WorldWideScience

Sample records for high power performance

  1. High Power Flex-Propellant Arcjet Performance

    Litchford, Ron J.

    2011-01-01

    implied nearly frozen flow in the nozzle and yielded performance ranges of 800-1100 sec for hydrogen and 400-600 sec for ammonia. Inferred thrust-to-power ratios were in the range of 30-10 lbf/MWe for hydrogen and 60-20 lbf/MWe for ammonia. Successful completion of this test series represents a fundamental milestone in the progression of high power arcjet technology, and it is hoped that the results may serve as a reliable touchstone for the future development of MW-class regeneratively-cooled flex-propellant plasma rockets.

  2. Optimizing the design of very high power, high performance converters

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  3. High performance magnet power supply optimization

    Jackson, L.T.

    1988-01-01

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems

  4. High performance magnet power supply optimization

    Jackson, L.T.

    1975-01-01

    Three types of magnet power supply systems for the joint LBL-SLAC proposed accelerator PEP are discussed. The systems considered include a firing circuit and six-pulse controlled rectifier, transistor systems, and a chopper system. (U.S.)

  5. High Performance Auxiliary Power Unit Technology Demonstrator.

    1980-12-01

    aft bearings 1.13 P3 - Power producer CDP 1.14 DPHE - Lube pressure drop at heat exchanger 1.15 POFP - Load airflow orifice pressure 1.16 DPOFP - Load...P𔃽I -PSI G PEBL -PSIG P2 -PS.IG DPHE -PID POFP -F Iu 0. 022±_ 77. 3478 6o5. 6 4±4 ±8L-. 4852 19. 51-17.4 DPOFP -PSID Ni -,. N2-i -RPM NSATM -FPM...28. 0250 83. 3505 29. 861 1:9. 7680 PGi -PSIG PEBL -PSIG P3 -PSIG DPHE -PSID POFP -PSIG 0. 0100 77. 9199 72.4862 17. 25 ±19. 4122 1= DPOFP -PSID NI

  6. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  7. Power efficient and high performance VLSI architecture for AES algorithm

    K. Kalaiselvi

    2015-09-01

    Full Text Available Advanced encryption standard (AES algorithm has been widely deployed in cryptographic applications. This work proposes a low power and high throughput implementation of AES algorithm using key expansion approach. We minimize the power consumption and critical path delay using the proposed high performance architecture. It supports both encryption and decryption using 256-bit keys with a throughput of 0.06 Gbps. The VHDL language is utilized for simulating the design and an FPGA chip has been used for the hardware implementations. Experimental results reveal that the proposed AES architectures offer superior performance than the existing VLSI architectures in terms of power, throughput and critical path delay.

  8. Predicting High-Power Performance in Professional Cyclists.

    Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K

    2017-03-01

    To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.

  9. High performance protection circuit for power electronics applications

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  10. Performance of a high efficiency high power UHF klystron

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  11. High-precision performance testing of the LHC power converters

    Bastos, M; Dreesen, P; Fernqvist, G; Fournier, O; Hudson, G

    2007-01-01

    The magnet power converters for LHC were procured in three parts, power part, current transducers and control electronics, to enable a maximum of industrial participation in the manufacturing and still guarantee the very high precision (a few parts in 10-6) required by LHC. One consequence of this approach was several stages of system tests: factory reception tests, CERN reception tests, integration tests , short-circuit tests and commissioning on the final load in the LHC tunnel. The majority of the power converters for LHC have now been delivered, integrated into complete converter and high-precision performance testing is well advanced. This paper presents the techniques used for high-precision testing and the results obtained.

  12. Coal-fired high performance power generating system. Final report

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  13. Power/energy use cases for high performance computing

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Elmore, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Munch, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  14. High performance computing in power and energy systems

    Khaitan, Siddhartha Kumar [Iowa State Univ., Ames, IA (United States); Gupta, Anshul (eds.) [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2013-07-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.

  15. High Performance Computing - Power Application Programming Interface Specification.

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  16. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  17. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. © 2015 by the Society for Personality and Social Psychology, Inc.

  18. Improved cutting performance in high power laser cutting

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  19. Coal-fired high performance power generating system

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  20. High-Performance Control in Radio Frequency Power Amplification Systems

    Høyerby, Mikkel Christian Kofod

    . It is clearly shown that single-phase switch-mode control systems based on oscillation (controlled unstable operation) of the whole power train provide the highest possible control bandwidth. A study of the limitations of cartesian feedback is also included. It is shown that bandwidths in excess of 4MHz can...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... demonstrated how the envelope tracking technique introduces a number of potential pitfalls to the system, namely in the form of power supply ripple intermodulation (PSIM), reduced RFPA linearity and a higherimpedance supply rail for the RFPA. Design and analysis techniques for these three issues are introduced...

  1. High Performance Low Cost Digitally Controlled Power Conversion Technology

    Jakobsen, Lars Tønnes

    2008-01-01

    in order to reduce the power consumption of servers and datacenters. The work presented in this thesis includes digital control methods for switch-mode converters implemented in microcontrollers, digital signal controllers and field programmable gate arrays. Microcontrollers are cheap devices that can...... be used for real-time control of switch-mode converters. Software design in the assembly language of the microcontroller is important because of the limited resources of the microcontroller. Microcontrollers are best suited for power electronics applications with low bandwidth requirements because...... the execution time of the software algorithm that realises the digital control law will constitute a considerable delay in the control loop. Digital signal controllers are powerful devices capable of performing arithmetic functions much faster than a microcontroller can. Digital signal controllers are well...

  2. Extended teamwork: team performance in highly automated nuclear power plants

    Skjerve, Ann Britt; Strand, Stine; Skraaning, Gyrd Jr.

    2004-07-01

    Nuclear power plant (NPP) operation is in essence a teamwork task. The central control-room (CCR) operators are required to co-operate to achieve the operational goals, and they further depend on the assistance of the field operators and, at least in modern plants, on the assistance of the high-level automatic system. Future NPPs (e.g., advanced reactors) are foreseen to contain substantially higher automation levels, reduced staffing, and redefined roles of the remaining staff, as compared to the present situation. This paper suggests that in future plants, in which the autonomy and authority of the automatic system and of the field operators are increased, the transactions between the CCR operators and automatic system/field operators might most efficiently be conceptualized within the framework of co-operation, and thus teamwork. This framework has typically been restricted to conceptualizations of the transactions between the CCR operators, but in future settings, co-ordination, communication and mutual support between the CCR operators and the field operators/automatic system may be of increased importance for sustaining plant safety, as compared to the present situation. The paper further argues that human-system interfaces in future NPPs should be designed to support the activities of the extended team consisting of the CCR operators, the field operators, and the automatic system. The paper outlines an exploratory study aimed at generating ideas on how extended teamwork quality may be promoted. The study is currently foreseen to comprise two exemplary design solutions: a state-of-the art screen-based control-room (baseline condition) and a possible future control-room in which the activities of the field operators and the automatic system are explicitly represented on the human-system interface, where the authority and autonomy of these are increased, and the staffing level reduced, as compared to the baseline condition. The study will explore extended

  3. Extended teamwork: team performance in highly automated nuclear power plants

    Skjerve, Ann Britt; Strand, Stine; Skraaning, Gyrd Jr.

    2004-01-01

    Nuclear power plant (NPP) operation is in essence a teamwork task. The central control-room (CCR) operators are required to co-operate to achieve the operational goals, and they further depend on the assistance of the field operators and, at least in modern plants, on the assistance of the high-level automatic system. Future NPPs (e.g., advanced reactors) are foreseen to contain substantially higher automation levels, reduced staffing, and redefined roles of the remaining staff, as compared to the present situation. This paper suggests that in future plants, in which the autonomy and authority of the automatic system and of the field operators are increased, the transactions between the CCR operators and automatic system/field operators might most efficiently be conceptualized within the framework of co-operation, and thus teamwork. This framework has typically been restricted to conceptualizations of the transactions between the CCR operators, but in future settings, co-ordination, communication and mutual support between the CCR operators and the field operators/automatic system may be of increased importance for sustaining plant safety, as compared to the present situation. The paper further argues that human-system interfaces in future NPPs should be designed to support the activities of the extended team consisting of the CCR operators, the field operators, and the automatic system. The paper outlines an exploratory study aimed at generating ideas on how extended teamwork quality may be promoted. The study is currently foreseen to comprise two exemplary design solutions: a state-of-the art screen-based control-room (baseline condition) and a possible future control-room in which the activities of the field operators and the automatic system are explicitly represented on the human-system interface, where the authority and autonomy of these are increased, and the staffing level reduced, as compared to the baseline condition. The study will explore extended

  4. Results from core-edge experiments in high Power, high performance plasmas on DIII-D

    T.W. Petrie

    2017-08-01

    Full Text Available Significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q⊥P ∝ [PSOL x IP] 0.92 for PSOL= 8−19MW and IP= 1.0–1.4MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-D plasmas may be problematical at high power and H98 (≥ 1.5 due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q⊥P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot” but also that heating near the slot opening is a significant source for impurity contamination of the core.

  5. Capacitor performance limitations in high power converter applications

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    High voltage low inductance capacitors are used in converters as HVDC-links, snubber circuits and sub model (MMC) capacitances. They facilitate the possibility of large peak currents under high frequent or transient voltage applications. On the other hand, using capacitors with larger equivalent...... series inductances include the risk of transient overvoltages, with a negative effect on life time and reliability of the capacitors. These allowable limits of such current and voltage peaks are decided by the ability of the converter components, including the capacitors, to withstand them over...... the expected life time. In this paper results are described from investigations on the electrical environment of these capacitors, including all the conditions they would be exposed to, thereby trying to find the tradeoffs needed to find a suitable capacitor. Different types of capacitors with the same voltage...

  6. Investigation of high-alpha lateral-directional control power requirements for high-performance aircraft

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes groundbased piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  7. High-Performance Constant Power Generation in Grid-Connected PV Systems

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...... operation are always achieved by the proposed control strategy. It can regulate the PV output power according to any set-point, and force the PV systems to operate at the left side of the maximum power point without stability problems. Experimental results have verified the effectiveness of the proposed CPG...

  8. High speed and high functional inverter power supplies for plasma generation and control, and their performance

    Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro

    2003-01-01

    The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak. (author)

  9. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  10. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  11. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    , is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor......Wind) model, where the wind turbine storm controllers are also implemented....

  12. A high-performance stand-alone solar PV power system for LED lighting

    Huang, B. J.; Hsu, P. C.; Wu, M. S.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system

  13. Performance and reliability of TPE-2 device with pulsed high power source

    Sato, Y.; Takeda, S.; Kiyama, S.

    1987-01-01

    The performance and the reliability of TPE-2 device with pulsed high power sources are described. To obtain the stable high beta plasma, the reproducibility and the reliability of the pulsed power sources must be maintained. A new power crowbar system with high efficiency and the switches with low jitter time are adopted to the bank system. A monitor system which always watches the operational states of the switches is developed too, and applied for the fast rising capacitor banks of TPE-2 device. The reliable operation for the bank has been realized, based on the data of switch monitor system

  14. Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

    Ltaief, Hatem; Luszczek, Piotr R.; Dongarra, Jack

    2011-01-01

    This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine

  15. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  16. Performance Analysis of Modified Drain Gating Techniques for Low Power and High Speed Arithmetic Circuits

    Shikha Panwar

    2014-01-01

    Full Text Available This paper presents several high performance and low power techniques for CMOS circuits. In these design methodologies, drain gating technique and its variations are modified by adding an additional NMOS sleep transistor at the output node which helps in faster discharge and thereby providing higher speed. In order to achieve high performance, the proposed design techniques trade power for performance in the delay critical sections of the circuit. Intensive simulations are performed using Cadence Virtuoso in a 45 nm standard CMOS technology at room temperature with supply voltage of 1.2 V. Comparative analysis of the present circuits with standard CMOS circuits shows smaller propagation delay and lesser power consumption.

  17. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  18. Analysis of Application Power and Schedule Composition in a High Performance Computing Environment

    Elmore, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gruchalla, Kenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Purkayastha, Avi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wunder, Nick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-05

    As the capacity of high performance computing (HPC) systems continues to grow, small changes in energy management have the potential to produce significant energy savings. In this paper, we employ an extensive informatics system for aggregating and analyzing real-time performance and power use data to evaluate energy footprints of jobs running in an HPC data center. We look at the effects of algorithmic choices for a given job on the resulting energy footprints, and analyze application-specific power consumption, and summarize average power use in the aggregate. All of these views reveal meaningful power variance between classes of applications as well as chosen methods for a given job. Using these data, we discuss energy-aware cost-saving strategies based on reordering the HPC job schedule. Using historical job and power data, we present a hypothetical job schedule reordering that: (1) reduces the facility's peak power draw and (2) manages power in conjunction with a large-scale photovoltaic array. Lastly, we leverage this data to understand the practical limits on predicting key power use metrics at the time of submission.

  19. Building High-Performing and Improving Education Systems. Systems and Structures: Powers, Duties and Funding. Review

    Slater, Liz

    2013-01-01

    This Review looks at the way high-performing and improving education systems share out power and responsibility. Resources--in the form of funding, capital investment or payment of salaries and other ongoing costs--are some of the main levers used to make policy happen, but are not a substitute for well thought-through and appropriate policy…

  20. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  1. High-performance nanostructured thermoelectric generators for micro combined heat and power systems

    Zhang, Yanliang; Wang, Xiaowei; Cleary, Martin; Schoensee, Luke; Kempf, Nicholas; Richardson, Joseph

    2016-01-01

    Highlights: • A TEG is fabricated using high-efficiency nanostructured thermoelectric materials. • The TEG produces high power density of 2.1 W/cm"2 with 5.3% electrical efficiency. • A micro-CHP system is demonstrated by integrating the TEG into a gas-fired boiler. - Graphical Abstract: - Abstract: Micro combined heat and power (micro-CHP) systems are promising pathways to increase power generation efficiencies. Here a new class of micro-CHP system without moving parts is experimentally demonstrated by integrating high-temperature thermoelectric generators (TEGs) and residential gas-fired boilers, thus enabling wide applications. The TEGs fabricated using high-efficiency nanostructured bulk half-Heusler alloys generate ultrahigh power density of 2.1 W/cm"2 with 5.3% electrical efficiency under 500 °C temperature differences between the hot and cold sides. The TEG system harnesses the untapped exergy between the combustion gas and water, and converts thermal energy into electric power with 4% heat-to-electricity efficiency based on the total heat input into the TEGs. The high-performance TEGs open lots of opportunities to transform power generation technologies and improve energy efficiency.

  2. PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED

    Sreenivasa Rao.Ijjada; Ayyanna.G; G.Sekhar Reddy; Dr.V.Malleswara Rao

    2011-01-01

    Designing high-speed low-power circuits with CMOS technology has been a major research problem for many years. Several logic families have been proposed and used to improve circuit performance beyond that of conventional static CMOS family. Fast circuit families are becoming attractive in deep sub micron technologies since the performance benefits obtained from process scaling are decreasing as feature size decreases. This paper presents CMOS differential circuit families such as Dual rail do...

  3. Cutting performances with new industrial continuous wave ND:YAG high power lasers

    Chagnot, C.; Dinechin, G. de; Canneau, G.

    2010-01-01

    Dismantling is a great challenge for nuclear companies which are facing with the cleaning of former nuclear sites. Among the available cutting processes is the multi-kilowatts laser whose power is transmitted through optical fibers. Unlike other cutting processes such as the plasma arc cutting process or the oxy-cutting process, the laser process can be easily implemented by robotic equipments. The mechanised robotic arm carries a laser cutting head to perform, with remote-controlled equipments, the cutting operation. The present study deals with the performances which can be reached with high power continuous wave ND:YAG lasers. The cutting tests were carried out up to 8 kW. The laser power was delivered through a specific power supply chain: a 0.4 mm fiber was transporting the power from the laser to a first interface (coupler) then a second 0.6 mm fiber was bringing the laser power to the cutting head. This solution allowed a power delivery chain whose length could be as high as 100 + 20/50 m. Another advantage of this kind of power supply is that the first fiber can be set in a non-contaminated environment whereas the second fiber lies in the contaminated area. The cutting head used for these tests was a specific tool developed for this laser dismantling work: it is a laser cutting head cooled by pressurized air. This tool was developed with the requirement to be able to sustain a laser power of 14 kW. The pressurized air used to cool the head is also used as cutting gas. The cutting capability was about 10 mm by kW. At the power of 8 kW, austenitic steel plates of thickness 100 mm were cut. These performances were reached with the cut started on the plate's edge. If the cut started in the middle of the plate, the cutting performances were not so high: 8 kW became the power to drill and to cut plates of thickness 40 mm.

  4. Lifetime laser damage performance of β-Ga2O3 for high power applications

    Jae-Hyuck Yoo

    2018-03-01

    Full Text Available Gallium oxide (Ga2O3 is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2. This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.

  5. Lifetime laser damage performance of β -Ga2O3 for high power applications

    Yoo, Jae-Hyuck; Rafique, Subrina; Lange, Andrew; Zhao, Hongping; Elhadj, Selim

    2018-03-01

    Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress.

  6. A high-performance stand-alone solar PV power system for LED lighting

    Huang, B. J.

    2010-06-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system using pulse width modulation (PWM) technique was developed for battery charging control which can increase the charging capacity by 78%. For high-efficiency lighting, the LED is directly driven by battery using a PWM discharge control to eliminate a DC/DC converter. Two solar-powered LED lighting systems (50W and 100W LED) were built. The long-term outdoor tests have shown that the loss of load probability for full-night lighting requirement is zero for 50W LED and 3.6% for 100W LED. © 2010 IEEE.

  7. High Performance Computing - Power Application Programming Interface Specification Version 2.0.

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  8. A novel high-performance self-powered ultraviolet photodetector: Concept, analytical modeling and analysis

    Ferhati, H.; Djeffal, F.

    2017-12-01

    In this paper, a new MSM-UV-photodetector (PD) based on dual wide band-gap material (DM) engineering aspect is proposed to achieve high-performance self-powered device. Comprehensive analytical models for the proposed sensor photocurrent and the device properties are developed incorporating the impact of DM aspect on the device photoelectrical behavior. The obtained results are validated with the numerical data using commercial TCAD software. Our investigation demonstrates that the adopted design amendment modulates the electric field in the device, which provides the possibility to drive appropriate photo-generated carriers without an external applied voltage. This phenomenon suggests achieving the dual role of effective carriers' separation and an efficient reduce of the dark current. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to achieve improved photoelectric behavior at zero bias that can ensure favorable self-powered MSM-based UV-PD. It is found that the proposed design methodology has succeeded in identifying the optimized design that offers a self-powered device with high-responsivity (98 mA/W) and superior ION/IOFF ratio (480 dB). These results make the optimized MSM-UV-DM-PD suitable for providing low cost self-powered devices for high-performance optical communication and monitoring applications.

  9. High-performance sensorless nonlinear power control of a flywheel energy storage system

    Amodeo, S.J.; Chiacchiarini, H.G.; Solsona, J.A.; Busada, C.A.

    2009-01-01

    The flywheel energy storage systems (FESS) can be used to store and release energy in high power pulsed systems. Based on the use of a homopolar synchronous machine in a FESS, a high performance model-based power flow control law is developed using the feedback linearization methodology. This law is based on the voltage space vector reference frame machine model. To reduce the magnetic losses, a pulse amplitude modulation driver for the armature is more adequate. The restrictions in amplitude and phase imposed by the driver are also included. A full order Luenberger observer for the torque angle and rotor speed is developed to implement a sensorless control strategy. Simulation results are presented to illustrate the performance.

  10. Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

    Ltaief, Hatem

    2011-08-31

    This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency. © 2011 Springer-Verlag.

  11. Low power arcjet performance

    Curran, Francis M.; Sarmiento, Charles J.

    1990-01-01

    An experimental investigation was performed to evaluate arcjet operation at low power. A standard, 1 kW, constricted arcjet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power regime. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope. The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.

  12. Performance of high power S-band klystrons focused with permanent magnet

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.

  13. Performance of high power S-band klystrons focused with permanent magnet

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 % of the longitudinal field in the entire rf interaction region of the klystron. (author)

  14. High power RF performance test of an improved SiC load

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  15. High-Performance MIM Capacitors for a Secondary Power Supply Application

    Jiliang Mu

    2018-02-01

    Full Text Available Microstructure is important to the development of energy devices with high performance. In this work, a three-dimensional Si-based metal-insulator-metal (MIM capacitor has been reported, which is fabricated by microelectromechanical systems (MEMS technology. Area enlargement is achieved by forming deep trenches in a silicon substrate using the deep reactive ion etching method. The results indicate that an area of 2.45 × 103 mm2 can be realized in the deep trench structure with a high aspect ratio of 30:1. Subsequently, a dielectric Al2O3 layer and electrode W/TiN layers are deposited by atomic layer deposition. The obtained capacitor has superior performance, such as a high breakdown voltage (34.1 V, a moderate energy density (≥1.23 mJ/cm2 per unit planar area, a high breakdown electric field (6.1 ± 0.1 MV/cm, a low leakage current (10−7 A/cm2 at 22.5 V, and a low quadratic voltage coefficient of capacitance (VCC (≤63.1 ppm/V2. In addition, the device’s performance has been theoretically examined. The results show that the high energy supply and small leakage current can be attributed to the Poole–Frenkel emission in the high-field region and the trap-assisted tunneling in the low-field region. The reported capacitor has potential application as a secondary power supply.

  16. High Performance Computing - Power Application Programming Interface Specification Version 1.4

    Laros III, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeBonis, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  17. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

    Lim, Sung Kyu

    2013-01-01

    This book describes the design of through-silicon-via (TSV) based three-dimensional integrated circuits.  It includes details of numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs, developed with tools covered in the book. Readers will benefit from the sign-off level analysis of timing, power, signal integrity, and thermo-mechanical reliability for 3D IC designs.  Coverage also includes various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the 3D IC design process. Describes design issues and solutions for high performance and low power 3D ICs, such as the pros/cons of regular and irregular placement of TSVs, Steiner routing, buffer insertion, low power 3D clock routing, power delivery network design and clock design for pre-bond testability. Discusses topics in design-for-electrical-reliability for 3D ICs, such as TSV-to-TSV coupling, current crowding at the wire-to-TSV junction and the e...

  18. Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries

    Zainab, Ghazala [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Xianfeng, E-mail: wxf@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Yu, Jianyong [Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Zhai, Yunyun; Ahmed Babar, Aijaz; Xiao, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Ding, Bin, E-mail: binding@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China)

    2016-10-01

    Lithium ion batteries (LIBs) for high performance require separators with auspicious reliability and safety. Keeping LIBs reliability and safety in view, microporous polyacrylonitrile (PAN)/polyurethane (PU) nonwoven composite separator have been developed by electrospinning technique. The physical, electrochemical and thermal properties of the PAN/PU separator were characterized. Improved ionic conductivity up to 2.07 S cm{sup −1}, high mechanical strength (10.38 MPa) and good anodic stability up to 5.10 V are key outcomes of resultant membranes. Additionally, high thermal stability displaying only 4% dimensional change after 0.5 h long exposure to 170 °C in an oven, which could be valuable addition towards the safety of LIBs. Comparing to commercialized polypropylene based separators, resulting membranes offered improved internal short-circuit protection function, offering better rate capability and enhanced capacity retention under same observation conditions. These fascinating characteristics endow these renewable composite nonwovens as promising separators for high power LIBs battery. - Highlights: • The PAN/PU based separators were prepared by multi-needle electrospinning technique. • The electrospun separators displays good mechanical properties and thermal stability. • These separators exhibit good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection. • Nanofibrous composite nonwoven possesses stable cyclic performance which give rise to acceptable battery performances.

  19. Performances of a Compact, High-Power WB Source with Circular Polarization

    Delmote, P.; Pinguet, S.; Bieth, F.

    This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.

  20. Study on development system of increasing gearbox for high-performance wind-power generator

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  1. A high-performance micro electret power generator based on microball bearings

    Yang, Zhaohui; Wang, Jing; Zhang, Jinwen

    2011-01-01

    In this paper, a high-performance micro electret power generator fabricated by simple bulk micromachining technology is presented. It has microballs as movable bearings for harvesting changing low-frequency vibration energy from the environment. The silicon V-grooves where the microballs slide have very smooth (1 1 1) planes, and so the device is sensitive to very slight vibration and almost has no resonant frequency. A plasma-enhanced chemical vapour deposition SiO 2 /Si 3 N 4 double layer was used as the electret. The device was fabricated by simple micromachining technology suitable for mass production except for microball assembly. The influence of various frequencies and accelerations on the performance was studied in detail. The measurement results of this electret micro power generator show that the optimal load is proportional to the frequency, and inversely proportional to the acceleration. The peak-to-peak output charge and output power were 72 nC and 5.9 µW respectively at 20 Hz and 0.7 g with the optimal resistive load 626 kΩ. The work frequencies range from 100 Hz to a lower frequency (1 Hz). 112 nW can still be obtained in the minimum acceleration of 0.05 g at 10 Hz with the optimal resistive load, indicating that this device has high sensitivity. The possible application of our device in scavenging energy from low-frequency irregular movements, such as human motion, was proved by a primary experiment

  2. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers

    Nelson, Brian A.

    2006-01-01

    Limited resources force most smaller fusion energy research experiments to have little or no feedback control of their operational parameters, preventing achievement of their full operational potential. Recent breakthroughs in high-power switching technologies have greatly reduced feedback-controlled power supply costs, primarily those classified as switching power amplifiers. However, inexpensive and flexible controllers for these power supplies have not been developed. A uClinux-based micro-controller (Analog Devices Blackfin BF537) was identified as having the capabilities to form the base of a digital control system for switching power amplifiers. A control algorithm was created, and a Linux character device driver was written to realize the algorithm. The software and algorithm were successfully tested on a switching power amplifier and magnetic field coil using University of Washington (subcontractor) resources

  3. Graphene electric double layer capacitor with ultra-high-power performance

    Miller, John R.; Outlaw, R.A.; Holloway, B.C.

    2011-01-01

    We have demonstrated, for the first time, efficient 120 Hz filtering by an electric double layer capacitor (EDLC). The key to this ultra-high-power performance is electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized both electronic and ionic resistance and produced capacitors having RC time-constants of less than 200 μs. Significantly, graphene nanosheets have a preponderance of exposed edge planes that greatly increase stored charge over designs relying on basal plane surfaces. Collectively these factors make vertically oriented graphene nanosheet electrodes ideally suited for producing high-frequency EDLCs. Capacitors constructed with these electrodes are predicted to be significantly smaller than aluminum electrolyte capacitors that they could functionally replace plus be manufactured using standard semiconductor process equipment, creating interesting commercial opportunities.

  4. Performance test of lower hybrid waveguide under long/high-RF power transmission

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10 -6 -10 -5 Pa m 3 /sec m 2 (10 -9 -10 -8 Torr 1/sec cm 2 ) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H 2 or D 2 gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be ∼100degC by using of water cooling at a power level of 150 MW/m 2 RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10 -7 Pa m 3 /sec m 2 (10 -10 Torr 1/sec cm 2 ). The steady state RF injection was demonstrated with water cooling. (author)

  5. Quality and performance of laser cutting with a high power SM fiber laser

    Kristiansen, Morten; Selchau, Jacob; Olsen, F. O.

    2013-01-01

    The introduction of high power single mode fiber lasers allows for a beam of high power and a good beam quality factor (M2 ” 1.2), compared to the multimode fiber lasers often utilised in macro laser metal cutting. This paper describes fundamental studies of macro laser metal cutting with a singl...

  6. Development of high performance condensers for thermal and nuclear power plants

    Okouchi, Isao; Takahashi, Sankichi; Tomita, Akira.

    1980-01-01

    As the trend toward the large capacity of thermal and nuclear power plants advances, condensers also become large, and from the viewpoint of energy saving in whole plants, the maintenance of high performance and reliability is strongly desired. Hitachi Ltd. responded to this demand, and repeated the basic investigation with a model condenser on the selection of condenser cooling tubes and their arrangement. As the result, balanced downflow type tube arrangement was developed, which enables smooth steam flow and the improvement of condenser performance by forming the intense flow of turbine exhaust from the upper part of tube nest downward and making the steam flow in the lower part of tube nest into radial form toward air ejecting port. This tube arrangement has been applied to actual machines, and the excellent results have been obtained. In particular, the improvement of the degree of vacuum due to the reduction of steam flow loss is advantageous for increasing the power output of turbines. Thereupon, based on the basic experiment with various models of tube arrangement and the consideration on the operational results of actual machines using this tube arrangement, the features of this technique are reported. The basic construction of tube arrangement, the steam flow in tube nest, the vacuum in condensers, the supercooling of condensate, and actual balanced downflow type condensers are described. (Kako, I.)

  7. Enginnering development of coal-fired high performance power systems phase II and III

    1998-01-01

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates 65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R ampersand D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update

  8. The test and control system for high performance digital power supplies of SSRF

    Tang Junlong; Li Deming; Shen Tianjian

    2009-01-01

    A test and control system was designed to evaluate performance of the digital power supplies for SSRF. The software of serial communication (RS-232) and Ethernet interface was developed with Lab VIEW. The system can perform functions of instrument and power supply control, data acquisition and display, and store data for 24 h. LAN users can access the system and acquire data conveniently. The data are stored in Excel for analysis and establishment of database of digital PS in the future. (authors)

  9. Optical design and performance of F-Theta lenses for high-power and high-precision applications

    Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.

    2015-09-01

    F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.

  10. Engineering development of coal-fired high performance power systems, Phase II and III

    None

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  11. The Design of High Performance, Low Power Triple-Track Magnetic Sensor Chip

    Junning Chen

    2013-07-01

    Full Text Available This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target.

  12. Application of high performance asynchronous socket communication in power distribution automation

    Wang, Ziyu

    2017-05-01

    With the development of information technology and Internet technology, and the growing demand for electricity, the stability and the reliable operation of power system have been the goal of power grid workers. With the advent of the era of big data, the power data will gradually become an important breakthrough to guarantee the safe and reliable operation of the power grid. So, in the electric power industry, how to efficiently and robustly receive the data transmitted by the data acquisition device, make the power distribution automation system be able to execute scientific decision quickly, which is the pursuit direction in power grid. In this paper, some existing problems in the power system communication are analysed, and with the help of the network technology, a set of solutions called Asynchronous Socket Technology to the problem in network communication which meets the high concurrency and the high throughput is proposed. Besides, the paper also looks forward to the development direction of power distribution automation in the era of big data and artificial intelligence.

  13. Performance test of lower hybrid waveguide under long/high-RF power transmission

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10{sup -6}-10{sup -5} Pa m{sup 3}/sec m{sup 2} (10{sup -9}-10{sup -8} Torr 1/sec cm{sup 2}) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H{sub 2} or D{sub 2} gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be {approx}100degC by using of water cooling at a power level of 150 MW/m{sup 2} RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10{sup -7} Pa m{sup 3}/sec m{sup 2} (10{sup -10} Torr 1/sec cm{sup 2}). The steady state RF injection was demonstrated with water cooling. (author).

  14. A high performance, low power computational platform for complex sensing operations in smart cities

    Jiang, Jiming; Claudel, Christian

    2017-01-01

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  15. A high performance, low power computational platform for complex sensing operations in smart cities

    Jiang, Jiming

    2017-02-02

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  16. A high performance hydrogen/chlorine fuel cell for space power applications

    Anderson, E B [PSI Technology Co., A Div. of Physical Sciences Inc., Andover, MA (United States); Taylor, E J [PSI Technology Co., A Div. of Physical Sciences Inc., Andover, MA (United States); Wilemski, G [PSI Technology Co., A Div. of Physical Sciences Inc., Andover, MA (United States); Gelb, A [PSI Technology Co., A Div. of Physical Sciences Inc., Andover, MA (United States)

    1994-01-15

    This article discusses the proton-exchange membrane fuel cell (PEMFC) as a high power and energy density power source. The two systems H{sub 2}/Cl{sub 2} and H{sub 2}/O{sub 2} PEMFC systems were compared over a wide range of mission lifetimes. It has been shown that the development of a H{sub 2}/Cl{sub 2} PEMFC could yield a system with power and energy densities inherently greater than currently available in H{sub 2}/O{sub 2} PEMFC. (orig.)

  17. Engineering development of coal-fired high-performance power systems

    1998-01-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. During this quarter, initial char combustion tests were performed at the CETF using a Foster Wheeler commercial burner. These preliminary tests were encouraging and will be used to support the development of an innovative char burner for the HIPPS

  18. Static Analysis of High-Performance Fixed Fluid Power Drive with a Single Positive-Displacement Hydraulic Motor

    O. F. Nikitin

    2015-01-01

    Full Text Available The article deals with the static calculations in designing a high-performance fixed fluid power drive with a single positive-displacement hydraulic motor. Designing is aimed at using a drive that is under development and yet unavailable to find and record the minimum of calculations and maximum of existing hydraulic units that enable clear and unambiguous performance, taking into consideration an available assortment of hydraulic units of hydraulic drives, to have the best efficiency.The specified power (power, moment and kinematics (linear velocity or angular velocity of rotation parameters of the output element of hydraulic motor determine the main output parameters of the hydraulic drive and the useful power of the hydraulic drive under development. The value of the overall efficiency of the hydraulic drive enables us to judge the efficiency of high-performance fixed fluid power drive.The energy analysis of a diagram of the high-performance fixed fluid power drive shows that its high efficiency is achieved when the flow rate of fluid flowing into each cylinder and the magnitude of the feed pump unit (pump are as nearly as possible.The paper considers the ways of determining the geometric parameters of working hydromotors (effective working area or working volume, which allow a selection of the pumping unit parameters. It discusses the ways to improve hydraulic drive efficiency. Using the principle of holding constant conductivity allows us to specify the values of the pressure losses in the hydraulic units used in noncatalog modes. In case of no exact matching between the parameters of existing hydraulic power modes and a proposed characteristics of the pump unit, the nearest to the expected characteristics is taken as a working version.All of the steps allow us to create the high-performance fixed fluid power drive capable of operating at the required power and kinematic parameters with high efficiency.

  19. Performance Model for High-Power Lithium Titanate Oxide Batteries based on Extended Characterization Tests

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2015-01-01

    Lithium-ion (Li-ion) batteries are found nowadays not only in portable/consumer electronics but also in more power demanding applications, such as stationary renewable energy storage, automotive and back-up power supply, because of their superior characteristics in comparison to other energy...... storage technologies. Nevertheless, prior to be used in any of the aforementioned application, a Li-ion battery cell must be intensively characterized and its behavior needs to be understood. This can be realized by performing extended laboratory characterization tests and developing Li-ion battery...... performance models. Furthermore, accurate performance models are necessary in order to analyze the behavior of the battery cell under different mission profiles, by simulation; thus, avoiding time and cost demanding real life tests. This paper presents the development and the parametrization of a performance...

  20. High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis.

    Zhao, Yu; Nandra, Mandheerej; Yu, Chia-Chen; Tai, Yu-chong

    2012-01-01

    The next-generation retinal prostheses feature high image resolution and chronic implantation. These features demand the delivery of power as high as 100 mW to be wireless and efficient. A common solution is the 2-coil inductive power link, used by current retinal prostheses. This power link tends to include a larger-size extraocular receiver coil coupled to the external transmitter coil, and the receiver coil is connected to the intraocular electrodes through a trans-sclera trans-choroid cable. In the long-term implantation of the device, the cable may cause hypotony (low intraocular pressure) and infection. However, when a 2-coil system is constructed from a small-size intraocular receiver coil, the efficiency drops drastically which may induce over heat dissipation and electromagnetic field exposure. Our previous 2-coil system achieved only 7% power transfer. This paper presents a fully intraocular and highly efficient wireless power transfer system, by introducing another inductive coupling link to bypass the trans-sclera trans-choroid cable. With the specific equivalent load of our customized 512-electrode stimulator, the current 3-coil inductive link was measured to have the overall power transfer efficiency around 36%, with 1-inch separation in saline. The high efficiency will favorably reduce the heat dissipation and electromagnetic field exposure to surrounding human tissues. The effect of the eyeball rotation on the power transfer efficiency was investigated as well. The efficiency can still maintain 14.7% with left and right deflection of 30 degree during normal use. The surgical procedure for the coils' implantation into the porcine eye was also demonstrated.

  1. Coal-fired high performance power generating system. Quarterly progress report

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO{sub x} SO {sub x} and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R&D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO{sub x} production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  2. Wavy channel thin film transistor architecture for area efficient, high performance and low power displays

    Hanna, Amir

    2013-12-23

    We demonstrate a new thin film transistor (TFT) architecture that allows expansion of the device width using continuous fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.5× increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, ~100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers an interesting opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Wavy channel Thin Film Transistor for area efficient, high performance and low power applications

    Hanna, Amir

    2014-06-01

    We report a new Thin Film Transistor (TFT) architecture that allows expansion of the device width using wavy (continuous without separation) fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.4x increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, similar to 100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers a pragmatic opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications without any limitation any TFT materials.

  4. Microstructural evolution in additive manufacturing with high power lasers : Deposition, characterization and performance

    Nenadl, Ondrej

    2017-01-01

    High power lasers provide time and cost effective method for metallic surface modification. In this work these modifications are explored as: 1) a simple melting and subsequent rapid solidification of a metallic surface – resulting in superior properties post-treatment; 2) deposition of an

  5. Integrated high voltage power supply utilizing burst mode control and its performance impact on dielectric electro active polymer actuators

    Andersen, Thomas; Rødgaard, Martin Schøler; Andersen, Michael A. E.

    Through resent years new high performing Dielectric Electro Active Polymers (DEAP) have emerged. To fully utilize the potential of DEAPs a driver with high voltage output is needed. In this paper a piezoelectric transformer based power supply for driving DEAP actuators is developed, utilizing...

  6. A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links.

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-11-16

    Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key inductive link design parameters that relate to the power source and driver specs, power loss, transmission range, robustness against misalignment, variations in loading, and interference with other devices. Designers need to strike a delicate balance between these two because designing the link to achieve high PTE will degrade the PDL and vice versa. We are proposing a new figure-of-merit (FoM), which can help designers to find out whether a two-, three-, or four-coil link is appropriate for their particular application and guide them through an iterative design procedure to reach optimal coil geometries based on how they weigh the PTE versus PDL for that application. Three design examples at three different power levels have been presented based on the proposed FoM for implantable microelectronic devices, handheld mobile devices, and electric vehicles. The new FoM suggests that the two-coil links are suitable when the coils are strongly coupled, and a large PDL is needed. Three-coil links are the best when the coils are loosely coupled, the coupling distance varies considerably, and large PDL is necessary. Finally, four-coil links are optimal when the PTE is paramount, the coils are loosely coupled, and their relative distance and alignment are stable. Measurement results support the accuracy of the theoretical design procedure and conclusions.

  7. The MOA thruster. A high performance plasma accelerator for nuclear power and propulsion applications

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2009-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other, terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in Vienna, Austria, which has been set up to further develop and test the Alfven wave technology and its applications. (author)

  8. High-performance ionic diode membrane for salinity gradient power generation.

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  9. Bruce A - performance power

    Boucher, P. [Bruce Power, Tiverton, ON (Canada)

    2015-07-01

    This paper discusses the strategy for improving performance at Bruce Power. The key to excellence is changing behaviours. Reinforcing and enforcing expectations, aligned with the 2015 operating to the Highest Standards Site Initiative. Long term equipment strategies, supported by the 2015 Equipment Health Site Initiative, individual and group accountability for online/outage Work Management, with further gains through 2015 Maintenance Alignment and Resource Strategy (MARS) Site Initiative. Results showed human performance improvement, more reliable and predictable units and outage performance improvement.

  10. Performance of the Crowbar of the LHC High Power RF System

    Ravidà, G; Valuch, D

    2012-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) are captured and accelerated to their final energies by two identical 400 MHz Radio Frequency (RF) systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell superconducting (SC) cavity. Each unit of four klystrons is powered by a -100kV/40A AC/DC power converter. A fast protection system (crowbar) protects the four klystrons in each of these units. Although the LHC RF system has shown has very good performance, operational experience has shown that the five-gap double-ended thyratrons used in the crowbar system suffer, from time to time, from auto-firing, which result in beam dumps. This paper presents the recent results obtained with an alternative solution based on solid state thyristors. Comparative measurements with the thyratron are shown.

  11. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance

    Yufei Ma

    2018-01-01

    Full Text Available A highly sensitive carbon monoxide (CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS was demonstrated. A high-power distributed feedback (DFB, continuous wave (CW 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF, a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor.

  12. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K

    2018-01-04

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.

  13. Performance demonstration of a high-power space-reactor heat-pipe design

    Merrigan, M.A.; Martinez, E.H.; Keddy, E.S.; Runyan, J.; Kemme, J.E.

    1983-01-01

    Performance of a 15.9-mm diam, 2-m long, artery heat pipe has been demonstrated at power levels to 22.6 kW and temperatures to 1500 0 K. The heat pipe employed lithium as a working fluid with distribution wicks and arteries fabricated from 400 mesh Mo-41 wt % Re screen. Molybdenum alloy (TZM) was used for the container. Peak axial power density attained in the testing was 19 kW/cm 2 at 1465 0 K. The corresponding radial flux density in the evaporator region of the heat pipe was 150 W/cm 2 . The extrapolated limit for the heat pipe at its 1500 0 K design point is 30 kW, corresponding to an axial flux density of 25 kW/cm 2 . Sonic and capillary limits for the design were investigated in the 1100 to 1500 0 K temperature range. Excellent agreement of measured and predicted temperature and power levels was observed

  14. High fusion performance at high T i/T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing

    Kim, Hyun-Tae; Sips, A. C. C.; Romanelli, M.; Challis, C. D.; Rimini, F.; Garzotti, L.; Lerche, E.; Buchanan, J.; Yuan, X.; Kaye, S.; contributors, JET

    2018-03-01

    This paper presents the transport analysis of high density baseline discharges in the 2016 experimental campaign of the Joint European Torus with the ITER-Like Wall (JET-ILW), where a significant increase in the deuterium-deuterium (D-D) fusion neutron rate (~2.8  ×  1016 s-1) was achieved with stable high neutral beam injection (NBI) powers of up to 28 MW and low gas puffing. Increase in T i exceeding T e were produced for the first time in baseline discharges despite the high electron density; this enabled a significant increase in the thermal fusion reaction rate. As a result, the new achieved record in fusion performance was much higher than the previous record in the same heating power baseline discharges, where T i  =  T e. In addition to the decreases in collisionality and the increases in ion heating fraction in the discharges with high NBI power, T i  >  T e can also be attributed to positive feedback between the high T i/T e ratio and stabilisation of the turbulent heat flux resulting from the ion temperature gradient driven mode. The high T i/T e ratio was correlated with high rotation frequency. Among the discharges with identical beam heating power, higher rotation frequencies were observed when particle fuelling was provided by low gas puffing and pellet injection. This reveals that particle fuelling played a key role for achieving high T i/T e, and the improved fusion performance.

  15. High power microwaves

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  16. Oxidation performance of high temperature steels and coatings for future supercritical power plants

    Auerkari, Pertti; Salonen, Jorma; Toivonen, Aki; Penttilae, Sami [VTT, Espoo (Finland); Haekkilae, Juha [Foster Wheeler Energia, Varkaus (Finland); Aguero, Alina; Gutierrez, Marcos; Muelas, Raul [INTA, Madrid (Spain); Fry, Tony [NPL (United Kingdom)

    2010-07-01

    The operating efficiency of current and future thermal power plants is largely dependent on the applied temperature and pressure, which are in part limited by the internal oxidation resistance of the structural materials in the steam systems. Alternative and reference materials for such systems have been tested within the COST 536 (ACCEPT) project, including bulk reference materials (ferritic P92 and austenitic 316 LN steels) and several types of coatings under supercritical combined (oxygen) water chemistry (150 ppb DO) at 650 C/300 bar. The testing results from a circulating USC autoclave showed that under such conditions the reference bulk steels performed poorly, with extensive oxidation already after relatively short term exposure to the supercritical medium. Better protection was attained by suitable coatings, although there were clear differences in the protective capabilities between different coating types, and some challenges remain in applying (and repairing) coatings for the internal surfaces of welded structures. The materials performance seems to be worse in supercritical than in subcritical conditions, and this appears not to be only due to the effect of temperature. The implications are considered from the point of view of the operating conditions and materials selection for future power plants. (orig.)

  17. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser

    Sanchez-Castillo, A.; Pou, J.; Lusquinos, F.; Quintero, F.; Soto, R.; Boutinguiza, M.; Saavedra, M.; Perez-Amor, M.

    2004-01-01

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs

  18. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte

  19. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  20. Performance Analysis of Trench Power MOSFETs in High-Frequency Synchronous Buck Converter Applications

    Yali Xiong

    2008-01-01

    Full Text Available This paper investigates the performance perspectives and theoretical limitations of trench power MOSFETs in synchronous rectifier buck converters operating in the MHz frequency range. Several trench MOSFET technologies are studied using a mixed-mode device/circuit modeling approach. Individual power loss contributions from the control and synchronous MOSFETs, and their dependence on switching frequency between 500 kHz and 5 MHz are discussed in detail. It is observed that the conduction loss contribution decreases from 40% to 4% while the switching loss contribution increases from 60% to 96% as the switching frequency increases from 500 KHz to 5 MHz. Beyond 1 MHz frequency there is no obvious benefit to increase the die size of either SyncFET or CtrlFET. The RDS(ON×QG figure of merit (FOM still correlates well to the overall converter efficiency in the MHz frequency range. The efficiency of the hard switching buck topology is limited to 80% at 2 MHz and 65% at 5 MHz even with the most advanced trench MOSFET technologies.

  1. A High Performance PSO-Based Global MPP Tracker for a PV Power Generation System

    Kuei-Hsiang Chao

    2015-07-01

    Full Text Available This paper aims to present an improved version of a typical particle swarm optimization (PSO algorithm, such that the global maximum power point (MPP on a P-V characteristic curve with multiple peaks can be located in an efficient and precise manner for a photovoltaic module array. A series of instrumental measurements are conducted on variously configured arrays built with SANYO HIP2717 PV modules, either unshaded, partially shaded, or malfunctioning, as the building blocks. There appear two, triple and quadruple peaks on the corresponding P-V characteristic curves. Subsequently, the tracking performance comparisons, made by some practical experiments, indicate the superiority of this improved MPP tracking algorithm over the typical one.

  2. Study of the emission performance of high-power klystrons: SLAC XK-5

    Zhao, Y.

    1981-07-01

    There are hundreds of high power klystrons operated in the Linac gallery and about fifty to sixty tubes fail every year. The lifetime ranges from a few thousand up to seventy thousand hours except those which fail during an early period. The overall percentage of failures due to emission problems is approximately 25%. It is also noted that a 10% increase in mean lifetime of klystrons will reduce the overall cost per hour as much as a 10% increase in efficiency. Therefore, it is useful to find some method to predict the expected life of an individual tube. The final goal has not been attained yet, but some useful information was obtained. It is thought that this information might be helpful for those people who will study this subject further

  3. Study of the emission performance of high-power klystrons: SLAC XK-5

    Zhao, Y.

    1981-07-01

    There are hundreds of high power klystrons operated in the Linac gallery and about fifty to sixty tubes fail every year. The lifetime ranges from a few thousand up to seventy thousand hours except those which fail during an early period. The overall percentage of failures due to emission problems is approximately 25%. It is also noted that a 10% increase in mean lifetime of klystrons will reduce the overall cost per hour as much as a 10% increase in efficiency. Therefore, it is useful to find some method to predict the expected life of an individual tube. The final goal has not been attained yet, but some useful information was obtained. It is thought that this information might be helpful for those people who will study this subject further.

  4. Boost Converter Fed High Performance BLDC Drive for Solar PV Array Powered Air Cooling System

    Shobha Rani Depuru

    2017-01-01

    Full Text Available This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV array and the Voltage Source Inverters (VSI in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC motor drive system and from the simulated results it is found that the proposed system performs better.

  5. High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit

    Wu, Wenzhuo

    2016-03-01

    Harvesting energies from the atmosphere cost-effectively is critical for both addressing worldwide long-term energy needs at the macro-scale, and achieving the sustainable maintenance-free operation of nanodevices at the micro-scale (Wang and Wu 2012 Angew. Chem. Int. Ed. 51 11700-21). Piezoelectric nanogenerator (NG) technology has demonstrated its great application potential in harvesting the ubiquitous and abundant mechanical energy. Despite of the progress made in this rapidly-advancing field, a fundamental understanding and common standard for consistently quantifying and evaluating the performance of the various types of piezoelectric NGs is still lacking. In their recent study Crossley and Kar-Narayan (2015 Nanotechnology 26 344001), systematically investigated dynamical properties of piezoelectric NGs by taking into account the effect of driving mechanism and load frequency on NG performance. They further defined the NGs’ figures of merit as energy harvested normalized by applied strain or stress for NGs under strain-driven or stress-driven conditions, which are commonly seen in the vibrational energy harvesting. This work provides new insight and a feasible approach for consistently evaluating piezoelectric nanomaterials and NG devices, which is important for designing and optimizing nanoscale piezoelectric energy harvesters, as well as promoting their applications in emerging areas e.g. the internet of things, wearable devices, and self-powered nanosystems.

  6. Coal-fired high performance power generating system. Quarterly progress report, July 1, 1993--September 30, 1993

    1993-12-31

    This report covers work carried out under Task 3, Preliminary Research and Development, and Task 4, Commercial Generating Plant Design, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x}, and particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. The report discusses progress in cycle analysis, chemical reactor modeling, ash deposition rate calculations for HITAF (high temperature advanced furnace) convective air heater, air heater materials, and deposit initiation and growth on ceramic substrates.

  7. High-Temperature Performance of Stacked Silicon Nanowires for Thermoelectric Power Generation

    Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2013-07-01

    Deep reactive-ion etching at cryogenic temperatures (cryo-DRIE) has been used to produce arrays of silicon nanowires (NWs) for thermoelectric (TE) power generation devices. Using cryo-DRIE, we were able to fabricate NWs of large aspect ratios (up to 32) using a photoresist mask. Roughening of the NW sidewalls occurred, which has been recognized as beneficial for low thermal conductivity. Generated NWs, which were 7 μm in length and 220 nm to 270 nm in diameter, were robust enough to be stacked with a bulk silicon chip as a common top contact to the NWs. Mechanical support of the NW array, which can be created by filling the free space between the NWs using silicon oxide or polyimide, was not required. The Seebeck voltage, measured across multiple stacks of up to 16 bulk silicon dies, revealed negligible thermal interface resistance. With stacked silicon NWs, we observed Seebeck voltages that were an order of magnitude higher than those observed for bulk silicon. Degradation of the TE performance of silicon NWs was not observed for temperatures up to 470°C and temperature gradients up to 170 K.

  8. Thermal abuse performance of high-power 18650 Li-ion cells

    Roth, E. P.; Doughty, D. H.

    High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.

  9. High Efficiency Power Converter for Low Voltage High Power Applications

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  10. High-temperature performance of a new nickel-based filler metal for power generation application

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  11. Preparation of All-Ceramic, High Performance Li-ion Batteries for Deep Space Power Systems, Phase I

    National Aeronautics and Space Administration — Lithium (Li) ion batteries are among the most promising power sources for many civilian, military and space applications due to their high power and high energy...

  12. Electrical performance characteristics of high power converters for space power applications. Final report, 1 January 1988-30 September 1989

    Stuart, T.A.; King, R.J.

    1989-09-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice

  13. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  14. High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode

    Montejo-Garai, José R.; Saracho-Pantoja, Irene O.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.

    2018-03-01

    This work presents a 16-way Ku-band radial power combiner for high power and high frequency applications, using the very low loss TE01 circular waveguide mode. The accomplished design shows an excellent performance: the experimental prototype has a return loss better than 30 dB, with a balance for the amplitudes of (±0.15 dB) and (±2.5°) for the phases, in a 16.7% fractional bandwidth (2 GHz centered at 12 GHz). For obtaining these outstanding specifications, required, for instance, in high-frequency amplification or on plasma systems, a rigorous step-by-step procedure is presented. First, a high-purity mode transducer has been designed, from the TE10 mode in the rectangular waveguide to the TE01 mode in the circular waveguide, with very high attenuation (>50 dB) for the other propagating and evanescent modes in the circular waveguide. This transducer has been manufactured and measured in a back-to-back configuration, validating the design process. Second, an E-plane 16-way radial power divider has been designed, where the power is coupled from the 16 non-reduced-height radial standard waveguides into the TE01 circular waveguide mode, improving the insertion loss response and removing the usual tapered transformers of previous designs limiting the power handling. Finally, both the transducer and the divider have been assembled to make the final radial combiner. The prototype has been carefully manufactured, showing very good agreement between the measurements and the full-wave simulations.

  15. Generalized design of high performance shunt active power filter with output LCL filter

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    parameters, interactions between resonance damping and harmonic compensation, bandwidth design of the closed-loop system, and active damping implementation with fewer current sensors. These described design concerns, together with their generalized design procedure, are applied to an analytical example......This paper concentrates on the design, control, and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate for harmonic currents produced by nonlinear loads in a three-phase three-wire power system. With an LCL filter added at its output...

  16. Multi-megawatt wind-power installations call for new, high-performance solutions

    2004-01-01

    This article discusses the development of increasingly powerful and profitable wind-energy installations for off-shore, on-shore and refurbishment sites. In particular, the rapid development of megawatt-class units is discussed. The latest products of various companies with rotor diameters of up to 120 metres and with power ratings of up to 5 MW are looked at and commented on. The innovations needed for the reduction of weight and the extreme demands placed on gearing systems are discussed. Also, the growing markets for wind energy installations in Europe and the United States are discussed and plans for new off-shore wind parks are looked at

  17. Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening

    Hao Li

    2017-01-01

    Full Text Available Predicting the performance of solar water heater (SWH is challenging due to the complexity of the system. Fortunately, knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive power of machine learning models, we can further solve a more challenging question: how to cost-effectively design a high-performance SWH? Here, we summarize our recent studies and propose a general framework of SWH design using a machine learning-based high-throughput screening (HTS method. Design of water-in-glass evacuated tube solar water heater (WGET-SWH is selected as a case study to show the potential application of machine learning-based HTS to the design and optimization of solar energy systems.

  18. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.

    Jones, Andrew M; Vanhatalo, Anni

    2017-03-01

    The curvilinear relationship between power output and the time for which it can be sustained is a fundamental and well-known feature of high-intensity exercise performance. This relationship 'levels off' at a 'critical power' (CP) that separates power outputs that can be sustained with stable values of, for example, muscle phosphocreatine, blood lactate, and pulmonary oxygen uptake ([Formula: see text]), from power outputs where these variables change continuously with time until their respective minimum and maximum values are reached and exercise intolerance occurs. The amount of work that can be done during exercise above CP (the so-called W') is constant but may be utilized at different rates depending on the proximity of the exercise power output to CP. Traditionally, this two-parameter CP model has been employed to provide insights into physiological responses, fatigue mechanisms, and performance capacity during continuous constant power output exercise in discrete exercise intensity domains. However, many team sports (e.g., basketball, football, hockey, rugby) involve frequent changes in exercise intensity and, even in endurance sports (e.g., cycling, running), intensity may vary considerably with environmental/course conditions and pacing strategy. In recent years, the appeal of the CP concept has been broadened through its application to intermittent high-intensity exercise. With the assumptions that W' is utilized during work intervals above CP and reconstituted during recovery intervals below CP, it can be shown that performance during intermittent exercise is related to four factors: the intensity and duration of the work intervals and the intensity and duration of the recovery intervals. However, while the utilization of W' may be assumed to be linear, studies indicate that the reconstitution of W' may be curvilinear with kinetics that are highly variable between individuals. This has led to the development of a new CP model for intermittent exercise in

  19. High performance AC–DC control power supply for low voltage ride ...

    Ride-Through (LVRT) in solar and wind applications, no work has been ... section 5. Figure 2. Schematic structure of a control power supply used in a HPC. ..... order plant transfer function to first order transfer function. Also, peak current ...

  20. A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power.

    García-Pinillos, Felipe; Cámara-Pérez, Jose C; Soto-Hermoso, Víctor M; Latorre-Román, Pedro Á

    2017-01-01

    García-Pinillos, F, Cámara-Pérez, JC, Soto-Hermoso, VM, and Latorre-Román, PÁ. A High Intensity Interval Training (HIIT)-based running plan improves athletic performance by improving muscle power. J Strength Cond Res 31(1): 146-153, 2017-This study aimed to examine the effect of a 5-week high-intensity intermittent training (HIIT)-based running plan on athletic performance and to compare the physiological and neuromuscular responses during a sprint-distance triathlon before and after the HIIT period. Thirteen triathletes were matched into 2 groups: the experimental group (EG) and the control group (CG). The CG was asked to maintain their normal training routines, whereas the EG maintained only their swimming and cycling routines and modified their running routine. Participants completed a sprint-distance triathlon before (pretest) and after (posttest) the intervention period. In both pretest and posttest, the participants performed 4 jumping tests: before the race (baseline), postswim, postcycling, and postrun. Additionally, heart rate was monitored (HRmean), whereas rate of perceived exertion (RPE) and blood lactate accumulation (BLa) were registered after the race. No significant differences (p ≥ 0.05) between groups were found before HIIT intervention (at pretest). Significant group-by-training interactions were found in vertical jumping ability and athletic performance: the EG improved jumping performance (∼6-9%, p ≤ 0.05, effect size (ES) > 0.7), swimming performance (p = 0.013, ES = 0.438), and running time (p = 0.001, ES = 0.667) during the competition, whereas the CG remained unchanged (p ≥ 0.05, ES HIIT-based running plan combined with the high training volumes of these triathletes in swimming and cycling improved athletic performance during a sprint-distance triathlon. This improvement may be due to improved neuromuscular characteristics that were transferred into improved muscle power and work economy.

  1. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  2. The effects of electrode cleaning and conditioning on the performance of high-energy, pulsed-power devices

    Cuneo, M.E.

    1998-09-01

    High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur (> 1e7--3e7 V/m). Examples include magnetically-insulated-transmission-lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated desorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly in pulse length and energy, by the formation and expansion of plasmas formed primarily from electrode contaminants. In-situ conditioning techniques to modify and eliminate the contaminants through multiple high-voltage pulses, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

  3. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    Selvam, R. Panneer; Hale, Micah; Strasser, Matt

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 °C to 600 °C) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal. Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal. The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES

  4. Structural Modifications of Continuous Aerogel Films for Low-power, High Performance Sensing Capabilities

    National Aeronautics and Space Administration — Recent work has found that TiO2 nanorods and nanowires can be grown from a high-surface area, highly porous TiO2 ambiently-dried aerogel structure through varying...

  5. Thermal-Hydraulic Performance of Cross-Shaped Spiral Fuel in High-Power-Density BWRs

    Conboy, Thomas; Hejzlar, Pavel

    2006-01-01

    Power up-rating of existing nuclear reactors promises to be an area of great study for years to come. One of the major approaches to efficiently increasing power density is by way of advanced fuel design, and cross-shaped spiral-fuel has shown such potential in previous studies. Our work aims to model the thermal-hydraulic consequences of filling a BWR core with these spiral-shaped pins. The helically-wound pins have a cross-section resembling a 4-petaled flower. They fill an assembly in a tight bundle, their dimensions chosen carefully such that the petals of neighboring pins contact each other at their outer-most extent in a self-supporting lattice, absent of grid spacers. Potential advantages of this design raise much optimism from a thermal-hydraulic perspective. These spiral rods possess about 40% larger surface area than traditional rods, resulting in increased cooling and a proportional reduction in average surface heat flux. The thin petal-like extensions help by lowering thermal resistance between the hot central region of the pin and the bulk coolant flow, decreasing the maximum fuel temperature by 200 deg. C according to Finite Element (COSMOS) models. However, COSMOS models also predict a potential problem area at the 'elbow' region of two adjoining petals, where heat flux peaking is twice that along the extensions. Preliminary VIPRE models, which account only for the surface area increase, predict a 22% increase in critical power. It is also anticipated that the spiral twist would provide the flowing coolant with an additional radial velocity component, and likely promote turbulence and mixing within an assembly. These factors are expected to provide further margin for increased power density, and are currently being incorporated into the VIPRE model. The reduction in pressure drop inherent in any core without grid-spacers is also expected to be significant in aiding core stability, though this has not yet been quantified. Spiral-fuel seems to be a

  6. Associations of Power at V̇O2peak and Anaerobic Threshold with Rank in British High Performance Junior Surfers

    Barlow Matthew John

    2015-03-01

    Full Text Available Purpose. The objective of this study was to determine the relationships of peak oxygen uptake ( V̇O2peak, power at V̇O2peak and power at the anaerobic threshold (AT with national ranking in a sample of British high performance junior surfers. Methods. Eighteen male surfers (aged 15.4 ± 1.4 years from the British Junior Surfing team were tested for V̇O2peak and AT using an adapted kayak ergometer; national ranking was used to indicate performance level. The AT was identified as the point at which V̇E/V̇O2 started to rise without a concomitant increase in V̇E/V̇CO2. Spearman’s rank (rs and partial correlations (rp controlling for age were used to identify the relationships between the physiological variables and national ranking. Results. Mean V̇O2peak was 3.1 ± 0.5 l · min-1 (47.7 ± 7.2 ml · kg-1 · min-1 and mean AT occurred at 48.1 ± 12.2 W. There were significant correlations between national ranking and power at V̇O2peak (rs = -0.549, p = 0.028, power at AT (rs = -0.646, p = 0.009, and age (rs = -0.579, p = 0.012. Significant partial correlations were established controlling for age between national ranking and power at V̇O2peak (rp = -0.839, p = 0.000 and power at AT (rp = -0.541, p < 0.046. Conclusions. The power outputs associated with V̇O2peak and AT were significantly related to surfer ranking in this sample. However, due to the low coefficient of determination associated with the AT/ranking relationship, AT does not discriminate well between the ranking of surfers. These findings support the inclusion of power at V̇O2peak in assessment batteries for junior competitive surfers.

  7. EXPERIMENTAL STUDIES FOR DEVELOPMENT HIGH-POWER AUDIO SPEAKER DEVICES PERFORMANCE USING PERMANENT NdFeB MAGNETS SPECIAL TECHNOLOGY

    Constantin D. STĂNESCU

    2013-05-01

    Full Text Available In this paper the authors shows the research made for improving high-power audio speaker devices performance using permanent NdFeB magnets special technology. Magnetic losses inside these audio devices are due to mechanical system frictions and to thermal effect of Joules eddy currents. In this regard, by special technology, were made conical surfaces at top plate and center pin. Analysing results obtained by modelling the magnetic circuit finite element method using electronic software package,was measured increase efficiency by over 10 %, from 1,136T to13T.

  8. An Analysis of IPsec Deployment Performance in High and Low Power Devices

    Ronan, John; Davy, Stephen; Rossebo, Judith

    2004-01-01

    Virtual Private Networks (VPNs) use the Internet or other network service as a backbone to provide a secure connection across a potentially hostile WAN. Such security guarantees provide the motivation for VPN deployment. This security does, however, come at a performance cost brought about by the increased processing overhead. This paper presents an investigation into these overheads. In particular, this investigation will consider different user resource availability based on the client plat...

  9. High Performance Ultra Low-Power ADCs and DACs, Phase I

    National Aeronautics and Space Administration — The objective of the Phase-I research is to design a multi-GHz high bandwidth Delta Sigma Analog-to-Digital and Digital-to-Analog converter using a deep sub-micron...

  10. Parametric performance predictions for high-power pulsed electric CO lasers

    Center, R.E.; Caledonia, G.E.

    1975-01-01

    A kinetic model of the pulsed electrical CO laser is used to survey the time-dependent laser performance on parameters such as gas mixture, initial translational temperature, and discharge pulse length for both multiline and selected-line operation. Predictions are presented for the total output efficiency, spectral distributions of the stimulated transitions, energy partitioning in the vibrational and translational modes, and the translational temperature history in CO-N 2 mixtures. A brief description of the kinetic model is included. Simple scaling relationships are presented which can be used to scale the results to other densities in the pressure-broadened regime

  11. CSTI High Capacity Power

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  12. High Performance Marine Vessels

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  13. Recent developments of the MOA thruster, a high performance plasma accelerator for nuclear power and propulsion applications

    Frischauf, N.; Hettmer, M.; Grassauer, A.; Bartusch, T.; Koudelka, O.

    2008-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA -Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilization strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in

  14. Development of an electron gun for high power CW electron linac (1). Beam experiment for basic performance of electron gun

    Yamazaki, Yoshio; Nomura, Masahiro; Komata, Tomoki

    1999-05-01

    Presently, the Beam Group of Oarai Engineering Center in Japan Nuclear Cycle Development Institute (JNC) completed the high power CW electron linac. Then we started full-scale beam experiments after the government permission for a radiation equipment had given last January. Measurements of basic performance for the mesh-grid type electron gun have been done to launch stable beam at 300 mA peak current downstream of the accelerator. These experiments disclosed to increase beam loss in the electron gun in some cases of voltage supplied the mesh-grid in spite of same beam current from gun. Consequently, we could find the best condition for mesh-grid voltage and heater current to supply stable beam at 300 mA peak current for accelerator study. (author)

  15. Power performance assessment. Final report

    Frandsen, S.

    1998-12-01

    In the increasingly commercialised wind power marketplace, the lack of precise assessment methods for the output of an investment is becoming a barrier for wider penetration of wind power. Thus, addressing this problem, the overall objectives of the project are to reduce the financial risk in investment in wind power projects by significantly improving the power performance assessment methods. Ultimately, if this objective is successfully met, the project may also result in improved tuning of the individual wind turbines and in optimisation methods for wind farm operation. The immediate, measurable objectives of the project are: To prepare a review of existing contractual aspects of power performance verification procedures of wind farms; to provide information on production sensitivity to specific terrain characteristics and wind turbine parameters by analyses of a larger number of wind farm power performance data available to the proposers; to improve the understanding of the physical parameters connected to power performance in complex environment by comparing real-life wind farm power performance data with 3D computational flow models and 3D-turbulence wind turbine models; to develop the statistical framework including uncertainty analysis for power performance assessment in complex environments; and to propose one or more procedures for power performance evaluation of wind power plants in complex environments to be applied in contractual agreements between purchasers and manufacturers on production warranties. Although the focus in this project is on power performance assessment the possible results will also be of benefit to energy yield forecasting, since the two tasks are strongly related. (au) JOULE III. 66 refs.; In Co-operation Renewable Energy System Ltd. (GB); Centre for Renewable Energy (GR); Aeronautic Research Centre (SE); National Engineering Lab. (GB); Public Power Cooperation (GR)

  16. Identification of high performance and component technology for space electrical power systems for use beyond the year 2000

    Maisel, James E.

    1988-01-01

    Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.

  17. Resonant High Power Combiners

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  18. High-power klystrons

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  19. High performance and thermally stable tandem solar selective absorber coating for concentrated solar thermal power (CSP) application

    Prasad, M. Shiva; Kumar, K. K. Phani; Atchuta, S. R.; Sobha, B.; Sakthivel, S.

    2018-05-01

    A novel tandem absorber system (Mn-Cu-Co-Ox-ZrO2/SiO2) developed on an austenitic stainless steel (SS-304) substrate to show an excellent optical performance (αsol: 0.96; ɛ: 0.23@500 °C). In order to achieve this durable tandem, we experimented with two antireflective layers such as ZrO2-SiO2 and nano SiO2 layer on top of Mn-Cu-Co-Ox-ZrO2 layer. We optimized the thickness of antireflective layers to get good tandem system in terms of solar absorptance and emittance. Field emission scanning electron microscopy (FESEM), UV-Vis-NIR and Fourier transform infrared spectroscopy (FTIR) were used to characterize the developed coatings. Finally, the Mn-Cu-Co-Ox-ZrO2/SiO2 exhibits high temperature resistance up to 800 °C, thus allow an increase in the operating temperature of CSP which may lead to high efficiency. We successfully developed a high temperature resistant tandem layer with easy manufacturability at low cost which is an attractive candidate for concentrated solar power generation (CSP).

  20. Performance of AlGaN/GaN Heterostructure Field-Effect Transistors for High-Frequency and High-Power Electronics

    Peter Kordos

    2005-01-01

    Full Text Available Preparation and properties of GaN-based heterostructure field-effect transistors (HFETs for high-frequency and high-power applications are studied in this work. Performance of unpassivated and SiO2 passivated AlGaN/GaN HFETs, as well as passivated SiO2/AlGaN/GaN MOSHFETs (metal-oxide-semicondutor HFETs is compared. It is found that MOSHFETs exhibit better DC and RF properties than simple HFET counterparts. Deposited SiO2 yielded an increase of the sheet carrier density from 7.6x10^12 cm^-2 to 9.2x10^12 cm^-2 and subsequent increase of the static drain saturation current from 0.75 A/mm to 1.09 A/mm. Small-signal RF characterisation of MOSHFETs showed an extrinsic current gain cut-off frequency fT of 24 GHz and a maximum frequency of oscillation fmax of 40 GHz. These are fully comparable values with state-of-the-art AlGaN/GaN HFETs. Finnaůůy, microwave power measurements confirmed excellent performance of MOSHFETs:the output power measured at 7 GHz is about two-times larger than that of simple unpassived HFET. Thus, a great potential in application of GaN-based MOSHFETs is documented. 

  1. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p free weights.

  2. Applications of high power microwaves

    Benford, J.; Swegle, J.

    1993-01-01

    The authors address a number of applications for HPM technology. There is a strong symbiotic relationship between a developing technology and its emerging applications. New technologies can generate new applications. Conversely, applications can demand development of new technological capability. High-power microwave generating systems come with size and weight penalties and problems associated with the x-radiation and collection of the electron beam. Acceptance of these difficulties requires the identification of a set of applications for which high-power operation is either demanded or results in significant improvements in peRFormance. The authors identify the following applications, and discuss their requirements and operational issues: (1) High-energy RF acceleration; (2) Atmospheric modification (both to produce artificial ionospheric mirrors for radio waves and to save the ozone layer); (3) Radar; (4) Electronic warfare; and (5) Laser pumping. In addition, they discuss several applications requiring high average power than border on HPM, power beaming and plasma heating

  3. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  4. Optics assembly for high power laser tools

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. High-Performance Control of Paralleled Three-Phase Inverters for Residential Microgrid Architectures Based on Online Uninterruptable Power Systems

    Zhang, Chi; Guerrero, Josep M.; Vasquez, Juan Carlos

    2015-01-01

    In this paper, a control strategy for the parallel operation of three-phase inverters forming an online uninterruptible power system (UPS) is presented. The UPS system consists of a cluster of paralleled inverters with LC filters directly connected to an AC critical bus and an AC/DC forming a DC...... bus. The proposed control scheme is performed on two layers: (i) a local layer that contains a “reactive power vs phase” in order to synchronize the phase angle of each inverter and a virtual resistance loop that guarantees equal power sharing among inverters; (ii) a central controller that guarantees...... synchronization with an external real/fictitious utility, and critical bus voltage restoration. Constant transient and steady-state frequency, active, reactive and harmonic power sharing, and global phase-locked loop resynchronization capability are achieved. Detailed system topology and control architecture...

  6. Switching power converters medium and high power

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  7. Performance indicators for power reactors

    Gillies, C.; White, M.

    1995-11-01

    A review of Canadian and worldwide performance indicator definitions and data was performed to identify a set of indicators that could be used for comparison of performance among nuclear power plants. The results of this review are to be used as input to an AECB team developing a consistent set of performance indicators for measuring Canadian power reactor safety performance. To support the identification of performance indicators, a set of criteria was developed to assess the effectiveness of each indicator for meaningful comparison of performance information. The project identified a recommended set of performance indicators that could be used by AECB staff to compare the performance of Canadian nuclear power plants among themselves, and with international performance. The basis for selection of the recommended set and exclusion of others is provided. This report provides definitions and calculation methods for each recommended performance indicator. In addition, a spreadsheet has been developed for comparison and trending for the recommended set of indicators. Example trend graphs are included to demonstrate the use of the spreadsheet. (author). 50 refs., 11 tabs., 3 figs

  8. Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

    Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter

    2015-01-01

    Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438

  9. Thermal performance of Brayton power cycles. A study based on high-temperature gas-cooled reactors

    Herranz, Luis E.; Linares, Jose I.; Moratilla, Beatriz Y.

    2005-01-01

    Power cycles optimization has become an essential ingredient to achieve sustainability and improve economic competitiveness of forthcoming Generation IV designs. This paper investigates performance of several configurations of direct helium Brayton cycles. An optimum layout is proposed based on multiple intercooled compression stages and in-between turbines reheating: C(IC) 2 HTRTX. Under the hypotheses and approximations made, a 59% is estimated and it increases even further (67%) when the foreseen technological development is considered. A sensitive analysis identified key components and variables for cycle performance. Particular attention is paid to the effect of the extracted gas mass fraction for reheating. It is shown that the C(IC) 2 HTRTX cycle provides a feasible and simple way to operate the power plant the load-follow mode with a very little loss of efficiency. (author)

  10. Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power

    Benjamin Woolley

    2017-10-01

    Full Text Available New developments relating to compact X-band, SLED-I type pulse compressors being developed at CERN for testing high gradient structures are described. Pulse compressors of interest take rf pulses from one or more high power klystrons with duration typically >1.5  μs and deliver up to 5 times the input power for a shorter duration <250  ns. Time domain models for pulse compressor operation with low level rf (LLRF control have been developed. Input drive amplitude and phase for each pulse is evolved with a control algorithm from the pulse compressor output for previous pulses. The goal is to deliver precise amplitude for pulses to test stands and precise amplitude and phase for pulses to accelerator systems. Control algorithms have been developed and validated experimentally.

  11. Design and development of high performance solar photovoltaic inverter with advanced modulation techniques to improve power quality

    Alexander Stonier, Albert

    2017-02-01

    In addition to the focus towards growing demand on electrical energy due to the increase in population, industries, consumer loads, etc., the need for improving the quality of electrical power also needs to be considered. The design and development of solar photovoltaic (PV) inverter with reduced harmonic distortions is proposed. Unlike the conventional solar PV inverters, the proposed inverter provides the advantages of reduced harmonic distortions thereby intend towards the improvement in power quality. This inverter comprises of multiple stages which provides the required 230VRMS, 50 Hz in spite of variations in solar PV due to temperature and irradiance. The reduction of harmonics is governed by applying proper switching sequences required for the inverter switches. The detailed analysis is carried out by employing different switching techniques and observing its performance. With a separate mathematical model for a solar PV, simulations are performed in MATLAB software. To show the advantage of the system proposed, a 3 kWp photovoltaic plant coupled with multilevel inverter is demonstrated in hardware. The novelty resides in the design of a single chip controller which can provide the switching sequence based on the requirement and application. As per the results obtained, the solar-fed multistage inverter improves the quality of power which makes this inverter suitable for both stand-alone and grid-connected systems.

  12. High Power Density Motors

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  13. High-power electronics

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  14. High Power Vanadate lasers

    Strauss

    2006-07-01

    Full Text Available stream_source_info Strauss1_2006.pdf.txt stream_content_type text/plain stream_size 3151 Content-Encoding UTF-8 stream_name Strauss1_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Laser Research Institute... University of Stellenbosch www.laser-research.co.za High Power Vanadate lasers H.J.Strauss, Dr. C. Bollig, R.C. Botha, Prof. H.M. von Bergmann, Dr. J.P. Burger Aims 1) To develop new techniques to mount laser crystals, 2) compare the lasing properties...

  15. Thermal Power Plant Performance Analysis

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  16. High power coaxial ubitron

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  17. An Asynchronous Low Power and High Performance VLSI Architecture for Viterbi Decoder Implemented with Quasi Delay Insensitive Templates

    T. Kalavathi Devi

    2015-01-01

    Full Text Available Convolutional codes are comprehensively used as Forward Error Correction (FEC codes in digital communication systems. For decoding of convolutional codes at the receiver end, Viterbi decoder is often used to have high priority. This decoder meets the demand of high speed and low power. At present, the design of a competent system in Very Large Scale Integration (VLSI technology requires these VLSI parameters to be finely defined. The proposed asynchronous method focuses on reducing the power consumption of Viterbi decoder for various constraint lengths using asynchronous modules. The asynchronous designs are based on commonly used Quasi Delay Insensitive (QDI templates, namely, Precharge Half Buffer (PCHB and Weak Conditioned Half Buffer (WCHB. The functionality of the proposed asynchronous design is simulated and verified using Tanner Spice (TSPICE in 0.25 µm, 65 nm, and 180 nm technologies of Taiwan Semiconductor Manufacture Company (TSMC. The simulation result illustrates that the asynchronous design techniques have 25.21% of power reduction compared to synchronous design and work at a speed of 475 MHz.

  18. The Effect of Concurrent Plyometric Training Versus Submaximal Aerobic Cycling on Rowing Economy, Peak Power, and Performance in Male High School Rowers.

    Egan-Shuttler, Julian D; Edmonds, Rohan; Eddy, Cassandra; O'Neill, Veronica; Ives, Stephen J

    2017-12-01

    Plyometric training has been shown to increase muscle power, running economy, and performance in athletes. Despite its use by rowing coaches, it is unknown whether plyometrics might improve rowing economy or performance. The purpose was to determine if plyometric training, in conjunction with training on the water, would lead to improved rowing economy and performance. Eighteen male high school rowers were assigned to perform 4 weeks of either plyometric training (PLYO, n = 9) or steady-state cycling below ventilatory threshold (endurance, E, n = 9), for 30 min prior to practice on the water (matched for training volume) 3 days per week. Rowing performance was assessed through a 500-m rowing time trial (TT) and peak rowing power (RP), while rowing economy (RE) was assessed by measuring the oxygen cost over four work rates (90, 120, 150, and 180 W). Rowing economy was improved in both PLYO and E (p  0.05). Finally, RP was moderately higher in the PLYO group post-training (E 569 ± 75 W, PLYO 629 ± 51 W, ES = 0.66) CONCLUSIONS: In a season when the athletes performed no rowing sprint training, 4 weeks of plyometric training improved the 500-m rowing performance and moderately improved peak power. This increase in performance may have been mediated by moderate improvements in rowing power, but not economy, and warrants further investigation.

  19. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets

    Carcagno, R.; Feher, S.; Garvey, J.; Jaskierny, W.; Lamm, M.; Makulski, A.; Orris, D.F.; Pfeffer, H.; Tartaglia, M.; Tompkins, J.; Wolff, D.; /Fermilab

    2004-12-01

    A new 30 kA, 30 V dc Power System was designed, built, and commissioned at Fermilab for testing Superconducting High Field Magnets. This system has been successfully supporting operations at the Fermilab Magnet Test Facility since April 2002. It is based on six commercial 150 kW Power Energy Industries power supply modules and the following in-house modules: six 720 Hz filters, two 15 kA/1kV dc solid-state dump switch, and a 3 MJ/30 kA/1 kV dc dump resistor. Additional inhouse electronic components were designed and built to provide precise current regulation and distribution of current and current rate of change. An industrial-type Programmable Logic Controller system was used to provide equipment interlocks and monitoring. This paper summarizes studies on the influence of characteristics of this new power system--such as ripple current--on the performance of High Field Superconducting magnets.

  20. High power communication satellites power systems study

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  1. High Temperature, High Power Piezoelectric Composite Transducers

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  2. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Shenker, J.

    1995-01-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation

  3. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  4. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  5. High performance data transfer

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  6. Nuclear power flies high

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  7. Information Power Grid: Distributed High-Performance Computing and Large-Scale Data Management for Science and Engineering

    Johnston, William E.; Gannon, Dennis; Nitzberg, Bill

    2000-01-01

    We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3

  8. High power CW linac in PNC

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  9. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  10. Management and non-supervisory perceptions surrounding the implementation and significance of high-performance work practices in a nuclear power plant

    Ashbridge, Gayle Ann

    Change management has become an imperative for organizations as they move into the 21st century; up to 75 percent of change initiatives fail. Nuclear power plants face the same challenges as industrial firms with the added challenge of deregulation. Faced with this challenge, restructuring the electric utility has raised a number of complex issues. Under traditional cost-of-service regulation, electric utilities were able to pass on their costs to consumers who absorbed them. In the new competitive environment, customers will now choose their suppliers based on the most competitive price. The purpose of this study is to determine the degree of congruence between non-supervisory and supervisory personnel regarding the perceived implementation of high performance workplace practices at a nuclear power plant. This study used as its foundation the practices identified in the Road to High Performance Workplaces: A Guide to Better Jobs and Better Business Results by the U.S. Department of Labor's Office of the American Workplace (1994). The population for this study consisted of organizational members at one nuclear power plant. Over 300 individuals completed surveys on high performance workplace practices. Two surveys were administered, one to non-supervisory personnel and one to first line supervisors and above. The determination of implementation levels was accomplished through descriptive statistical analysis. Results of the study revealed 32 areas of noncongruence between non-supervisory and supervisory personnel in regard to the perceived implementation level of the high performance workplace practices. Factor analysis further revealed that the order in which the respondents place emphasis on the variables varies between the two groups. This study provides recommendations that may improve the nuclear power plants alignment of activities. Recommendations are also provided for additional research on high-performance work practices.

  11. High power communication satellites power systems study

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  12. High Power Orbit Transfer Vehicle

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  13. High Efficiency Power Converter for Low Voltage High Power Applications

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  14. Metaproteomics: Harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities

    Hettich, Robert L.; Pan, Chongle; Chourey, Karuna; Giannone, Richard J.

    2013-01-01

    Summary The availability of extensive genome information for many different microbes, including unculturable species in mixed communities from environmental samples, has enabled systems-biology interrogation by providing a means to access genomic, transcriptomic, and proteomic information. To this end, metaproteomics exploits the power of high performance mass spectrometry for extensive characterization of the complete suite of proteins expressed by a microbial community in an environmental sample. PMID:23469896

  15. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient

  16. High power excimer laser

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  17. Automated System Tests High-Power MOSFET's

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  18. High average power supercontinuum sources

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  19. Low Power, Small Form Factor, High Performance EVA Radio Employing Micromachined Contour Mode Piezoelectric Resonators and Filters, Phase I

    National Aeronautics and Space Administration — In Phase I Harmonic Devices proposes to investigate the feasibility of a low-power, low-volume, lightweight, frequency agile, and fault tolerant EVA radio based on...

  20. Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era

    Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal; Cong, Jason

    2016-11-14

    Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.

  1. Medium power hydrogen arcjet performance

    Curran, Francis M.; Bullock, S. R.; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.

    1991-01-01

    An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difficult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.

  2. Improved power performance assessment methods

    Frandsen, S; Antoniou, I; Dahlberg, J A [and others

    1999-03-01

    The uncertainty of presently-used methods for retrospective assessment of the productive capacity of wind farms is unacceptably large. The possibilities of improving the accuracy have been investigated and are reported. A method is presented that includes an extended power curve and site calibration. In addition, blockage effects with respect to reference wind speed measurements are analysed. It is found that significant accuracy improvements are possible by the introduction of more input variables such as turbulence and wind shear, in addition to mean wind speed and air density. Also, the testing of several or all machines in the wind farm - instead of only one or two - may provide a better estimate of the average performance. (au)

  3. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  4. High performance homes

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  5. High power microwave source development

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  6. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors.

    Maity, Kuntal; Mandal, Dipankar

    2018-05-30

    Rapid development of wearable electronics, piezoelectric nanogenerator (PNG), has been paid a special attention because of its sustainable and accessible energy generation. In this context, we present a simple yet highly efficient design strategy to enhance the output performance of an all-organic PNG (OPNG) based on multilayer assembled electrospun poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats where vapor-phase polymerized poly(3,4-ethylenedioxythiophene)-coated PVDF NFs are assembled as electrodes and neat PVDF NFs are utilized as an active component. In addition to the multilayer assembly, electrode compatibility and durability remain a challenging task to mitigate the primary requirements of wearable electronics. A multilayer networked three-dimensional structure integrated with a compatible electrode thereby provides enhanced output voltage and current (e.g., open-circuit voltage, V oc ≈ 48 V, and short-circuit current, I sc ≈ 6 μA, upon 8.3 kPa of the applied stress amplitude) with superior piezoelectric energy conversion efficiency of 66% compared to the single-mat device. Besides, OPNG also shows ultrasensitivity toward human movements such as foot strikes and walking. The weight measurement mapping is critically explored by principal component analysis that may have enormous applications in medical diagnosis to smart packaging industries. More importantly, fatigue test under continuous mechanical impact (over 6 months) shows great promise as a robust wearable mechanical energy harvester.

  7. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    R. Maisonny

    2016-12-01

    Full Text Available The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  8. The Role of Electrode Contamination and the Effects of Cleaning and Conditioning on the Performance of High-Energy, Pulsed-Power Devices

    Cuneo, M.E.

    1998-11-10

    High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur. Examples include magnetically-insulated-transmission lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated resorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly impulse length and energy, by the formation and expansion of neutral and plasma layers formed, primarily from electrode contaminants. In-situ conditioning tech&ques to modify and eliminate the contaminants through multiple high-voltage pukes, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

  9. Structure-based capacitance modeling and power loss analysis for the latest high-performance slant field-plate trench MOSFET

    Kobayashi, Kenya; Sudo, Masaki; Omura, Ichiro

    2018-04-01

    Field-plate trench MOSFETs (FP-MOSFETs), with the features of ultralow on-resistance and very low gate–drain charge, are currently the mainstream of high-performance applications and their advancement is continuing as low-voltage silicon power devices. However, owing to their structure, their output capacitance (C oss), which leads to main power loss, remains to be a problem, especially in megahertz switching. In this study, we propose a structure-based capacitance model of FP-MOSFETs for calculating power loss easily under various conditions. Appropriate equations were modeled for C oss curves as three divided components. Output charge (Q oss) and stored energy (E oss) that were calculated using the model corresponded well to technology computer-aided design (TCAD) simulation, and we validated the accuracy of the model quantitatively. In the power loss analysis of FP-MOSFETs, turn-off loss was sufficiently suppressed, however, mainly Q oss loss increased depending on switching frequency. This analysis reveals that Q oss may become a significant issue in next-generation high-efficiency FP-MOSFETs.

  10. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets

    Carcagno, R.; Feher, S.; Garvey, J.; Jaskierny, W.; Lamm, M.; Makulski, A.; Orris, D.F.; Pfeffer, H.; Tartaglia, M.; Tompkins, J.; Wolff, D.

    2004-01-01

    A new 30 kA, 30 V dc Power System was designed, built, and commissioned at Fermilab for testing Superconducting High Field Magnets. This system has been successfully supporting operations at the Fermilab Magnet Test Facility since April 2002. It is based on six commercial 150 kW Power Energy Industries power supply modules and the following in-house modules: six 720 Hz filters, two 15 kA/1kV dc solid-state dump switch, and a 3 MJ/30 kA/1 kV dc dump resistor. Additional in-house electronic components were designed and built to provide precise current regulation and distribution of current and current rate of change. An industrial-type Programmable Logic Controller system was used to provide equipment interlocks and monitoring. This paper summarizes studies on the influence of characteristics of this new power system--such as ripple current--on the performance of High Field Superconducting Magnets

  11. Analysis of the performance of a passive hybrid powerplant to power a lightweight unmanned aerial vehicle for a high altitude mission

    Renau, Jordi; Sánchez, Fernando; Lozano, Antonio; Barroso, Jorge; Barreras, Félix

    2017-07-01

    The objective of this research is to analyze the performance of a passive hybrid powerplant control system to be implemented in a lightweight unmanned aerial vehicle capable to ascend up to the high troposphere (10,000 m). The powerplant is based on a high-temperature PEM fuel cell connected in parallel to a set of lithium-polymer batteries and regulated by two power diodes. Test performed in steady state demonstrates that the use of the hybrid system increases the efficiency of the stack by more than 7% because the voltage at the main DC bus is limited by the batteries. The robustness of the passive control system is proved in a long-term test in which random perturbations of ±15% are applied to the average power that would be demanded during the ascent flight. The hybridization of the stack with the batteries eliminates sudden peaks in the current generated by the stack, which are responsible for prompt degradation phenomena that drastically reduce its useful lifetime. The study demonstrates that with the passive hybrid powerplant it is possible to reach the target height with the gas storage system considered in the application, contrary to what happens with the simple power plant.

  12. Development of Process Technologies for High-Performance MOS-Based SiC Power Switching Devices

    2007-08-01

    epilayers studied by positron annihilation and deep level transient spectroscopy ," Appl. Phys. Lett., vol. 90, p. 3377, 2001. [30] L. Storasta, J. P...the projected long-term lifetime is acceptable for power device applications . For devices in which the MOS interface is formed on implanted layers...TRPL) techniques, while deep level centers in the material are characterized by deep-level transient spectroscopy (DLTS). We found that the

  13. Exploring the meteorological potential for planning a high performance European electricity super-grid: optimal power capacity distribution among countries

    Santos-Alamillos, Francisco J.; Brayshaw, David J.; Methven, John; Thomaidis, Nikolaos S.; Ruiz-Arias, José A.; Pozo-Vázquez, David

    2017-11-01

    The concept of a European super-grid for electricity presents clear advantages for a reliable and affordable renewable power production (photovoltaics and wind). Based on the mean-variance portfolio optimization analysis, we explore optimal scenarios for the allocation of new renewable capacity at national level in order to provide to energy decision-makers guidance about which regions should be mostly targeted to either maximize total production or reduce its day-to-day variability. The results show that the existing distribution of renewable generation capacity across Europe is far from optimal: i.e. a ‘better’ spatial distribution of resources could have been achieved with either a ~31% increase in mean power supply (for the same level of day-to-day variability) or a ~37.5% reduction in day-to-day variability (for the same level of mean productivity). Careful planning of additional increments in renewable capacity at the European level could, however, act to significantly ameliorate this deficiency. The choice of where to deploy resources depends, however, on the objective being pursued—if the goal is to maximize average output, then new capacity is best allocated in the countries with highest resources, whereas investment in additional capacity in a north/south dipole pattern across Europe would act to most reduce daily variations and thus decrease the day-to-day volatility of renewable power supply.

  14. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  15. High-powered manoeuvres

    Anaïs Schaeffer

    2013-01-01

    This week, CERN received the latest new transformers for the SPS. Stored in pairs in 24-tonne steel containers, these transformers will replace the old models, which have been in place since 1981.     The transformers arrive at SPS's access point 4 (BA 4). During LS1, the TE-EPC Group will be replacing all of the transformers for the main converters of the SPS. This renewal campaign is being carried out as part of the accelerator consolidation programme, which began at the start of April and will come to an end in November. It involves 80 transformers: 64 with a power of 2.6 megavolt-amperes (MVA) for the dipole magnets, and 16 with 1.9 MVA for the quadrupoles. These new transformers were manufactured by an Italian company and are being installed outside the six access points of the SPS by the EN-HE Group, using CERN's 220-tonne crane. They will contribute to the upgrade of the SPS, which should thus continue to operate as the injector for the LHC until 2040....

  16. Performance analysis of a microcontroller based slip power recovery ...

    Slip power recovery wound rotor induction motor drives are used in high power, limited speed range applications where control of slip power provides the variable speed drive system. In this paper, the steady state performance analysis of conventional slip power recovery scheme using static line commutated inverter in the ...

  17. Autonomously managed high power systems

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  18. High performance multi-scale and multi-physics computation of nuclear power plant subjected to strong earthquake. An Overview

    Yoshimura, Shinobu; Kawai, Hiroshi; Sugimoto, Shin'ichiro; Hori, Muneo; Nakajima, Norihiro; Kobayashi, Kei

    2010-01-01

    Recently importance of nuclear energy has been recognized again due to serious concerns of global warming and energy security. In parallel, it is one of critical issues to verify safety capability of ageing nuclear power plants (NPPs) subjected to strong earthquake. Since 2007, we have been developing the multi-scale and multi-physics based numerical simulator for quantitatively predicting actual quake-proof capability of ageing NPPs under operation or just after plant trip subjected to strong earthquake. In this paper, we describe an overview of the simulator with some preliminary results. (author)

  19. Python high performance programming

    Lanaro, Gabriele

    2013-01-01

    An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

  20. High performance systems

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  1. High post-movement parietal low-beta power during rhythmic tapping facilitates performance in a stop task.

    Fischer, Petra; Tan, Huiling; Pogosyan, Alek; Brown, Peter

    2016-09-01

    Voluntary movements are followed by a post-movement electroencephalography (EEG) beta rebound, which increases with practice and confidence in a task. We hypothesized that greater beta modulation reflects less load on cognitive resources and may thus be associated with faster reactions to new stimuli. EEG was recorded in 17 healthy subjects during rhythmically paced index finger tapping. In a STOP condition, participants had to interrupt the upcoming tap in response to an auditory cue, which was timed such that stopping was successful only in ~ 50% of all trials. In a second condition, participants carried on tapping twice after the stop signal (CONTINUE condition). Thus the conditions were distinct in whether abrupt stopping was required as a second task. Modulation of 12-20 Hz power over motor and parietal areas developed with time on each trial and more so in the CONTINUE condition. Reduced modulation in the STOP condition went along with reduced negative mean asynchronies suggesting less confident anticipation of the timing of the next tap. Yet participants were more likely to stop when beta modulation prior to the stop cue was more pronounced. In the STOP condition, expectancy of the stop signal may have increased cognitive load during movement execution given that the task might have to be stopped abruptly. However, within this condition, stopping ability was increased if the preceding tap was followed by a relatively larger beta increase. Significant, albeit weak, correlations confirmed that increased post-movement beta power was associated with faster reactions to new stimuli, consistent with reduced cognitive load. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Responsive design high performance

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  3. High Performance Macromolecular Material

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  4. EURISOL High Power Targets

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  5. Modular High Voltage Power Supply

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  6. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  7. Performance of the TJ-II ECRH system with the new -80 kV 50 A high voltage power supply

    Fernandez, A.; de la Fuente, J.M.; Ganuza, D.; Kirpitchev, I.; Alonso, J.; Garcia, F.; Ascasibar, E.; del Rio, J.M.; Garcia, I.; Ros, A.; Alvarez, P.; Tolkachev, A.; Catalan, G.

    2009-01-01

    The ECRH system of the TJ-II stellarator consists of two triode - 53.2 GHz - gyrotrons, which can deliver a maximum power of 300 kW each, during 1 s. Both gyrotrons are fed by a common high voltage power supply (HVPS). During the last experimental campaigns the performance of the gyrotrons were limited by the HVPS, whose maximum output current was limited to 30 A and the ripple level of the output voltage was around 7%. In order to guarantee the reliability of the ECRH system and to improve its performance, a new HVPS has been developed and manufactured by the company JEMA and was commissioned at CIEMAT during 2007. The design is based on solid-state technology and high frequency commutation techniques. The new unit reaches -80 kV and 50 A during a maximum pulse length of 1 s. The complete design, testing and commissioning of the HVPS are presented, as well as the routine operation of the ECRH system during the TJ-II experimental campaign.

  8. Performance of the TJ-II ECRH system with the new -80 kV 50 A high voltage power supply

    Fernandez, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: angela.curto@ciemat.es; de la Fuente, J.M.; Ganuza, D. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Kirpitchev, I.; Alonso, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain); Garcia, F. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Ascasibar, E. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain); del Rio, J.M.; Garcia, I. [Grupo JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria (Spain); Ros, A.; Alvarez, P.; Tolkachev, A.; Catalan, G. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT Association, Avda. Complutense 22, 28040 Madrid (Spain)

    2009-06-15

    The ECRH system of the TJ-II stellarator consists of two triode - 53.2 GHz - gyrotrons, which can deliver a maximum power of 300 kW each, during 1 s. Both gyrotrons are fed by a common high voltage power supply (HVPS). During the last experimental campaigns the performance of the gyrotrons were limited by the HVPS, whose maximum output current was limited to 30 A and the ripple level of the output voltage was around 7%. In order to guarantee the reliability of the ECRH system and to improve its performance, a new HVPS has been developed and manufactured by the company JEMA and was commissioned at CIEMAT during 2007. The design is based on solid-state technology and high frequency commutation techniques. The new unit reaches -80 kV and 50 A during a maximum pulse length of 1 s. The complete design, testing and commissioning of the HVPS are presented, as well as the routine operation of the ECRH system during the TJ-II experimental campaign.

  9. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries

    Zaghib, K.; Dubé, J.; Dallaire, A.; Galoustov, K.; Guerfi, A.; Ramanathan, M.; Benmayza, A.; Prakash, J.; Mauger, A.; Julien, C. M.

    2012-12-01

    The carbon-coated LiFePO4 Li-ion oxide cathode was studied for its electrochemical, thermal, and safety performance. This electrode exhibited a reversible capacity corresponding to more than 89% of the theoretical capacity when cycled between 2.5 and 4.0 V. Cylindrical 18,650 cells with carbon-coated LiFePO4 also showed good capacity retention at higher discharge rates up to 5C rate with 99.3% coulombic efficiency, implying that the carbon coating improves the electronic conductivity. Hybrid Pulse Power Characterization (HPPC) test performed on LiFePO4 18,650 cell indicated the suitability of this carbon-coated LiFePO4 for high power HEV applications. The heat generation during charge and discharge at 0.5C rate, studied using an Isothermal Microcalorimeter (IMC), indicated cell temperature is maintained in near ambient conditions in the absence of external cooling. Thermal studies were also investigated by Differential Scanning Calorimeter (DSC) and Accelerating Rate Calorimeter (ARC), which showed that LiFePO4 is safer, upon thermal and electrochemical abuse, than the commonly used lithium metal oxide cathodes with layered and spinel structures. Safety tests, such as nail penetration and crush test, were performed on LiFePO4 and LiCoO2 cathode based cells, to investigate on the safety hazards of the cells upon severe physical abuse and damage.

  10. High power klystrons for efficient reliable high power amplifiers

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  11. Clojure high performance programming

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  12. High Performance Concrete

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  13. High performance polymeric foams

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  14. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  15. ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance.

    Varzi, Alberto; Bresser, Dominic; von Zamory, Jan; Müller, Franziska; Passerini, Stefano

    2014-07-15

    An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon-coated ZnFe 2 O 4 nanoparticle-based anode and a LiFePO 4 -multiwalled carbon nanotube-based cathode, both aqueous processed with Na-carboxymethyl cellulose, are combined, for the first time, in a Li-ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre-lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg -1 and 3.72 W kg -1 , respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C-rates (≈10C with respect to the LiFePO 4 cathode), while retaining up to 85% of its initial capacity.

  16. High performance conductometry

    Saha, B.

    2000-01-01

    Inexpensive but high performance systems have emerged progressively for basic and applied measurements in physical and analytical chemistry on one hand, and for on-line monitoring and leak detection in plants and facilities on the other. Salient features of the developments will be presented with specific examples

  17. Danish High Performance Concretes

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...... concretes, workability, ductility, and confinement problems....

  18. High performance homes

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    . Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  19. Pulsed high-power beams

    Reginato, L.L.; Birx, D.L.

    1988-01-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. This paper reports on a 70-MeV, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory that incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive of the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability

  20. High power laser exciter accelerators

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  1. Advances in Very High Frequency Power Conversion

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  2. Advanced Output Coupling for High Power Gyrotrons

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  3. High power fast ramping power supplies

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  4. Effect of elastic band-based high-speed power training on cognitive function, physical performance and muscle strength in older women with mild cognitive impairment.

    Yoon, Dong Hyun; Kang, Dongheon; Kim, Hee-Jae; Kim, Jin-Soo; Song, Han Sol; Song, Wook

    2017-05-01

    The effectiveness of resistance training in improving cognitive function in older adults is well demonstrated. In particular, unconventional high-speed resistance training can improve muscle power development. In the present study, the effectiveness of 12 weeks of elastic band-based high-speed power training (HSPT) was examined. Participants were randomly assigned into a HSPT group (n = 14, age 75.0 ± 0.9 years), a low-speed strength training (LSST) group (n = 9, age 76.0 ± 1.3 years) and a control group (CON; n = 7, age 78.0 ± 1.0 years). A 1-h exercise program was provided twice a week for 12 weeks for the HSPT and LSST groups, and balance and tone exercises were carried out by the CON group. Significant increases in levels of cognitive function, physical function, and muscle strength were observed in both the HSPT and LSST groups. In cognitive function, significant improvements in the Mini-Mental State Examination and Montreal Cognitive Assessment were seen in both the HSPT and LSST groups compared with the CON group. In physical functions, Short Physical Performance Battery scores were increased significantly in the HSPT and LSST groups compared with the CON group. In the 12 weeks of elastic band-based training, the HSPT group showed greater improvements in older women with mild cognitive impairment than the LSST group, although both regimens were effective in improving cognitive function, physical function and muscle strength. We conclude that elastic band-based HSPT, as compared with LSST, is more efficient in helping older women with mild cognitive impairment to improve cognitive function, physical performance and muscle strength. Geriatr Gerontol Int 2017; 17: 765-772. © 2016 Japan Geriatrics Society.

  5. 3D NANOTUBE FIELD EFFECT TRANSISTORS FOR HYBRID HIGH-PERFORMANCE AND LOW-POWER OPERATION WITH HIGH CHIP-AREA EFFICIENCY

    Fahad, Hossain M.

    2014-03-01

    Information anytime and anywhere has ushered in a new technological age where massive amounts of ‘big data’ combined with self-aware and ubiquitous interactive computing systems is shaping our daily lives. As society gravitates towards a smart living environment and a sustainable future, the demand for faster and more computationally efficient electronics will continue to rise. Keeping up with this demand requires extensive innovation at the transistor level, which is at the core of all electronics. Up until recently, classical silicon transistor technology has traditionally been weary of disruptive innovation. But with the aggressive scaling trend, there has been two dramatic changes to the transistor landscape. The first was the re-introduction of metal/high-K gate stacks with strain engineering in the 45 nm technology node, which enabled further scaling on silicon to smaller nodes by alleviating the problem of gate leakage and improving the channel mobility. The second innovation was the use of non-planar 3D silicon fins as opposed to classical planar architectures for stronger electrostatic control leading to significantly lower off-state leakage and other short-channel effects. Both these innovations have prolonged the life of silicon based electronics by at least another 1-2 decades. The next generation 14 nm technology node will utilize silicon fin channels that have gate lengths of 14 nm and fin thicknesses of 7 nm. These dimensions are almost at the extreme end of current lithographic capabilities. Moreover, as fins become smaller, the parasitic capacitances and resistances increase significantly resulting in degraded performance. It is of popular consensus that the next evolutionary step in transistor technology is in the form of gate-all-around silicon nanowires (GAA NWFETs), which offer the tightest electrostatic configuration leading to the lowest possible leakage and short channel characteristics in over-the-barrier type devices. However, to keep

  6. High-power, high-efficiency FELs

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  7. High-Performance Networking

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  8. High voltage power network construction

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  9. High performance in software development

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  10. High Power Electron Accelerator Prototype

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  11. Using international experience to improve performance of nuclear power plants

    Calori, F.; Csik, B.J.; Strickert, R.J.

    1989-01-01

    Information on performance achievements will assist nuclear power plant operating organizations to develop initiatives for improved or continued high performance of their plants. The paper describes the activities of the IAEA in reviewing and analysing the reasons for good performance by contacting operating organizations identified by its Power Reactor Information System as showing continued good performance. Discussions with operations personnel of utilities have indicated practices which have a major positive impact on good performance and which are generally common to all well performing organizations contacted. The IAEA also promotes further activities directed primarily to the achievement of standards of excellence in nuclear power operation. These are briefly commented

  12. Nuclear power plant performance. Status and trends

    Glorian, D.

    1995-01-01

    The performance of nuclear power plants can be assessed in several different fields: operating costs, safety, reliability of electricity generation, impact on the environment and personnel protection (industrial safety, radiation protection, etc.). Comparing national and international performance levels involves the use of performance indicators, together with a terminology, precise definitions and computerized data collection and processing facilities. The paper gives a brief review of the different actions undertaken during the last ten years to achieve international harmonization in the use of indicators. The main international indicators in use today by virtually all nuclear operators around the world are examined. Figures are given for each of these main indicators. In particularly, the levels of 'excellence' achieved throughout the world are discussed, together with the difficulties encountered in trying to match them or indeed maintain them. Future prospects regarding both the efforts made towards achieving international harmonization and the optimum use of this system of international performance indicators are examined, in order to achieve mutual enhancement through this approach to feedback of experience. Considering the overall performance indicators in use, it must be clearly recognized that, over the last ten years, the nuclear industry has made a tremendous effort to improve performance; the challenge for the future is to maintain a very high level of quality in the area of safety by keeping the operating costs (and investment costs for future plants) within a reasonable range

  13. Small high cooling power space cooler

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  14. WhalePower tubercle blade power performance test report

    NONE

    2008-07-15

    Toronto-based WhalePower Corporation has developed turbine blades that are modeled after humpback whale flippers. The blades, which incorporate tubercles along the leading edge of the blade, have been fitted to a Wenvor 25 kW turbine installed in North Cape, Prince Edward Island at a test site for the Wind Energy Institute of Canada (WEICan). A test was conducted to characterize the power performance of the prototype wind turbine. This report described the wind turbine configuration with particular reference to turbine information, power rating, blade information, tower information, control systems and grid connections. The test site was also described along with test equipment and measurement procedures. Information regarding power output as a function of wind speed was included along with power curves, power coefficient and annual energy production. The results for the power curve and annual energy production contain a level of uncertainty. While measurements for this test were collected and analyzed in accordance with International Electrotechnical Commission (IEC) standards for performance measurements of electricity producing wind turbines (IEC 61400-12-1), the comparative performance data between the prototype WhalePower wind turbine blade and the Wenvor standard blade was not gathered to IEC data standards. Deviations from IEC-61400-12-1 procedures were listed. 6 tabs., 16 figs., 3 appendices.

  15. High-power VCSELs for smart munitions

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  16. Effects of weight training on power performance

    KAUKAB AZEEM

    2011-06-01

    Full Text Available Introduction: Harris et al. declared that some researchers claim the use of 80% of 1RM is recommended toimprove power characteristics, while others suggest 50-60% of 1RM and below. Kawamori and Haff agreed withHarris et al., stating that there is inconsistency in the optimal load to produce the highest power. They claimedthat some studies that used untrained subjects, single joint exercises, and upper-body exercises reported 30-45%of 1RM, while others using trained subjects, multi-joint exercises, and lower-body exercises reported 30-70% of1RM.Method: The purpose of the study was to find out the effect of weight training in the developing the powerperformance among 20 students between 16 to 18 years of age enrolled for physical education course for theacademic year 2010, were selected as subjects. Pre and post test was conducted for the group on 1RM of squats,bench press and dead lift. 45 minutes weight training program, twice a week, for 12 weeks was given to thesubjects. The statistical tools used were mean, SD, and ‘t’ –test.Results & Discussion: The analysis of the data reveals that the subjects with the training have shownimprovement in the performance of squats from pre to post test with the mean and S.D being (76.00, 26.59 and(93.75, 27.19 respectively. The improvement is quite encouraging and highly significant (p<0.0001.With regard to bench press exercise of the subjects the mean and S.D in the pre and post test were (53.00, 23.14and (70.25, 23.37. The data clearly speaks of an improved performance from pre to post scores of the studentswhich is highly significant at (p<0.0001. The mean and S.D in the pre and post test were (104.00, 28.31 and(135.00, 24.97 respectively with respect to dead lift exercise. There is an increase in the power of the studentswhich is encouraging and highly significant with (p<0.0001.Conclusions: It is concluded from this study, that there was a marked improvement in the performance of thestudents in

  17. The effect of 10 days of intermittent fasting on Wingate anaerobic power and prolonged high-intensity time-to-exhaustion cycling performance.

    Naharudin, Mohamed Nashrudin Bin; Yusof, Ashril

    2018-06-01

    Many physically active individuals have undertaken intermittent fasting to reduce their daily caloric intake. However, abstaining from meals for a specific length of time may lead to the acute disturbance of highly carbohydrate-dependent exercise performance. The purpose of this study was to observe the effect of 10 days of intermittent fasting on high-intensity type exercises, Wingate anaerobic (WT) and prolonged high-intensity time-to-exhaustion (HIT) cycling test. Twenty participants were randomised into an intermittent fasting (FAS) and a control group (CON). One day after baseline data collection on Day-0 where participants consumed their recommended daily caloric intake (FAS = 2500 ± 143 kcal day -1 ; CON = 2492 ± 20 kcal day -1 ) served over a course of five meals, the FAS group consumed only four meals where 40% was restricted by the omission of lunch (FAS = 1500 ± 55 kcal day -1 ). This diet was then continued for 10 days. Data on exercise performance and other dependent variables were collected on Day-2, -4, -6, -8 and -10. A reduction in WT power in the FAS group was observed on Day-2 (821.74 ± 66.07 W) compared to Day-0 (847.63 ± 95.94 W) with a moderate effect size (p < .05, ES = 0.4), while HIT time-to-exhaustion performance declined over the 10 days with a trend of recovery from a large to a minimum effect size (p < .05, ES = 0.8-0.3). Body weight and triglyceride were consistently reduced in the FAS group (p < .01). The present study suggests that intermittent fasting must exceed 10 days to ensure that high-intensity performance does not deteriorate because this length of time seems to be required for effective adaptation to the new dietary regimen.

  18. In operando study of high-performance thermoelectric materials for power generation: a case study of β-Zn4Sb3

    Le, Thanh Hung; Ngo, Duc-The; Han, Li

    2017-01-01

    of the thermal conductivity and electrical resistivity, but it is also the failure mechanism for the leg under these conditions. The in operando study brings deep insight into the dynamic behavior of nanostructured TE materials for tailoring future TE materials and devices with higher efficiency and longer......To bring current thermoelectric (TE) materials achievement into a device for power generation, a full understanding of their dynamic behavior under operating conditions is needed. Here, an in operando study is conducted on the high-performance TE material β-Zn4Sb3 under large temperature gradient...... and thermal cycling via a new approach using in situ transmission electron microscopy combined with characterization of the TE properties. It is found that after 30 thermal cycles in a low-pressure helium atmosphere the TE performance of β-Zn4Sb3 is maintained with the figure of merit, zT, value of 1.4 at 718...

  19. Power and performance software analysis and optimization

    Kukunas, Jim

    2015-01-01

    Power and Performance: Software Analysis and Optimization is a guide to solving performance problems in modern Linux systems. Power-efficient chips are no help if the software those chips run on is inefficient. Starting with the necessary architectural background as a foundation, the book demonstrates the proper usage of performance analysis tools in order to pinpoint the cause of performance problems, and includes best practices for handling common performance issues those tools identify. Provides expert perspective from a key member of Intel's optimization team on how processors and memory

  20. High Efficiency Reversible Fuel Cell Power Converter

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  1. Performance evaluation of cogeneration power plants

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  2. High voltage superconducting switch for power application

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  3. High performance sapphire windows

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  4. Reliability evaluation of high-performance, low-power FinFET standard cells based on mixed RBB/FBB technique

    Wang, Tian; Cui, Xiaoxin; Ni, Yewen; Liao, Kai; Liao, Nan; Yu, Dunshan; Cui, Xiaole

    2017-04-01

    With shrinking transistor feature size, the fin-type field-effect transistor (FinFET) has become the most promising option in low-power circuit design due to its superior capability to suppress leakage. To support the VLSI digital system flow based on logic synthesis, we have designed an optimized high-performance low-power FinFET standard cell library based on employing the mixed FBB/RBB technique in the existing stacked structure of each cell. This paper presents the reliability evaluation of the optimized cells under process and operating environment variations based on Monte Carlo analysis. The variations are modelled with Gaussian distribution of the device parameters and 10000 sweeps are conducted in the simulation to obtain the statistical properties of the worst-case delay and input-dependent leakage for each cell. For comparison, a set of non-optimal cells that adopt the same topology without employing the mixed biasing technique is also generated. Experimental results show that the optimized cells achieve standard deviation reduction of 39.1% and 30.7% at most in worst-case delay and input-dependent leakage respectively while the normalized deviation shrinking in worst-case delay and input-dependent leakage can be up to 98.37% and 24.13%, respectively, which demonstrates that our optimized cells are less sensitive to variability and exhibit more reliability. Project supported by the National Natural Science Foundation of China (No. 61306040), the State Key Development Program for Basic Research of China (No. 2015CB057201), the Beijing Natural Science Foundation (No. 4152020), and Natural Science Foundation of Guangdong Province, China (No. 2015A030313147).

  5. High Power High Efficiency Diode Laser Stack for Processing

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  6. High to ultra-high power electrical energy storage.

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  7. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  8. Feasibility study of high-performance pulsed power technology for supporting Hanford Site single-shell tank waste retrieval, March 29, 1996

    1996-10-01

    Westinghouse Hanford Company (WHC) has developed databases on retrieval methods that include more than 155 companies that have technologies potentially applicable to DSST waste retrieval, including the High Performance Pulsed Power Technology (HPT). This report summarizes the feasibility of the technology for supporting retrieval of SST waste. Other potential applications such as unblocking plugs in waste transfer pipelines are described in Appendix C. The feasibility study addresses issues of implementation, operation, and safety with a focus on strengths, weaknesses, and potential pitfalls of the technology. The feasibility study was based on information acquired from TZN GmbH, a German company that developed and manufactures HPT systems for a wide-range of applications. Marketing partners of TZN for this technology are the German company Telerob and R.J. International, the U.S. representative of both companies. An HPT system is capable of fracturing brittle materials into 100-microm particles using electrothermally-generated shock waves. Until now, the technology has been used only to separate glass, metal, ceramic, and plastic components. One primary application of the technology has been in foundries for removing ceramic molds from metal castings. Metals, except for those that are very brittle, are not impacted by the shock wave. The HPT system is highly effective in fracturing and mobilizing ceramic mold materials contained in the crevices of castings that are normally difficult to remove. The HPT system has also been shown to be effective in separating glass in windshields from their protective layers of plastic; concrete from reinforcing rods; ceramic, plastic, and metal materials in computer chips; and ceramic insulation from spark plugs and high-voltage insulators. The HP'T system has been used successfully to bore a 7-in. diameter hole into hard rock at a rate of 33 ft/hr. The HPT system has also been demonstrated successfully in mining applications

  9. 3D NANOTUBE FIELD EFFECT TRANSISTORS FOR HYBRID HIGH-PERFORMANCE AND LOW-POWER OPERATION WITH HIGH CHIP-AREA EFFICIENCY

    Fahad, Hossain M.

    2014-01-01

    -introduction of metal/high-K gate stacks with strain engineering in the 45 nm technology node, which enabled further scaling on silicon to smaller nodes by alleviating the problem of gate leakage and improving the channel mobility. The second innovation was the use

  10. Virginia power's human performance evaluation system (HPES)

    Patterson, W.E.

    1991-01-01

    This paper reports on the Human Performance Evaluation System (HPES) which was initially developed by the Institute of Nuclear Power Operations (INPO) using the Aviation Safety Reporting System (ASRS) as a guide. After a pilot program involving three utilities ended in 1983, the present day program was instituted. A methodology was developed, for specific application to nuclear power plant employees, to aid trained coordinators/evaluators in determining those factors that exert a negative influence on human behavior in the nuclear power plant environment. HPES is for anyone and everyone on site, from contractors to plant staff to plant management. No one is excluded from participation. Virginia Power's HPES program goal is to identify and correct the root causes of human performance problems. Evaluations are performed on reported real or perceived conditions that may have an adverse influence on members of the nuclear team. A report is provided to management identifying root cause and contributing factors along with recommended corrective actions

  11. Design and implementation of high performance direct power control of three-phase PWM rectifier, via fuzzy and PI controller for output voltage regulation

    Bouafia, Abdelouahab; Krim, Fateh; Gaubert, Jean-Paul

    2009-01-01

    This paper proposes direct power control (DPC) for three-phase PWM rectifiers using a new switching table, without line voltage sensors. The instantaneous active and reactive powers, directly controlled by selecting the optimum state of the converter, are used as the PWM control variables instead of the phase line currents being used. The main goal of the control system is to maintain the dc-bus voltage at the required level, while input currents drawn from the power supply should be sinusoidal and in phase with respective phase voltages to satisfy the unity power factor (UPF) operation. Conventional PI and a designed fuzzy logic-based controller, in the dc-bus voltage control loop, have been used to provide active power command. A dSPACE based experimental system was developed to verify the validity of the proposed DPC. The steady-state, and dynamic results illustrating the operation and performance of the proposed control scheme are presented. As a result, it was confirmed that the novel DPC is much better than the classical one. Line currents very close to sinusoidal waveforms (THD < 2%) and good regulation of dc-bus voltage are achieved using PI or fuzzy controller. Moreover, fuzzy logic controller gives excellent performance in transient state, a good rejection of impact load disturbance, and a good robustness

  12. High power infrared QCLs: advances and applications

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  13. High average power solid state laser power conditioning system

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  14. High-power pulsed lasers

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  15. Reduced filamentation in high power semiconductor lasers

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  16. The readout performance evaluation of PowerPC

    Chu Yuanping; Zhang Hongyu; Zhao Jingwei; Ye Mei; Tao Ning; Zhu Kejun; Tang Suqiu; Guo Yanan

    2003-01-01

    PowerPC, as a powerful low-cost embedded computer, is one of the very important research objects in recent years in the project of BESIII data acquisition system. The researches on the embedded system and embedded computer have achieved many important results in the field of High Energy Physics especially in the data acquisition system. The one of the key points to design an acquisition system using PowerPC is to evaluate the readout ability of PowerPC correctly. The paper introduce some tests for the PowerPC readout performance. (authors)

  17. R high performance programming

    Lim, Aloysius

    2015-01-01

    This book is for programmers and developers who want to improve the performance of their R programs by making them run faster with large data sets or who are trying to solve a pesky performance problem.

  18. Comparison of Pickering NGS performance with world power reactors, 1977

    Buhay, S.

    Pickering NGS performance is compared, in highly graphic form, with the perfomance of other nuclear power plants around the world. The four Pickering reactors score in the top six, rated by gross capacity factor. Major system suppliers for world power reactors above 500 MW are cataloged. (E.C.B.)

  19. The Jefferson Lab High Power Light Source

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  20. Powersail High Power Propulsion System Design Study

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  1. High Power UV LED Industrial Curing Systems

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  2. Carbon nanomaterials for high-performance supercapacitors

    Tao Chen; Liming Dai

    2013-01-01

    Owing to their high energy density and power density, supercapacitors exhibit great potential as high-performance energy sources for advanced technologies. Recently, carbon nanomaterials (especially, carbon nanotubes and graphene) have been widely investigated as effective electrodes in supercapacitors due to their high specific surface area, excellent electrical and mechanical properties. This article summarizes the recent progresses on the development of high-performance supercapacitors bas...

  3. High performance work practices, innovation and performance

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  4. A High Power Linear Solid State Pulser

    Boris Yen; Brent Davis; Rex Booth

    1999-01-01

    Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities

  5. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  6. High average power linear induction accelerator development

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  7. High performance germanium MOSFETs

    Saraswat, Krishna [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)]. E-mail: saraswat@stanford.edu; Chui, Chi On [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Krishnamohan, Tejas [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Kim, Donghyun [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Nayfeh, Ammar [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Pethe, Abhijit [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-12-15

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO {sub x}N {sub y} ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin ({approx}2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices.

  8. High performance germanium MOSFETs

    Saraswat, Krishna; Chui, Chi On; Krishnamohan, Tejas; Kim, Donghyun; Nayfeh, Ammar; Pethe, Abhijit

    2006-01-01

    Ge is a very promising material as future channel materials for nanoscale MOSFETs due to its high mobility and thus a higher source injection velocity, which translates into higher drive current and smaller gate delay. However, for Ge to become main-stream, surface passivation and heterogeneous integration of crystalline Ge layers on Si must be achieved. We have demonstrated growth of fully relaxed smooth single crystal Ge layers on Si using a novel multi-step growth and hydrogen anneal process without any graded buffer SiGe layer. Surface passivation of Ge has been achieved with its native oxynitride (GeO x N y ) and high-permittivity (high-k) metal oxides of Al, Zr and Hf. High mobility MOSFETs have been demonstrated in bulk Ge with high-k gate dielectrics and metal gates. However, due to their smaller bandgap and higher dielectric constant, most high mobility materials suffer from large band-to-band tunneling (BTBT) leakage currents and worse short channel effects. We present novel, Si and Ge based heterostructure MOSFETs, which can significantly reduce the BTBT leakage currents while retaining high channel mobility, making them suitable for scaling into the sub-15 nm regime. Through full band Monte-Carlo, Poisson-Schrodinger and detailed BTBT simulations we show a dramatic reduction in BTBT and excellent electrostatic control of the channel, while maintaining very high drive currents in these highly scaled heterostructure DGFETs. Heterostructure MOSFETs with varying strained-Ge or SiGe thickness, Si cap thickness and Ge percentage were fabricated on bulk Si and SOI substrates. The ultra-thin (∼2 nm) strained-Ge channel heterostructure MOSFETs exhibited >4x mobility enhancements over bulk Si devices and >10x BTBT reduction over surface channel strained SiGe devices

  9. High Performance Computing Multicast

    2012-02-01

    A History of the Virtual Synchrony Replication Model,” in Replication: Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds...Performance Computing IP / IPv4 Internet Protocol (version 4.0) IPMC Internet Protocol MultiCast LAN Local Area Network MCMD Dr. Multicast MPI

  10. NGINX high performance

    Sharma, Rahul

    2015-01-01

    System administrators, developers, and engineers looking for ways to achieve maximum performance from NGINX will find this book beneficial. If you are looking for solutions such as how to handle more users from the same system or load your website pages faster, then this is the book for you.

  11. Performance Analysis of Multiradio Transmitter with Polar or Cartesian Architectures Associated with High Efficiency Switched-Mode Power Amplifiers (invited paper

    F. Robert

    2010-12-01

    Full Text Available This paper deals with wireless multi-radio transmitter architectures operating in the frequency band of 800 MHz – 6 GHz. As a consequence of the constant evolution in the communication systems, mobile transmitters must be able to operate at different frequency bands and modes according to existing standards specifications. The concept of a unique multiradio architecture is an evolution of the multistandard transceiver characterized by a parallelization of circuits for each standard. Multi-radio concept optimizes surface and power consumption. Transmitter architectures using sampling techniques and baseband ΣΔ or PWM coding of signals before their amplification appear as good candidates for multiradio transmitters for several reasons. They allow using high efficiency power amplifiers such as switched-mode PAs. They are highly flexible and easy to integrate because of their digital nature. But when the transmitter efficiency is considered, many elements have to be taken into account: signal coding efficiency, PA efficiency, RF filter. This paper investigates the interest of these architectures for a multiradio transmitter able to support existing wireless communications standards between 800 MHz and 6 GHz. It evaluates and compares the different possible architectures for WiMAX and LTE standards in terms of signal quality and transmitter power efficiency.

  12. Thermal diagnostics in power plant to improve performance

    Meister, H.

    1995-01-01

    The improvement of older power plants by changing poor performing components is a cost effective method to increase the capacity of the units. The necessary information for the detection of components that are to be replaced can be obtained from heat rate and component tests with accuracy instrumentation. The discussed methods and tools provided by ABB Were used with success in several power plants in Europe. These tools are in the process of permanent improvement and can be used in almost any type of power plant. Due to the reasons discussed above, there is a high potential for improvement of a lot of power plants in the next decade. (author)

  13. Performance management for nuclear power plant operators

    Fan Pengfei

    2014-01-01

    Fuel was loaded to Unit 3 of the second power plant in May 2010. The Second Operation Division stepped in the operation stage from production preparation and commissioning and exploration of performance management was started. By means of performance evaluation, a closed loop of performance management was formed, staff enthusiasm improved, and potential capability inspired through evaluation, analysis and improvement. The performance evaluation covers attitude, skill, efficiency, performance, teamwork sense, cooperation, etc. Quantitative appraisal was carried out through 31 objective indicators of the working process and results. According to the evaluation results and personal interviews, indicators were modified. Through the performance evaluation, positive guidance is provided to the employees to promote the development of employees, departments and the enterprise. (authors)

  14. high power facto high power factor high power factor hybrid rectifier

    eobe

    increase in the number of electrical loads that some kind of ... components in the AC power system. Thus, suppl ... al output power; assuring reliability in ... distribution systems. This can be ...... Thesis- Califonia Institute of Technology, Capitulo.

  15. High power, repetitive stacked Blumlein pulse generators

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  16. Visible high power fiber coupled diode lasers

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  17. Modelling aluminium wire bond reliability in high power OMP devices

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is

  18. High power ubitron-klystron

    Balkcum, A.J.; McDermott, D.B.; Luhmann, N.C. Jr.

    1997-01-01

    A coaxial ubitron is being considered as the rf driver for the Next Linear Collider (NLC). Prior simulation of a traveling-wave ubitron using a self-consistent code found that 200 MW of power and 53 dB of gain could be achieved with 37% efficiency. In a ubiron-klystron, a series of cavities are used to obtain an even tighter electron bunch for higher efficiency. A small-signal theory of the ubitron-klystron shows that gain scales with the square of the cavity separation distance. A linear stability theory has also been developed. Verification of the stability theory has been achieved using the 2-12-D PIC code, MAGIC, and the particle-tracing code. Saturation characteristics of the amplifier will be presented using both MAGIC and a simpler self-consistent slow-timescale code currently under development. The ubitron can also operate as a compact, highly efficient oscillator. Cavities only two wiggler periods in length have yielded up to 40% rf conversion efficiency in simulation. An initial oscillator design for directed energy applications will also be presented

  19. Performance review of an indigenously developed high power test stand built for the Indian S-band 5 MW pulsed klystron development

    Shrivastava, Purushottam; Baxy, D.; Mulchandani, J.; Hannurkar, P.R.; Joshi, L.M.

    2003-01-01

    CAT took up development of 5 MW S-Band klystrons indigenously in collaboration with CEERI Pilani. The development of klystron prototype is completed. These klystrons are very crucial devices, for energizing the 10-20 MeV electron accelerators, which are developed in the country for various industrial, medical and scientific applications. A test station has been developed indigenously at CAT for these klystrons. It consists of a 12 MW peak power 130 kV klystron pulse modulator, a 1 : 10 pulse transformer, 130 kV high voltage deck having high voltage pulse divider, pulse current transformer as well indigenously built klystron socket, filament supplies, klystron support structure and pulse transformer oil tank. After development/rigorous testing the test stand was shifted to CEERI and was installed and commissioned there by CAT. Gun collector test module and prototypes of the 5 MW klystron were tested, aged and conditioned at high power using this test stand. The details of the system / test results are discussed

  20. Simplified High-Power Inverter

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  1. High performance proton accelerators

    Favale, A.J.

    1989-01-01

    In concert with this theme this paper briefly outlines how Grumman, over the past 4 years, has evolved from a company that designed and fabricated a Radio Frequency Quadrupole (RFQ) accelerator from the Los Alamos National Laboratory (LANL) physics and specifications to a company who, as prime contractor, is designing, fabricating, assembling and commissioning the US Army Strategic Defense Commands (USA SDC) Continuous Wave Deuterium Demonstrator (CWDD) accelerator as a turn-key operation. In the case of the RFQ, LANL scientists performed the physics analysis, established the specifications supported Grumman on the mechanical design, conducted the RFQ tuning and tested the RFQ at their laboratory. For the CWDD Program Grumman has the responsibility for the physics and engineering designs, assembly, testing and commissioning albeit with the support of consultants from LANL, Lawrence Berkeley Laboratory (LBL) and Brookhaven National laboratory. In addition, Culham Laboratory and LANL are team members on CWDD. LANL scientists have reviewed the physics design as well as a USA SDC review board. 9 figs

  2. 8. High power laser and ignition facilities

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  3. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser; Caracteristicas dimensionales de soldadura formadas sobre el acero AISI 1045 mediante la aplicacion del laser diodo de alta potencia

    Sanchez-Castillo, A.; Pou, J.; Lusquinos, F.; Quintero, F.; Soto, R.; Boutinguiza, M.; Saavedra, M.; Perez-Amor, M.

    2004-07-01

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs.

  4. Review of Power System Stability with High Wind Power Penetration

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  5. Generating units performances: power system requirements

    Fourment, C; Girard, N; Lefebvre, H

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  6. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.

    Majerczak, J; Szkutnik, Z; Karasinski, J; Duda, K; Kolodziejski, L; Zoladz, J A

    2006-06-01

    The aim of this study was to examine the relationship between the content of various types of myosin heavy chain isoforms (MyHC) in the vastus lateralis muscle and pulmonary oxygen uptake during moderate power output incremental exercise, performed at low and at high pedalling rates. Twenty one male subjects (mean +/- SD) aged 24.1 +/- 2.8 years; body mass 72.9 +/- 7.2 kg; height 179.1 +/- 4.8 cm; BMI 22.69 +/- 1.89 kg.m(-2); VO2max 50.6 +/- 5.3 ml.kg.min(-1), participated in this study. On separate days, they performed two incremental exercise tests at 60 rev.min(-1) and at 120 rev.min(-1), until exhaustion. Gas exchange variables were measured continuously breath by breath. Blood samples were taken for measurements of plasma lactate concentration prior to the exercise test and at the end of each step of the incremental exercise. Muscle biopsies were taken from the vastus lateralis muscle, using Bergström needle, and they were analysed for the content of MyHC I and MyHC II using SDS--PAGE and two groups (n=7, each) were selected: group H with the highest content of MyHC II (60.7 % +/- 10.5 %) and group L with the lowest content of MyHC II (27.6 % +/- 6.1 %). We have found that during incremental exercise at the power output between 30-120 W, performed at 60 rev.min(-1), oxygen uptake in the group H was significantly greater than in the group L (ANCOVA, p=0.003, upward shift of the intercept in VO2/power output relationship). During cycling at the same power output but at 120 rev.min(-1), the oxygen uptake was also higher in the group H, when compared to the group L (i.e. upward shift of the intercept in VO2/power output relationship, ANCOVA, p=0.002). Moreover, the increase in pedalling rate from 60 to 120 rev.min(-1) was accompanied by a significantly higher increase of oxygen cost of cycling and by a significantly higher plasma lactate concentration in subjects from group H. We concluded that the muscle mechanical efficiency, expressed by the VO2/PO ratio

  7. Electronic DC transformer with high power density

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  8. High Power Density Power Electronic Converters for Large Wind Turbines

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  9. Design and performance of PEP dc-power systems

    Jackson, T.

    1981-03-01

    The PEP Magnet Power Supply System represents a significant departure from previous technology with the goal of improved performance at lower cost. In nineteen of the magnet families around the ring, Chopper power supplies are used. The many choppers are powered from two 2 MW dc supplies, and control the average power to the various magnet loads by pulse-width modulation at a 2 kilohertz repetition rate. Each chopper utilizes SCR's for switching, and stores sufficient capacitive energy for turn-off on command. Most of the energy is recirculated, resulting in high-efficiency. The two kilohertz chopping rate allows a one kilohertz unity-gain bandwidth in the current-regulator loop, and this wide bandwidth, coupled with low drift components in the error-detection system, provides a high-performance system. The PEP system has also shown that the chopper system is economical compared to standard multi-pulse controlled-rectifier

  10. High Power Fiber Laser Test Bed

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  11. Organization, structure, and performance in the US nuclear power industry

    Lester, R.K.

    1986-01-01

    Several propositions are advanced concerning the effects of industry organization and structure on the economic performance of the American commercial nuclear power industry. Both the electric utility industry and the nuclear power plant supply industry are relatively high degree of horizontal disaggregation. The latter is also characterized by an absence of vertical integration. The impact of each of these factors on construction and operating performance is discussed. Evidence is presented suggesting that the combination of horizontal and vertical disaggregation in the industry has had a significant adverse effect on economic performance. The relationship between industrial structure and regulatory behavior is also discussed. 43 references, 4 figures, 9 tables

  12. An optimized junctionless GAA MOSFET design based on multi-objective computation for high-performance ultra-low power devices

    Bendib, T.; Djeffal, F.; Meguellati, M.

    2014-01-01

    An analytical investigation has been proposed to study the subthreshold behavior of junctionless gates all around (JLGAA) MOSFET for nanoscale CMOS analog applications. Based on 2-D analytical analysis, a new subthreshold swing model for short-channel JLGAA MOSFETs is developed. The analysis has been used to calculate the subthreshold swing and to compare the performance of the investigated design and conventional GAA MOSFET, where the comparison of device architectures shows that the JLGAA MOSFET exhibits a superior performance with respect to the conventional inversion-mode GAA MOSFET in terms of the fabrication process and electrical behavior in the subthreshold domain. The analytical models have been validated by 2-D numerical simulations. The proposed analytical models are used to formulate the objectives functions. The overall objective function is formulated by means of a weighted sum approach to search the optimal electrical and dimensional device parameters in order to obtain the better scaling capability and the electrical performance of the device for ultra-low power applications. (semiconductor devices)

  13. Switching transients in high-frequency high-power converters using power MOSFET's

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  14. Performance test of uninterruptible power system of PIEF

    Park, Jong Chae; Kim, Eun Ka; Chun, Yong Bum; Park, Dea Gyu; Chu, Yong Sun; Bae, Sang Min; Koo, Dae Seo

    1998-02-01

    Because of the special features of post-irradiation examination (PIE) facility to handle very high radioactive materials like spent nuclear fuels, the electric system of the facility was designed and constructed according to a very strict requirement which is applied to nuclear power plant. A safety grade of Class 1E was adopted in the power utility system of PIEF to guarantee stable power supply to the facility without any expected interruption. In order cope with a emergency condition like a power interruption of KEPCO, a emergency power supplying system consisting of a diesel generator (3-phase, 6600/440, 1,000 kW) and uninterruptibel power supply (UPS) system was installed in PIEF. UPS power is connected to the radiation monitoring system and several other main safety devices to assure of normal operations of them for not less than 30 minutes. According to the recommendations and regulations in nuclear law, a monthly and yearly regular inspection for the UPS and emergency power supplying system are performed. In this report, a brief description to establish self-inspection technology and procedures for the above mentioned electric power supplying system at PIEF, including a principle of operation, inspection scheme, trouble shooting, and performance test techniques were made. (author). 8 refs., 3 tabs., 4 figs.

  15. High Power Wireless Transfer : For Charging High Power Batteries

    Gill, Himmat

    2017-01-01

    Wireless power transfer (WPT) is developing with emerging of new technologies that has made it possible to transfer electricity over certain distances without any physical contact, offering significant benefits to modern automation systems, medical applications, consumer electronic, and especially in electric vehicle systems. The goal of this study is to provide a brief review of existing compensation topologies for the loosely coupled transformer. The technique used to simulate a co...

  16. Performance summary on a high power dense plasma focus x-ray lithography point source producing 70 nm line features in AlGaAs microcircuits

    Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John

    2004-01-01

    A high average power dense plasma focus (DPF), x-ray point source has been used to produce ∼70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ∼1 keV effective wavelength in ∼2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ∼0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ∼170 eV and ∼5·10 19 cm -3 , respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source

  17. On the experience of feeling powerful: perceived power moderates the effect of stereotype threat on women's math performance.

    Van Loo, Katie J; Rydell, Robert J

    2013-03-01

    This research examined whether feeling powerful can eliminate the deleterious effect of stereotype threat (i.e., concerns about confirming a negative self-relevant stereotype) on women's math performance. In Experiments 1 and 2, priming women with high power buffered them from reduced math performance in response to stereotype threat instructions, whereas women in the low and control power conditions showed poorer math performance in response to threat. Experiment 3 found that working memory capacity is one mechanism through which power moderates the effect of threat on women's math performance. In the low and control power conditions, women showed reduced working memory capacity in response to stereotype threat, accounting for threat's effect on performance. In contrast, women in the high power condition did not show reductions in working memory capacity or math performance in response to threat. This work demonstrates that perceived power moderates stereotype threat-based performance effects and explains why this occurs.

  18. High Power laser power conditioning system new discharge circuit research

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  19. Thermo-economic performance of HTGR Brayton power cycles

    Linares, J. L.; Herranz, L. E.; Moratilla, B. Y.; Fernandez-Perez, A.

    2008-01-01

    High temperature reached in High and Very High Temperature Reactors (VHTRs) results in thermal efficiencies substantially higher than those of actual nuclear power plants. A number of studies mainly driven by achieving optimum thermal performance have explored several layout. However, economic assessments of cycle power configurations for innovative systems, although necessarily uncertain at this time, may bring valuable information in relative terms concerning power cycle optimization. This paper investigates the thermal and economic performance direct Brayton cycles. Based on the available parameters and settings of different designs of HTGR power plants (GTHTR-300 and PBMR) and using the first and second laws of thermodynamics, the effects of compressor inter-cooling and of the compressor-turbine arrangement (i.e., single vs. multiple axes) on thermal efficiency have been estimated. The economic analysis has been based on the El-Sayed methodology and on the indirect derivation of the reactor capital investment. The results of the study suggest that a 1-axis inter-cooled power cycle has a similar thermal performance to the 3-axes one (around 50%) and, what's more, it is substantially less taxed. A sensitivity study allowed assessing the potential impact of optimizing several variables on cycle performance. Further than that, the cycle components costs have been estimated and compared. (authors)

  20. Preparatory power posing affects nonverbal presence and job interview performance.

    Cuddy, Amy J C; Wilmuth, Caroline A; Yap, Andy J; Carney, Dana R

    2015-07-01

    The authors tested whether engaging in expansive (vs. contractive) "power poses" before a stressful job interview--preparatory power posing--would enhance performance during the interview. Participants adopted high-power (i.e., expansive, open) poses or low-power (i.e., contractive, closed) poses, and then prepared and delivered a speech to 2 evaluators as part of a mock job interview. All interview speeches were videotaped and coded for overall performance and hireability and for 2 potential mediators: verbal content (e.g., structure, content) and nonverbal presence (e.g., captivating, enthusiastic). As predicted, those who prepared for the job interview with high- (vs. low-) power poses performed better and were more likely to be chosen for hire; this relation was mediated by nonverbal presence, but not by verbal content. Although previous research has focused on how a nonverbal behavior that is enacted during interactions and observed by perceivers affects how those perceivers evaluate and respond to the actor, this experiment focused on how a nonverbal behavior that is enacted before the interaction and unobserved by perceivers affects the actor's performance, which, in turn, affects how perceivers evaluate and respond to the actor. This experiment reveals a theoretically novel and practically informative result that demonstrates the causal relation between preparatory nonverbal behavior and subsequent performance and outcomes. (c) 2015 APA, all rights reserved).

  1. Aiding operator performance at low power feedwater control

    Woods, D.D.

    1986-01-01

    Control of the feedwater system during low power operations (approximately 2% to 30% power) is a difficult task where poor performance (excessive trips) has a high cost to utilities. This paper describes several efforts in the human factors aspects of this task that are underway to improve feedwater control. A variety of knowledge acquisition techniques have been used to understand the details of what makes feedwater control at low power difficult and what knowledge and skill distinguishes expert operators at this task from less experienced ones. The results indicate that there are multiple factors that contribute to task difficulty

  2. High performance light water reactor

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  3. Superconducting high frequency high power resonators

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  4. MHD generator performance analysis for the Advanced Power Train study

    Pian, C. C. P.; Hals, F. A.

    1984-01-01

    Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.

  5. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  6. Fort St. Vrain reactor performance and operation to full power

    Simon, W.A.; Bramblett, G.C.

    1982-01-01

    The Fort St. Vrain Nuclear Generating Station, powered by a high-temperature gas-cooled reactor (HTGR), has now been tested to full thermal power. Testing was conducted for the dual purposes of demonstrating component and system capability as a part of the rise-to-power program and determining core fluctuation/redistribution behavior under full power conditions. Both objectives were met. Full power performance of all major components and the achievement of nearly all design objectives has been verified. In addition, the tests showed that the fluctuation phenomenon has been corrected. Core region outlet temperature redistributions have been characterized, related to a physical mechanism, and shown to be inconsequential for overall plant operation

  7. High performance inertial fusion targets

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1977-01-01

    Inertial confinement fusion (ICF) designs are considered which may have very high gains (approximately 1000) and low power requirements (<100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  8. High performance inertial fusion targets

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1978-01-01

    Inertial confinement fusion (ICF) target designs are considered which may have very high gains (approximately 1000) and low power requirements (< 100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  9. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  10. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO(3-x)/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering.

    Zhao, Chuanxi; Liang, Zhimin; Su, Mingze; Liu, Pengyi; Mai, Wenjie; Xie, Weiguang

    2015-11-25

    Photodetectors with a wide spectrum response are important components for sensing, imaging, and other optoelectronic applications. A molybdenum oxide (MoO(3-x))/Si heterojunction has been applied as solar cells with great success, but its potential in photodetectors has not been explored yet. Herein, a self-powered, high-speed heterojunction photodetector fabricated by coating an n-type Si hierarchical structure with an ultrathin hole-selective layer of molybdenum oxide (MoO(3-x)) is first investigated. Excellent and stable photoresponse performance is obtained by using a methyl group passivated interface. The heterojunction photodetector demonstrated high sensitivity to a wide spectrum from 300 to 1100 nm. The self-powered photodetector shows a high detectivity of (∼6.29 × 10(12) cmHz(1/2) W(-1)) and fast response time (1.0 μs). The excellent photodetecting performance is attributed to the enhanced interfacial barrier height and three-dimensional geometry of Si nanostructures, which is beneficial for efficient photocarrier collection and transportation. Finally, our devices show excellent long-term stability in air for 6 months with negligible performance degradation. The thermal evaporation method for large-scale fabrication of MoO(3-x)/n-Si photodetectors makes it suitable for self-powered, multispectral, and high-speed response photodetecting applications.

  11. Design of The High Efficiency Power Factor Correction Circuit for Power Supply

    Atiye Hülya OBDAN

    2017-12-01

    Full Text Available Designing power factor correction circuits for switched power supplies has become important in recent years in terms of efficient use of energy. Power factor correction techniques play a significant role in high power density and energy efficiency. For these purposes, bridgeless PFC topologies and control strategies have been developed alongside basic boost PFC circuits. The power density can be increased using bridgeless structures by means of reducing losses in the circuit. This article examines bridgeless PFC structures and compares their performances in terms of losses and power factor. A semi-bridgeless PFC, which is widely used at high power levels, was analyzed and simulated. The designed circuit simulation using the current mode control method was performed in the PSIM program. A prototype of a 900 W semi-bridgeless PFC circuit was implemented and the results obtained from the circuit are presented

  12. High Performance Networks for High Impact Science

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  13. Performance evaluations of a geothermal power plant

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    Thermodynamic analysis of an operational 7.5 MWe binary geothermal power plant in Tuzla-Turkey is performed, through energy and exergy, using actual plant data to assess its energetic and exergetic performances. Eight performance-related parameters, namely total exergy destruction ratio, component exergy destruction ratio, dimensionless exergy destruction, energetic renewability ratio, exergetic renewability ratio, energetic reinjection ratio, exergetic reinjection ratio and improvement potential are investigated. Energy and exergy losses/destructions for the plant and its units are determined and illustrated using energy and exergy flow diagrams. The largest energy and exergy losses occur in brine reinjection unit. The variation of the plant energy efficiency is found between 6% and 12%. Exergy efficiency values change between 35 and 49%. The annual average energy and exergy efficiencies are found as 9.47% and 45.2%, respectively. - Highlights: → Investigation of a geothermal system energetically and exergetically. → Performance assessment of the system through energy and exergy efficiencies. → Utilization of temperature distribution in exergy calculations. → Evaluation of eight energetic and exergetic parameters for the system.

  14. The JLab high power ERL light source

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source

  15. The JLab high power ERL light source

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

  16. Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors.

    Singh, Saurabh; Shinde, Nanasaheb M; Xia, Qi Xun; Gopi, Chandu V V M; Yun, Je Moon; Mane, Rajaram S; Kim, Kwang Ho

    2017-10-14

    Herein, we tailor the surface morphology of nickel-manganese-layered double hydroxide (NiMn-LDH) nanostructures on 3D nickel-foam via a step-wise cobalt (Co)-doping hydrothermal chemical process. At the 10% optimum level of Co-doping, we noticed a thriving tuned morphological pattern of NiMn-LDH nanostructures (NiCoMn-LDH (10%)) in terms of the porosity of the nanosheet (NS) arrays which not only improves the rate capability as well as cycling stability, but also demonstrates nearly two-fold specific capacitance enhancement compared to Co-free and other NiCoMn-LDH electrodes with a half-cell configuration in 3 M KOH, suggesting that Co-doping is indispensable for improving the electrochemical performance of NiMn-LDH electrodes. Moreover, when this high performing NiCoMn-LDH (10%) electrode is employed as a cathode material to fabricate an asymmetric supercapacitor (ASC) device with reduced graphene oxide (rGO) as an anode material, excellent energy storage performance (57.4 Wh kg -1 at 749.9 W kg -1 ) and cycling stability (89.4% capacitive retention even after 2500 cycles) are corroborated. Additionally, we present a demonstration of illuminating a light emitting diode for 600 s with the NiCoMn-LDH (10%)//rGO ASC device, evidencing the potential of the NiCoMn-LDH (10%) electrode in fabricating energy storage devices.

  17. Power transistor module for high current applications

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  18. EHV AC undergrounding electrical power performance and planning

    Benato, Roberto

    2014-01-01

    Analytical methods of cable performance in EHV AC electrical power are discussed in this comprehensive reference. Descriptions of energization, power quality, cable safety constraints and more, guide readers in cable planning and power network operations.

  19. High-performance computing using FPGAs

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  20. Availability Performance Analysis of Thermal Power Plants

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  1. Powering the High-Luminosity Triplets

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  2. High current and high power superconducting rectifiers

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  3. High-Power Ion Thruster Technology

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  4. RavenDB high performance

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  5. High-Performance Operating Systems

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  6. High power ultrashort pulse lasers

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  7. Evolution of Very High Frequency Power Supplies

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  8. The NASA CSTI High Capacity Power Project

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    This paper describes the elements of NASA's CSTI High Capacity Power Project which include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timeliness recently developed

  9. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  10. ACIGA's high optical power test facility

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  11. High-power laser diodes with high polarization purity

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  12. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  13. High-power microwave diplexers for advanced ECRH systems

    Kasparek, W.; Petelin, M.; Erckmann, V.; Bruschi, A.; Noke, F.; Purps, F.; Hollmann, F.; Koshurinov, Y.; Lubyako, L.; Plaum, B.; Wubie, W.

    2009-01-01

    In electron cyclotron resonance heating systems, high-power multiplexers can be employed as power combiners, adjustable power dividers, fast switches to toggle the power between two launchers, as well as frequency sensitive directional couplers to combine heating and diagnostic applications on one launcher. In the paper, various diplexer designs for quasi-optical and corrugated waveguide transmission systems are discussed. Numerical calculations, low-power tests and especially high-power experiments performed at the ECRH system of W7-X are shown, which demonstrate the capability of these devices. Near term plans for applications on ASDEX Upgrade and FTU are presented. Based on the present results, options for implementation of power combiners and fast switches in the ECRH system of ITER is discussed.

  14. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because...

  15. High average-power induction linacs

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  16. High average-power induction linacs

    Prono, D.S.; Barrett, D.; Bowles, E.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  17. Driver Circuit For High-Power MOSFET's

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  18. Performance/Power Space Exploration for Binary64 Division Units

    Nannarelli, Alberto

    2016-01-01

    The digit-recurrence division algorithm is used in several high-performance processors because it provides good tradeoffs in terms of latency, area and power dissipation. In this work we develop a minimally redundant radix-8 divider for binary64 (double-precision) aiming at obtaining better energy...... efficiency in the performance-per-watt space. The results show that the radix-8 divider, when compared to radix-4 and radix-16 units, requires less energy to complete a division for high clock rates....

  19. ICAN: High power neutral beam generation

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  20. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    Laser power abstract The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  1. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  2. Derivation and Analysis of a Low-Cost, High-performance Analogue BPCM Control Scheme for Class-D Audio Power Amplifiers

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael A. E.

    2005-01-01

    This paper presents a low-cost analogue control scheme for class-D audio power amplifiers. The scheme is based around bandpass current-mode (BPCM) control, and provides ample stability margins and low distortion over a wide range of operating conditions. Implementation is very simple and does...

  3. Highly-stabilized power supply for synchrotron accelerators. High speed, low ripple power supply

    Sato, Kenji [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Kumada, Masayuki; Fukami, Kenji; Koseki, Shoichiro; Kubo, Hiroshi; Kanazawa, Toru

    1997-02-01

    In synchrotron accelerators, in order to utilize high energy beam effectively, those are operated by repeating acceleration and taking-out at short period. In order to accelerate by maintaining beam track stable, the tracking performance with the error less than 10{sup -3} in the follow-up of current is required for the power supply. Further, in order to maintain the intensity and uniformity of beam when it is taken out, very low ripple is required for output current. The power supply having such characteristics has been developed, and applied to the HIMAC and the SPring-8. As the examples of the application of synchrotrons, the accelerators for medical treatment and the generation of synchrotron radiation are described. As to the power supply for the deflection magnets and quadrupole magnets of synchrotron accelerators, the specifications of the main power supply, the method of reducing ripple, the method of improving tracking, and active filter control are reported. As to the test results, the measurement of current ripple and tracking error is shown. The lowering of ripple was enabled by common mode filter and the symmetrical connection of electromagnets, and high speed response was realized by the compensation for delay with active filter. (K.I.)

  4. High power density carbonate fuel cell

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  5. Identifying High Performance ERP Projects

    Stensrud, Erik; Myrtveit, Ingunn

    2002-01-01

    Learning from high performance projects is crucial for software process improvement. Therefore, we need to identify outstanding projects that may serve as role models. It is common to measure productivity as an indicator of performance. It is vital that productivity measurements deal correctly with variable returns to scale and multivariate data. Software projects generally exhibit variable returns to scale, and the output from ERP projects is multivariate. We propose to use Data Envelopment ...

  6. High Voltage Power Transmission for Wind Energy

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  7. Gingin High Optical Power Test Facility

    Zhao, C; Blair, D G; Barrigo, P

    2006-01-01

    The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments

  8. INL High Performance Building Strategy

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  9. Test of job performance aids for power plants. Final report

    Shriver, E.L.; Zach, S.E.; Foley, J.P. Jr.

    1982-10-01

    The objective of EPRI Research Project 1396-1 was to evaluate the applicability and effectiveness of Job Performance Aids (JPAs) in nuclear power plant situations. For over twenty years, JPAs have been developed in military situations to meet the problems of confusing, incomplete, and inaccurate procedures on maintenance jobs. Kinton, Incorporated of Alexandria, Virginia applied the military experience with JPAs to nuclear power plant situations and identified potential benefits in terms of cost reductions and improved performance. Sample JPAs were developed for Control Room Operations, Maintenance, Plant Operations, Instrumentation and Control, Health Physics, and Quality Assurance tasks (procedures) in selected nuclear plants. JPAs were also developed for a prototype condenser tube leak detection system in the design stage, as well as for generic classes of circuit breaker equipment. Based on the results of the study, the use of JPAs is recommended for plant procedures of medium to high difficulty and for those tasks performed infrequently, even if fairly simple

  10. Inverter design for high frequency power distribution

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  11. The bigger they are, the harder they fall: linking team power, team conflict, and performance

    Greer, L.L.; Caruso, H.M.; Jehn, K.A.

    2011-01-01

    Across two field studies, we investigate the impact of team power on team conflict and performance. Team power is based on the control of resources that enables a team to influence others in the company. We find across both studies that low-power teams outperform high-power teams. In both studies,

  12. Derivation and Analysis of a Low-Cost, High-performance Analogue BPCM Control Scheme for Class-D Audio Power Amplifiers

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael A. E.

    2005-01-01

    This paper presents a low-cost analogue control scheme for class-D audio power amplifiers. The scheme is based around bandpass current-mode (BPCM) control, and provides ample stability margins and low distortion over a wide range of operating conditions. Implementation is very simple and does not require the use of operational amplifiers. Small-signal behavior of the controller is accurately predicted, and design is carried out using standard transfer function based linear control methodology...

  13. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    Zhu, Xiuping; Tokash, Justin C.; Hong, Yiying; Logan, Bruce E.

    2013-01-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation

  14. High power laser downhole cutting tools and systems

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  15. High performance fuel technology development

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  16. High Performance Bulk Thermoelectric Materials

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  17. Analysis of chaos in high-dimensional wind power system.

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  18. High Performance Low Mass Nanowire Enabled Heatpipe, Phase II

    National Aeronautics and Space Administration — Heat pipes are widely used for passive, two-phase electronics cooling. As advanced high power, high performance electronics in space based and terrestrial...

  19. High Power RF Transmitters for ICRF Applications on EAST

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  20. DIII-D ICRF high voltage power supply regulator upgrade

    Cary, W.P.; Burley, B.L.; Grosnickle, W.H.

    1997-11-01

    For reliable operation and component protection, of the 2 MW 30--120 MHz ICRF Amplifier System on DIII-D, it is desirable for the amplifier to respond to high VSWR conditions as rapidly as possible. This requires a rapid change in power which also means a rapid change in the high voltage power supply current demands. An analysis of the power supply's regulator dynamics was needed to verify its expected operation during such conditions. Based on this information it was found that a new regulator with a larger dynamic range and some anticipation capability would be required. This paper will discuss the system requirements, the as-delivered regulator performance, and the improved performance after installation of the new regulator system. It will also be shown how this improvement has made the amplifier perform at higher power levels more reliably

  1. Advanced high performance solid wall blanket concepts

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  2. A battery-powered high-current power supply for superconductors

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  3. High power neutral beam injection in LHD

    Tsumori, K.; Takeiri, Y.; Nagaoka, K.

    2005-01-01

    The results of high power injection with a neutral beam injection (NBI) system for the large helical device (LHD) are reported. The system consists of three beam-lines, and two hydrogen negative ion (H - ion) sources are installed in each beam-line. In order to improve the injection power, the new beam accelerator with multi-slot grounded grid (MSGG) has been developed and applied to one of the beam-lines. Using the accelerator, the maximum powers of 5.7 MW were achieved in 2003 and 2004, and the energy of 189 keV reached at maximum. The power and energy exceeded the design values of the individual beam-line for LHD. The other beam-lines also increased their injection power up to about 4 MW, and the total injection power of 13.1 MW was achieved with three beam-lines in 2003. Although the accelerator had an advantage in high power beam injection, it involved a demerit in the beam focal condition. The disadvantage was resolved by modifying the aperture shapes of the steering grid. (author)

  4. High Flux Isotope Reactor power upgrade status

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  5. HIGH-PERFORMANCE COATING MATERIALS

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  6. Performance of nuclear power plants in 1981

    Szeless, A.

    1982-01-01

    The performance data, such as yearly and cumulative load and operation (availability) factors for 200 reactor units worldwide and for 158 reactor units in the US and Europe, indicates that the average of the load factors of all units in 1981 was significantly higher than that of the 2 preceding years. However, it was not as high as in 1978. As in previous years, load factors continued to show an increasing trend as operating years increased. For 1981, the load factor of US reactors was 57%; that of world reactors was 60%. The operation (availability) factors were 63% for US reactors, 68% for world reactors, 76% for heavy water reactors, and 72% for gas-cooled reactors

  7. Automatic Energy Schemes for High Performance Applications

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  8. High performance computing in linear control

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  9. Advanced High Voltage Power Device Concepts

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  10. High current proton linear accelerators and nuclear power

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  11. Neo4j high performance

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  12. Driving the Power of AIX Performance Tuning on IBM Power

    Milberg, Ken

    2009-01-01

    A concise reference for IT professionals, this book goes beyond the rules and contains the best practices and strategies for solid tuning methodology. Tips based on years of experience from an AIX tuning master show specific steps for monitoring and tuning CPU, virtual memory, disk I/O, and network components. Also offering techniques for tuning Oracle and Linux structures that run on an IBM power system-as well as for the new AIX 6.1-this manual discusses what tools are available, how to best use them to collect historical data, and when to analyze trends and results. The only comprehensive,

  13. The NASA CSTI High Capacity Power Program

    Winter, J.M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed

  14. High power all solid state VUV lasers

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  15. Performance Enhancement of Power Transistors and Radiation effect

    Hassn, Th.A.A.

    2012-01-01

    The main objective of this scientific research is studying the characteristic of bipolar junction transistor device and its performance under radiation fields and temperature effect as a control element in many power circuits. In this work we present the results of experimental measurements and analytical simulation of gamma – radiation effects on the electrical characteristics and operation of power transistor types 2N3773, 2N3055(as complementary silicon power transistor are designed for general-purpose switching and amplifier applications), three samples of each type were irradiated by gamma radiation with doses, 1 K rad, 5 K rad, 10 K rad, 30 K rad, and 10 Mrad, the experimental data are utilized to establish an analytical relation between the total absorbed dose of gamma irradiation and corresponding to effective density of generated charge in the internal structure of transistor, the electrical parameters which can be measured to estimate the generated defects in the power transistor are current gain, collector current and collected emitter leakage current , these changes cause the circuit to case proper functioning. Collector current and transconductance of each device are calibrated as a function of irradiated dose. Also the threshold voltage and transistor gain can be affected and also calibrated as a function of dose. A silicon NPN power transistor type 2N3773 intended for general purpose applications, were used in this work. It was designed for medium current and high power circuits. Performance and characteristic were discusses under temperature and gamma radiation doses. Also the internal junction thermal system of the transistor represented in terms of a junction thermal resistance (Rjth). The thermal resistance changed by ΔRjth, due to the external intended, also due to the gamma doses intended. The final result from the model analysis reveals that the emitter-bias configuration is quite stable by resistance ratio RB/RE. Also the current

  16. Monitoring and analyzing features of electrical power quality system performance

    Genci Sharko; Nike Shanku

    2010-01-01

    Power quality is a set of boundaries that allows electrical systems to function in their intended manner without significant loss of performance or life. The term is used to describe electric power that drives an electrical load and the load's ability to function properly with that electric power. Without the proper quality of the power, an electrical device may malfunction, fail prematurely or not operate at all. There are many reasons why the electric power can be of poor quality and many m...

  17. Control system for high power laser drilling workover and completion unit

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  18. Performance Analysis of a Hybrid Power Cutting System for Roadheader

    Yang Yang

    2017-01-01

    Full Text Available An electrohydraulic hybrid power cutting transmission system for roadheader under specific working condition was proposed in this paper. The overall model for the new system composed of an electric motor model, a hydraulic pump-motor model, a torsional planetary set model, and a hybrid power train model was established. The working mode characteristics were simulated under the conditions of taking the effect of cutting picks into account. The advantages of new hybrid power cutting system about the dynamic response under shock load were investigated compared with the traditional cutting system. The results illustrated that the hybrid power system had an obvious cushioning in terms of the dynamic load of cutting electric motor and planetary gear set. Besides, the hydraulic motor could provide an auxiliary power to improve the performance of the electric motor. With further analysis, a dynamic load was found to have a high relation to the stiffness and damping of coupling in the transmission train. The results could be a useful guide for the design of cutting transmission of roadheader.

  19. Wavy Channel architecture thin film transistor (TFT) using amorphous zinc oxide for high-performance and low-power semiconductor circuits

    Hanna, Amir; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2015-01-01

    We report a Wavy Channel (WC) architecture thin film transistor (TFT) for extended device width by integrating continuous vertical fin like features with lateral continuous plane in the substrate. For a WC TFT which has 50% larger device width, the enhancement in the output drive current is 100%, when compared to a conventional planar TFT consuming the same chip area. This current increase is attributed to both the extra width and enhanced field effect mobility due to corner effects. This shows the potential of WC architecture to boast circuit performance without the need for aggressive gate length scaling. © 2015 IEEE.

  20. Wavy Channel architecture thin film transistor (TFT) using amorphous zinc oxide for high-performance and low-power semiconductor circuits

    Hanna, Amir

    2015-08-12

    We report a Wavy Channel (WC) architecture thin film transistor (TFT) for extended device width by integrating continuous vertical fin like features with lateral continuous plane in the substrate. For a WC TFT which has 50% larger device width, the enhancement in the output drive current is 100%, when compared to a conventional planar TFT consuming the same chip area. This current increase is attributed to both the extra width and enhanced field effect mobility due to corner effects. This shows the potential of WC architecture to boast circuit performance without the need for aggressive gate length scaling. © 2015 IEEE.

  1. Reactor G1: high power experiments

    Laage, F. de; Teste du Baillet, A.; Veyssiere, A.; Wanner, G.

    1957-01-01

    The experiments carried out in the starting-up programme of the reactor G1 comprised a series of tests at high power, which allowed the following points to be studied: 1- Effect of poisoning by Xenon (absolute value, evolution). 2- Temperature coefficients of the uranium and graphite for a temperature distribution corresponding to heating by fission. 3- Effect of the pressure (due to the coiling system) on the reactivity. 4- Calibration of the security rods as a function of their position in the pile (1). 5- Temperature distribution of the graphite, the sheathing, the uranium and the air leaving the canals, in a pile running normally at high power. 6- Neutron flux distribution in a pile running normally at high power. 7- Determination of the power by nuclear and thermodynamic methods. These experiments have been carried out under two very different pile conditions. From the 1. to the 15. of August 1956, a series of power increases, followed by periods of stabilisation, were induced in a pile containing uranium only, in 457 canals, amounting to about 34 tons of fuel. A knowledge of the efficiency of the control rods in such a pile has made it possible to measure with good accuracy the principal effects at high temperatures, that is, to deal with points 1, 2, 3, 5. Flux charts giving information on the variations of the material Laplacian and extrapolation lengths in the reflector have been drawn up. Finally the thermodynamic power has been measured under good conditions, in spite of some installation difficulties. On September 16, the pile had its final charge of 100 tons. All the canals were loaded, 1,234 with uranium and 53 (i.e. exactly 4 per cent of the total number) with thorium uniformly distributed in a square lattice of 100 cm side. Since technical difficulties prevented the calibration of the control rods, the measurements were limited to the determination of the thermodynamic power and the temperature distributions (points 5 and 7). This report will

  2. Compact high-power terahertz radiation source

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  3. High power RF transmission line component development

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  4. High power RF transmission line component development

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  5. ISABELLE magnet power supply system performance analysis

    Edwards, R.J.

    1981-01-01

    The power supply system that will energize the superconducting magnets in the ISABELLE 400 x 400 GeV accelerator must supply various voltages and currents. The voltages for the correction winding range from ten to one hundred twenty-five volts unipolar and bipolar with current rating of 50 to 300 amperes. The main field winding requires voltages from 90V (at flattop) to 600V during maximum ramp rate or acceleration cycle. The power supplies are programmable over their full range of output current with a reproducibility error varying from +- 10 ppM to +- 400 ppM of full scale. Included within the reproducibility error are the long and short term stability requirements of the power supplies. The purpose of this paper is to define some of the design goals and outline the approach taken in reaching these goals

  6. High Average Power, High Energy Short Pulse Fiber Laser System

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  7. The performance of nuclear power plants

    1989-07-01

    A survey is presented of failures in the Dutch nuclear power plants Borssele (10) and Dodewaard (5) reported during the year 1988. This reporting takes place, since 1987, on the basis of the international failure-reporting system. This system is based on the 'Incident Reporting System' of the IAEA. During 1988 no failures did occur which made particular safety measurements necessary. Also these failures did not have any consequence for the environment. During all failures the reactor safety system of both power plants did operate well. (H.W.)

  8. High power rf component testing for the NLC

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  9. Experimental study on using a high-temperature superconducting inductor for power loss reduction in an active power filter

    Chao, C; To, H P; Grantham, C; Rahman, M F

    2006-01-01

    An active power filter improves the electric power quality through the compensation of harmonics in the power network. A current-source active power filter using a conventional copper inductor for its energy storage has a significant power loss. The loss in the copper inductor can be substantially reduced by using a high-temperature superconducting (HTS) inductor instead. Experiments have been conducted on a prototype current-source active power filter for studying the power loss reduction effect and harmonics compensation performance of the active power filter using a HTS inductor. Experimental results are analysed and discussed in this paper

  10. Advances in high-power rf amplifiers

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  11. High performance MEAs. Final report

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  12. High quality, high efficiency welding technology for nuclear power plants

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  13. The human performance evaluation system at Virginia Power

    Smith, R.G. III.

    1989-01-01

    The safe operation of nuclear power plants requires high standards of performance, extensive training, and responsive management. Despite a utility's best efforts, inappropriate human actions do occur. Although such inappropriate actions will occur, it is believed that such actions can be minimized and managed. The Federal Aviation Administration has a successful program administered by the National Aeronautics and Space Administration. This program is called the Aviation Safety Reporting System (ASRS). Established in 1975, it is anonymous and nonpunitive. A trial program for several utilities was developed by the Institute of Nuclear Power Operations which used a concept similar to the ASRS reporting process. Based on valuable lessons learned by Virginia Power during the pilot program, an effort was made in 1986 to formalize the Human Performance Evaluation System (HPES) to establish an ongoing problem-solving system for evaluating human performance. Currently, 34 domestic utilities and 3 international utilities voluntarily participate in the implementation of the HPES. Each participating utility has selected and trained personnel to evaluate events involving human error and provide corrective action recommendations to prevent recurrence. It is believed that the use of the HPES can lead to improved safety and operation availability

  14. Research and development into power reactor fuel performance

    Notley, M.J.F.

    1983-07-01

    The nuclear fuel in a power reactor must perform reliably during normal operation, and the consequences of abnormal events must be researched and assessed. The present highly reliable operation of the natural UO 2 in the CANDU power reactors has reduced the need for further work in this area; however a core of expertise must be retained for purposes such as training of new staff, retaining the capability of reacting to unforeseen circumstances, and participating in the commercial development of new ideas. The assessment of fuel performance during accidents requires research into many aspects of materials, fuel and fission product behaviour, and the consolidation of that knowledge into computer codes used to evaluate the consequences of any particular accident. This work is growing in scope, much is known from out-reactor work at temperatures up to about 1500 degreesC, but the need for in-reactor verification and investigation of higher-temperature accidents has necessitated the construction of a major new in-reactor test loop and the initiation of the associated out-reactor support programs. Since many of the programs on normal and accident-related performance are generic in nature, they will be applicable to advanced fuel cycles. Work will therefore be gradually transferred from the present, committed power reactor system to support the next generation of thorium-based reactor cycles

  15. High performance electromagnetic simulation tools

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  16. High power switches for ion induction linacs

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  17. High power switches for ion induction linacs

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  18. High power RF oscillator with Marx generators

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  19. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  20. High Performance Proactive Digital Forensics

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  1. High power passive μDMFC with low catalyst loading for small power generation

    Ahmad, M.M.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z.

    2010-01-01

    The main constraint for commercialization of micro direct methanol fuel cell (μDMFC) for small power generation is the performance of the fuel cell. In this study, a high power μDMFC with a power output of 56 mW and an active area of 4 cm 2 was successfully developed. The cell required low catalyst loading of 5 mg cm -2 and 0.5 mg cm -2 at the anode and cathode, respectively. Optimal design parameters for methanol concentration and catalyst loading were examined. Finally, long-term performance testing was performed and OCV curves are reported. The results obtained for this gives the highest power density at low catalyst loading as compare to other researchers in this area.

  2. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  3. Operation of Power Grids with High Penetration of Wind Power

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  4. Optical engineering for high power laser applications

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  5. Development of a high power femtosecond laser

    Neethling, PH

    2010-10-01

    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  6. Targets for high power neutral beams

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  7. Human performance improvement for nuclear power plants

    2005-01-01

    The IAEA assists NPP operating organizations to improve plant performance through a focus on human performance improvement in areas like organizational and leadership development, senior management decision making, organization and management of HPI programmes including tools needed for effective HPI implementation, safety culture enhancement, knowledge management, personnel selection and staffing, career development, training and development, work design, scheduling and conditions, procedure and other job-aid development and use, effective communications, human performance monitoring, motivation. Many NPP operating organizations in Member States, are not yet achieving the full potential of their NPP technology/equipment regarding safety, operational or economic performance due to human performance weaknesses. The IAEA's HPI (Human Performance Improvement) services provide a means for these organizations to efficiently and effectively learn from international experts and the experiences of others in improving plant performance through human performance improvements. NPP operating organizations can benefit from these services in a number of ways, including requesting a national project, participating in a regional project, or requesting an assist visit. The types of activities provided through these services include assistance in benchmarking practices of successful organizations, providing information exchange and reviews of current practices through assist missions, conducting workshops on focused human performance topics, evaluating current human performance methods, including assistance in implementing self assessment programmes and providing support to safety culture enhancement programmes based on self-assessment

  8. High power pulsed sources based on fiber amplifiers

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  9. The Power of Developmental Performance Appraisal

    Nasser Salim Alghanabousi

    2013-02-01

    Full Text Available Development of employee performance is a must that any organization should take into account to be a successful in achieving its goals. However, the tools of developing that performance are varying based on the type of the organization and the nature of the work performed. Performance appraisal is one of the effective tools that help the organization to measure the accomplishment of its goals, if implemented effectively. In education, it became evident that performance appraisal of educators is an essential element of the development of any educational institution. To make the performance appraisal fruitful, the development element should be dominant in the sense that other elements of the appraisal should serve the broad aim of the appraisal process. Therefore, a well-designed and comprehensive system is needed to cover all the aspects of appraisal process that include of the goals, criteria, instruments, and continuous support.

  10. RESURF power semiconductor devices - Performance and operating limits

    Ferrara, A.

    2016-01-01

    Power transmission is the transfer of energy from a generating source to a load which uses the energy to perform useful work. Since the end of the 19th century, electrical power transmission has replaced mechanical power transmission in all long distance applications. The alternating current (AC)

  11. RESURF power semiconductor devices: performance and operating limits

    Ferrara, A.

    2016-01-01

    Power transmission is the transfer of energy from a generating source to a load which uses the energy to perform useful work. Since the end of the 19th century, electrical power transmission has replaced mechanical power transmission in all long distance applications. The alternating current (AC)

  12. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...

  13. Performance concerns for high duty fuel cycle

    Esposito, V.J.; Gutierrez, J.E.

    1999-01-01

    One of the goals of the nuclear industry is to achieve economic performance such that nuclear power plants are competitive in a de-regulated market. The manner in which nuclear fuel is designed and operated lies at the heart of economic viability. In this sense reliability, operating flexibility and low costs are the three major requirements of the NPP today. The translation of these three requirements to the design is part of our work. The challenge today is to produce a fuel design which will operate with long operating cycles, high discharge burnup, power up-rating and while still maintaining all design and safety margins. European Fuel Group (EFG) understands that to achieve the required performance high duty/energy fuel designs are needed. The concerns for high duty design includes, among other items, core design methods, advanced Safety Analysis methodologies, performance models, advanced material and operational strategies. The operational aspects require the trade-off and evaluation of various parameters including coolant chemistry control, material corrosion, boiling duty, boron level impacts, etc. In this environment MAEF is the design that EFG is now offering based on ZIRLO alloy and a robust skeleton. This new design is able to achieve 70 GWd/tU and Lead Test Programs are being executed to demonstrate this capability. A number of performance issues which have been a concern with current designs have been resolved such as cladding corrosion and incomplete RCCA insertion (IRI). As the core duty becomes more aggressive other new issues need to be addressed such as Axial Offset Anomaly. These new issues are being addressed by combination of the new design in concert with advanced methodologies to meet the demanding needs of NPP. The ability and strategy to meet high duty core requirements, flexibility of operation and maintain acceptable balance of all technical issues is the discussion in this paper. (authors)

  14. Design and development of high voltage high power operational ...

    address this challenge, a) Designing a discrete power opamp with high .... the use of high-impedance feedback networks, thus minimizing their output loading ... Spice simulation is done for the circuit and results are given in figures 4a–c.

  15. Voltage generators of high voltage high power accelerators

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  16. High impact data visualization with Power View, Power Map, and Power BI

    Aspin, Adam

    2014-01-01

    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  17. High prices on electric power now again?

    Doorman, Gerard

    2003-01-01

    Deregulation of the electric power market has yielded low prices for the consumers throughout the 1990s. Consumption has now increased considerably, but little new production has been added. This results in high prices in dry years, but to understand this one must understand price formation in the Nordic spot market. The high prices are a powerful signal to the consumers to reduce consumption, but they are also a signal to the producers to seize any opportunity to increase production. However, the construction of new dams etc. stirs up the environmentalists. Ordinary consumers may protect themselves against high prices by signing fixed-price contracts. For those who can tolerate price fluctuations, spot prices are a better alternative than the standard contract with variable price

  18. High power gyrotrons: a close perspective

    Kartikeyan, M.V.

    2012-01-01

    Gyrotrons and their variants, popularly known as gyrodevices are millimetric wave sources provide very high powers ranging from long pulse to continuous wave (CW) for various technological, scientific and industrial applications. From their conception (monotron-version) in the late fifties until their successful development for various applications, these devices have come a long way technologically and made an irreversible impact on both users and developers. The possible applications of high power millimeter and sub-millimeter waves from gyrotrons and their variants (gyro-devices) span a wide range of technologies. The plasma physics community has already taken advantage of the recent advances of gyrotrons in the areas of RF plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (LHCD) (8 GHz), electron cyclotron resonance heating (ECRH) (28-170-220 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering (CTS), heat-wave propagation experiments, and space-power grid (SPG) applications. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for the generation of multi- charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high frequency, broadband electron paramagnetic resonance (EPR) spectroscopy. Additional future applications await the development of novel high power gyro-amplifiers and devices for high resolution radar ranging and imaging in atmospheric and planetary science as well as deep space and specialized satellite communications, RF drivers for next generation high gradient linear accelerators (supercolliders), high resolution Doppler radar, radar ranging and imaging in atmospheric and planetary science, drivers for next-generation high-gradient linear accelerators

  19. Pulsed power performance of PBFA Z

    Spielman, R.B.; Stygar, W.A.; Seamen, J.F.

    1997-01-01

    PBFA Z is a new 60-TW/5-MJ electrical driver located at Sandia National Laboratories. The authors use PBFA Z to drive z pinches. The pulsed power design of PBFA Z is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn and PBFA II accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 60-TW/105-ns pulse to the output water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, the authors attain peak currents of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV/cm. The current from the four independent conical-disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The authors achieved x-ray powers of 200 TW and x-ray energies of 1.9 MJ from tungsten wire-array z-pinch loads

  20. High power VCSELs for miniature optical sensors

    Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason

    2010-02-01

    Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.

  1. Long term energy performance analysis of Egbin thermal power ...

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  2. Nova performance at ultra high fluence levels

    Hunt, J.T.

    1986-01-01

    Nova is a ten beam high power Nd:glass laser used for interial confinement fusion research. It was operated in the high power high energy regime following the completion of construction in December 1984. During this period several interesting nonlinear optical phenomena were observed. These phenomena are discussed in the text. 11 refs., 5 figs

  3. A high-power laser system for thermonuclear fusion experiments

    Azizov, Eh.A.; Ignat'ev, L.P.; Koval'skij, N.G.; Kolesnikov, Yu.A.; Mamzer, A.F.; Pergament, M.I.; Rudnitskij, Yu.P.; Smirnov, G.V.; Yagnov, V.A.; Nikolaevskij, V.G.

    1976-01-01

    A high-power laser system has been designed for an energy output of approximately 3X10 4 J. Neodymium glass was selected based on the level of technical progress, operating experience and the availability of components. The operating performance that has been achieved to date is described. (author)

  4. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  5. Micromagnetics on high-performance workstation and mobile computational platforms

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  6. Optical Thermal Characterization Enables High-Performance Electronics Applications

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  7. High power and high energy electrodes using carbon nanotubes

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  8. Development of high performance cladding

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  9. Advancements of ultra-high peak power laser diode arrays

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  10. High volumetric power density, non-enzymatic, glucose fuel cells.

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  11. Pulsed power drivers for ICF and high energy density physics

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  12. High speed micromachining with high power UV laser

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  13. New high power linacs and beam physics

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-01-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design

  14. The high-power iodine laser

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  15. Industrial Applications of High Power Ultrasonics

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  16. Power Supplies for High Energy Particle Accelerators

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  17. Performance parameters of electric power distribution

    Schilling, M.Th.; Lima, J.W.M.

    1992-01-01

    The aspects referring to the evaluation of distribution system reliability are presented: consumers, companies and regulator institutes. The different strategies for fixing of probabilistic criterions of performance are mentioned, including the economic valorization of continuity restriction of electric supply. (C.G.C.)

  18. High stability, high current DC-power supplies

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  19. Low Cost, Low Power, High Sensitivity Magnetometer

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  20. Gate Drive For High Speed, High Power IGBTs

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  1. Gate Drive For High Speed, High Power IGBTs

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; SLAC

    2007-01-01

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3(micro)S with a rate of current rise of more than 10000A/(micro)S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt

  2. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  3. Nuclear Power Plant Performance: Ascending The Summit

    Anderson, T. M.

    1986-01-01

    When we look back over the years and consider the progress we have made in improving nuclear plant performance, I'm sure that many of you must feel the same mixture of elation and apprehension the mountain climber feels when he finally confronts his summit. In the curse of the last 10 years, many of US have watched availability averages rise from 50% to 60%, to 65% -- and recently, to 70%, 80% and beyond. Yet, as impressive an accomplishment as that is, there comes, I think, a growing realization that the steady increases we have achieved up to now may, in fact, have been the easy part of the journey, the trek from base camp -- and that within a very small handful of years, we may find ourselves pushing plant performance right to the limit, only to discover that it is pushing back

  4. High-power CO laser and its potential applications

    Sato, Shunichi; Takahashi, Kunimitsu; Shimamoto, Kojiro; Takashima, Yoichi; Matsuda, Keiichi; Kuribayashi, Shizuma; Noda, Osamu; Imatake, Shigenori; Kondo, Motoe.

    1995-01-01

    The R and D program for the development of a high-power CO laser and its application technologies is described. Based on a self-sustained discharge excitation scheme, the available laser output has been successfully scaled to over 20 kW. The CO laser cutting experiments for thick metals have been performed in association with the decommissioning technologies development. Other potential applications, which include those based on photo chemical process, are reviewed. Recently demonstrated high-power tunable operation and room-temperature operation are also reported. (author)

  5. Development and advances in conventional high power RF systems

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  6. High-power planar dielectric waveguide lasers

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  7. Reactor shutdown: nuclear power plant performance

    Anon.

    1982-01-01

    The article essentially looks at the performance of nine of Sweden's nuclear reactors. A table lists the percentage of time for the first three quarters of 1981 that the reactors were operating, and the number of hours out of service for planned or other reasons. In particular, one station - Ringhals 3 - was out of action because of a damaged tube in the associated steam generator. The same fault occurred with another reactor - Ringhals 4 - before this was brought into service. The reasons for the failure and its importance are briefly discussed. (G.P.)

  8. High Energy Density Sciences with High Power Lasers at SACLA

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  9. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  10. High performance visual display for HENP detectors

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  11. High-power LEDs for plant cultivation

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  12. High-power fiber lasers for photocathode electron injectors

    Zhi Zhao

    2014-05-01

    Full Text Available Many new applications for electron accelerators require high-brightness, high-average power beams, and most rely on photocathode-based electron injectors as a source of electrons. To achieve such a photoinjector, one requires both a high-power laser system to produce the high average current beam, and also a system at reduced repetition rate for electron beam diagnostics to verify high beam brightness. Here we report on two fiber laser systems designed to meet these specific needs, at 50 MHz and 1.3 GHz repetition rate, together with pulse pickers, second harmonic generation, spatiotemporal beam shaping, intensity feedback, and laser beam transport. The performance and flexibility of these laser systems have allowed us to demonstrate electron beam with both low emittance and high average current for the Cornell energy recovery linac.

  13. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  14. Industrial Applications of High Average Power FELS

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  15. Industrial application of high power disk lasers

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  16. High-field, high-density tokamak power reactor

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  17. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  18. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  19. High-Performance Wireless Telemetry

    Griebeler, Elmer; Nawash, Nuha; Buckley, James

    2011-01-01

    Prior technology for machinery data acquisition used slip rings, FM radio communication, or non-real-time digital communication. Slip rings are often noisy, require much space that may not be available, and require access to the shaft, which may not be possible. FM radio is not accurate or stable, and is limited in the number of channels, often with channel crosstalk, and intermittent as the shaft rotates. Non-real-time digital communication is very popular, but complex, with long development time, and objections from users who need continuous waveforms from many channels. This innovation extends the amount of information conveyed from a rotating machine to a data acquisition system while keeping the development time short and keeping the rotating electronics simple, compact, stable, and rugged. The data are all real time. The product of the number of channels, times the bit resolution, times the update rate, gives a data rate higher than available by older methods. The telemetry system consists of a data-receiving rack that supplies magnetically coupled power to a rotating instrument amplifier ring in the machine being monitored. The ring digitizes the data and magnetically couples the data back to the rack, where it is made available. The transformer is generally a ring positioned around the axis of rotation with one side of the transformer free to rotate and the other side held stationary. The windings are laid in the ring; this gives the data immunity to any rotation that may occur. A medium-frequency sine-wave power source in a rack supplies power through a cable to a rotating ring transformer that passes the power on to a rotating set of electronics. The electronics power a set of up to 40 sensors and provides instrument amplifiers for the sensors. The outputs from the amplifiers are filtered and multiplexed into a serial ADC. The output from the ADC is connected to another rotating ring transformer that conveys the serial data from the rotating section to

  20. A High Performance COTS Based Computer Architecture

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  1. Application of high power microwave vacuum electron devices

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  2. When does power disparity help or hurt group performance?

    Tarakci, Murat; Greer, Lindred L; Groenen, Patrick J F

    2016-03-01

    Power differences are ubiquitous in social settings. However, the question of whether groups with higher or lower power disparity achieve better performance has thus far received conflicting answers. To address this issue, we identify 3 underlying assumptions in the literature that may have led to these divergent findings, including a myopic focus on static hierarchies, an assumption that those at the top of hierarchies are competent at group tasks, and an assumption that equality is not possible. We employ a multimethod set of studies to examine these assumptions and to understand when power disparity will help or harm group performance. First, our agent-based simulation analyses show that by unpacking these common implicit assumptions in power research, we can explain earlier disparate findings--power disparity benefits group performance when it is dynamically aligned with the power holder's task competence, and harms group performance when held constant and/or is not aligned with task competence. Second, our empirical findings in both a field study of fraud investigation groups and a multiround laboratory study corroborate the simulation results. We thereby contribute to research on power by highlighting a dynamic understanding of power in groups and explaining how current implicit assumptions may lead to opposing findings. (c) 2016 APA, all rights reserved).

  3. Performance of PWR Nuclear power plants, up to 1985

    Muniz, A.A.

    1987-01-01

    The performance of PWR nuclear power plants is studied, based on operational data up to 1985. The availability analysis was made with 793 unit-year and the reliability analysis was made with 5851 unit x month. The results were discussed and the availability of those nuclear power plants were estimated. (E.G.) [pt

  4. High performance current controller for particle accelerator magnets supply

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  5. Novel miniature high power ring filter

    Huang Huifen; Mao Junfa; Luo Zhihua

    2005-01-01

    The power handling capability of high temperature superconducting (HTS) filters is limited due to current concentration at the edges of the superconducting films. This problem can be overcome by using ring resonator, which employs the edge current free and reduces the current concentration. However, this kind of filter has large size. In order to reduce the cost and size and increase the power handling capability, in this paper a HTS photonic bandgap (PBG) structure filter is developed. The proposed pass band filter with PBG structure exhibits center frequency 12.23 GHz, steepness (about 35 dB/GHz), bandwidth (-3 dB bandwidth is 0.045 GHz), and low insertion loss (about -0.5 dB), and can handle input power up to 1 W (this value was limited by the measurement instrument used in the experiment). The size is reduced by 25%, insertion loss reduced by 37.5%, and steeper roll-off of the filter is also obtained compared with that in published literature

  6. High Performance Work System, HRD Climate and Organisational Performance: An Empirical Study

    Muduli, Ashutosh

    2015-01-01

    Purpose: This paper aims to study the relationship between high-performance work system (HPWS) and organizational performance and to examine the role of human resource development (HRD) Climate in mediating the relationship between HPWS and the organizational performance in the context of the power sector of India. Design/methodology/approach: The…

  7. High-power converters and AC drives

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  8. Compulsator, a high power compensated pulsed alternator

    Weldon, W.F.; Bird, W.L.; Driga, M.D.; Rylander, H.G.; Tolk, K.M.; Woodson, H.H.

    1983-01-01

    This chapter describes a pulsed power supply utilizing inertial energy storage as a possible replacement for large capacitor banks. The compulsator overcomes many of the limitations of the pulsed homopolar generators previously developed by the Center for Electromechanics and elsewhere in that it offers high voltage (10's of kV) and consequently higher pulse rise times, is self commutating, and offers the possibility of generating repetitive pulses. The compulsator converts rotational inertial energy directly into electrical energy utilizing the principles of both magnetic induction and flux compression. The theory of operation, a prototype compulsator design, and advanced compulsator designs are discussed

  9. Cost optimisation studies of high power accelerators

    McAdams, R.; Nightingale, M.P.S.; Godden, D. [AEA Technology, Oxon (United Kingdom)] [and others

    1995-10-01

    Cost optimisation studies are carried out for an accelerator based neutron source consisting of a series of linear accelerators. The characteristics of the lowest cost design for a given beam current and energy machine such as power and length are found to depend on the lifetime envisaged for it. For a fixed neutron yield it is preferable to have a low current, high energy machine. The benefits of superconducting technology are also investigated. A Separated Orbit Cyclotron (SOC) has the potential to reduce capital and operating costs and intial estimates for the transverse and longitudinal current limits of such machines are made.

  10. Nuclear power performance and safety. V.5. Nuclear fuel cycle

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. Policy decisions for waste management have already been taken in many countries and the 1990s should be a period of demonstration and implementation of these policies. As ilustrated by data presented from a number of countries, many years of experience in radioactive waste management have been achieved and the technology exists to implement the national plans and policies that have been developed. The establishment of criteria, the development of safety performance methodology and site investigation work are key activities essential to the successful selection, characterization and construction of geological repositories for the final disposal of radioactive waste. Considerable work has been done in these areas over the last ten years and will continue into the 1990s. However, countries that are considering geological disposal for high level waste now recognize the need for relating the technical aspects to public understanding and acceptance of the concept and decision making activities. The real challenge for the 1990s in waste disposal will be successfully to integrate technological activities within a process which responds to institutional and public concern. Volume 5 of the Proceedings comprehends the contributions on waste management in the 1990s. Decontamination and decommissioning, waste management, treatment and disposal, nuclear fuel cycle - present and future. Enrichment services and advanced reactor fuels, improvements in reactor fuel utilization and performance, spent fuel management

  11. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...... scenarios. In this paper, plug’n’play modules and cycle control are discussed and validated through experimental results. Moreover, potential zero sequence circulating current impact on power semiconductor devices thermal performance is also analyzed in this paper....

  12. Good practices for improved nuclear power plant performance

    1989-04-01

    This report provides an overview of operational principles, practice and improvements which have contributed to good performance of eight selected world nuclear power stations. The IAEA Power Reactor Information System (PRIS) was used to identify a population of good performers. It is recognized that there are many other good performing nuclear power stations not included in this report. Specific criteria described in the introduction were used in selecting these eight stations. The information contained in this report was obtained by the staff from IAEA, Division of Nuclear Power. This was accomplished by visits to the stations and visits to a number of utility support groups and three independent organizations which provide support to more than one utility. The information in this report is intended as an aid for operating organizations to identify possible improvement initiatives to enhance plant performance. Figs and tabs

  13. High power nickel - cadmium cells with fiber electrodes (FNC)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  14. Advanced digital technology - improving nuclear power plant performance through maintainability

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  15. An adaptive crystal bender for high power synchrotron radiation beams

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  16. Trading Relationship Performance and Market Power in Food Supply Chains

    Xhoxhi, Orjon

    The development of the agri-food industry has led to a considerable increase of intermediaries’ market power vis-à-vis farmers. There are studies and evidence that suggests that due to their power, intermediaries transfer risks and unexpected costs to farmers which compromise the innovation...... and livelihood. The overall objective of this PhD study was to investigate the intermediaries’ power over farmers and its effects on trading relationship performance between them. Two farms survey were conducted, the first one was carried out in the Adana region in Turkey and had an explorative focus aiming......), investigate how intermediaries’ power affects farmers-intermediaries trading relationship performance (paper 3) and analyse the determinants of contract farming and its effects on post-harvest losses (paper 4). The first paper investigates the determinants of intermediaries’ power over farmers’ margin related...

  17. Solar power plant performance evaluation: simulation and experimental validation

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  18. Solar power plant performance evaluation: simulation and experimental validation

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  19. Learning Apache Solr high performance

    Mohan, Surendra

    2014-01-01

    This book is an easy-to-follow guide, full of hands-on, real-world examples. Each topic is explained and demonstrated in a specific and user-friendly flow, from search optimization using Solr to Deployment of Zookeeper applications. This book is ideal for Apache Solr developers and want to learn different techniques to optimize Solr performance with utmost efficiency, along with effectively troubleshooting the problems that usually occur while trying to boost performance. Familiarity with search servers and database querying is expected.

  20. High-performance composite chocolate

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-07-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with the material selection process. In a competition-based practical, first-year undergraduate students design, cost and cast composite chocolate samples to maximize a particular performance criterion. The same activity could be adapted for any level of education to introduce the subject of materials properties and their effects on the material chosen for specific applications.

  1. High-power density miniscale power generation and energy harvesting systems

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  2. High-power density miniscale power generation and energy harvesting systems

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  3. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  4. Workshop on high power ICH antenna designs for high density tokamaks

    Aamodt, R.E.

    1990-01-01

    A workshop in high power ICH antenna designs for high density tokamaks was held in Boulder, Colorado on January 31 through February 2, 1990. The purposes of the workshop were to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of rf auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made

  5. Bayesian calibration of power plant models for accurate performance prediction

    Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der

    2014-01-01

    Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions

  6. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  7. Fault analysis and strategy of high pulsed power supply for high power laser

    Liu Kefu; Qin Shihong; Li Jin; Pan Yuan; Yao Zonggan; Zheng Wanguo; Guo Liangfu; Zhou Peizhang; Li Yizheng; Chen Dehuai

    2001-01-01

    according to the requirements of driving flash-lamp, a high pulsed power supply (PPS) based on capacitors as energy storage elements is designed. The author analyzes in detail the faults of high pulsed power supply for high power laser. Such as capacitor internal short-circuit, main bus breakdown to ground, flashlamp sudden short or break. The fault current and voltage waveforms were given by circuit simulations. Based on the analysis and computation, the protection strategy with the fast fuse and ZnO was put forward, which can reduce the damage of PPS to the lower extent and provide the personnel safe and collateral property from the all threats. The preliminary experiments demonstrated that the design of the PPS can satisfy the project requirements

  8. High-Performance Composite Chocolate

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  9. Toward High-Performance Organizations.

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  10. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  11. A novel power source for high-precision, highly efficient micro w-EDM

    Chen, Shun-Tong; Chen, Chi-Hung

    2015-01-01

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  12. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  13. DOE research in utilization of high-performance computers

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  14. Functional High Performance Financial IT

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT......The world of finance faces the computational performance challenge of massively expanding data volumes, extreme response time requirements, and compute-intensive complex (risk) analyses. Simultaneously, new international regulatory rules require considerably more transparency and external...... auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...

  15. High performance Mo adsorbent PZC

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  16. Coated Porous Si for High Performance On-Chip Supercapacitors

    Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.

    2014-11-01

    High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.

  17. Risk-based safety performance indicators for nuclear power plants

    Chakraborty, S.; Prohaska, G.; Flodin, Y.; Grint, G.; Habermacher, H.; Hallman, A.; Isasia, R.; Melendez, E.; Verduras, E.; Karsa, Z.; Khatib-Rahbar, M.; Koeberlein, K.; Schwaeger, C.; Matahri, N.; Moravcik, I.; Tkac, M.; Preston, J.

    2003-01-01

    In a Concerted Action (CA), sponsored by the European Commission within its 5th Framework Program, a consortium of eleven partners from eight countries has reviewed and evaluated the application of Safety Performance Indicators (SPIs), which - in combination with other tools - can be used to monitor and improve the safety of nuclear power plants. The project was aimed at identification of methods that can be used in a risk-informed regulatory system and environment, and to exploit PSA techniques for the development and use of meaningful additional/alternative SPIs. The CA included the review of existing indicator systems, and the collection of information on the experience from indicator systems by means of a specific questionnaire. One of the most important and challenging issues for nuclear plant owners and/or regulators is to recognize early signs of deterioration in safety performance, caused by influences from management, organization and safety culture (MOSC), before actual events and/or mishaps take place. Most of the existing SPIs as proposed by various organizations are considered as 'lagging' indicators, that is, they are expected to show an impact only when a downward trend has already started. Furthermore, most of the available indicators are at a relatively high level, such that they will not provide useful information on fundamental weaknesses causing the problem in the first place. Regulators' and utilities' views on the use of a Safety Performance Indicator System have also been a part of the development of the CA. (author)

  18. High power density superconducting motor for control applications

    Lopez, J; Granados, X; Lloberas, J; Torres, R; Grau, J; Maynou, R; Bosch, R

    2008-01-01

    A high dynamics superconducting low power motor for control applications has been considered for design. The rotor is cylindrical with machined bulks that generate the field by trapping flux in a four poles configuration. The toothless iron armature is wound by copper, acting iron only as magnetic screen. Details of the magnetic assembling, cryogenics and electrical supply conditioning will be reported. Improvements due to the use of a superconducting set are compared with performances of equivalent conventional motors

  19. Thermodynamic performance optimization of a combined power/cooling cycle

    Pouraghaie, M.; Atashkari, K.; Besarati, S.M.; Nariman-zadeh, N.

    2010-01-01

    A combined thermal power and cooling cycle has already been proposed in which thermal energy is used to produce work and to generate a sub-ambient temperature stream that is suitable for cooling applications. The cycle uses ammonia-water mixture as working fluid and is a combination of a Rankine cycle and absorption cycle. The very high ammonia vapor concentration, exiting turbine under certain operating conditions, can provide power output as well as refrigeration. In this paper, the goal is to employ multi-objective algorithms for Pareto approach optimization of thermodynamic performance of the cycle. It has been carried out by varying the selected design variables, namely, turbine inlet pressure (P h ), superheater temperature (T superheat ) and condenser temperature (T condensor ). The important conflicting thermodynamic objective functions that have been considered in this study are turbine work (w T ), cooling capacity (q cool ) and thermal efficiency (η th ) of the cycle. It is shown that some interesting and important relationships among optimal objective functions and decision variables involved in the combined cycle can be discovered consequently. Such important relationships as useful optimal design principles would have not been obtained without the use of a multi-objective optimization approach.

  20. High average power diode pumped solid state lasers for CALIOPE

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers