability in system load, uncertainty in load forecasts, and contingency events. Frequency regulations reserve typically handles high frequency (less than 5-minute time scale) variability. Contingency reserves supply energy in the case of the loss of a generator or transmission line. Wind and solar photovoltaic generation and variability to electric power system generation that must be balanced by the system operator. New ancillary service products may be necessary to minimize the cost of integrating these variable renewable generators. For example, California ISO is studying incorporating a flexible ramping product to ensure sufficient ramping capability. A flexibility reserve product could help ensure that sufficient capacity is online to handle unexpected variability in wind and solar generation. (orig.)

  5. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  6. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  7. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  8. Model based fleet optimisation and master control of a power production system

    International Nuclear Information System (INIS)

    Joergensen, C.; Mortensen, J.H.; Nielsen, E.O.; Moelbak, T.

    2006-01-01

    This paper discussed an optimization concept for power plants operated by the Danish power company Elsam. The power company operates a distributed power production system with fossil fuel thermal plants, biomass-fired thermal plants, waste incineration plants, on- and offshore wind power, and district heating storage units. Power and regulation power are traded on an hourly basis, while trading of district heating resources is conducted using bilateral contracts. System and plant level case studies on optimization and control were presented. A system control level was developed to ensure compliance with power market requirements. Dynamic constraints were posed by environmental regulations, grid capabilities, and fuel and district heating contracts. System components included a short-term load scheduler; a power controller; a frequency control scheduler; a marginal cost calculator; and a master control. The scheduler consisted of an optimization algorithm and a set of steady-state models designed to minimize fuel, load, and maintenance costs. Quadratic programming and mixed integer programming methods were used to minimize deviations between the total electrical power production reference value and actual power production values. The study showed that control levels can be optimized using advanced modelling and control methods. However, integration and coordination between the various levels is needed to obtain improved performance. It was concluded that a bottom-up approach starting at the lowest possible level can ensure the performance of an optimization scheme. 6 refs., 9 figs

  9. Design of The High Efficiency Power Factor Correction Circuit for Power Supply

    Directory of Open Access Journals (Sweden)

    Atiye Hülya OBDAN

    2017-12-01

    Full Text Available Designing power factor correction circuits for switched power supplies has become important in recent years in terms of efficient use of energy. Power factor correction techniques play a significant role in high power density and energy efficiency. For these purposes, bridgeless PFC topologies and control strategies have been developed alongside basic boost PFC circuits. The power density can be increased using bridgeless structures by means of reducing losses in the circuit. This article examines bridgeless PFC structures and compares their performances in terms of losses and power factor. A semi-bridgeless PFC, which is widely used at high power levels, was analyzed and simulated. The designed circuit simulation using the current mode control method was performed in the PSIM program. A prototype of a 900 W semi-bridgeless PFC circuit was implemented and the results obtained from the circuit are presented

  10. Experimental high power plasma-filled backward wave oscillator results

    International Nuclear Information System (INIS)

    Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.

    1988-01-01

    Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations

  11. A high frequency, high power CARM proposal for the DEMO ECRH system

    International Nuclear Information System (INIS)

    Mirizzi, Francesco; Spassovsky, Ivan; Ceccuzzi, Silvio; Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero; Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca; Sabia, Elio; Tuccillo, Angelo Antonio; Zito, Pietro

    2015-01-01

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  12. A high frequency, high power CARM proposal for the DEMO ECRH system

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Francesco, E-mail: francesco.mirizzi@enea.it [Consorzio CREATE, Via Claudio 21, I-80125 Napoli (Italy); Spassovsky, Ivan [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Ceccuzzi, Silvio [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Dattoli, Giuseppe; Di Palma, Emanuele; Doria, Andrea; Gallerano, Gianpiero [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Lampasi, Alessandro; Maffia, Giuseppe; Ravera, GianLuca [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Sabia, Elio [Unità Tecnica Applicazioni delle Radiazioni – ENEA, C.R. Frascati, via E. Fermi 45, I-00044 Frascati (Italy); Tuccillo, Angelo Antonio; Zito, Pietro [Unità Tecnica Fusione – ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • ECRH system for DEMO. • Cyclotron Auto-Resonance Maser (CARM) devices. • Relativistic electron beams. • Bragg reflectors. • High voltage pulse modulators. - Abstract: ECRH&CD systems are extensively used on tokamak plasmas due to their capability of highly tailored power deposition, allowing very localised heating and non-inductive current drive, useful for MHD and profiles control. The high electron temperatures expected in DEMO will require ECRH systems with operating frequency in the 200–300 GHz range, equipped with a reasonable number of high power (P ≥ 1 MW) CW RF sources, for allowing central RF power deposition. In this frame the ENEA Fusion Department (Frascati) is coordinating a task force aimed at the study and realisation of a suitable high power, high frequency reliable source.

  13. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  14. Heat supply from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stach, V [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1978-05-01

    The current state of world power production and consumption is assessed. Prognoses made for the years 1980 to 2000 show that nuclear energy should replace the major part of fossil fuels not only in the production of power but also in the production of heat. In this respect high-temperature reactors are highly prospective. The question is discussed of the technical and economic parameters of dual-purpose heat and power plants. It is, however, necessary to solve problems arising from the safe siting of nuclear heat and power plants and their environmental impacts. The economic benefits of combined power and heat production by such nuclear plants is evident.

  15. Original theatrical production will explore issues surrounding nuclear power

    OpenAIRE

    Elliott, Jean

    2007-01-01

    A new, original theatrical production entitled "Nuclear Power Play" will explore the personal and public politics of nuclear power. Uniquely developed by a team of experts in science and technology working alongside theatre arts practitioners, the play will debut on Wednesday, Nov. 7 at 7:30 p.m. in the Haymarket Theatre at the Squires Student Center on the Virginia Tech campus.

  16. MW-assisted synthesis of LiFePO 4 for high power applications

    Science.gov (United States)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina

    LiFePO 4/C was prepared by solid-state reaction from Li 3PO 4, Fe 3(PO 4) 2·8H 2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF 6 was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO 4/C for full-HEV batteries at low energy costs.

  17. A dynamic model to assess tradeoffs in power production and riverine ecosystem protection.

    Science.gov (United States)

    Miara, Ariel; Vörösmarty, Charles J

    2013-06-01

    Major strategic planning decisions loom as society aims to balance energy security, economic development and environmental protection. To achieve such balance, decisions involving the so-called water-energy nexus must necessarily embrace a regional multi-power plant perspective. We present here the Thermoelectric Power & Thermal Pollution Model (TP2M), a simulation model that simultaneously quantifies thermal pollution of rivers and estimates efficiency losses in electricity generation as a result of fluctuating intake temperatures and river flows typically encountered across the temperate zone. We demonstrate the model's theoretical framework by carrying out sensitivity tests based on energy, physical and environmental settings. We simulate a series of five thermoelectric plants aligned along a hypothetical river, where we find that warm ambient temperatures, acting both as a physical constraint and as a trigger for regulatory limits on plant operations directly reduce electricity generation. As expected, environmental regulation aimed at reducing thermal loads at a single plant reduces power production at that plant, but ironically can improve the net electricity output from multiple plants when they are optimally co-managed. On the technology management side, high efficiency can be achieved through the use of natural gas combined cycle plants, which can raise the overall efficiency of the aging population of plants, including that of coal. Tradeoff analysis clearly shows the benefit of attaining such high efficiencies, in terms of both limiting thermal loads that preserve ecosystem services and increasing electricity production that benefits economic development.

  18. Purification of power plant waters with high gradient magnetic filters

    International Nuclear Information System (INIS)

    Rosenberg, R.

    1993-04-01

    This is a report of a literature survey. Magnetic high gradient filtration is suitable for separations in difficult surroundings because it can be used in high pressure and temperature, the filtration can be automated and the filter does not contain components which have to be replaced. Magnetic separators for purification of power plant waters have been manufactured commercially for a long time, but they have not always worked satisfactorily especially when separating small particles. The corrosion products in power plant waters are usually ferrimagnetic or paramagnetic and are well suited for magnetic separation. The particle sizes varies considerable but at least in nuclear power plants they are mostly in the range 0.1-30 μ, some even smaller. According to different publications most 60 Co is in particles, while other publications indicate that more than 70 % is in solution. Similarly the data on the purification efficiency of 60 Co varies significantly. Even small magnetic fields are sufficient to separate large ferrimagnetic particles, but the separation of small and paramagnetic particles requires a field more than 20 kT and the high gradient. Presently available commercial separators are so efficient that its seems not to be economically worthwhile to develop them further to improve the filtration efficiency for small particles. Instead it might be worthwhile to investigate methods to increase the particle size by water chemistry methods. (Au). (25 refs., 2 figs.)

  19. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (V th ) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  20. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa

    2012-09-01

    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  1. A game-theoretical model of private power production

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Wu, F.F. [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering

    2001-03-01

    Private power production has sprung up all over the world. The build-operate-transfer (BOT) arrangement has emerged as one of the most important options for private power production, especially in developing countries with rapidly growing demand and financial shortages. Based on oligopoly theory, the paper proposes a Stackelberg game model between a BOT investor and an electric utility whereby they can negotiate a long-term energy contract. Asymmetric pricing schemes are taken into account such that a host utility purchases electricity from a BOT company at its ''avoided cost'', and sells its electricity to end users at its ''average cost''. Our Stackelberg game model is transferred into a two-level optimization problem, and then solved by an iterative algorithm. The game model is demonstrated by an illustrative example. (author)

  2. Failures of knowledge production in nuclear power risk management

    International Nuclear Information System (INIS)

    Sanne, Johan M.

    2008-09-01

    Risks are ascribed in processes of knowledge production, where risk objects are defined and measures taken. This knowledge is also the basis for regulatory action. Thus, uncertainties in knowledge production, based upon choices of assumptions, methods, calculations and evidence criteria for reliable data create vulnerabilities for risk management and risk regulation. A recent incident in Swedish nuclear power plant provides an opportunity to develop theories of knowledge production in complex organizations. Knowledge modes within nuclear power can be characterized as either calculated logics where evidence claims need numbers, real time logics based upon subtle signals and tacit knowledge or as policy logics, navigating between internal and external demands for safety, trustworthiness and profit. The plant had neither foreseen the triggering event nor designed the plant to withstand it. I analyze how the plant and the regulator have interpreted the event, its significance and the measures taken to prevent similar events. I also discuss alternative interpretations, lack of knowledge and the generic deficiencies in knowledge production that the event indicates. First, the plant was not as robustly designed as expected. Deficiencies in diversification may have been caused by overconfidence in the reliability of its design. Second, inadequate design was ascribed to various deficient knowledge production processes: original design of the plant, reconstruction or caused by inadequate learning from previous events. The failures in knowledge production were probably caused by insufficient integration of different knowledge processes and limitations in engineering analysis. Knowledge about risks from nuclear power operations is mainly based upon calculations and simulations, not upon real events. But knowledge and design could be improved also without accidents. Control room operators and maintenance staff can provide invaluable knowledge and methods; to improve causal

  3. Failures of knowledge production in nuclear power risk management

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, Johan M.

    2008-09-15

    Risks are ascribed in processes of knowledge production, where risk objects are defined and measures taken. This knowledge is also the basis for regulatory action. Thus, uncertainties in knowledge production, based upon choices of assumptions, methods, calculations and evidence criteria for reliable data create vulnerabilities for risk management and risk regulation. A recent incident in Swedish nuclear power plant provides an opportunity to develop theories of knowledge production in complex organizations. Knowledge modes within nuclear power can be characterized as either calculated logics where evidence claims need numbers, real time logics based upon subtle signals and tacit knowledge or as policy logics, navigating between internal and external demands for safety, trustworthiness and profit. The plant had neither foreseen the triggering event nor designed the plant to withstand it. I analyze how the plant and the regulator have interpreted the event, its significance and the measures taken to prevent similar events. I also discuss alternative interpretations, lack of knowledge and the generic deficiencies in knowledge production that the event indicates. First, the plant was not as robustly designed as expected. Deficiencies in diversification may have been caused by overconfidence in the reliability of its design. Second, inadequate design was ascribed to various deficient knowledge production processes: original design of the plant, reconstruction or caused by inadequate learning from previous events. The failures in knowledge production were probably caused by insufficient integration of different knowledge processes and limitations in engineering analysis. Knowledge about risks from nuclear power operations is mainly based upon calculations and simulations, not upon real events. But knowledge and design could be improved also without accidents. Control room operators and maintenance staff can provide invaluable knowledge and methods; to improve causal

  4. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  5. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Science.gov (United States)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  6. The NASA CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    This paper describes the elements of NASA's CSTI High Capacity Power Project which include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timeliness recently developed

  7. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  8. Power/heat production from biomass in Finland - Two modern Finnish examples

    International Nuclear Information System (INIS)

    Aeijaelae, M.

    1997-01-01

    According to this conference paper, Finland is a leading country in the utilization of biomass fuels for power and heat production. One reason is that peat and wood are the only indigenous fuels available in Finland. Other reasons are the strong forest industry and the widely adopted combined heat and power (CHP) production. CHP production is typical of process industry and municipal district heating. The most common boiler type in modern CHP plants is the fluidized bed type. District heating is the cheapest heating in municipalities with a few thousand inhabitants. Electric heating dominates in sparsely populated regions. CHP becomes attractive for populations of more than ten thousand. Two examples are described: (1) Rauhalahti Power Plant produces 140 MW of district heat, 65 MW of industrial steam and 87 MW of electricity. (2) Kuusamo Power Plant produces 6.1 MW electric energy and 17.6 MW district heat; its unique feature is the utilization of the bed mixing dryer for drying of the fuel prior to combustion, this dryer being the first of its kind in the world. 1 figure

  9. Correlated wind-power production and electric load scenarios for investment decisions

    International Nuclear Information System (INIS)

    Baringo, L.; Conejo, A.J.

    2013-01-01

    Highlights: ► Investment models require an accurate representation of the involved uncertainty. ► Demand and wind power production are correlated and uncertain parameters. ► Two methodologies are provided to represent uncertainty and correlation. ► An accurate uncertainty representation is crucial to get optimal results. -- Abstract: Stochastic programming constitutes a useful tool to address investment problems. This technique represents uncertain input data using a set of scenarios, which should accurately describe the involved uncertainty. In this paper, we propose two alternative methodologies to efficiently generate electric load and wind-power production scenarios, which are used as input data for investment problems. The two proposed methodologies are based on the load- and wind-duration curves and on the K-means clustering technique, and allow representing the uncertainty of and the correlation between electric load and wind-power production. A case study pertaining to wind-power investment is used to show the interest of the proposed methodologies and to illustrate how the selection of scenarios has a significant impact on investment decisions.

  10. High power diode lasers emitting from 639 nm to 690 nm

    Science.gov (United States)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  11. MCRUNJOB: A High energy physics workflow planner for grid production processing

    International Nuclear Information System (INIS)

    Graham, Gregory E.

    2004-01-01

    McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core metadata into jobs submittable in a variety of environments. The powerful core metadata description language includes methods for converting the metadata into persistent forms, job descriptions, multi-step workflows, and data provenance information. The language features allow for structure in the metadata by including full expressions, namespaces, functional dependencies, site specific parameters in a grid environment, and ontological definitions. It also has simple control structures for parallelization of large jobs. McRunjob features a modular design which allows for easy expansion to new job description languages or new application level tasks

  12. Biodigester economic viability for electrical power production using biogas from swine waste

    Energy Technology Data Exchange (ETDEWEB)

    Cervi, Ricardo Ghantous; Esperancini, Maura Seiko Tsutsui; Bueno, Osmar de Carvalho [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], E-mail: ricardogc@fca.unesp.br; Souza, Samuel Nelson Melegari de [Universidade Estadual do Oeste do Parana (CCET/UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas

    2008-07-01

    The increase of energy use in agriculture and the raising prices of electricity demand studies on alternate sources of energy and improvement on biogas use efficiency so that agricultural activities become more competitive. Biogas production through anaerobic biodigestion represents an important breakthrough for the problem of swine waste and energy availability for rural areas. This work aimed to analyze the economy on biodigester investment for electrical power production using biogas from anaerobic biodigestion of swine waste. Two factors were used for this evaluation: the cost of electrical power production through biogas and time for equipment investment return. Results show that investment return time can be only 2.45 years for electrical power at peak time. (author)

  13. Construction labor productivity during nuclear power plant construction

    International Nuclear Information System (INIS)

    Murray, W.B.

    1980-01-01

    There is no single satisfactory way to measure productivity in the construction industry. The industry is too varied, too specialized and too dependent upon vast numbers of interrelations between trades, contractors, designers and owners. Hence, no universally reliable indices for measuring construction productivity has been developed. There are problems that are generic to all large union-built nuclear power plants. The actions of any one owner cannot rectify the shortcomings of the construction industry. The generic problems are being identified, and many national organizations are attempting to make the construction industry more productive by recommending various changes

  14. Power generation versus fuel production in light water hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1977-06-01

    The economic potentials of fissile-fuel-producing light-water hybrid reactors (FFP-LWHR) and of fuel-self-sufficient (FSS) LWHR's are compared. A simple economic model is constructed that gives the capital investment allowed for the hybrid reactor so that the cost of electricity generated in the hybrid based energy system equals the cost of electricity generated in LWR's. The power systems considered are LWR, FSS-LWHR, and FFP-LWHR plus LWR, both with and without plutonium recycling. The economic potential of FFP-LWHR's is found superior to that of FSS-LWHR's. Moreover, LWHR's may compete, economically, with LWR's. Criteria for determining the more economical approach to hybrid fuel or power production are derived for blankets having a linear dependence between F and M. The examples considered favor the power generation rather than fuel production

  15. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  16. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    Science.gov (United States)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  17. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  18. Construction labor productivity during nuclear power plant construction

    International Nuclear Information System (INIS)

    Murray, W.B.

    1980-01-01

    This paper discusses the three different types of productivity programs used at the Wm. H. Zimmer Nuclear Power Station construction site. The Standard Cost Estimate as Productivity Measurement compares actual units installed to estimated units. The Manpower and Equipment Utilization Study measures the present utilization level of the construction work force, identifies opportunities for productivity improvement, and establishes a data base against which future improvements could be made. The special productivity program is a specialized and detailed study of first line supervision. Productivity is defined as the degree of efficiency attained in the use of labor, professional and management skills and knowledge, materials and equipment, and time and money to produce an end result. It is concluded that a more consistent system of productivity measurements needs to be developed and promoted for general use in the construction industry

  19. Is Power Production Flexibility a Substitute for Storability? Evidence from Electricity Futures Prices

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, M.; Huisman, R. [Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2010-07-15

    Electricity is not storable. As a consequence, electricity demand and supply need to be in balance at any moment in time as a shortage in production volume cannot be compensated with supply from inventories. However, if the installed power supply capacity is very flexible, variation in demand can be counterbalanced with flexible adjustment of production volumes. Therefore, supply flexibility can replace the role of inventory. In this paper, we question whether power production flexibility is a substitute for storability. To do so, we examine power futures prices from countries that differ in their power supply and test whether power futures prices contain information about expected future spot prices and risk premiums and examine whether futures prices from a market in which power supply is more flexible would lead to futures prices that are more in line with the theory of storage. We find the opposite; futures prices from markets with flexible power supply behave according to the expectations theory. The implicit view from futures prices is that flexibility is not a substitute for storability.

  20. Is Power Production Flexibility a Substitute for Storability? Evidence from Electricity Futures Prices

    International Nuclear Information System (INIS)

    Kilic, M.; Huisman, R.

    2010-07-01

    Electricity is not storable. As a consequence, electricity demand and supply need to be in balance at any moment in time as a shortage in production volume cannot be compensated with supply from inventories. However, if the installed power supply capacity is very flexible, variation in demand can be counterbalanced with flexible adjustment of production volumes. Therefore, supply flexibility can replace the role of inventory. In this paper, we question whether power production flexibility is a substitute for storability. To do so, we examine power futures prices from countries that differ in their power supply and test whether power futures prices contain information about expected future spot prices and risk premiums and examine whether futures prices from a market in which power supply is more flexible would lead to futures prices that are more in line with the theory of storage. We find the opposite; futures prices from markets with flexible power supply behave according to the expectations theory. The implicit view from futures prices is that flexibility is not a substitute for storability.

  1. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  2. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    Abstract. KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator. (VIRCATOR) device. HPM power measurements were carried out using a transmitting– receiving system in the presence of intense high frequency (a few ...

  3. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the expected operation pattern of such polygeneration system is taken......Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...

  4. Implementation of heat production and storage technology and devices in power systems

    International Nuclear Information System (INIS)

    Romanovsky, G.; Mutale, J.

    2012-01-01

    Implementation of heat storage devices and technologies at power generation plants is a promising way to provide more efficient use of natural energy resources. Heat storage devices can partly replace conventional heating technologies (such as direct use of fossil fuels) during peak energy demand or in the situations where heat and electricity supply and demand do not coincide and to obtain low cost heat energy which can be further transmitted to industrial, commercial and domestic consumers. This paper presents the innovative Heat Production and Storage Device and its application at conventional, nuclear and renewable power generation plants for optimization and balancing of electricity grids. The Heat Production and Storage Device is a vessel type induction-immersion heat production and storage device which produces pre-heated water under pressure for heat energy conservation. Operation of this device is based on simultaneous and/or sequential action of an inductor and an immersion heater and can be easily connected to the electricity network as a single or a three phase unit. Heat energy accumulated by the Heat Production and Storage Device can be utilized in different industrial technological processes during periods of high energy prices. - Highlights: ► Heat Production and Storage Device for energy conservation within low load hours. ► Simultaneous and/or sequential operation of the inductor and immersion heater. ► Transform the energy of low frequency electrical current (50 Hz) into heat energy. ► Connection to the electricity network either in single or three phase unit. ► Heat Production and Storage Device will enhance the economic value of the system.

  5. Workshop on high power ICH antenna designs for high density tokamaks

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1990-01-01

    A workshop in high power ICH antenna designs for high density tokamaks was held in Boulder, Colorado on January 31 through February 2, 1990. The purposes of the workshop were to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of rf auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made

  6. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  7. Production in Italian industry: Electric power demand indicators

    International Nuclear Information System (INIS)

    Ajello, V.

    1993-01-01

    The effects of the recession in Italy were first evidenced during the period spanning 1990-1992 with a sharp drop in the international competitiveness of Italian products. This phase was then followed by a significant drop in internal demand, the devaluation of the Italian Lira and subsequent market uncertainty. This paper presents graphs of national and regional electric power production and consumption figures which reflect the downturn in the viability of the Italian economy, especially in the industrial sector

  8. Production of high-power CW UV by resonant frequency quadrupling of a Nd:YLF laser

    International Nuclear Information System (INIS)

    Kuczewski, A.J.; Thorn, C.E.

    1999-01-01

    The authors have constructed a single ring to resonantly double an 18 watt Nd:YLF mode-locked laser and re-double the stored green to produce over 4 watts of power in the ultra-violet (UV). This laser is used to produce a beam of 470 MeV gamma-rays by Compton backscattering the laser beam from 2.8 GeV electrons stored in a synchrotron. Achieving high luminosity of the colliding beams requires very good mode quality and beam stability at the intersection point 22 meters from the laser. The ring consists of six mirrors, with two 25 cm radius of curvature mirrors enclosing each nonlinear crystal. The drive laser is a lamp-pumped Nd:YLF with a 50 ps bunch length at 76 MHz. A pointing stabilizer servo has been constructed as part of the infrared (IR) mode matching telescope. The IR to green conversion is accomplished in a 15 mm long non-critically phased matched LBO crystal located at a 40 micron waist, with an IR conversion efficiency of 70%. A stable, nearly diffraction limited UV beam of up to 4.2 watts is generated in a BBO crystal in the green storage ring. The output power is relatively independent of the efficiency of the LBO and BBO crystals. This fact makes it possible to reduce the amount of non-TEM 00 modes created by walk-off of the UV by using relatively thin BBO crystals. At present, however, the lower bound on the BBO thickness is limited by the loss of conversion efficiency at high power

  9. PROMOTION OF PRODUCTS AND ANALYSIS OF MARKET OF POWER TOOLS

    Directory of Open Access Journals (Sweden)

    Sergey S. Rakhmanov

    2014-01-01

    Full Text Available The article describes the general situation of power tools on the market, both in Russia and in the world. A comparative analysis of competitors, market structure analysis of power tools, as well as assessment of competitiveness of some major product lines. Also the analysis methods of promotion used by companies selling tools, competitive analysis range Bosch, the leader in its segment, power tools available on the market in Russia.

  10. High Performance Computing - Power Application Programming Interface Specification Version 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Laros III, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeBonis, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  11. High-power sputtering employed for film deposition

    International Nuclear Information System (INIS)

    Shapovalov, V I

    2017-01-01

    The features of high-power magnetron sputtering employed for the films’ deposition are reviewed. The main physical phenomena accompanying high-power sputtering including ion-electron emission, gas rarefaction, ionization of sputtered atoms, self-sputtering, ion sound waves and the impact of the target heating are described. (paper)

  12. Free-electron masers vs. gyrotrons prospects for high-power sources at millimeter and submillimeter wavelengths

    CERN Document Server

    Thumm, M K

    2002-01-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in...

  13. Gingin High Optical Power Test Facility

    International Nuclear Information System (INIS)

    Zhao, C; Blair, D G; Barrigo, P

    2006-01-01

    The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments

  14. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  15. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  16. A lignite-geothermal hybrid power and hydrogen production plant for green cities and sustainable buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kilkis, B. [Baskent University, Ankara (Turkey). Dept. of Mechanical Engineering

    2011-02-15

    Turkey is rich in both geothermal energy and lignite reserves, which in many cases, are co-located. This condition makes it feasible to utilize both lignite and geothermal energy in a hybrid form for combined power heat, and cold generation, which may lead to optimally energy and exergy efficient, environmentally benign, and economically sound applications. This paper presents a novel concept of hybrid lignite-geothermal plant for a district energy system and hydrogen production facility in Aydin with special emphasis on high performance, green buildings and green districts. In this concept, lignite is first introduced to a partially fluidized-bed gasifier and then to a fluidized-bed gas cleaning unit, which produces synthetic gas and finally hydrogen. The by-products, namely char and ash are used in a fluidized-bed combustor to produce power. Waste heat from all these steps are utilized in a district heating system along with heat received from geothermal production wells after power is generated there. H{sub 2}S gas obtained from the separator system is coupled with hydrogen production process at the lignite plant. Absorption cooling systems and thermal storage tanks complement the hybrid system for the tri-generation district energy system. On the demand side, the new, green OSTIM OSB administration building in Ankara is exemplified for greener, low-exergy buildings that will compound the environmental benefits.

  17. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  18. Highly Radiative Plasmas for Local Transport Studies and Power and Particle Handling in Reactor Regimes

    International Nuclear Information System (INIS)

    Bell, M.G.; Bell, R.E.; Budny, R.; Bush, C.E.; Hill, K.W.

    1998-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into the Tokamak Fusion Test Reactor (TFTR) supershots and high-l(subscript) plasmas. At neutral beam injection (NBI) powers P(subscript B) greater than or equal to 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both deuterium (D) and deuterium-tritium (DT) plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in the International Thermonuclear Experimental Reactor (ITER). The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms

  19. Verification and Enhancement of VIIRS Day-Night Band Power Outage Detection Product

    Science.gov (United States)

    Burke, A.; Schultz, L. A.; Omitaomu, O.; Molthan, A.; Cole, T.; Griffin, R.

    2017-12-01

    The NASA SPoRT (Short-term Prediction Research and Transition) Center has collaborated with scientists at NASA Goddard Space Flight Center to create a power outage detection product from radiance data obtained by the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor aboard the Suomi-NPP satellite. This product uses a composite of pre-event radiance values from the VIIRS Day-Night Band to establish a baseline of "normal" nighttime lights for a study area. Then, after a severe weather event or other disaster, post-event images are compared to the composite to generate a percent-of-normal radiance product to identify areas that are experiencing outages and to aid in disaster response and monitor recovery. This project will use ground-truth county-level outage data provided by Oak Ridge National Laboratory (ORNL) in order validate the product and to establish a percent-of-normal threshold for identifying power outages. Once a threshold is found, ORNL's LandScan Global population data will be combined with the product to estimate how many electrical customers are being affected by power outages after a disaster. Two case studies will be explored to examine power outage recovery after severe weather events, including Hurricane Matthew from 2016 and the Washington D.C. Derecho event of 2012.

  20. Plastic Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    Science.gov (United States)

    Claus, Robert; And Others

    This course guide for a plastic technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  1. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  2. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  3. The effect of feed-in tariffs on the production cost and the landscape externalities of wind power generation in West Saxony, Germany

    International Nuclear Information System (INIS)

    Drechsler, Martin; Meyerhoff, Jürgen; Ohl, Cornelia

    2012-01-01

    Although wind power is currently the most efficient source of renewable energy, the cost of wind electricity still exceeds the market price. Subsidies in the form of feed-in tariffs (FIT) have been introduced in many countries to support the expansion of wind power. These tariffs are highly debated. Proponents say they are necessary to pave the way for decarbonising energy production. Opponents argue they prevent a welfare-optimal energy supply. Thus, in a case study we try to shed light on the welfare economic aspect of FIT by combining spatial modelling and economic valuation of landscape externalities of wind turbines. We show for the planning region West Saxony, Germany, that setting FIT in a welfare optimal manner is a challenging task. If set too high the production costs are overly increased, lowering social welfare. If set too low energy production targets may not be reached and/or external costs are overly increased, again lowering social welfare. Taking a closer look at the tariffs offered by the German Renewable Sources Energy Act we find for West Saxony that the tariffs quite well meet economic welfare considerations. One should note, however, that this finding might apply only to the present data set. - Highlights: ► We analyse the effect of feed-in tariffs on the cost of wind power production. ► Low tariffs imply low production costs but high external costs. ► High tariffs imply high production costs but low external costs. ► Optimal tariff is a delicate balance between opposing policy goals.

  4. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  5. Chaos in high-power high-frequency gyrotrons

    International Nuclear Information System (INIS)

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D

  6. Stochastic Optimization in The Power Management of Bottled Water Production Planning

    Science.gov (United States)

    Antoro, Budi; Nababan, Esther; Mawengkang, Herman

    2018-01-01

    This paper review a model developed to minimize production costs on bottled water production planning through stochastic optimization. As we know, that planning a management means to achieve the goal that have been applied, since each management level in the organization need a planning activities. The built models is a two-stage stochastic models that aims to minimize the cost on production of bottled water by observing that during the production process, neither interfernce nor vice versa occurs. The models were develop to minimaze production cost, assuming the availability of packing raw materials used considered to meet for each kind of bottles. The minimum cost for each kind production of bottled water are expressed in the expectation of each production with a scenario probability. The probability of uncertainly is a representation of the number of productions and the timing of power supply interruption. This is to ensure that the number of interruption that occur does not exceed the limit of the contract agreement that has been made by the company with power suppliers.

  7. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    International Nuclear Information System (INIS)

    Neau, E.L.

    1994-01-01

    Short-pulse accelerator technology developed during the early 1960's through the late 1980's is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm 2 . Similar high average power technology is being used at ≤ 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100's of cm 2

  8. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  9. Atmospheric Propagation and Combining of High-Power Lasers

    Science.gov (United States)

    2015-09-08

    Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when

  10. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  11. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  12. Design and development of a high-power, 500 kV pulsed line

    International Nuclear Information System (INIS)

    Nicolas, A.

    A study was made of very high voltage (500 kV) pulse production for 50 ns at half height. A coaxial line was coupled to a Marx generator for obtaining the pulses on an impedance-adapted electron diode. The maximum power obtained was 6.4 x 10 10 W with a current front in the diode of about 30 ns (80 ns pulse length at half height)

  13. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  14. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  15. Driver Circuit For High-Power MOSFET's

    Science.gov (United States)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  16. Market potential of IGCC for domestic power production

    International Nuclear Information System (INIS)

    Gray, D.; Tomlinson, G.; Hawk, E.; Maskew, J.

    1999-01-01

    Mitretek Systems and CONSOL Inc. have completed the first phase of a market potential study for Integrated Coal Gasification Combined Cycle (IGCC) domestic power production. The U. S. Department of Energy (DOE) funded this study. The objective of this study is to provide DOE with data to estimate the future domestic market potential of IGCC for electricity generation. Major drivers in this study are the state of technology development, feedstock costs, environmental control costs, demand growth, and dispatchability. This study examines IGCC potential for baseload power production in the Northeast U. S., an important market area by virtue of existing coal infrastructure and proximity to coal producing regions. IGCC market potential was examined for two levels of technology development as a function of natural gas price and carbon tax. This paper discusses the results of this study, including the levels of performance and cost necessary to insure competitiveness with natural gas combined cycle plants

  17. High power industrial picosecond laser from IR to UV

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  18. High power neutral beam injection in LHD

    International Nuclear Information System (INIS)

    Tsumori, K.; Takeiri, Y.; Nagaoka, K.

    2005-01-01

    The results of high power injection with a neutral beam injection (NBI) system for the large helical device (LHD) are reported. The system consists of three beam-lines, and two hydrogen negative ion (H - ion) sources are installed in each beam-line. In order to improve the injection power, the new beam accelerator with multi-slot grounded grid (MSGG) has been developed and applied to one of the beam-lines. Using the accelerator, the maximum powers of 5.7 MW were achieved in 2003 and 2004, and the energy of 189 keV reached at maximum. The power and energy exceeded the design values of the individual beam-line for LHD. The other beam-lines also increased their injection power up to about 4 MW, and the total injection power of 13.1 MW was achieved with three beam-lines in 2003. Although the accelerator had an advantage in high power beam injection, it involved a demerit in the beam focal condition. The disadvantage was resolved by modifying the aperture shapes of the steering grid. (author)

  19. High-power microwave diplexers for advanced ECRH systems

    International Nuclear Information System (INIS)

    Kasparek, W.; Petelin, M.; Erckmann, V.; Bruschi, A.; Noke, F.; Purps, F.; Hollmann, F.; Koshurinov, Y.; Lubyako, L.; Plaum, B.; Wubie, W.

    2009-01-01

    In electron cyclotron resonance heating systems, high-power multiplexers can be employed as power combiners, adjustable power dividers, fast switches to toggle the power between two launchers, as well as frequency sensitive directional couplers to combine heating and diagnostic applications on one launcher. In the paper, various diplexer designs for quasi-optical and corrugated waveguide transmission systems are discussed. Numerical calculations, low-power tests and especially high-power experiments performed at the ECRH system of W7-X are shown, which demonstrate the capability of these devices. Near term plans for applications on ASDEX Upgrade and FTU are presented. Based on the present results, options for implementation of power combiners and fast switches in the ECRH system of ITER is discussed.

  20. High-power fiber-coupled pump lasers for fiber lasers

    Science.gov (United States)

    Kasai, Yohei; Aizawa, Takuya; Tanaka, Daiichiro

    2018-02-01

    We present high-power fiber-coupled pump modules utilized effectively for ultra-high power single-mode (SM) fiber lasers. Maximum output power of 392 W was achieved at 23 A for 915 nm pump, and 394 W for 976 nm pump. Fiber core diameter is 118 μm and case temperature is 25deg. C. Polarization multiplexing technique was newly applied to our optical system. High-reliability of the laser diodes (LD) at high-power operation has been demonstrated by aging tests. Advanced package structure was developed that manages uncoupled light around input end of the fiber. 800 hours continuous drive with uncoupled light power of 100 W has been achieved.

  1. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  2. Industry sector analysis, Mexico: Electric power production and distribution equipment. Export Trade Information

    International Nuclear Information System (INIS)

    Wood, J.S.; Miller, R.W.

    1988-09-01

    The Industry Sector Analyses (I.S.A.) for electric power production and distribution equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Mexican consumers to U.S. products, the competitive situation - Mexican production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Mexican tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Mexican market for electric power production and distribution equipment

  3. A high pulsed power supply system designed for pulsed high magnetic field

    International Nuclear Information System (INIS)

    Liu Kefu; Wang Shaorong; Zhong Heqing; Xu Yan; Pan Yuan

    2008-01-01

    This paper introduces the design of high pulsed power supply system for producing pulsed high magnetic field up to 70 T. This system consists of 58 sets of 55 μF of capacitor bank which provides 1.0 MJ energy storage. A set of vacuum closing switch is chosen as main switch for energy discharge into magnetic coil. A crowbar circuit with high power diodes in series with resistor is used to absorb the redundant energy and adjust pulse width. The resistance of magnetic coil changing with current is deduced by energy balance equations. A capacitor-charging power supply using a series-resonant, constant on-time variable frequency control, and zero-current switching charges the capacitor bank in one minute time with high efficiency. The pulsed power supply provides adjustable current and pulse width with 30 kA peak and 30 ms maximum. The primary experiments demonstrate the system reliability. This work provides an engineering guidance for future development of pulsed high magnetic field. (authors)

  4. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  5. High-power laser diodes with high polarization purity

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  6. High-power VCSELs for smart munitions

    Science.gov (United States)

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  7. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  8. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  9. Design of 120 MW beam power electron gun for high power klystron

    International Nuclear Information System (INIS)

    Zhou Zusheng; Dong Dong

    2005-01-01

    An electron gun was designed and the beam optics for a China-made 50 MW klystron was simulated. The electron gun ceramic cylinder was designed and optimized. The China-made cathode was replaced with an imported one to lessen evaporation and arcing. The high voltage (320 kV) of the cathode was increased to meet the klystron output power demand and a low electric field strength (22.1 kV/mm) electron gun was designed to avoid the high power operation which damaged the ceramic cylinder. The klystron output power was increased and life span extended. (authors)

  10. Los Alamos high-power proton linac designs

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  11. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  12. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    address this challenge, a) Designing a discrete power opamp with high .... the use of high-impedance feedback networks, thus minimizing their output loading ... Spice simulation is done for the circuit and results are given in figures 4a–c.

  13. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    Science.gov (United States)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  14. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  15. The NASA CSTI High Capacity Power Program

    International Nuclear Information System (INIS)

    Winter, J.M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed

  16. High-power semiconductor RSD-based switch

    Energy Technology Data Exchange (ETDEWEB)

    Bezuglov, V G; Galakhov, I V; Grusin, I A [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation); and others

    1997-12-31

    The operating principle and test results of a high-power semiconductor RSD-based switch with the following operating parameters is described: operating voltage 25 kV, peak operating current 200 kA, maximum transferred charge 70 C. The switch is intended for use by high-power capacitor banks of state-of-the-art research facilities. The switch was evaluated for applicability in commercial pulsed systems. The possibility of increasing the peak operating current to 500 kA is demonstrated. (author). 4 figs., 2 refs.

  17. Progress in DOE high temperature superconductivity electric power applications program

    International Nuclear Information System (INIS)

    Daley, J.G.; Sheahn, T.P.

    1992-01-01

    The Department of Energy (DOE) leads national R and D effort to develop US industry's capability to produce a wide range of advanced energy-efficient electric power products. The immediate need is to make high temperature superconductivity (HTS) wire. Wire developers at the DOE National laboratories are working wit industrial partners toward this objective. In this paper, the authors describe the progress to date, citing both the difficulties associated with making wire from these ceramic materials, and achievements at several organizations. Results for progress over the next five years are stated

  18. Personalisation of power, neoliberalism and the production of corruption

    OpenAIRE

    Ahmad Khair, Amal Hayati; Haniffa, Roszaini; Hudaib, Mohammad; Abd. Karim, Mohamad Nazri

    2015-01-01

    This paper utilises a political lens in considering the cause for the production of corruption and the role of political leadership. Specifically, the notion of personalisation of power as advocated by Slater (2003) is adopted to portray how the adoption of neoliberalism ideology by an aspiring autocratic leader results in the weakening of the infrastructural power through three strategies: packing, rigging and circumventing. We use Perwaja Steel as a case study to demonstrate the modus opera...

  19. Monte Carlo simulation techniques for predicting annual power production

    International Nuclear Information System (INIS)

    Cross, J.P.; Bulandr, P.J.

    1991-01-01

    As the owner and operator of a number of small to mid-sized hydroelectric sites, STS HydroPower has been faced with the need to accurately predict anticipated hydroelectric revenues over a period of years. The typical approach to this problem has been to look at each site from a mathematical deterministic perspective and evaluate the annual production from historic streamflows. Average annual production is simply taken to be the area under the flow duration curve defined by the operating and design characteristics of the selected turbines. Minimum annual production is taken to be a historic dry year scenario and maximum production is viewed as power generated under the most ideal of conditions. Such an approach creates two problems. First, in viewing the characteristics of a single site, it does not take into account the probability of such an event occurring. Second, in viewing all sites in a single organization's portfolio together, it does not reflect the varying flow conditions at the different sites. This paper attempts to address the first of these two concerns, that being the creation of a simulation model utilizing the Monte Carlo method at a single site. The result of the analysis is a picture of the production at the site that is both a better representation of anticipated conditions and defined probabilistically

  20. Experiments on high power EB evaporation of niobium

    International Nuclear Information System (INIS)

    Kandaswamy, E.; Bhardwaj, R.L.; Ram Gopal; Ray, A.K.; Kulgod, S.V.

    2002-01-01

    Full text: The versatility of electron beam evaporation makes the deposition of many new and unusual materials possible. This technique offers freedom from contamination and precise control. High power electron guns are especially used for obtaining high evaporation rates for large area coatings. This paper deals with the coating experiments carried out on an indigenously developed high power strip electron gun with niobium as evaporant at 40 kW on S.S. substrate. The practical problems of conditioning the gun and venting the vacuum system after the high power operation are also discussed. The coating rate was calculated by weight difference method

  1. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  2. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    therapy machines. Today the majority of the cancer therapy cobalt-60 sources used in the world are manufactured using material from the NRU reactor in Chalk River. The same technology that was used for producing cobalt-60 in a research reactor was then adapted and transferred for use in a CANDU power reactor. In the early 1970s, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production was initiated in the four Pickering A CANDU reactors located east of Toronto. This was the first full scale production of millions of curies of cobalt-60 per year. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology in additional CANDUs. Over the years MDS Nordion has partnered with CANDU reactor owners to produce cobalt-60 at various sites. CANDU reactors that have, or are still producing cobalt-60, include Pickering A, Pickering B, Gentilly 2, Embalse in Argentina, and Bruce B. In conclusion, the technology for cobalt-60 production in CANDU reactors, designed and developed by MDS Nordion and Atomic Energy of Canada, has been safely, economically and successfully employed in CANDU reactors with over 195 reactor years of production. Today over forty percent of the world's disposable medical supplies are made safer through sterilization using cobalt-60 sources from MDS Nordion. Over the past 40 years, MDS Nordion with its CANDU reactor owner partners, has safely and reliably shipped more than 500 million curies of cobalt-60 sources to customers around the world. MDS Nordion is presently adding three more CANDU power reactors to its supply chain. These three additional cobalt producing CANDU's will help supplement the ability of the health care industry to provide safe, sterile, medical disposable products to people around the world. As new applications for cobalt-60 are identified, and the demand for bulk cobalt-60 increases, MDS Nordion and AECL

  3. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    Science.gov (United States)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  4. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang

    2012-12-26

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  5. High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates

    International Nuclear Information System (INIS)

    Liu, Yang; Li, Wenxue; Zhao, Jian; Bai, Dongbi; Luo, Daping; Zeng, Heping

    2015-01-01

    Femtosecond pulses at 250 MHz repetition rate from a mode-locked fiber laser are amplified to high power in a pre-chirp managed amplifier. The experimental strategy offers a potential towards high-power ultrashort laser pulses at high repetition rates. By investigating the laser pulse evolution in the amplification processes, we show that self-similar evolution, finite gain bandwidth and mode instabilities determine pulse characteristics in different regimes. Further average power scaling is limited by the mode instabilities. Nevertheless, this laser system enables us to achieve sub-50 fs pulses with an average power of 93 W. (letter)

  6. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    Science.gov (United States)

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  7. McRunjob: A High Energy Physics Workflow Planner for Grid Production Processing

    CERN Document Server

    Graham, G E; Bertram, I; Graham, Gregory E.; Evans, Dave; Bertram, Iain

    2003-01-01

    McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core metadata into jobs submittable in a variety of environments. The powerful core metadata description language includes methods for converting the metadata into persistent forms, job descriptions, multi-step workflows, and data provenance information. The language features allow for structure in the metadata by including full expressions, namespaces, functional dependencies, site specific parameters in a grid environment, and ontological definitions. It also has simple control structures for parallelization of large jobs. McRunjob features a modular design which allows for easy expansion to new job d...

  8. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  9. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  10. A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2014-12-01

    Full Text Available To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

  11. Report to the parliament. Pluri-annual planning of power production investments; Rapport au parlement. Programmation pluriannuelle des investissements de production electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    The article 6 of the law from February 10, 2000, relative to the modernization and development of the electric utility, schedules a pluri-annual planning of the production investments (PPI) which represents a concrete translation of the energy policy in the domain of electricity. The PPI will allow to reach the energy policy goals using a balanced development of the national production means in terms of primary energy sources, techniques of production and geographical distribution of investments. This document is the first PPI report to the parliament. It is based on the scheme of energy collective services and on a provisional status made by the manager of the transportation network (RTE). In 2010, renewable energies should cover 21% of the French electricity needs. This ratio will be reached mainly thanks to the development of wind power (7000 to 14000 MW of installed power, which represents 20 to 35 TWh of additional production). Hydro-power should be increased of 8 TWh max, depending on the public policies implemented, and biomass will have a significant contribution too. On the other hand, actions of mastery of the electricity demand will have to be implemented. From 2008 onward, the decommissioning of several power plants will impose to find new solutions to satisfy the peak power needs. The covering of consumption peaks requires a correlation study of the power peaks at the European scale. Finally, the situation of non-interconnected areas and of areas with fragile supply has been carefully considered. The creation of new power production means must be envisaged in most of these areas. (J.S.)

  12. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  13. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  14. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  15. Electrostatic levitation, control and transport in high rate, low cost production of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Johnson, W.L.

    1979-01-01

    Inertial confinement fusion requires production of power plant grade targets at high rates and process yield. A review of present project specifications and techniques to produce targets is discussed with special emphasis on automating the processes and combining them with an electrostatic transport and suspension system through the power plant target factory

  16. Predicting High-Power Performance in Professional Cyclists.

    Science.gov (United States)

    Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K

    2017-03-01

    To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.

  17. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  18. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  19. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration.

    Science.gov (United States)

    Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François

    2016-08-01

    The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The independent power production and the reorganization of the electric power sector

    International Nuclear Information System (INIS)

    1998-12-01

    The transformation of the electric power production and distribution sector is in progress thanks to the progressive opening of markets and to the emergence of a new kind of actor: the independent producer. After the USA, the UK, and most of the emerging countries, the continental Europe is actively preparing its mutation. The historical actors try to protect their positions on their own national markets and at the same time to develop their international position. The newcomers (oil companies, independent power producers, collective service companies) have adopted a radically offensive strategy based on an international development and a skimming of the market. This study takes stock of the degree of liberalization of the different markets and analyzes their structuring elements and dynamism. An analytical presentation of the main actors of the electric power market is performed in order to evaluate their forces and feeblenesses in front of this mutation. Finally, it tries to answer the following questions: which are the most promising zones for the newcomers, and which companies will win this new deal? (J.S.)

  1. A reliable and consistent production technology for high volume compacted graphite iron castings

    Directory of Open Access Journals (Sweden)

    Liu Jincheng

    2014-07-01

    Full Text Available The demands for improved engine performance, fuel economy, durability, and lower emissions provide a continual challenge for engine designers. The use of Compacted Graphite Iron (CGI has been established for successful high volume series production in the passenger vehicle, commercial vehicle and industrial power sectors over the last decade. The increased demand for CGI engine components provides new opportunities for the cast iron foundry industry to establish efficient and robust CGI volume production processes, in China and globally. The production window range for stable CGI is narrow and constantly moving. Therefore, any one step single addition of magnesium alloy and the inoculant cannot ensure a reliable and consistent production process for complicated CGI engine castings. The present paper introduces the SinterCast thermal analysis process control system that provides for the consistent production of CGI with low nodularity and reduced porosity, without risking the formation of flake graphite. The technology is currently being used in high volume Chinese foundry production. The Chinese foundry industry can develop complicated high demand CGI engine castings with the proper process control technology.

  2. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper ...

  3. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  4. Survey on neutron production by electron beam from high power CW electron linear accelerator

    International Nuclear Information System (INIS)

    Toyama, S.

    1999-04-01

    In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)

  5. Power electronics and control for wind power systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    energy at the end-user should be set up. Deregulation of energy has lowered the investment in larger power plants, which means the need for new electrical power sources may be increased in the near future. Two major technologies will play important roles to solve the future problems. One is to change......The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity. It is expected that it has to be doubled within 20 years. The production, distribution and use of the energy should be as technological efficient as possible and incentives to save...... the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most emerging...

  6. Global map of solar power production efficiency, considering micro climate factors

    Science.gov (United States)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  7. Look at energy compression as an assist for high power rf production

    International Nuclear Information System (INIS)

    Birx, D.L.; Farkas, Z.D.; Wilson, P.B.

    1984-01-01

    The desire to construct electron linacs of higher and higher energies, coupled with the realities of available funding and real estate, has forced machine designers to reassess the limitations in both accelerator gradient (MeV/m) and energy. The gradients achieved in current radio-frequency (RF) linacs are sometimes set by electrical breakdown in the accelerating structure, but are in most cases determined by the RF power level available to drive the linac. In this paper we will not discuss RF power sources in general, but rather take a brief look at several energy compression schemes which might be of service in helping to make better use of the sources we employ. We will, however, diverge for a bit and discuss what the RF power requirements are. 12 references, 21 figures, 3 tables

  8. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  9. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  10. From probabilistic forecasts to statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2009-01-01

    on the development of the forecast uncertainty through forecast series. However, this additional information may be paramount for a large class of time-dependent and multistage decision-making problems, e.g. optimal operation of combined wind-storage systems or multiple-market trading with different gate closures......Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with highly valuable information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform....... This issue is addressed here by describing a method that permits the generation of statistical scenarios of short-term wind generation that accounts for both the interdependence structure of prediction errors and the predictive distributions of wind power production. The method is based on the conversion...

  11. Optimizing the design of very high power, high performance converters

    International Nuclear Information System (INIS)

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  12. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  13. High temperature heat exchanger application in power engineering and energy-technological processes

    International Nuclear Information System (INIS)

    Shpilrain, E.E.

    1986-01-01

    The possibilities for intensification of various processes in metallurgy and chemical technology, the prospects for enhancing power plant efficiency are often linked with temperature increase of reagents, heat carriers and working fluids. In some cases elevated temperatures give the opportunity to use new and principally different technologies, enhance capacities of power production units and technological apparatuses, improve their economical performance. The variety of problems where high temperature heat exchangers are or can be used are extremely wide. It is therefore impossible to overview all of them in one lecture. Therefore the author tries to consider only some examples which are typical and gives an impression of what kind of problems arise in these cases

  14. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  15. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  16. Inclined solar chimney for power production

    International Nuclear Information System (INIS)

    Panse, S.V.; Jadhav, A.S.; Gudekar, A.S.; Joshi, J.B.

    2011-01-01

    Highlights: → Solar energy harnessing using inclined face of high mountains as solar chimney. → Solar chimneys with structural stability, ease of construction and lower cost. → Mathematical model developed, using complete (mechanical and thermal) energy balance. → Can harness wind power also, as wind velocities at mountain top add to power output. → Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  17. The sustainability indicators of power production systems

    Energy Technology Data Exchange (ETDEWEB)

    Onat, Nevzat [Vocational School of Technical Studies, Marmara University, Istanbul 34722 (Turkey); Bayar, Haydar [Technical Education Faculty, Marmara University, Istanbul 34722 (Turkey)

    2010-12-15

    One of the most important elements of economical and social development is to provide uninterrupted electric energy to consumers. The increasing world population and technological developments rapidly increase the demand on electric energy. In order to meet the increasing demand for sustainable development, it is necessary to use the consumable resources of the world in the most productive manner and minimum level and to keep its negative effects on human health and environment in the lowest level as much as possible. In this study, alignment of hydrogen fuel cells, hydroelectric, wind, solar and geothermal sourced electric energy systems, in addition to fossil fueled coal, natural gas and nuclear power plants, in respect to sustainability parameters such as CO{sub 2} emission, land use, energy output, fresh water consumption and environmental and social effects is researched. Consequently, it has been determined that the wind and nuclear energy power plants have the highest sustainability indicators. The fuel cells that use hydrogen obtained by using coal and natural gas are determined as the most disadvantageous transformation technologies in respect to sustainability. This study contains an alignment related to today's technologies. Using of renewable energy resources especially in production of hydrogen, output increases to be ensured with nanotechnology applications in photovoltaic systems may change this alignment. (author)

  18. Radiological Environmental Protection for LCLS-II High Power Operation

    Science.gov (United States)

    Liu, James; Blaha, Jan; Cimeno, Maranda; Mao, Stan; Nicolas, Ludovic; Rokni, Sayed; Santana, Mario; Tran, Henry

    2017-09-01

    The LCLS-II superconducting electron accelerator at SLAC plans to operate at up to 4 GeV and 240 kW average power, which would create higher radiological impacts particularly near the beam loss points such as beam dumps and halo collimators. The main hazards to the public and environment include direct or skyshine radiation, effluent of radioactive air such as 13N, 15O and 41Ar, and activation of groundwater creating tritium. These hazards were evaluated using analytic methods and FLUKA Monte Carlo code. The controls (mainly extensive bulk shielding and local shielding around high loss points) and monitoring (neutron/photon detectors with detection capabilities below natural background at site boundary, site-wide radioactive air monitors, and groundwater wells) were designed to meet the U.S. DOE and EPA, as well as SLAC requirements. The radiological design and controls for the LCW systems [including concrete housing shielding for 15O and 11C circulating in LCW, 7Be and erosion/corrosion products (22Na, 54Mn, 60Co, 65Zn, etc.) captured in resin and filters, leak detection and containment of LCW with 3H and its waste water discharge; explosion from H2 build-up in surge tank and release of radionuclides] associated with the high power beam dumps are also presented.

  19. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  20. High-energy power capacitors, their applied technology and the trends

    International Nuclear Information System (INIS)

    2012-01-01

    High-voltage and high-energy-density power capacitors called high-power ones such as film or electrolytic capacitors, have been used in large quantities for the pulse power technology such as an impulse current or voltage generator and a laser power supply, and for the power electronics one with progress of the power semiconductor device and the inverter technology. Recently, electric double layer capacitors (EDLC) with remarkable technical progress have been applied for the equipments of electric power and industrial field for the purpose of energy saving or electric power quality improvement, which have come to link to the electric power system. Thus, using a lot of high-power capacitors near our life would require to know the structure, the principle and the characteristic of capacitors, and also to consider suitable directions for use, maintenance and safety and so on, when carrying out a system and a facility design. In the technical report, while describing the dielectric and the feature of some high-power capacitors, and introducing the application examples to the laser-fusion power supply and some systems with EDLC, the trend of standardization of EDLC and the directivity of the examination about installation and maintenance of the applied equipments are described. (author)

  1. Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

    2007-01-01

    This report presents results from the development and optimization of a reference commercial scale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 - 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm-cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics

  2. About possibility of creation of ecologically pure, safe nuclear power plants on the basis of high-effective resonant neutron interaction with splitting substances

    International Nuclear Information System (INIS)

    Irdyncheyev, L.A.; Malofeyev, A.M.; Frid, E.S.; Abramov, E.P.

    1993-01-01

    Currently the most important problem in nuclear engineering is creation of ecologically pure, safe nuclear power plants in the context of real danger of global ecological pollution of the environment with long-lived fission products and the resultant transuranium nuclides. The problem can be solved by creating nuclear power plants on the basis of high-effective resonant interaction (HERI). Such power plants would provide the total cycle, including nuclear fuel production (Plutonium-239 from Uranium-238), combustion and waste products salvaging by way of transformation of radioactive nuclides into stable isotopes

  3. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M [IVO International Ltd, Vantaa (Finland)

    1997-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  4. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M. [IVO International Ltd, Vantaa (Finland)

    1996-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  5. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  6. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  7. The high-power iodine laser

    Science.gov (United States)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  8. Wind Turbine and Power Production, the Danish Development

    Energy Technology Data Exchange (ETDEWEB)

    Kjems, Joergen; Oester, Flemming

    2007-07-01

    The progress within the Danish wind energy sector in Denmark is reviewed. Excluding minor intermission periods the R and D development of electricity producing wind turbines has taken place continuously for more than 100 years in Denmark. After the first oil crisis in 1973 this development accelerated and has led to a remarkable scientific and commercial success. For a few years turbines in Denmark have been producing electricity corresponding to almost 20% of the Danish demand. Danish manufacturers produce components and export turbines in large quantities, amounting in 2005 to a total capacity of about 3.8 GW which is about one third of the world market. Important present day R&D topics are offshore technology and interaction between turbines and the grid, including the ability of turbines to contribute to regulation and stabilization of the power system. These questions are crucial when handling fluctuating electricity production in networks with large fractions of wind energy and CHP power production. In the future, a main point may be storage of wind energy, e.g. in the form of hydrogen produced by fuel cells. (auth)

  9. Design and Control of Integrated Systems for Hydrogen Production and Power Generation

    Science.gov (United States)

    Georgis, Dimitrios

    Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared

  10. Running coupling corrections to high energy inclusive gluon production

    International Nuclear Information System (INIS)

    Horowitz, W.A.; Kovchegov, Yuri V.

    2011-01-01

    We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. In the final answer for the cross section the three powers of fixed coupling are replaced by seven factors of running coupling, five in the numerator and two in the denominator, forming a 'septumvirate' of running couplings, analogous to the 'triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the 'septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling k T -factorization formula for gluon production which includes nonlinear small-x evolution.

  11. Methods and Algorithms for Economic MPC in Power Production Planning

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil

    in real-time. A generator can represent a producer of electricity, a consumer of electricity, or possibly both. Examples of generators are heat pumps, electric vehicles, wind turbines, virtual power plants, solar cells, and conventional fuel-fired thermal power plants. Although this thesis is mainly...... concerned with EMPC for minutes-ahead production planning, we show that the proposed EMPC scheme can be extended to days-ahead planning (including unit commitment) as well. The power generation from renewable energy sources such as wind and solar power is inherently uncertain and variable. A portfolio...... design an algorithm based on the alternating direction method of multipliers (ADMM) to solve input-constrained OCPs with convex objective functions. The OCPs that occur in EMPC of dynamically decoupled subsystems, e.g. power generators, have a block-angular structure. Subsystem decomposition algorithms...

  12. Application of Modern Technologies for Nuclear Power Plant Productivity Improvements

    International Nuclear Information System (INIS)

    Joseph, A. Naser

    2011-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain current high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, new requirements and commitments, unnecessary workloads and stress levels, and human errors. Current plant operations are labor-intensive due to the vast number of operational and support activities required by the commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the desire by many plants to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New productivity improvement capabilities with measurable economic benefits are needed so that a successful business case can be made for their use. Improved and new instrumentation and control, human-system interface, information and communications technologies used properly can address concerns about cost-effectively maintaining current performance levels and enable shifts to even higher performance levels. This can be accomplished through the use of new technology implementations to improve productivity, reduce costs of systemic inefficiencies and avoid unexpected costs. Many of the same type of productivity improvements for operating plants will be applicable for new plants. As new plants are being built, it is important to include these productivity improvements or at least provide the ability to implement them easily later

  13. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  14. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  15. Active Snubber Circuit for High Power Inverter Leg

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Johansen, Morten Holst

    2009-01-01

    Abstract— High power converters in the conventional 6 pulse configuration with 6 switching elements IGBTs (Insulated Gate Bipolar Transistor) are pushed to the limit of power. Especially the switching loss is high. This reduces the switching frequency due to cooling problems. Passive snubber circ...

  16. Measurement of soft X-ray power from high-power Z-pinch plasma

    International Nuclear Information System (INIS)

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  17. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  18. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang

    2017-05-01

    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  19. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  20. High-power ultrasonic treatment of contaminated soils and sediments

    International Nuclear Information System (INIS)

    Collings, A.F.; Gwan, P.B.; Sosa Pintos, A.P.

    2004-01-01

    Full text: The propagation of high-power ultrasound through a liquid can initiate the phenomenon of cavitation. This occurs with the collapse of gas bubbles formed during the rarefaction phase of the ultrasonic wave either from the dissolution of air or vaporisation of the liquid. Bubble collapse can generate localised temperatures up to 5,000 K and pressures up to 1,000 atmospheres. Solid particles in slurry have been shown to act as foci for the nucleation and collapse of bubbles. Theory and experiment have confirmed that the rupture of a bubble on a solid surface generates a high speed jet directed towards the surface. In this case, the extreme conditions generated by the non-linear shock wave produced by bubble collapse are localised on the solid surface. Since Persistent Organic Pollutants (POPs) are hydrophobic and are also readily absorbed on the surface of soil particles, the energy released by cavitation in a soil or sediment slurry is selectively directed towards them. The temperatures are sufficient to decompose these molecules. However, the extreme conditions are highly localised and the bulk solution temperature is essentially unaffected. Any decomposition products are immediately quenched and recombination reactions are avoided. Recent advances in ultrasound technology have produced commercial equipment capable of high power which has enabled us to remediate soils and sediments containing Organochlorine Pesticides (OCPs), Polyaromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs). With reductions greater than 80% within minutes, this technique shows great promise with advantages of on-site treatment and reduced operating and capital costs compared with conventional methods

  1. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  2. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  3. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  4. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  5. Hydrogen production by high-temperature electrolysis of water vapor steam. Test results obtained with an electrolysis tube

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Miyamoto, Yoshiaki

    1995-01-01

    High-temperature electrolysis of water vapor steam is an advanced hydrogen production process decomposing high temperature steam up to 1,000degC, which applies an electro-chemical reaction reverse to the solid oxide fuel cell. At Japan Atomic Energy Research Institute, laboratory-scale experiments have been conducted using a practical electrolysis tube with 12 electrolysis cells in order to develop heat utilization systems for high-temperature gas-cooled reactors. The electrolysis cells of which electrolyte was yttria-stabilized zirconia were formed on a porous ceramic tube in series by plasma spraying. In the experiments, water steam mixed with argon carrier gas was supplied into the electrolysis tube heated at a constant temperature regulated in the range from 850degC to 950degC, and electrolysis power was supplied by a DC power source. Hydrogen production rate increased with applied voltage and electrolysis temperature; the maximum production rate was 6.9Nl/h at 950degC. Hydrogen production rate was correlated with applied current densities on the basis of experimental data. High energy efficiency was achieved under the applied current density ranging from 80 to 100 mA/cm 2 . (author)

  6. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  7. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    Science.gov (United States)

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently. (c) 2016 APA, all rights reserved).

  8. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  9. Fragments and debris generation using a high power pulsed electron beam

    International Nuclear Information System (INIS)

    Cassany, Bruno; Courchinoux, Roger; Bertron, Isabelle; Malaise, Frederic; Hebert, David

    2002-01-01

    The high power Laser Megajoule (LMJ) will be constructed at CEA/DAM/CESTA near Bordeaux, in the south west part of France. Among the problems encountered in the LMJ experimental chamber, there is the impact of the debris produced after a laser shot on the silica optical windows. The production of debris as well as the behavior of optical materials under their influence can be simulated and studied with a pulsed electron beam. We present in this paper the first experimental results obtained by this original technique

  10. Study of novel plasma devices generated by high power lasers coupled with a micro-pulse power technology

    International Nuclear Information System (INIS)

    Nishida, A; Chen, Z L; Jin, Z; Kondo, K; Nakagawa, M; Kodama, R; Arima, H; Yoneda, H

    2008-01-01

    The authors have proposed introducing a micro pulse power technology in high power laser plasma experiments to boost up the return current, resulting in efficiently guiding of energetic electrons. High current pulse power generators with a pulse laser trigger system generate high-density plasma that is well conductor. To efficiently guiding by using a micro pulse power, we estimated parameter of a micro pulse power system that is voltage of rise time, current, charging voltage and capacitance

  11. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    Kozak, T.; Majchrzycka, A.

    2009-01-01

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  12. Scenarios for power production with biomass in the Finnish forest industry

    International Nuclear Information System (INIS)

    Nousiainen, I.K.; Malinen, H.O.; Villa, A.O.

    1997-01-01

    This study presents three scenarios for power production with biomass in Finnish pulp and paper mills. The basic scenario assumes that the production capacity in the forest industry increases as in the past. The green energy scenario assumes that there is a strong demand from the market for sustainable green energy production. The maximum scenario assumes that the production capacity of chemical pulp increases significantly and the use of wood raw material extends to the maximum level. According to the basic scenario the use of biofuels in the pulp and paper mills will increase from starting level, 3.24 Mtoe in 1992, to 5.07 Mtoe by the year 2010. The utilization potential of biofuels will increase to 5.45 Mtoe in green energy and to 6.43 Mtoe in the maximum biofuels scenario. The power production with biomass will increase from the starting level, 572 MW in 1992, to 930 MW in the basic, to 1 100 MW in the green energy and to 1 670 MW in the maximum biofuels scenario by the year 2010. (author)

  13. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Sun, L.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-01-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω 2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE 01 and HE 11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar 12+ , 0.92 emA Xe 27+ , and so on, will be presented

  14. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  15. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and

  16. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  17. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  18. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  19. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  20. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  1. Governmentalizing Gramsci: Topologies of power and passive revolution in Cambodia’s garment production network

    OpenAIRE

    Arnold, D.; Hess, M.

    2017-01-01

    This article takes a fresh look at the multiple power relations between state, capital and labor in global production networks. Moving beyond debates about public vs. private governance, it brings together Antonio Gramsci’s concepts of hegemony and the integral state with Michel Foucault’s concepts of governmentality and the “dipositive” in order to analyze the power topologies that permeate global production networks. Using the Cambodian garment production network as example, we scrutinize t...

  2. Preliminary design of high-power wave-guide/transmission system

    Indian Academy of Sciences (India)

    ... CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window.

  3. High technology supporting nuclear power industry in CRIEPI

    International Nuclear Information System (INIS)

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  4. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    Science.gov (United States)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  5. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  6. Optimal construction and combined wind and diesel power production in a regional power purchase

    Energy Technology Data Exchange (ETDEWEB)

    Lautala, P.; Antila, H.; Raekkoelaeinen, J.; Heikkilae, H. [Tampere Univ. of Technology (Finland). Automation and Control Inst.

    1998-12-31

    A weak electricity transmission and distribution network and a wind generator were modelled by a non-linear dynamic model. Energy purchase of a small utility was modelled as a linear mixed integer optimisation problem. The dynamic model was used to simulate the effects of distance between the wind generator and a regional power grid and the effects of changes in the production of the wind generator. The optimisation model was used to investigate the effect of the combined diesel and wind production. In this case the results show that if the distance between the generator and the network grid is more than 70 km, then voltage fluctuations exceed acceptable levels. The optimisation provides the value of the combined diesel and wind production. (orig.)

  7. High power rf component testing for the NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  8. HelioTrope: An innovative and efficient prototype for solar power production

    Directory of Open Access Journals (Sweden)

    Papageorgiou George

    2014-01-01

    Full Text Available The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.

  9. Introducing life cycle thinking in product development – A case from Siemens Wind Power

    DEFF Research Database (Denmark)

    Bonou, Alexandra; Olsen, Stig Irving; Hauschild, Michael Zwicky

    2015-01-01

    How can use of LCA improve the environmental sustainability of wind industry products? An analysis of a case study from Siemens Wind Power identifies the knowledge offered by LCA that is relevant to each step of the product development process (PDP). The study illustrates the difference that this......How can use of LCA improve the environmental sustainability of wind industry products? An analysis of a case study from Siemens Wind Power identifies the knowledge offered by LCA that is relevant to each step of the product development process (PDP). The study illustrates the difference...

  10. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    International Nuclear Information System (INIS)

    Lythcke-Jørgensen, Christoffer; Haglind, Fredrik; Clausen, Lasse R.

    2014-01-01

    Highlights: • We model a system where lignocellulosic ethanol production is integrated with a combined heat and power (CHP) plant. • We conduct an exergy analysis for the ethanol production in six different system operation points. • Integrated operation, district heating (DH) production and low CHP loads all increase the exergy efficiency. • Separate operation has the largest negative impact on the exergy efficiency. • Operation is found to have a significant impact on the exergy efficiency of the ethanol production. - Abstract: Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible, and a gas boiler is used as back-up when integration is not possible. The system was evaluated according to six operation points that alternate on the following three different operation parameters: Load in the CHP unit, integrated versus separate operation, and inclusion of district heating production in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the

  11. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  12. Reference costs for power generation; Couts de reference de la production electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO{sub 2}) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO{sub 2} emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power generation

  13. Reference costs for power generation; Couts de reference de la production electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO{sub 2}) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO{sub 2} emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power

  14. Analysis of power and frequency control requirements in view of increased decentralized production and market liberalization

    International Nuclear Information System (INIS)

    Roffel, B.; Boer, W.W. de

    2003-01-01

    This paper presents a systematic approach of the analysis of the minimum control requirements that are imposed on power producing units in the Netherlands, especially in the case when decentralized production increases. Also some effects of the liberalization on the control behavior are analyzed. First an overview is given of the amount and type of power production in the Netherlands, followed by a review of the control requirements. Next models are described, including a simplified model for the UCTE power system. The model was tested against frequency and power measurements after failure of a 558 MW production unit in the Netherlands. Agreement between measurements and model predictions proved to be good. The model was subsequently used to analyze the primary and secondary control requirements and the impact of an increase in decentralized power production on the fault restoration capabilities of the power system. Since the latter production units are not actively participating in primary and secondary control, fault restoration takes longer and becomes unacceptable when only 35% of the power producing units participate in secondary control. Finally, the model was used to study the impact of deregulation, especially the effect of 'block scheduling', on additional control actions of the secondary control. (Author)

  15. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  16. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  17. Design of a high-power, high-brightness Nd:YAG solar laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  18. Power Ultrasound to Process Dairy Products

    Science.gov (United States)

    Bermúdez-Aguirre, Daniela; Barbosa-Cánovas, Gustavo V.

    Conventional methods of pasteurizing milk involve the use of heat regardless of treatment (batch, high temperature short time - HTST or ultra high temperature - UHT sterilization), and the quality of the milk is affected because of the use of high temperatures. Consequences of thermal treatment are a decrease in nutritional properties through the destruction of vitamins or denaturation of proteins, and sometimes the flavor of milk is undesirably changed. These changes are produced at the same time that the goal of the pasteurization process is achieved, which is to have a microbiological safe product, free of pathogenic bacteria, and to reduce the load of deteriorative microorganisms and enzymes, resulting in a product with a longer storage life.

  19. CALCULATION OF OPERATING PARAMETERS OF HIGH-VOLTAGE POWER TAKE-OFF SYSTEM FOR THE PHOTOVOLTAIC FACILITY

    Directory of Open Access Journals (Sweden)

    R.V. Zaitsev

    2016-09-01

    Full Text Available Purpose. To ensure maximum production of electric power by photovoltaic vacilities, in addition to using highly efficient photovoltaic modules equipped with solar radiation concentrators must use a highly effective power take-off system. This paper is inscribed to solving the problem of a highly efficient and economic power take-off system development. Methodology. To solving the problem, we implemented three stages. On the first stage examines the dependence of electrical power from the intensity of the incident solar radiation. Based on this, the second stage is calculated the DC-DC converter resonant circuit and its working parameters, and developed circuit diagram of DC-DC converter. On the third stage, we carry out an analysis of power take-off system with step up DC-DC converter working. Results. In this paper, we carry out the analysis of working efficiency for photovoltaic facility power take-off system with step-up boost converter. The result of such analysis show that the efficiency of such system in a wide range of photovoltaic energy module illumination power is at 0.92, whereas the efficiency of classic power take-off systems does not exceed 0.70. Achieved results allow designing a circuit scheme of a controlled bridge resonant step-up converter with digital control. Proposed scheme will ensure reliable operation, fast and accurate location point of maximum power and conversion efficiency up to 0.96. Originality. Novelty of proposed power take-off system solution constitute in implementation of circuit with DC-DC converters, which as it shown by results of carrying out modeling is the most effective. Practical value. Practical implementation of proposed power take-off system design will allow reducing losses in connective wires and increasing the efficiency of such a system up to 92.5% in wide range of photovoltaic energy modules illumination.

  20. Online high voltage power supply ripple estimation and feedforward in LEDA

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1999-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of LLRF control system for LEDA. They propose an estimator of the ripple and its time derivative and a control law which is based on PID control and adaptive feedforward of estimated ripple. The control law reduces the effect of the deterministic cathode ripple that is due to high voltage power supply and achieves tracking of desired set points

  1. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  2. High Power Radiation Tolerant CubeSat Power System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — No vendor has yet to provide a radiation tolerant, high efficiency, small Power Management and Distribution module for the SmallSat and CubeSat market yet. Let alone...

  3. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  4. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  5. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  6. High Power Combiner/Divider with Coupled Lines for Broadband Applications

    Science.gov (United States)

    2017-03-20

    novel isolation structure will also be presented. I. INTRODUCTION Power divider/combiners are traditionally used in the development of high power ...a novel Gysel divider/combiner structure have been demonstrated. The divider/combiner are applicable to various high- power , broadband radar, EW...Gysel Power Divider With Arbitrary Power Ratios and Filtering Responses Using Coupling Structure ,” IEEE Transactions on Microwave Theory and Tech., vol

  7. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  8. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  9. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  10. Wind farm power production in the changing wind: Robustness quantification and layout optimization

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2017-01-01

    Wind farms operate often in the changing wind. The wind condition variations in a wide range of time scales lead to the variability of wind farms’ power production. This imposes a major challenge to the power system operators who are facing a higher and higher penetration level of wind power. Thu...

  11. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen

    2002-01-01

    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... to calibrate such systems are proposed and different applications of the system are given. Two practical examples end the description of the research. It is concluded that such systems have a relative long time-constant but they are accurate and useful for precise power loss measurement....

  12. Space power plants and power-consuming industrial systems

    International Nuclear Information System (INIS)

    Latyshev, L.; Semashko, N.

    1996-01-01

    An opportunity to create the space power production on the basis of solar, nuclear and fusion energies is analyzed. The priority of solar power production as the most accessible and feasible in comparison with others is emphasized. However, later on, it probably will play an auxiliary role. The possibilities of fusion power production, as a basic one in future, are also considered. It is necessary to create reactors using the fueling cycle with helium-3 (instead of tritium and deuterium, later on). The reaction products--charged particles, mainly--allow one to organize the system of direct fusion energy conversion into electricity. The produced energy is expected not to be transmitted to Earth, but an industry in space is expected to be produced on its basis. The industrial (power and science-consuming) objects located on a whole number of space apparatus will form a single complex with its own basic power plant. The power transmission within the complex will be realized with high power density fluxes of microwave radiation to short distances with their receivers at the objects. The necessary correction of the apparatus positions in the complex will be done with ion and plasma thrusters. The materials present on the Moon, asteroids and on other planets can serve as raw materials for industrial objects. Such an approach will help to improve the ecological state on Earth, to eliminate the necessity in the fast energy consumption growth and to reduce the hazard of global thermal crisis

  13. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  14. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    International Nuclear Information System (INIS)

    Ganan, J.; Turegano, J.P.; Calama, G.; Roman, S.; Al-Kassir, A.

    2006-01-01

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 o C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H 2 , CO, CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 ), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA, located in Alto Alentejo, in the city

  15. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Ganan, J.; Turegano, J.P.; Calama, G. [Area de Engenharia. Escola Superior de Tecnologia e Gestao. Instituto Politecnico de Portalegre, Lugar da Abadesa, Apartado 148, 7301 Portalegre Codex (Portugal); Roman, S.; Al-Kassir, A. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, Badajoz, 06071 (Spain)

    2006-01-15

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 {sup o}C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H{sub 2}, CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA

  16. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  17. A 20 kw beam-on-target test of a high-power liquid lithium target for RIA

    International Nuclear Information System (INIS)

    Reed, Claude B.; Nolen, Jerry A.; Specht, James R.; Novick, Vincent J.; Plotkin, Perry

    2004-01-01

    The high-power heavy-ion beams produced by the Rare Isotope Accelerator (RIA) driver linac have large energy deposition density in solids and in many cases no solid materials would survive the full beam power. Liquid lithium technology has been proposed to solve this problem in RIA. Specifically, a windowless target for the production of radioactive ions via fragmentation, consisting of a jet of about 3 cm thickness of flowing liquid lithium, exposed to the beamline vacuum [1,2] is being developed. To demonstrate that power densities equivalent to a 200-kW RIA uranium beam, deposited in the first 4 mm of a flowing lithium jet, can be handled by the windowless target design, a high power 1 MeV Dynamitron was leased and a test stand prepared to demonstrate the target's capability of absorbing and carrying away a 20kW heat load without disrupting either the 5 mm x 10 mm flowing lithium jet target or the beam line vacuum

  18. Radiological Environmental Protection for LCLS-II High Power Operation

    Directory of Open Access Journals (Sweden)

    Liu James

    2017-01-01

    Full Text Available The LCLS-II superconducting electron accelerator at SLAC plans to operate at up to 4 GeV and 240 kW average power, which would create higher radiological impacts particularly near the beam loss points such as beam dumps and halo collimators. The main hazards to the public and environment include direct or skyshine radiation, effluent of radioactive air such as 13N, 15O and 41Ar, and activation of groundwater creating tritium. These hazards were evaluated using analytic methods and FLUKA Monte Carlo code. The controls (mainly extensive bulk shielding and local shielding around high loss points and monitoring (neutron/photon detectors with detection capabilities below natural background at site boundary, site-wide radioactive air monitors, and groundwater wells were designed to meet the U.S. DOE and EPA, as well as SLAC requirements. The radiological design and controls for the LCW systems [including concrete housing shielding for 15O and 11C circulating in LCW, 7Be and erosion/corrosion products (22Na, 54Mn, 60Co, 65Zn, etc. captured in resin and filters, leak detection and containment of LCW with 3H and its waste water discharge; explosion from H2 build-up in surge tank and release of radionuclides] associated with the high power beam dumps are also presented.

  19. High current proton linear accelerators and nuclear power

    International Nuclear Information System (INIS)

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  20. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.