WorldWideScience

Sample records for high power load

  1. High power passive μDMFC with low catalyst loading for small power generation

    International Nuclear Information System (INIS)

    Ahmad, M.M.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z.

    2010-01-01

    The main constraint for commercialization of micro direct methanol fuel cell (μDMFC) for small power generation is the performance of the fuel cell. In this study, a high power μDMFC with a power output of 56 mW and an active area of 4 cm 2 was successfully developed. The cell required low catalyst loading of 5 mg cm -2 and 0.5 mg cm -2 at the anode and cathode, respectively. Optimal design parameters for methanol concentration and catalyst loading were examined. Finally, long-term performance testing was performed and OCV curves are reported. The results obtained for this gives the highest power density at low catalyst loading as compare to other researchers in this area.

  2. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  3. Wireless power charging using point of load controlled high frequency power converters

    Science.gov (United States)

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  4. High power RF performance test of an improved SiC load

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  5. The impact of hybrid energy storage on power quality, when high power pulsed DC loads are operated on a microgrid testbed

    Science.gov (United States)

    Kelley, Jay Paul

    As the Navy's demands for high power transient loads evolves, so too does the need for alternative energy sources to back-up the more traditional power generation. Such applications in need of support include electrical grid backup and directed energy weapon systems such as electromagnetic launchers, laser systems, and high power microwave generators, among others. Among the alternative generation sources receiving considerable attention are energy storage devices such as rechargeable electrochemical batteries and capacitors. In such applications as those mentioned above, these energy storage devices offer the ability to serve a dual role as both a power source to the various loads as well high power loads themselves to the continual generation when the high power transient loads are in periods of downtime. With the recent developments in electrochemical energy storage, lithium-ion batteries (LIBs) seem like the obvious choice, but previous research has shown that the elevated rates of charging can be detrimental to both the cycle life and the operational life span of the device. In order to preserve the batteries, their charge rate must be limited. One proposed method to accomplish the dual role task mentioned above, while preserving the life of the batteries, is by combining high energy density LIBs with high power density electric double layer capacitors (EDLCs) or lithium-ion capacitors (LICs) using controllable power electronics to adjust the flow of power to and from each device. Such a configuration is typically referred to as hybrid energy storage module (HESM). While shipboard generators start up, the combined high energy density and high power density of the HESM provides the capability to source critical loads for an extended period of time at the high rates they demand. Once the generator is operationally efficient, the HESM can act as a high energy reservoir to harvest the energy from the generator while the loads are in short periods of inactivity

  6. A 2-megawatt load for testing high voltage DC power supplies

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.; Primdahl, K.

    1993-01-01

    A high power water-cooled resistive load, capable of dissipating 2 Megawatts at 95 kilovolts is being designed and built. The load utilizes wirewound resistor elements suspended inside insulating tubing contained within a pressure vessel which is supplied a continuous flow of deionized water for coolant. A sub-system of the load is composed of non-inductive resistor elements in an oil tank. Power tests conducted on various resistor types indicate that dissipation levels as high as 22 times the rated dissipation in air can be achieved when the resistors are placed in a turbulent water flow of at least 15 gallons per minute. Using this data, the load was designed using 100 resistor elements in a series arrangement. A single-wall 316 stainless steel pressure vessel with flanged torispherical heads is built to contain the resistor assembly and deionized water. The resistors are suspended within G-11 tubing which span the cylindrical length of the vessel. These tubes are supported by G-10 baffles which also increase convection from the tubes by promoting turbulence within the surrounding water

  7. Advances in High Power Calorimetric Matched Loads for Short Pulses and CW Gyrotrons

    International Nuclear Information System (INIS)

    Bin, W.M.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Sozzi, C.; Spinicchia, N.

    2006-01-01

    The development of high power gyrotrons for plasma physics research needs proper matched and calorimetric loads able to absorb and measure the power, which nowadays is foreseen to be as high as 2 MW during CW operations. To this end IFP/CNR has developed a family of matched loads useful in the mm-wave frequency band for applications ranging from a few ms to CW in pulse length. The different loads in the family, made of an integrating sphere with a partially reflecting coating on the inner wall, are characterized by having the same absorbing geometry for the incoming beam and a different heat removal system for the specific application. Some important advances have been recently achieved from the point of view of the uniformity of power distribution on the absorbing wall and of the load construction. With high precision achieved in the coating thickness a better control of the heating power distribution is possible by proper shaping of the local reflectivity, in addition to the shaping of the mirror dispersing the input beam. A more sophisticated model describing the power distribution has been developed, taking into account a variable thickness of the absorbing coating, the proper shape of the spreading mirror, the frequency of the incoming radiation and the shape of the input beam. Lower coating thickness is shown to be preferable, at equal local reflectivity, from the point of view of a lower peak temperature and thermal stress. The paper describes a load with variable coating thickness along the meridian of the sphere, showing a uniform power deposition on the inner walls. The cooling pipe is completely electroformed on the spherical copper shell, ensuring the maintenance of the correct curvature of the inner surface and a fast heat conduction from the absorbing coating to the water through the thin copper body. For CW use all heated parts of the load must be cooled and this is achieved by 16 electroformed spiral channels. Both short pulse loads (0.1-1 s) and

  8. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    Science.gov (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  9. Impact Study on Power Factor of Electrical Load in Power Distribution System

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawardi Hasim; Ahmad Asraf, A.S.

    2014-01-01

    Low Power Factor of electrical loads cause high current is drawn from power supply. The impact of this circumstance is influenced by impedance of electrical load. Therefore, the key consideration of this study is how impedance of electrical loads influence power factor of electrical loads, and then power distribution as the whole. This study is important to evaluate the right action to mitigate low power factor effectively for electrical energy efficiency purpose. (author)

  10. Low reflectance high power RF load

    Science.gov (United States)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  11. Power quality improvement in highly varying loads using thyristor-switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Poshtan, M. [Petroleum Inst., Abu Dhabi (United Arab Emirates). Dept. of Electrical Engineering; Mokhtari, H.; Esmaeili, A. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering

    2007-07-01

    Ordinary contactor-based-capacitor (CBC) banks may not be able to response quickly enough in highly varying electrical loads such as welding machines or arc furnace loads. Thyristor-switched capacitor (TSC) banks are therefore used to compensate for reactive power of highly varying loads. In this paper, the performance of a TSC was compared to CBC banks. The 2 systems, were also compared in terms of energy saving in transmission systems. Simulations carried out using PSCAD/EMTDC software showed that there was a considerable difference in the performance of the 2 systems. The shortcomings of existing CBC systems include slow response of mechanical switching systems; problem of switching more than one bank into the system; and, voltage/current transients during on-off switching. 3 refs., 6 tabs., 14 figs.

  12. Absorbing coatings for high power millimeter-wave devices and matched loads

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Bruschi, A.; Cirant, S. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Muzzini, V. [Istituto di Biologia Agro-ambientale e Forestale, Consiglio Nazionale delle Ricerche, Area di Ricerca di Roma 1, Monterotondo, Rome (Italy); Simonetto, A.; Spinicchia, N. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Angella, G. [Istituto per l’Energetica e le Interfasi, Consiglio Nazionale delle Ricerche, Milano (Italy); Dell’Era, F. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Gantenbein, G.; Leonhardt, W. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Nardone, A. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Samartsev, A.; Schmid, M. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2013-10-15

    Highlights: ► An overview of the activity at IFP-CNR concerning the absorbing coatings is presented. ► The application of the absorbing ceramics to the IFP-CNR matched loads is described. ► B{sub 4}C is presented as a promising material for power absorption in the EC frequency range. ► The most important high power validation tests performed on coatings are described. ► Some results from simulations of the absorption capability of a double layer coating are shown. -- Abstract: In the electron cyclotron frequency range the handling of high power is critical. In some cases an unpredictable amount of stray radiation can reach some components or accumulate in localized regions, with risk of damages caused by thermal overloads, and any uncontrolled reflection represents a danger for the sources. A possibility to mitigate the problem consists in covering some regions exposed to radiation with absorbers. Enhanced absorption of stray radiation lowers requirements on active protection systems in microwave diagnostics. The released heat can be extracted by dedicated cooling systems. The chromium oxide (Cr{sub 2}O{sub 3}), largely tested at IFP-CNR, has been routinely used as internal coating for matched loads. The performances of a variable thickness coating has been tested at high power at Karlsruhe Institute of Technology (KIT), with a 140 GHz gyrotron of the W7-X ECRH system and an averaged power density absorbed at the coating surface higher than 1 MW/m{sup 2} for 3 min. Also boron carbide (B{sub 4}C) has been tested at low power and patented as a millimeter-wave absorber. In the paper, the results of some tests performed on these coatings are given, together with some simulations of the absorption capability based on low power measurements on samples. Finally, some calculations are presented for a coating obtained combining together Cr{sub 2}O{sub 3} and B{sub 4}C.

  13. High power testing oa ANL X-band dielectric-loaded accelerating structures

    International Nuclear Information System (INIS)

    Power, J. G.; Gai, W.; Jing, C.; Konecny, R.; Gold, S. H.; Kinkead, A. K.

    2002-01-01

    In the second phase of a program to develop a compact accelerator based on a dielectric-loaded accelerating structure, we have conducted high power tests on a traveling-wave and a standing-wave prototype. Indications are that the traveling-wave structure achieved an accelerating gradient of 3-5 MV/m before the input coupling window failed, while the standing wave structure was poorly matched at high power due to contamination of copper residue on its coupling window. To solve both of these problems, a new method for coupling RF into the structures has been developed. The new couplers and the rest of the modular structure are currently under construction and will be tested at the Naval Research Laboratory shortly

  14. Power load prediction based on GM (1,1)

    Science.gov (United States)

    Wu, Di

    2017-05-01

    Currently, Chinese power load prediction is highly focused; the paper deeply studies grey prediction and applies it to Chinese electricity consumption during the recent 14 years; through after-test test, it obtains grey prediction which has good adaptability to medium and long-term power load.

  15. Load power device, system and method of load control and management employing load identification

    Science.gov (United States)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    2018-01-09

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  16. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2011-01-01

    The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive...... Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...

  17. Implementation and Assessment of a Decentralized Load Frequency Control: Application to Power Systems with High Wind Energy Penetration

    Directory of Open Access Journals (Sweden)

    Irene Muñoz-Benavente

    2017-01-01

    Full Text Available This paper describes and assesses a decentralized solution based on a wireless sensor-actuator network to provide primary frequency control from demand response in power systems with high wind energy penetration and, subsequently, with relevant frequency excursions. The proposed system is able to modify the electrical power demand of a variety of thermostatically-controlled loads, maintaining minimum comfort levels and minimizing both infrastructure requirements and primary reserves from the supply side. This low-cost hardware solution avoids any additional wiring, extending the wireless sensor-actuator network technology towards small customers, which account for over a 30% share of the current power demand. Frequency excursions are collected by each individual load controller, considering not only the magnitude of the frequency deviation, but also their evolution over time. Based on these time-frequency excursion characteristics, controllers are capable of modifying the power consumption of thermostatically-controlled loads by switching them off and on, thus contributing to primary frequency control in power systems with higher generation unit oscillations as a consequence of relevant wind power integration. Field tests have been carried out in a laboratory environment to assess the load controller performance, as well as to evaluate the electrical and thermal response of individual loads under frequency deviations. These frequency deviations are estimated from power systems with a high penetration of wind energy, which are more sensitive to frequency oscillations and where demand response can significantly contribute to mitigate these frequency excursions. The results, also included in the paper, evaluate the suitability of the proposed load controllers and their suitability to decrease frequency excursions from the demand side in a decentralized manner.

  18. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  19. Performance of a 2-megawatt high voltage test load

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.

    1995-01-01

    A high-power, water-cooled resistive load which simulates the electrical load characteristics of a high-power klystron, capable of 2 megawatts dissipation at 95 kV DC, was built and installed at the Advanced Photon Source for use in load-testing high voltage power supplies. During this testing, the test load has logged approximately 35 hours of operation at power levels in excess of one mezawatt. Slight variations in the resistance of the load during operation indicate that leakage currents in the cooling water may be a significant factor affecting the performance of the load. Sufficient performance data have been collected to indicate that leakage current through the deionized (DI) water coolant shunts roughly 15 percent of the full-load current around the load resistor elements. The leakage current could cause deterioration of internal components of the load. The load pressure vessel was disassembled and inspected internally for any signs of significant wear and distress. Results of this inspection and possible modifications for improved performance will be discussed

  20. LOW-POWER AC LOADS AND ELECTRICAL POWER QUALITY

    Directory of Open Access Journals (Sweden)

    EPURE S.

    2016-12-01

    Full Text Available This paper deals with experimental study and numerical simulation of single phase AC low power loads: artificial light sources, personal computers, refrigeration units, air conditioning units and TV receivers. These loads are in such large numbers that represents the main source of disturbances (harmonic current, reactive power and unbalanced three-phase network. The obtained simulation models, verified by comparison with experimental results may be used in larger simulation models for testing and sizing the optimum parameters of active power filters. Models can also be used to study the interactions between grid elements and various loads or situations.

  1. Experience with high percent step load decrease from full power in NPP Krsko

    International Nuclear Information System (INIS)

    Vukovic, V.

    2000-01-01

    The control system of NPP Kriko, is designed to automatically control the reactor in the power range between 15 and 100 percent of rated power for the following designed transients; - 10 percent step change in load; 5 percent per minute loading and unloading; step full load decrease with the aid of automatically initiated and controlled steam dump. Because station operation below 15 percent of rated power is designed for a period of time during startup or standby conditions, automatic control below 15 percent is not provided. The steam dump accomplishes the following functional tasks: it permits the nuclear plants to accept a sudden 95 percent loss of load without incurring reactor trip; it removes stored energy and residual heat following a reactor trip and brings the plant to equilibrium no-load conditions without actuation of the steam generator safety valves; it permits control of the steam generator pressure at no-load conditions and permits a manually controlled cooldown of the plant. The first two functional tasks are controlled by Tavg. The third is controlled by steam pressure. Interlocks minimise any possibility of an inadvertent actuation of steam dump system. This paper discusses relationships between designed (described) characteristics of plant and the data which are obtained during startup and/or first ten years of operation. (author)

  2. Efficient Load Scheduling Method For Power Management

    Directory of Open Access Journals (Sweden)

    Vijo M Joy

    2015-08-01

    Full Text Available An efficient load scheduling method to meet varying power supply needs is presented in this paper. At peak load times the power generation system fails due to its instability. Traditionally we use load shedding process. In load shedding process disconnect the unnecessary and extra loads. The proposed method overcomes this problem by scheduling the load based on the requirement. Artificial neural networks are used for this optimal load scheduling process. For generate economic scheduling artificial neural network has been used because generation of power from each source is economically different. In this the total load required is the inputs of this network and the power generation from each source and power losses at the time of transmission are the output of the neural network. Training and programming of the artificial neural networks are done using MATLAB.

  3. A 3D Lumped Thermal Network Model for Long-term Load Profiles Analysis in High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Ghimire, Pramod

    2016-01-01

    )-based simulation is another method which is often used to analyze the steady-state thermal distribution of IGBT modules, but it is not possible to be used for long-term analysis of load profiles of power converter, which is needed for reliability assessments and better thermal design. This paper proposes a novel...... enables both accurate and fast temperature estimation of high power IGBT modules in the real loading conditions of the converter; meanwhile the critical details of the thermal dynamics and thermal distribution are also maintained. The proposed thermal model is verified by both FEM simulation......The conventional RC lumped thermal networks are widely used to estimate the temperature of power devices, but they are lack of accuracy in addressing detailed thermal behaviors/couplings in different locations and layers of the high power IGBT modules. On the other hand, Finite Element (FE...

  4. Fatigue Load Sensitivity Based Optimal Active Power Dispatch For Wind Farms

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2017-01-01

    This paper proposes an optimal active power dispatch algorithm for wind farms based on Wind Turbine (WT) load sensitivity. The control objectives include tracking power references from the system operator and minimizing fatigue loads experienced by WTs. The sensitivity of WT fatigue loads to power...... sensitivity are derived, which significantly improves the computation efficiency of the local WT controller. The proposed algorithm can be implemented in different active power control schemes. Case studies were conducted with a wind farm under balance control for both low and high wind conditions...

  5. High power s-band vacuum load

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons, Inc., Batavia, IL (United States); Dudas, Alan [Muons, Inc., Batavia, IL (United States); Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-29

    Through a combination of experimentation and calculation the components of a novel room temperature dry load were successfully fabricated. These components included lossy ceramic cylinders of various lengths, thicknesses, and percent of silicon carbide (SiC). The cylinders were then assembled into stainless steel compression rings by differential heating of the parts and a special fixture. Post machining of this assembly provided a means for a final weld. The ring assemblies were then measured for S-parameters, individually and in pairs using a low-cost TE10 rectangular to TE01 circular waveguide adapter specially designed to be part of the final load assembly. Matched pairs of rings were measured for assembly into the final load, and a sliding short designed and fabricated to assist in determining the desired short location in the final assembly. The plan for the project was for Muons, Inc. to produce prototype loads for long-term testing at SLAC. The STTR funds for SLAC were to upgrade and operate their test station to ensure that the loads would satisfy their requirements. Phase III was to be the sale to SLAC of loads that Muons, Inc. would manufacture. However, an alternate solution that involved a rebuild of the old loads, reduced SLAC budget projections, and a relaxed time for the replacement of all loads meant that in-house labor will be used to do the upgrade without the need for the loads developed in this project. Consequently, the project was terminated before the long term testing was initiated. However, SLAC can use the upgraded test stand to compare the long-term performance of the ones produced in this project with their rebuilt loads when they are available.

  6. High power s-band vacuum load

    International Nuclear Information System (INIS)

    Neubauer, Michael; Dudas, Alan; Krasnykh, Anatoly

    2016-01-01

    Through a combination of experimentation and calculation the components of a novel room temperature dry load were successfully fabricated. These components included lossy ceramic cylinders of various lengths, thicknesses, and percent of silicon carbide (SiC). The cylinders were then assembled into stainless steel compression rings by differential heating of the parts and a special fixture. Post machining of this assembly provided a means for a final weld. The ring assemblies were then measured for S-parameters, individually and in pairs using a low-cost TE10 rectangular to TE01 circular waveguide adapter specially designed to be part of the final load assembly. Matched pairs of rings were measured for assembly into the final load, and a sliding short designed and fabricated to assist in determining the desired short location in the final assembly. The plan for the project was for Muons, Inc. to produce prototype loads for long-term testing at SLAC. The STTR funds for SLAC were to upgrade and operate their test station to ensure that the loads would satisfy their requirements. Phase III was to be the sale to SLAC of loads that Muons, Inc. would manufacture. However, an alternate solution that involved a rebuild of the old loads, reduced SLAC budget projections, and a relaxed time for the replacement of all loads meant that in-house labor will be used to do the upgrade without the need for the loads developed in this project. Consequently, the project was terminated before the long term testing was initiated. However, SLAC can use the upgraded test stand to compare the long-term performance of the ones produced in this project with their rebuilt loads when they are available.

  7. Small Signal Stability Improvement of Power Systems Using Optimal Load Responses in Competitive Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift some of their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to an electricity price...... price is proposed. A 17-bus power system with high wind power penetrations, which resembles the Eastern Danish power system, is chosen as the study case. Simulation results show that the optimal load response to electricity prices is an effective measure to improve the small signal stability of power...... for demand side management generates different load profiles and may provide an opportunity to improve the small signal stability of power systems with high wind power penetrations. In this paper, the idea of power system small signal stability improvement by using optimal load response to the electricity...

  8. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    Science.gov (United States)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  9. A Wind Farm Controller for Load and Power Optimization in a Farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Brand, Arno; Wisniewski, Rafal

    2011-01-01

    This paper describes the design procedure of an optimal wind farm controller. The controller optimizes the structural load and power production simultaneously, on the basis of an analytical wind farm model. The farm model delivers maps of wind, loads and energy in the wind farm. Moreover, the model...... computes the wind speed at the turbines, turbine bending moments and aerodynamic power and torque. The optimal control problem is formulated based on the model for two different wind directions. The controller determines the reference signals for each individual wind turbine controller in two scenarios...... based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization into account. In high wind speed, the power and pitch angle reference signals are determined while structural loads are minimized....

  10. Load power device and system for real-time execution of hierarchical load identification algorithms

    Science.gov (United States)

    Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh

    2017-11-14

    A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.

  11. Load Flow Analysis of Hybrid AC-DC Power System with Offshore Wind Power

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    The offshore wind power has received immense attention because of higher wind speed and lower opposition for construction. A wide range of combinations of high-voltage ACDC transmission have been proposed for integrating offshore wind farms and long-distance power transmission. This paper...... is to model such hybrid AC-DC systems including the interfacing converters, which have several control parameters that can change the load flow of the hybrid systems. Then, the paper proposes a Load Flow algorithm based on the Newton-Raphson method, which covers three different section types...

  12. Design and performance of a 2-megawatt high voltage dc test load

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.

    1994-01-01

    A high-power water-cooled resistive load which simulates the electrical load characteristics of a high-power klystron, capable of a 2 MW dissipation at 95 kV DC, is designed and installed. The load utilizes wirewound resistor elements suspended inside G-11 insulated tubing contained within a single-wall 316 stainless steel pressure vessel with flanged elliptical heads. The vessel supplies a continuous flow of deionized water. Baffles fabricated from G-10 sheets support the tubing and promote water turbulence to maximize heat removal. A companion oil tank houses resistive filament and mod-anode power supply test loads, plus an electrical interlock system which provides protection from inadequate water flow, excessive oil temperature, and arcing in either the pressure vessel or oil tank. A secondary safety system consists of both hydrostatic and steam pressure relief valves on the pressure vessel. Power supply tests indicate the load simulates the electrical load characteristics of a high-power klystron to a degree sufficient to accurately performance-test the rf high voltage power supplies used at the Advanced Photon Source

  13. LOAD THAT MAXIMIZES POWER OUTPUT IN COUNTERMOVEMENT JUMP

    Directory of Open Access Journals (Sweden)

    Pedro Jimenez-Reyes

    2016-02-01

    Full Text Available ABSTRACT Introduction: One of the main problems faced by strength and conditioning coaches is the issue of how to objectively quantify and monitor the actual training load undertaken by athletes in order to maximize performance. It is well known that performance of explosive sports activities is largely determined by mechanical power. Objective: This study analysed the height at which maximal power output is generated and the corresponding load with which is achieved in a group of male-trained track and field athletes in the test of countermovement jump (CMJ with extra loads (CMJEL. Methods: Fifty national level male athletes in sprinting and jumping performed a CMJ test with increasing loads up to a height of 16 cm. The relative load that maximized the mechanical power output (Pmax was determined using a force platform and lineal encoder synchronization and estimating the power by peak power, average power and flight time in CMJ. Results: The load at which the power output no longer existed was at a height of 19.9 ± 2.35, referring to a 99.1 ± 1% of the maximum power output. The load that maximizes power output in all cases has been the load with which an athlete jump a height of approximately 20 cm. Conclusion: These results highlight the importance of considering the height achieved in CMJ with extra load instead of power because maximum power is always attained with the same height. We advise for the preferential use of the height achieved in CMJEL test, since it seems to be a valid indicative of an individual's actual neuromuscular potential providing a valid information for coaches and trainers when assessing the performance status of our athletes and to quantify and monitor training loads, measuring only the height of the jump in the exercise of CMJEL.

  14. Part-load performance of a high temperature Kalina cycle

    International Nuclear Information System (INIS)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl; Haglind, Fredrik

    2015-01-01

    Highlights: • Detailed algorithm to solve high temperature Kalina cycle in part load. • A central receiver concentrating solar power plant with direct vapour generation considered as case study. • Part-load performance curves and fitted equations presented. - Abstract: The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine bottoming cycle, and solar power plants. The high temperature cycle layouts are inherently more complex than the low temperature layouts due to the presence of a distillation-condensation subsystem, three pressure levels, and several heat exchangers. This paper presents a detailed approach to solve the Kalina cycle in part-load operating conditions for high temperature (a turbine inlet temperature of 500 °C) and high pressure (100 bar) applications. A central receiver concentrating solar power plant with direct vapour generation is considered as a case study where the part-load conditions are simulated by changing the solar heat input to the receiver. Compared with the steam Rankine cycle, the Kalina cycle has an additional degree of freedom in terms of the ammonia mass fraction which can be varied in order to maximize the part-load efficiency of the cycle. The results include the part-load curves for various turbine inlet ammonia mass fractions and the fitted equations for these curves.

  15. Short-term load forecasting of power system

    Science.gov (United States)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  16. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Plant Control/Training; Klaus, Peter [E.ON NPP Isar 2, Essenbach (Germany). Plant Operation/Production Engineering

    2016-07-01

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1,500 MW, the general objectives are the main automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of the operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity management in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  17. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Section Manager Training; Klaus, Peter [Preussenelektra NPP, Essenbach (Germany). Production Engineering

    2017-03-15

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1500 MW, the general objectives are several automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of this operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity manage - ment in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  18. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  19. Load management: Model-based control of aggregate power for populations of thermostatically controlled loads

    International Nuclear Information System (INIS)

    Perfumo, Cristian; Kofman, Ernesto; Braslavsky, Julio H.; Ward, John K.

    2012-01-01

    Highlights: ► Characterisation of power response of a population of air conditioners. ► Implementation of demand side management on a group of air conditioners. ► Design of a controller for the power output of a group of air conditioners. ► Quantification of comfort impact of demand side management. - Abstract: Large groups of electrical loads can be controlled as a single entity to reduce their aggregate power demand in the electricity network. This approach, known as load management (LM) or demand response, offers an alternative to the traditional paradigm in the electricity market, where matching supply and demand is achieved solely by regulating how much generation is dispatched. Thermostatically controlled loads (TCLs), such as air conditioners (ACs) and fridges, are particularly suitable for LM, which can be implemented using feedback control techniques to regulate their aggregate power. To achieve high performance, such feedback control techniques require an accurate mathematical model of the TCL aggregate dynamics. Although such models have been developed, they appear too complex to be effectively used in control design. In this paper we develop a mathematical model aimed at the design of a model-based feedback control strategy. The proposed model analytically characterises the aggregate power response of a population of ACs to a simultaneous step change in temperature set points. Based on this model, we then derive, and completely parametrise in terms of the ACs ensemble properties, a reduced-order mathematical model to design an internal-model controller that regulates aggregate power by broadcasting temperature set-point offset changes. The proposed controller achieves high LM performance provided the ACs are equipped with high resolution thermostats. With coarser resolution thermostats, which are typical in present commercial and residential ACs, performance deteriorates significantly. This limitation is overcome by subdividing the population

  20. Load following operation of nuclear power plants for meeting power system requirements

    International Nuclear Information System (INIS)

    Isoda, Hachiro

    1987-01-01

    This paper describes a calculating program on the availability factors of nuclear, thermal and pumed storage hydro power stations and some calculated results for typical three load factors, 55 %, 60 % and 71 %, are provided when the share of the nuclea power station in the generation facilities is increased. The load following requirement of the nuclear power station is also provided. Load following requirement: If there is a 10 % pumped storage hydro power station, the nuclear power station enables to be operated with its rated output up to 30 % - 35 % of its share. Its daily load following operation for 40 % and 50 % nuclear power station needs every weekend and every day respectively. Availability factor: The availability factor of the nuclear power station manages to get 80 % (maximum availability factor of the nuclear power station in this study) up to 30 % share of it with 10 % pumpued storage hydro power station. When the nuclear power station shares 40 % and 50 %, its availability factor decreases down 1 % and 5 % respectively. (author)

  1. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  2. Real-Time Load-Side Control of Electric Power Systems

    Science.gov (United States)

    Zhao, Changhong

    a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

  3. A High-Power Low-Loss Continuously Tunable Bandpass Filter With Transversely Biased Ferrite-Loaded Coaxial Resonators

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2015-01-01

    This paper presents a technology for high-power lowlosscontinuously tunable RF filters demonstrated by the exampleof a two-pole coupled-resonator filter. The resonators are shortenedcoaxial cavities loaded with ferrite inserts, where an externallyapplied transverse dc magnetic bias controls the c...... is observed to be 53.1 dBm at aninput fundamental tone level of 2 43 dBm....

  4. Load shedding and emergency load sequencing system at Sizewell B power station

    International Nuclear Information System (INIS)

    Bowcock, S.; Miller, D.

    1992-01-01

    Sizewell B Nuclear Power Station has a main electrical system that connects together the main turbo-generators, generating at 23.5kV, the 400kV grid and the auxiliary equipment required to operate the station. A separate essential electrical system fed from the main electrical system, supplies all the auxiliaries required to shut-down the nuclear reactor and maintain it in a safe shut-down condition. For safety reasons four similar independent essential electrical systems are provided, each headed by a 3.3kV switchboard and a stand-by 8MW diesel generator. Feeds from the 3.3kV switchboards in turn supply the essential 3.3kV drives and transformer fed 415V essential switchboards. The function of the Load Shedding and Emergency Load Sequencing (LSELS) System is to monitor the condition of the 3.3kV incoming supply from the main electrical system to each essential 3.3kV switchboard and initiate its replacement, with the supply from the associated diesel generator, if it is outside set parameters. In order to achieve this transfer the essential electrical system load must be reduced to a level which the diesel can accommodate as a standing load and then allow the sequenced reconnection of required loads so as not to overload the diesel. The LSELS equipment is categorised as Safety Category 1E and has a significant importance to the safe operation of the power station. Therefore the design of the system must be highly reliable and the purpose of this paper is to detail the design approach used to ensure that a high system reliability is achieved. (Author)

  5. Load management potentials for the railway power system; Potenziale fuer das Lastmanagement im Bahnenergiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, Julius; Aniceto, Josep M. [SBB AG Infrastruktur Energie, Zollikofen (Switzerland)

    2013-02-15

    The railway power supply system of the Schweizerische Bundesbahnen (SBB) is characterised by major load fluctuations that are expected to increase in the future. The available power that is generated must be kept at absolute load peak level which causes high costs. Simulations show that a load management is a practicable way of noticeably reducing load peaks in the SBB railway power supply system without having an adverse effect on railway operations or the energy demand.

  6. Comparison of Power Supply Pumping of Switch-Mode Audio Power Amplifiers with Resistive Loads and Loudspeakers as Loads

    DEFF Research Database (Denmark)

    Knott, Arnold; Petersen, Lars Press

    2013-01-01

    Power supply pumping is generated by switch-mode audio power amplifiers in half-bridge configuration, when they are driving energy back into their source. This leads in most designs to a rising rail voltage and can be destructive for either the decoupling capacitors, the rectifier diodes...... in the power supply or the power stage of the amplifier. Therefore precautions are taken by the amplifier and power supply designer to avoid those effects. Existing power supply pumping models are based on an ohmic load attached to the amplifier. This paper shows the analytical derivation of the resulting...... waveforms and extends the model to loudspeaker loads. Measurements verify, that the amount of supply pumping is reduced by a factor of 4 when comparing the nominal resistive load to a loudspeaker. A simplified and more accurate model is proposed and the influence of supply pumping on the audio performance...

  7. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  8. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  9. Numerical simulation of thermal loading produced by shaped high power laser onto engine parts

    International Nuclear Information System (INIS)

    Song Hongwei; Li Shaoxia; Zhang Ling; Yu Gang; Zhou Liang; Tan Jiansong

    2010-01-01

    Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts.

  10. Power training using pneumatic machines vs. plate-loaded machines to improve muscle power in older adults.

    Science.gov (United States)

    Balachandran, Anoop T; Gandia, Kristine; Jacobs, Kevin A; Streiner, David L; Eltoukhy, Moataz; Signorile, Joseph F

    2017-11-01

    Power training has been shown to be more effective than conventional resistance training for improving physical function in older adults; however, most trials have used pneumatic machines during training. Considering that the general public typically has access to plate-loaded machines, the effectiveness and safety of power training using plate-loaded machines compared to pneumatic machines is an important consideration. The purpose of this investigation was to compare the effects of high-velocity training using pneumatic machines (Pn) versus standard plate-loaded machines (PL). Independently-living older adults, 60years or older were randomized into two groups: pneumatic machine (Pn, n=19) and plate-loaded machine (PL, n=17). After 12weeks of high-velocity training twice per week, groups were analyzed using an intention-to-treat approach. Primary outcomes were lower body power measured using a linear transducer and upper body power using medicine ball throw. Secondary outcomes included lower and upper body muscle muscle strength, the Physical Performance Battery (PPB), gallon jug test, the timed up-and-go test, and self-reported function using the Patient Reported Outcomes Measurement Information System (PROMIS) and an online video questionnaire. Outcome assessors were blinded to group membership. Lower body power significantly improved in both groups (Pn: 19%, PL: 31%), with no significant difference between the groups (Cohen's d=0.4, 95% CI (-1.1, 0.3)). Upper body power significantly improved only in the PL group, but showed no significant difference between the groups (Pn: 3%, PL: 6%). For balance, there was a significant difference between the groups favoring the Pn group (d=0.7, 95% CI (0.1, 1.4)); however, there were no statistically significant differences between groups for PPB, gallon jug transfer, muscle muscle strength, timed up-and-go or self-reported function. No serious adverse events were reported in either of the groups. Pneumatic and plate-loaded

  11. Determination of strength exercise intensities based on the load-power-velocity relationship.

    Science.gov (United States)

    Jandačka, Daniel; Beremlijski, Petr

    2011-06-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.

  12. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    Science.gov (United States)

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p free weights.

  13. Optimal Load Response to Time-of-Use Power Price for Demand Side Management in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    -of-use power price for demand side management in order to save the energy costs as much as possible. 3 typical different kinds of loads (industrial load, residential load and commercial load) in Denmark are chosen as study cases. The energy costs decrease up to 9.6% with optimal load response to time......-of-use power price for different loads. Simulation results show that the optimal load response to time-of-use power price for demand side management generates different load profiles and reduces the load peaks. This kind of load patterns may also have significant effects on the power system normal operation.......Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. This paper presents a load optimization method to time...

  14. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)

    eobe

    increase in the number of electrical loads that some kind of ... components in the AC power system. Thus, suppl ... al output power; assuring reliability in ... distribution systems. This can be ...... Thesis- Califonia Institute of Technology, Capitulo.

  15. Integrating Autonomous Load Controllers in Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James

    , but they are characterized by variable generation that is only partly predictable. Managing loads is already used in limited circumstances to improve security and efficiency of the power system. In power systems with a large penetration of variable generation, load management has large role to play in adapting consumption......Electric energy systems stand on the brink of radical change as the urgent need to reduce greenhouse gas emissions pushes more efficient utilization of energy resources and the adoption of renewable energy sources. New renewable sources such as wind and solar have a large potential......-sensitive load controller has been designed, implemented, and tested in real-life settings. Its performance demonstrated a large potential resource, in some cases greater than the average power consumption. The accuracy of load models was validated by comparison with field data. A voltage-sensitive controller...

  16. The effect of real-time pricing on load shifting in a highly renewable power system dominated by generation from the renewable sources of wind and photovoltaics

    Science.gov (United States)

    Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan

    2017-04-01

    The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on

  17. Impact of optimal load response to real-time electricity price on power system constraints in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to a real-time electricity price...... and may represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. A distribution system where wind power capacity is 126% of maximum loads is chosen as the study case. This paper presents a nonlinear load optimization method to real-time power price...... for demand side management in order to save the energy costs as much as possible. Simulation results show that the optimal load response to a real-time electricity price has some good impacts on power system constraints in a distribution system with high wind power penetrations....

  18. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  19. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  20. The Determination of Load Profiles and Power Consumptions of Home Appliances

    Directory of Open Access Journals (Sweden)

    Fatih Issi

    2018-03-01

    Full Text Available In recent years, the increment of distributed electricity generation based on renewable energy sources and improvement of communication technologies have caused the development of next-generation power grids known as smart grids. The structures of smart grids have bidirectional communication capability and enable the connection of energy generated from distributed sources to any point on the grid. They also support consumers in energy efficiency by creating opportunities for management of power consumption. The information on power consumption and load profiles of home appliances is essential to perform load management in the dwelling accurately. In this study, the power consumption data for all the basic home appliances, utilized in a two-person family in Çankırı, Turkey, was obtained with high resolution in one-second intervals. The detailed power consumption analysis and load profile were executed for each home appliance. The obtained data is not only the average power consumption of each appliance but also characterizes different operating modes or their cycles. In addition, the impact of these devices on home energy management studies and their standby power consumptions were also discussed. The acquired data is an important source to determine the load profile of individual home appliances precisely in home energy management studies. Although the results of this study do not completely reflect the energy consumption behavior of the people who live in this region, they can reveal the trends in load demands based on a real sample and customer consumption behavior of a typical two-person family.

  1. Power Load Prediction Based on Fractal Theory

    OpenAIRE

    Jian-Kai, Liang; Cattani, Carlo; Wan-Qing, Song

    2015-01-01

    The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and...

  2. Power load limits of the WENDELSTEIN 7-X target elements-comparison of experimental results and design values for power loads up to the critical heat flux

    International Nuclear Information System (INIS)

    Greuner, H; Boeswirth, B; Boscary, J; Leuprecht, A; Plankensteiner, A

    2007-01-01

    The power load limits of the WENDELSTEIN7-X divertor target elements were experimentally evaluated with heat loads considerably exceeding the expected operating conditions. The water-cooled elements are designed for steady-state heat flux of 10 MW m -2 and to remove a power load up to 100 kW. The elements must allow a limited operation time at 12 MW m -2 steady-state and should not fail for short pulses of up to 15 MW m -2 for cooling conditions in the subcooled nucleate boiling regime. In the framework of the qualification phase, pre-series target elements were loaded up to 24 MW m -2 without loss of CFC tiles. A critical heat flux at the target of 31 MW m -2 was achieved. The paper discusses the results of the tests performed at the high heat flux test facility GLADIS. The experimental results compared to transient nonlinear fine element method (FEM) calculations confirm a high thermal safety margin of the target design sufficient for plasma operation in W7-X

  3. Short-term Power Load Forecasting Based on Balanced KNN

    Science.gov (United States)

    Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei

    2018-03-01

    To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.

  4. High heat load synchrotron optics

    International Nuclear Information System (INIS)

    Mills, D.M.

    1993-01-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density. These high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development

  5. Application of Classification Methods for Forecasting Mid-Term Power Load Patterns

    Science.gov (United States)

    Piao, Minghao; Lee, Heon Gyu; Park, Jin Hyoung; Ryu, Keun Ho

    Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed approach in this paper consists of three stages: (i) data preprocessing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  6. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  7. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  8. Determination of aggregated load power consumption, under non-sinusoidal supply using an improved load model

    International Nuclear Information System (INIS)

    Bagheri, R.; Moghani, J.S.; Gharehpetian, G.B.; Mirtalaei, S.M.M.

    2009-01-01

    The harmonic content of supply voltage results in additional power losses and hence increases the load power consumption. The role of the power quality equipments on the power consumption without using an accurate model cannot be determined, too. In this paper, an improved model for aggregated loads proposed, which estimates the effects of voltage harmonics on the power consumption. The distinguished aspect of the proposed model is its parameters identification method which is based on the practical techniques, such as employing a capacitor bank or varying dummy loads in steps. The proposed model has been verified by the comparison of measured and simulated results.

  9. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    International Nuclear Information System (INIS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-01-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG

  10. Increased strength of concrete subject to high loading rates

    International Nuclear Information System (INIS)

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  11. Load flow optimization and optimal power flow

    CERN Document Server

    Das, J C

    2017-01-01

    This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.

  12. A Comparison of Load-Velocity and Load-Power Relationships Between Well-Trained Young and Middle-Aged Males During Three Popular Resistance Exercises.

    Science.gov (United States)

    Fernandes, John F T; Lamb, Kevin L; Twist, Craig

    2018-05-01

    Fernandes, JFT, Lamb, KL, and Twist, C. A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during 3 popular resistance exercises. J Strength Cond Res 32(5): 1440-1447, 2018-This study examined the load-velocity and load-power relationships among 20 young (age 21.0 ± 1.6 years) and 20 middle-aged (age 42.6 ± 6.7 years) resistance-trained males. Participants performed 3 repetitions of bench press, squat, and bent-over-row across a range of loads corresponding to 20-80% of 1 repetition maximum (1RM). Analysis revealed effects (p velocity for all 3 exercises, and interaction effects on power for squat and bent-over-row (p bench press and bent-over-row, the young group produced higher barbell velocities, with the magnitude of the differences decreasing as load increased (ES; effect size 0.0-1.7 and 1.0-2.0, respectively). Squat velocity was higher in the young group than the middle-aged group (ES 1.0-1.7) across all loads, as was power for each exercise (ES 1.0-2.3). For all 3 exercises, both velocity and 1RM were correlated with optimal power in the middle-aged group (r = 0.613-0.825, p velocities at low external loads and power outputs as high as the young males across a range of external resistances. Moreover, the strong correlations between 1RM and velocity with optimal power suggest that middle-aged males would benefit from training methods which maximize these adaptations.

  13. The losses at power grid caused by small nonlinear loads

    Directory of Open Access Journals (Sweden)

    Stevanović Dejan

    2013-01-01

    Full Text Available The difference between registered active power and spent unregistered power represents the losses at power grid. This paper treats problems related to losses caused by nonlinear loads connected to the power grid. In recent years the load profile of power consumers turned from energy-waster linear to energysaver but non-linear loads. The main cause of the losses appears due to the lack of adequate measurement equipment. Namely, common household power meters register only active energy, while power meters for industrial application register reactive energy as well. This approach does not follow the change of the enduser profile. Tendency of improving energy efficiency brought wide use of switching mode regulators and replace old incandescent light bulb with new energy saving lamps (CFL - compact fluorescent lamp, LED bulb. Therefore, the number of non-linear load drastically increased. Registering only active component of power at consumer’s side does not depict the real profile of the consumption. Therefore, in this paper we analyse and quantify the effects of nonlinear loads at power losses. As a result we suggest an efficient method for measuring the distortion component of power. The method relays on low-cost upgrade of commercial electronic power meters. The presented results of measurements on small non-linear loads confirm the proposed technique. Besides, they prove the importance of measuring all components of apparent power and justified their use in billing policy. The implemented set-up is based on power meter manufactured by EWG of Niš. [Projekat Ministarstva nauke Republike Srbije, br. TR32004

  14. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    Science.gov (United States)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET

    2017-12-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  15. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    International Nuclear Information System (INIS)

    Silburn, S A; Matthews, G F; Challis, C D; Belonohy, E; Iglesias, D; Keeling, D L; King, D; Kirov, K; Lomas, P J; Frigione, D; Graves, J P; Mantsinen, M J; Hobirk, J; Lennholm, M; Moradi, S; Sips, A C C; Tsalas, M

    2017-01-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data. (paper)

  16. Consequences of mis-loading and the power distribution in bowed fuel assemblies

    International Nuclear Information System (INIS)

    Andersson, Magnus

    2002-04-01

    The thesis is divided in two parts. The first part will investigate consequences of a mis-loaded fuel assembly in Ringhals 3, which is a pressurised water reactor (PWR). The aim of this work is to show that there are no or very small benefits from making an additional flux map at 30 % power in order to detect anomalies. Out of the 17 simulations, there exists only one type of mis-loading, which leads to problems. The case, which leads to problems, is when a Gd fitted assembly changes place with a non Gd. This leads to a too high power peaking factor and increased quadrant power tilt. The gain of a flux map at 30% power is small

  17. Consequences of mis-loading and the power distribution in bowed fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Magnus

    2002-04-01

    The thesis is divided in two parts. The first part will investigate consequences of a mis-loaded fuel assembly in Ringhals 3, which is a pressurised water reactor (PWR). The aim of this work is to show that there are no or very small benefits from making an additional flux map at 30 % power in order to detect anomalies. Out of the 17 simulations, there exists only one type of mis-loading, which leads to problems. The case, which leads to problems, is when a Gd fitted assembly changes place with a non Gd. This leads to a too high power peaking factor and increased quadrant power tilt. The gain of a flux map at 30% power is small.

  18. Impact of Load Behavior on Transient Stability and Power Transfer Limitations

    DEFF Research Database (Denmark)

    Gordon, Mark

    2009-01-01

    This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together with the......This paper presents utility based load modeling practices and explores the interaction between loads and the power system and the effect of the interaction on transient stability and power transfer limitations. The effect of load composition is investigated at major load centers together...... with the impact on rotor angle excursions of large scale generators during the transient and post-transient period. Responses of multi-induction motor stalling are also considered for different fault clearances in the system. Findings of the investigations carried out on the Eastern Australian interconnected...

  19. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  20. Evaluation of load rejection to house load test at 50% power for UCN 3

    International Nuclear Information System (INIS)

    Lee, Chang Gyun; Sohn, Suk Whun; Sohn, Jong Joo; Seo, Jong Tae; Lee, Sang Keun; Kim, Yong Sung; Nam, Kyu Won; Jung, Yang Mook; Chae, Kyeong Sik; Koh, Bum Jae; Oh, Chul Sung; Park, Hee Chool

    1998-01-01

    The Load Rejection to House Load test at 50% power was successfully performed during the UCN 3 PAT period. In this test, all plant control systems automatically controlled the plant from 50% power to house load operation mode. The KISPAC code, which was used in the performance analysis during the design process of UCN 3 and 4, predictions of the test agreed with the measured data demonstrating the validity of the code as well as completeness of the plant design

  1. Real power regulation for the utility power grid via responsive loads

    Science.gov (United States)

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  2. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  3. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  4. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  5. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    address this challenge, a) Designing a discrete power opamp with high .... the use of high-impedance feedback networks, thus minimizing their output loading ... Spice simulation is done for the circuit and results are given in figures 4a–c.

  6. A GPS-Based Control Method for Load Sharing and Power Quality Improvement in Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Lu, Dylan; Savaghebi, Mehdi

    2016-01-01

    This paper proposes a novel control method for accurate sharing of load current among the Distributed Energy Resources (DER) and high power quality operating in islanded ac microgrids. This control scheme is based on hierarchical structure comprising of decentralized primary controllers and a cen....... The secondary controller produces compensation signals at fundamental and dominant harmonics to improve the voltage quality at a sensitive load bus. Experimental results are presented to validate the efficacy of the proposed method.......This paper proposes a novel control method for accurate sharing of load current among the Distributed Energy Resources (DER) and high power quality operating in islanded ac microgrids. This control scheme is based on hierarchical structure comprising of decentralized primary controllers...

  7. Auxiliary System Load Schemes in Large Thermal and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kuzle, I.; Bosnjak, D.; Pandzic, H.

    2010-01-01

    Uninterrupted auxiliary system power supply in large power plants is a key factor for normal operation, transient states, start-ups and shutdowns and particularly during fault conditions. Therefore, there are many challenges in designing the main electrical system as well as the auxiliary systems power supply. Depending upon the type of fuel used and the environmental control system required, a thermal power plant may consume as much as 10% of its total generation for auxiliary power, while a nuclear power plant may require only 4 - 6% auxiliaries. In general, the larger the power generating plant, the higher the voltage selected for the AC auxiliary electric system. Most stations in the 75 to 500 MW range utilize 4,2 kV as the base auxiliary system voltage. Large generating stations 500 - 1000 MW and more use voltage levels of 6,9 kV and more. Some single dedicated loads such as electric driven boiler feed pumps are supplied ba a 13,8 kV bus. While designing the auxiliary electric system, the following areas must be considered: motor starting requirements, voltage regulation requirements, short-circuit duty requirements, economic considerations, reliability and alternate sources. Auxiliary power supply can't be completely generalized and each situation should be studied on its own merits to determine the optimal solution. Naturally, nuclear power plants have more reliability requirements and safety design criteria. Main coolant-pump power supply and continuity of service to other vital loads deserve special attention. This paper presents an overview of some up-to-date power plant auxiliary load system concepts. The main types of auxiliary loads are described and the electric diagrams of the modern auxiliary system supply concepts are given. Various alternative sources of auxiliary electrical supply are considered, the advantages and disadvantages of these are compared and proposals are made for high voltage distribution systems around the thermal and nuclear plant

  8. Evaluation of Load Rejection to house load test at 50% power for UCN 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Gyun; Sohn, Suk Whun; Sohn, Jong Joo; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Yong Sung; Nam, Kyu Won; Jung, Yang Mook; Chae, Kyeong Sik; Koh, Bum Jae; Oh, Chul Sung; Park, Hee Chool [Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-12-31

    The Load Rejection to House Load test at 50% power was successfully performed during the UCN 3 PAT period. In this test, all plant control systems automatically controlled the plant from 50% power to house load operation mode. The KISPAC code, which was used in the performance analysis during the design process of UCN 3 and 4, predictions of the test agreed with the measured data demonstrating the validity of the code as well as the completeness of the plant design. 3 refs., 8 figs., 1 tab. (Author)

  9. Evaluation of Load Rejection to house load test at 50% power for UCN 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Gyun; Sohn, Suk Whun; Sohn, Jong Joo; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Yong Sung; Nam, Kyu Won; Jung, Yang Mook; Chae, Kyeong Sik; Koh, Bum Jae; Oh, Chul Sung; Park, Hee Chool [Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1998-12-31

    The Load Rejection to House Load test at 50% power was successfully performed during the UCN 3 PAT period. In this test, all plant control systems automatically controlled the plant from 50% power to house load operation mode. The KISPAC code, which was used in the performance analysis during the design process of UCN 3 and 4, predictions of the test agreed with the measured data demonstrating the validity of the code as well as the completeness of the plant design. 3 refs., 8 figs., 1 tab. (Author)

  10. An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions

    Directory of Open Access Journals (Sweden)

    Tianqing Li

    2018-01-01

    Full Text Available Although an inductive power transfer (IPT system can transfer power efficiently in full-load conditions, its efficiency obviously decreases in light-load conditions. To solve this problem, based on a two-coil IPT system with a series-series compensation topology, a single-ended primary-inductor converter is introduced at the secondary side. By adjusting the set effective value of the current in the primary coil, the converter input voltage changes to maintain the equivalent input resistance of the converter in an optimal condition. The system can then transfer the power efficiently with the wide load conditions. Moreover, the system operates at a constant resonance frequency with a high power factor. Both the simulation and experimentation of a prototype with a 10 W IPT system demonstrate the effectiveness of the proposed topology for wireless power transfer.

  11. Optimization of disk generator performance for base-load power plant systems applications

    International Nuclear Information System (INIS)

    Teare, J.D.; Loubsky, W.J.; Lytle, J.K.; Louis, J.F.

    1980-01-01

    Disk generators for use in base-load MHD power plants are examined for both open-cycle and closed-cycle operating modes. The OCD cases are compared with PSPEC results for a linear channel; enthalpy extractions up to 23% with 71% isentropic efficiency are achievable with generator inlet conditions similar to those used in PSPEC, thus confirming that the disk configuration is a viable alternative for base-load power generation. The evaluation of closed-cycle disks includes use of a simplified cycle model. High system efficiencies over a wide range of power levels are obtained for effective Hall coefficients in the range 2.3 to 4.9. Cases with higher turbulence (implying β/sub eff/ less than or equal to 2.4) yield high system efficiencies at power levels of 100 to 500 MW/sub e/. All these CCD cases compare favorably with linear channels reported in the GE ECAS study, yielding higher isentropic efficiences for a given enthalpy extraction. Power densities in the range 70 to 170 MW/m 3 appear feasible, leading to very compact generator configurations

  12. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  13. Assessing Power System Stability Following Load Changes and Considering Uncertainty

    Directory of Open Access Journals (Sweden)

    D. V. Ngo

    2018-04-01

    Full Text Available An increase in load capacity during the operation of a power system usually causes voltage drop and leads to system instability, so it is necessary to monitor the effect of load changes. This article presents a method of assessing the power system stability according to the load node capacity considering uncertainty factors in the system. The proposed approach can be applied to large-scale power systems for voltage stability assessment in real-time.

  14. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  15. Testable, fault-tolerant power interface circuit for normally de-energized loads

    International Nuclear Information System (INIS)

    Hager, R.E.

    1987-01-01

    A power interface circuit is described for supplying power from a power line to a normally de-energized process control apparatus in a pressurized light water nuclear power system in dependence upon three input signals, comprising: voter means for supplying power to the normally de-energized load when at least two of the three input signals indicate that the normally de-energized load should be activated; a normally closed switch, operatively connected to the power line and the voter means, for supplying power to the voter means during ordinary operation; a first resistor operatively connected to the power line; a current detector operatively connected to the first resistor and the voter means; a second resistor operatively connected to the current detector and ground; and current sensor means, operatively connected between the voter means and the normally de-energized load, for detecting the power supplied to the normally de-energized load by the voter means

  16. Sliding mode load frequency control for multi-area time-delay power system with wind power integration

    DEFF Research Database (Denmark)

    Mi, Yang; Hao, Xuezhi; Liu, Yongjuan

    2017-01-01

    The interconnected time-delay power system has become an important issue for the open communication network. Meanwhile, due to the output power fluctuation of integrated wind energy, load frequency control (LFC) for power system with variable sources and loads has become more complicated. The novel...

  17. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  18. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  19. An Optimization Framework for Load and Power Distribution in Wind Farms

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal; Kanev, Stoyan

    2012-01-01

    The aim of this paper is to develop a controller for wind farms to optimize the load and power distribution. In this regard, the farm controller calculates the power reference signals for individual wind turbine controllers such that the sum of the power references tracks the power demanded...... by a system operator. Moreover, the reference signals are determined to reduce the load acting on wind turbines at low frequencies. Therefore, a trade-off is made for load and power control, which is formulated as an optimization problem. Afterwards, the optimization problem for the wind farm modeled...

  20. A stochastic framework for the grid integration of wind power using flexible load approach

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Shafie-khah, M.; Catalão, J.P.S.

    2014-01-01

    Highlights: • This paper focuses on the potential of Demand Response Programs (DRPs) to contribute to flexibility. • A stochastic network constrained unit commitment associated with DR is presented. • DR participation levels and electricity tariffs are evaluated on providing a flexible load profile. • Novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs. • DR types and customer participation levels are the main factors to modify the system load profile. - Abstract: Wind power integration has always been a key research area due to the green future power system target. However, the intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators (ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based DRPs are evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are the main factors to modify the system load profile to support wind power integration

  1. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  2. Effect of External Loading on Force and Power Production During Plyometric Push-ups.

    Science.gov (United States)

    Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi

    2018-04-01

    Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.

  3. Nonlinear Robust Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads

    Directory of Open Access Journals (Sweden)

    Martín-Antonio Rodríguez-Licea

    2018-05-01

    Full Text Available A Direct Current (DC microgrid is a concept derived from a smart grid integrating DC renewable sources. The DC microgrids have three particularities: (1 integration of different power sources and local loads through a DC link; (2 on-site power source generation; and (3 alternating loads (on-off state. This kind of arrangement achieves high efficiency, reliability and versatility characteristics. The key device in the development of the DC microgrid is the power electronic converter (PEC, since it allows an efficient energy conversion between power sources and loads. However, alternating loads with strictly-controlled PECs can provide negative impedance behavior to the microgrid, acting as constant power loads (CPLs, such that the overall closed-loop system becomes unstable. Traditional CPL compensation techniques rely on a damping increment by the adaptation of the source or load voltage level, adding external circuitry or by using some advanced control technique. However, none of them provide a simple and general solution for the CPL problem when abrupt changes in parameters and/or in alternating loads/sources occur. This paper proposes a mathematical modeling and a robust control for the basic PECs dealing with CPLs in continuous conduction mode. In particular, the case of the low voltage residential DC microgrid with CPLs is taken as a benchmark. The proposed controller can be easily tuned for the desired response even by the non-expert. Basic converters with voltage mode control are taken as a basis to show the feasibility of this analysis, and experimental tests on a 100-W testbed include abrupt parameter changes such as input voltage.

  4. Poloidal variations in toroidal fusion reactor wall power loadings

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  5. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Directory of Open Access Journals (Sweden)

    Radziukynas V.

    2016-04-01

    Full Text Available The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011 and planned wind power capacities (the year 2023.

  6. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Science.gov (United States)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  7. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load

    Science.gov (United States)

    Wang, Kai; Zhang, Bu-han; Zhang, Zhe; Yin, Xiang-gen; Wang, Bo

    2011-11-01

    Most existing research on the vulnerability of power grids based on complex networks ignores the electrical characteristics and the capacity of generators and load. In this paper, the electrical betweenness is defined by considering the maximal demand of load and the capacity of generators in power grids. The loss of load, which reflects the ability of power grids to provide sufficient power to customers, is introduced to measure the vulnerability together with the size of the largest cluster. The simulation results of the IEEE-118 bus system and the Central China Power Grid show that the cumulative distributions of node electrical betweenness follow a power-law and that the nodes with high electrical betweenness play critical roles in both topological structure and power transmission of power grids. The results prove that the model proposed in this paper is effective for analyzing the vulnerability of power grids.

  8. Urban Saturated Power Load Analysis Based on a Novel Combined Forecasting Model

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-03-01

    Full Text Available Analysis of urban saturated power loads is helpful to coordinate urban power grid construction and economic social development. There are two different kinds of forecasting models: the logistic curve model focuses on the growth law of the data itself, while the multi-dimensional forecasting model considers several influencing factors as the input variables. To improve forecasting performance, a novel combined forecasting model for saturated power load analysis was proposed in this paper, which combined the above two models. Meanwhile, the weights of these two models in the combined forecasting model were optimized by employing a fruit fly optimization algorithm. Using Hubei Province as the example, the effectiveness of the proposed combined forecasting model was verified, demonstrating a higher forecasting accuracy. The analysis result shows that the power load of Hubei Province will reach saturation in 2039, and the annual maximum power load will reach about 78,630 MW. The results obtained from this proposed hybrid urban saturated power load analysis model can serve as a reference for sustainable development for urban power grids, regional economies, and society at large.

  9. Optimal load allocation of complex ship power plants

    International Nuclear Information System (INIS)

    Baldi, Francesco; Ahlgren, Fredrik; Melino, Francesco; Gabrielii, Cecilia; Andersson, Karin

    2016-01-01

    Highlights: • The optimal operation of the prime movers of hybrid ship power plants is addressed. • Both mechanical, electric and thermal power demand are considered. • The problem is modelled as a mixed integer-nonlinear programming problem. • Up to 3% savings can be achieved with hybrid power plants. • Including the thermal power demand improves the solution by up to 4%. - Abstract: In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, the cruise industry is growing in size and impact. In this context, further effort is required for improving the energy efficiency of cruise ship energy systems. In this paper, we propose a generic method for modelling the power plant of an isolated system with mechanical, electric and thermal power demands and for the optimal load allocation of the different components that are able to fulfil the demand. The optimisation problem is presented in the form of a mixed integer linear programming (MINLP) problem, where the number of engines and/or boilers running is represented by the integer variables, while their respective load is represented by the non-integer variables. The individual components are modelled using a combination of first-principle models and polynomial regressions, thus making the system nonlinear. The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea, and used to compare the existing power plant with a hybrid propulsion plant. The results show the benefits brought by using the proposing method, which allow estimating the performance of the hybrid system (for which the load allocation is a non-trivial problem) while also including the contribution of the heat demand. This allows showing that, based on a reference round voyage, up to 3% savings could be achieved by installing the proposed system, compared to the existing one, and that a NPV of 11 kUSD could be achieved already 5 years after the installation of the

  10. Artificial bee colony algorithm for economic load dispatch with wind power energy

    Directory of Open Access Journals (Sweden)

    Safari Amin

    2016-01-01

    Full Text Available This paper presents an efficient Artificial Bee Colony (ABC algorithm for solving large scale economic load dispatch (ELD problems in power networks. To realize the ELD, the valve-point loading effect, system load demand, power losses, ramp rate limits and prohibited operation zones are considered here. Simulations were performed on four different power systems with 3, 6, 15 and 40 generating units and the results are compared with two forms of power systems, one power system is with a wind power generator and other power system is without a wind power generator. The results of this study reveal that the proposed approach is able to find appreciable ELD solutions than those of previous algorithms.

  11. Temperature rise of cyclicly loaded power cables

    Energy Technology Data Exchange (ETDEWEB)

    Brakelmann, H

    1984-09-01

    A calculation method for the current ratings of cyclicly loaded power cables is introduced, taking into account optional shapes of the load cycle as well as the drying-out of the soil. The method is based on the Fourier-analysis of the loss cycle, representing an extension of the calculation method of VDE 0298. It is shown, that the ''VDE-method'' gives good results for the thermal resistances, if an ''utility load cycle'' in accordance with VDE 0298 is supposed. Only for cycles deviating essentially from the utility load cycle, the thermal resistances calculated by the ''VDE-method'' may be too great. In these cases the represented method is advantageous and can be processed by the aid of microcomputers.

  12. Improving electrical power systems reliability through locally controlled distributed curtailable load

    Science.gov (United States)

    Dehbozorgi, Mohammad Reza

    2000-10-01

    Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to

  13. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  14. Participation of Flexible Loads in Load Frequency Control to Support High Wind Penetration

    DEFF Research Database (Denmark)

    Uslu, Umur; Zhang, Boyang; Pillai, Jayakrishnan Radhakrishna

    2016-01-01

    The increasing amount of fluctuating wind power penetration in power systems presents many challenges to its operation and control. The new wind power plants are replacing many of the conventional large power plants that ensure power balancing and ancillary services for stable and reliable...... operation of the grid. Therefore, new solutions for power balancing reserves have to be explored and utilized by the grid utilities. To meet these challenges, large sizable loads like alkaline electrolysers, heat pumps and electric vehicles which are gaining popularity can provide system support to the grid...... through their inherent flexibility and energy storage characteristics. This paper investigates the possibilities and potential of such flexible loads to participate in power system frequency regulation in a wind dominated power system. The results show that these consumption units provide better...

  15. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  16. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  17. Application of Model Predictive Control for Active Load Management in a Distributed Power System with High Wind Penetration

    DEFF Research Database (Denmark)

    Zong, Yi; Kullmann, Daniel; Thavlov, Anders

    2012-01-01

    management. It also presents in detail how to implement a thermal model predictive controller (MPC) for the heaters' power consumption prediction in the PowerFlexHouse. It demonstrates that this MPC strategy can realize load shifting, and using good predictions in MPC-based control, a better matching...

  18. Fuzzy Adaptive Particle Swarm Optimization for Power Loss Minimisation in Distribution Systems Using Optimal Load Response

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2014-01-01

    Consumers may decide to modify the profile of their demand from high price periods to low price periods in order to reduce their electricity costs. This optimal load response to electricity prices for demand side management generates different load profiles and provides an opportunity to achieve...... power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss...

  19. Experience of load following in French nuclear power plants

    International Nuclear Information System (INIS)

    Miossec, C.

    1989-01-01

    The relative importance of the French nuclear programme has reached such a scale that nuclear power stations can no longer be operated in the base load mode: their capacity exceeded the network demands for 1200 hours in 1983 and it is estimated that this figure will move to 5200 hours in 1990; their power should be able to vary flexibly. These figures illustrate the policy of substituting nuclear power plants for fossil-fired plants and explain the need for nuclear units to provide a quality of service at least equal to that of their ''elders'', which, for several years, have regularly participated in load following. Electricite de France (EDF) therefore had to perform the studies and work necessary to provide nuclear units with the required modulation capacity. There are several grid requirements and three types of flexibility are to be distinguished. The first, load follow, is fundamental when adapting to demand. The second type of flexibility, frequency adjustment, is another important factor in the quality of the product delivered to the consumer. The third type of flexibility is participation in the spinning reserve. When automatic operations are inadequate, available power reserves must be used to support the gird. Load following operations are performed. The operating mode with load modulation is subject to authorisations issued by the governmental organisations responsible for nuclear safety. EDF and the manufacturers have had to prove that such operations remain compatible with safety under normal operating conditions and, in the event of incidents, modulation should be capable of considerably modifying the initial conditions. (5 figures). (Author)

  20. A methodology for Electric Power Load Forecasting

    Directory of Open Access Journals (Sweden)

    Eisa Almeshaiei

    2011-06-01

    Full Text Available Electricity demand forecasting is a central and integral process for planning periodical operations and facility expansion in the electricity sector. Demand pattern is almost very complex due to the deregulation of energy markets. Therefore, finding an appropriate forecasting model for a specific electricity network is not an easy task. Although many forecasting methods were developed, none can be generalized for all demand patterns. Therefore, this paper presents a pragmatic methodology that can be used as a guide to construct Electric Power Load Forecasting models. This methodology is mainly based on decomposition and segmentation of the load time series. Several statistical analyses are involved to study the load features and forecasting precision such as moving average and probability plots of load noise. Real daily load data from Kuwaiti electric network are used as a case study. Some results are reported to guide forecasting future needs of this network.

  1. Analysis on capability of load following for nuclear power plants abroad and its enlightenment

    Science.gov (United States)

    Zheng, Kuan; Zhang, Fu-qiang; Deng, Ting-ting; Zhang, Jin-fang; Hao, Weihua

    2017-01-01

    With the acceleration adjustment of China’s energy structure, the development of nuclear power plants in China has been going back to the fast track. While as the trend of slowing electric power demand is now unmistakable, it enforces the power system to face much greater pressure in some coastal zones where the nuclear power plants are of a comparative big proportion, such as Fujian province and Liaoning province. In this paper, the capability of load following of nuclear power plants of some developed countries with high proportion of nuclear power generation such as France, US and Japan are analysed, also from the aspects including the safety, the economy and their practical operation experience is studied. The feasibility of nuclear power plants to participate in the peak regulation of system is also studied and summarized. The results of this paper could be of good reference value for the China’s nuclear power plants to participate in system load following, and also of great significance for the development of the nuclear power plants in China.

  2. Method for exciting inductive-resistive loads with high and controllable direct current

    International Nuclear Information System (INIS)

    Hill, H.M. Jr.

    1976-01-01

    The apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator are described. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100 percent duty factor amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity. 4 Claims, 18 Drawing Figures

  3. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  4. Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling

    Directory of Open Access Journals (Sweden)

    Kang Miao Tan

    2017-11-01

    Full Text Available The introduction of electric vehicles into the transportation sector helps reduce global warming and carbon emissions. The interaction between electric vehicles and the power grid has spurred the emergence of a smart grid technology, denoted as vehicle-to grid-technology. Vehicle-to-grid technology manages the energy exchange between a large fleet of electric vehicles and the power grid to accomplish shared advantages for the vehicle owners and the power utility. This paper presents an optimal scheduling of vehicle-to-grid using the genetic algorithm to minimize the power grid load variance. This is achieved by allowing electric vehicles charging (grid-to-vehicle whenever the actual power grid loading is lower than the target loading, while conducting electric vehicle discharging (vehicle-to-grid whenever the actual power grid loading is higher than the target loading. The vehicle-to-grid optimization algorithm is implemented and tested in MATLAB software (R2013a, MathWorks, Natick, MA, USA. The performance of the optimization algorithm depends heavily on the setting of the target load, power grid load and capability of the grid-connected electric vehicles. Hence, the performance of the proposed algorithm under various target load and electric vehicles’ state of charge selections were analysed. The effectiveness of the vehicle-to-grid scheduling to implement the appropriate peak load shaving and load levelling services for the grid load variance minimization is verified under various simulation investigations. This research proposal also recommends an appropriate setting for the power utility in terms of the selection of the target load based on the electric vehicle historical data.

  5. Effect of loading on peak power of the bar, body, and system during power cleans, squats, and jump squats.

    Science.gov (United States)

    McBride, Jeffrey M; Haines, Tracie L; Kirby, Tyler J

    2011-08-01

    Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.

  6. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  7. Load allocation of power plant using multi echelon economic dispatch

    Science.gov (United States)

    Wahyuda, Santosa, Budi; Rusdiansyah, Ahmad

    2017-11-01

    In this paper, the allocation of power plant load which is usually done with a single echelon as in the load flow calculation, is expanded into a multi echelon. A plant load allocation model based on the integration of economic dispatch and multi-echelon problem is proposed. The resulting model is called as Single Objective Multi Echelon Economic Dispatch (SOME ED). This model allows the distribution of electrical power in more detail in the transmission and distribution substations along the existing network. Considering the interconnection system where the distance between the plant and the load center is usually far away, therefore the loss in this model is seen as a function of distance. The advantages of this model is its capability of allocating electrical loads properly, as well as economic dispatch information with the flexibility of electric power system as a result of using multi-echelon. In this model, the flexibility can be viewed from two sides, namely the supply and demand sides, so that the security of the power system is maintained. The model was tested on a small artificial data. The results demonstrated a good performance. It is still very open to further develop the model considering the integration with renewable energy, multi-objective with environmental issues and applied to the case with a larger scale.

  8. Controller design for a Wind Farm, Considering both Power and Load Aspects

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2011-01-01

    turbine. The control algorithm determines the reference signals for each individual wind turbine controller in two scenarios based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization...

  9. Summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1978-01-01

    An attempt is made to trace the development of extreme load criteria as it applies to earthquakes, extreme wind, high energy system rupture (LOCA), floods and other manmade and natural external hazards, from 1965 until the present, in the leading nuclear power nations throughout the world. (Author)

  10. Velocity- and power-load relationships of the bench pull vs. bench press exercises.

    Science.gov (United States)

    Sánchez-Medina, L; González-Badillo, J J; Pérez, C E; Pallarés, J G

    2014-03-01

    This study compared the velocity- and power-load relationships of the antagonistic upper-body exercises of prone bench pull (PBP) and bench press (BP). 75 resistance-trained athletes performed a progressive loading test in each exercise up to the one-repetition maximum (1RM) in random order. Velocity and power output across the 30-100% 1RM were significantly higher for PBP, whereas 1RM strength was greater for BP. A very close relationship was observed between relative load and mean propulsive velocity for both BP (R2=0.97) and PBP (R2=0.94) which enables us to estimate %1RM from velocity using the obtained prediction equations. Important differences in the load that maximizes power output (Pmax) and the power profiles of both exercises were found according to the outcome variable used: mean (MP), peak (PP) or mean propulsive power (MPP). When MP was considered, the Pmax load was higher (56% BP, 70% PBP) than when PP (37% BP, 41% PBP) or MPP (37% BP, 46% PBP) were used. For each variable there was a broad range of loads at which power output was not significantly different. The differing velocity- and power-load relationships between PBP and BP seem attributable to the distinct muscle architecture and moment arm levers involved in these exercises. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Science.gov (United States)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  12. Load-Sharing Characteristics of Power-Split Transmission System Based on Deformation Compatibility and Loaded Tooth Contact Analysis

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2015-01-01

    Full Text Available In order to implement the uniform load distribution of the power-split transmission system, a pseudostatic model is built. Based on the loaded tooth contact analysis (LTCA technique, the actual meshing process of each gear pair is simulated and the fitting curve of time-varying mesh stiffness is obtained. And then, the torsional angle deformation compatibility conditions are proposed according to the closed-loop characteristic of power flow, which will be combined with the torque equilibrium conditions and elastic support conditions to calculate the transfer torque of each gear pair. Finally, the load-sharing coefficient of the power-split transmission system is obtained, and the influences of the installation errors are analyzed. The results show that the above-mentioned installation errors comprehensively influence the load-sharing characteristics, and the reduction of only one error could not effectively achieve perfect load-sharing characteristics. Allowing for the spline clearance floating and constrained by the radial spacing ring, the influence of the floating pinion is analyzed. It shows that the floating pinion can improve the load-sharing characteristics. Through the comparison between the theoretical and related experimental data, the reasonability and feasibility of the above-proposed method and model are verified.

  13. Evaluation of flexible demand-side load-following reserves in power systems with high wind generation penetration

    NARCIS (Netherlands)

    Paterakis, N.G.; Catalao, J.P.S.; Ntomaris, A.V.; Erdinc, O.

    2015-01-01

    In this study, a two-stage stochastic programming joint energy and reserve day-ahead market structure is proposed in order to procure the required load-following reserves to tackle with wind power production uncertainty. Reserves can be procured both from generation and demand-side. Responsive

  14. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  15. Minimum load reduction for once-through boiler power plants

    International Nuclear Information System (INIS)

    Colombo, P.; Godina, G.; Manganelli, R.

    2001-01-01

    In Italy the liberalization process of energy market is giving particular importance to the optimization of power plants performances; especially for those that will be called to satisfy grid peak demands. On those plants some techniques have been experimented for the reduction of minimum load; these techniques, investigated and tested by an engineering dynamic simulator, have been sequentially tested on plant. The minimum load for up 320 MW of Tavazzano power plants has been diminished from 140 down to 80 MW without plant modification [it

  16. Measurements and modelling of base station power consumption under real traffic loads.

    Science.gov (United States)

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  17. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads

    Directory of Open Access Journals (Sweden)

    Goran Petrovic

    2012-03-01

    Full Text Available Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications and UMTS (Universal Mobile Telecommunications System base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  18. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  19. Pipe connection for high pressure and temperature loads

    International Nuclear Information System (INIS)

    Haferkamp, D.; Hodzic, A.; Paetz, E.; Stach, H.

    1976-01-01

    The patent proposes an inprovement of the clamping device for a pipe joint connecting pipelines which are subject to high pressure and temperature loads, e.g. in a nuclear power plant. This clamping device may be tightened and loosened by remote control. The proposed clamping ring consists of several segments connected with each other by hinge-type guide pins and fishplates. (UWI) [de

  20. Power market model with energy- and power dimension

    International Nuclear Information System (INIS)

    Johnsen, T.A.; Larsen, B.M.

    1995-01-01

    This report discusses a mathematical model of the Norwegian power market. The year is divided into three seasons. Each season is subdivided into a high-load period and a low-load period according to the demand. High-load occurs in daytime on workdays while low-load occurs at night and on holidays. The model is intended to be a tool for studying variations in prices, production, demand and trade throughout the year in a market of free competition. The model establishes equilibrium prices of electricity in Norway in high-load and low-load periods. Equilibrium prices with added transport tariffs and charges give customer an indication of the cost of using electricity. And the equilibrium prices indicate to the power producers the value of further energy or power capacity. Examples of calculations using the model show that extended export and import between Norway and other countries affect power prices and production in Norway. In the examples, power intensive industry and wood processing are subjected to market prices on energy. World market prices which give unilateral power export in the high-load periods cause the Norwegian power prices to rise strongly. If to the export from Norway in periods of high-load there corresponds import in periods of low-load, then the pressure on the prices in the power market is significantly reduced. A more extensive power exchange implies that foreign power producers may use the Norwegian power system to avoid large variations in their thermal power production. 23 refs., 21 figs., 1 tab

  1. Power law load dependence of atomic friction

    OpenAIRE

    Fusco, C.; Fasolino, A.

    2004-01-01

    We present a theoretical study of the dynamics of a tip scanning a graphite surface as a function of the applied load. From the analysis of the lateral forces, we extract the friction force and the corrugation of the effective tip-surface interaction potential. We find both the friction force and potential amplitude to have a power-law dependence on applied load with exponent similar to1.6. We interpret these results as characteristic of sharp undeformable tips in contrast to the case of macr...

  2. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  3. Low frequency wireless power transfer using modified parallel resonance matching at a complex load

    Directory of Open Access Journals (Sweden)

    Artit Rittiplang

    2016-10-01

    Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.

  4. An AC/AC Direct Power Conversion Topology Having Multiple Power Grid Connections with Adjustable Loading

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    independent producers/consumers to connect to multiple distribution grids in order to optimise the electricity price, as this will vary during the day from one power distribution company to another one. It will be needed to have a load that can smoothly adjust the power consumed from each power grid in order......Normally, a power converter has one supply port to connect to the power grid and one or multiple output ports to connect to AC loads that require variable voltage and variable frequency. As the trend on the energy market is towards deregulation, new converter topologies are needed to allow...... to minimize the overall energy cost or in case of special applications, to improve the system redundancy. Also, having a generator that can simultaneously feed fractions of its power into multiple grids which are not coupled (different voltage, frequency, displacement angle) and continuously adjust...

  5. Local load management system and intermittent power on the grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The project relates to the UK's obligations on renewable energy sources. The objectives were (i) to identify contractual requirements and commercial benefits of load management under the UK's Renewable Obligation and electric power trading arrangements (ii) through modelling, demonstrate the benefits of load management to major customers operating on-site wind generators; (iii) to develop a low-cost load management system incorporating communication technologies and switching devices and (iv) to identify the social and psychological aspects of load management. The demonstration of the load management system was conducted on the Findhorn Foundation's low voltage electric power distribution network and a 75kw wind turbine. The project demonstrated suitable technology for distributed load management on a grid-connected system in order to optimize the renewable energy generated on site, and the analyses identified several areas where grid-connected management can provide financial benefits. There is much scope for exploitation of commercial opportunities. The work was conducted by Econnect Ltd under contract to the DTI.

  6. Study of Flexible Load Dispatch to Improve the Capacity of Wind Power Absorption

    Science.gov (United States)

    Yunlei, Yang; Shifeng, Zhang; Xiao, Chang; Da, Lei; Min, Zhang; Jinhao, Wang; Shengwen, Li; Huipeng, Li

    2017-05-01

    The dispatch method which track the trend of load demand by arranging the generation scheme of controllable hydro or thermal units faces great difficulties and challenges. With the increase of renewable energy sources such as wind power and photovoltaic power introduced to grid, system has to arrange much more spinning reserve units to compensate the unbalanced power. How to exploit the peak-shaving potential of flexible load which can be shifted with time or storage energy has become many scholars’ research direction. However, the modelling of different kinds of load and control strategy is considerably difficult, this paper choose the Air Conditioner with compressor which can storage energy in fact to study. The equivalent thermal parameters of Air Conditioner has been established. And with the use of “loop control” strategies, we can predict the regulated power of Air Conditioner. Then we established the Gen-Load optimal scheduling model including flexible load based on traditional optimal scheduling model. At last, an improved IEEE-30 case is used to verify. The result of simulation shows that flexible load can fast-track renewable power changes. More than that, with flexible load and reasonable incentive method to consumers, the operating cost of the system can be greatly cut down.

  7. Automatic control of load increases power and efficiency in a microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Premier, Giuliano C.; Kim, Jung Rae; Michie, Iain [Sustainable Environment Research Centre (SERC), Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Mid-Glamorgan CF37 1DL (United Kingdom); Dinsdale, Richard M.; Guwy, Alan J. [Sustainable Environment Research Centre (SERC), Faculty of Health, Sport and Science, University of Glamorgan, Pontypridd, Mid-Glamorgan CF37 1DL (United Kingdom)

    2011-02-15

    Increasing power production and coulombic efficiency (CE) of microbial fuel cells (MFCs) is a common research ambition as the viability of the technology depends to some extent on these measures of performance. As MFCs are typically time varying systems, comparative studies of controlled and un-controlled external load impedance are needed to show if control affects the biocatalyst development and hence MFC performance. The application of logic based control of external load resistance is shown to increase the power generated by the MFC, when compared to an equivalent system which has a static resistive load. The controlled MFC generated 1600 {+-} 400 C, compared to 300 {+-} 10 C with an otherwise replicate fixed load MFC system. The use of a parsimonious gradient based control was able to increase the CE to within the range of 15.1-22.7%, while the CE for a 200 {omega} statically loaded MFC lay in the range 3.3-3.7%. The controlled MFC improves the electrogenic anodic biofilm selection for power production, indicating that greater power and substrate conversion can be achieved by controlling load impedance. Load control ensured sustainable current demand, applied microbial selection pressures and provided near-optimal impedance for power transference, compared to the un-controlled system. (author)

  8. Simultaneous Wireless Power Transfer and Data Communication Using Synchronous Pulse-Controlled Load Modulation.

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui

    2017-10-01

    Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.

  9. DC switching regulated power supply for driving an inductive load

    Science.gov (United States)

    Dyer, George R.

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  10. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  11. Current summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    The development of extreme load design criteria both as to rate and depth within any national jurisdiction as applied to nuclear power plant design is a function of several factors. The prime factor is the number of nuclear power plant facilities which are operating, under construction or planned in a given country. The second most important factor seems to be the degree of development of a domestic independent nuclear steam system supplier, NSSS vendor. Finally, countries whose domestic NSSS firms are active in the export market appear to have more active criteria development programs or at least they appear more visible to the foreign observer. For the purposes of this paper, extreme loads are defined as those loads having probability of occurence less than 10 -1 /yr and whose occurence could result in radiological consequences in excess of those permitted by national health standards. The specific loads considered include earthquake, extreme wind (tornado), airplane crash, detonation, and high energy system rupture. The paper identifies five national centers for extreme load criteria development; Canada, Great Britian, USA, USSR, and West Germany with both France and Japan also about to appear as independent centers of criteria development. Criteria under development by each national center are discussed in detail. (orig.)

  12. Study on Impact of Electric Vehicles Charging Models on Power Load

    Science.gov (United States)

    Cheng, Chen; Hui-mei, Yuan

    2017-05-01

    With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.

  13. Short term and medium term power distribution load forecasting by neural networks

    International Nuclear Information System (INIS)

    Yalcinoz, T.; Eminoglu, U.

    2005-01-01

    Load forecasting is an important subject for power distribution systems and has been studied from different points of view. In general, load forecasts should be performed over a broad spectrum of time intervals, which could be classified into short term, medium term and long term forecasts. Several research groups have proposed various techniques for either short term load forecasting or medium term load forecasting or long term load forecasting. This paper presents a neural network (NN) model for short term peak load forecasting, short term total load forecasting and medium term monthly load forecasting in power distribution systems. The NN is used to learn the relationships among past, current and future temperatures and loads. The neural network was trained to recognize the peak load of the day, total load of the day and monthly electricity consumption. The suitability of the proposed approach is illustrated through an application to real load shapes from the Turkish Electricity Distribution Corporation (TEDAS) in Nigde. The data represents the daily and monthly electricity consumption in Nigde, Turkey

  14. Design And Modeling An Automated Digsilent Power System For Optimal New Load Locations

    Directory of Open Access Journals (Sweden)

    Mohamed Saad

    2015-08-01

    Full Text Available Abstract The electric power utilities seek to take advantage of novel approaches to meet growing energy demand. Utilities are under pressure to evolve their classical topologies to increase the usage of distributed generation. Currently the electrical power engineers in many regions of the world are implementing manual methods to measure power consumption for farther assessment of voltage violation. Such process proved to be time consuming costly and inaccurate. Also demand response is a grid management technique where retail or wholesale customers are requested either electronically or manually to reduce their load. Therefore this paper aims to design and model an automated power system for optimal new load locations using DPL DIgSILENT Programming Language. This study is a diagnostic approach that assists system operator about any voltage violation cases that would happen during adding new load to the grid. The process of identifying the optimal bus bar location involves a complicated calculation of the power consumptions at each load bus As a result the DPL program would consider all the IEEE 30 bus internal networks data then a load flow simulation will be executed. To add the new load to the first bus in the network. Therefore the developed model will simulate the new load at each available bus bar in the network and generate three analytical reports for each case that captures the overunder voltage and the loading elements among the grid.

  15. The Effect of the Number of Sets on Power Output for Different Loads

    Science.gov (United States)

    Morales-Artacho, Antonio J.; Padial, Paulino; García-Ramos, Amador; Feriche, Belén

    2015-01-01

    There is much debate concerning the optimal load (OL) for power training. The purpose of this study was to investigate the effect of the number of sets performed for a given load on mean power output (Pmean). Fourteen physically active men performed 3 sets of 3 bench-press repetitions with 30, 40 and 50 kg. The highest mean power value (Pmax) across all loads and Pmean were compared when data were taken from the first set at each absolute load vs. from the best of three sets performed. Pmean increased from the first to the third set (from 5.99 ± 0.81 to 6.16 ± 0.96 W·kg−1, p = 0.017), resulting in a main effect of the set number (p 0.05). Pmax and velocity were significantly affected by the method employed to determine Pmean at each load (p < 0.05). These results show a positive effect of the number of sets per load on Pmean, affecting Pmax, OL and potentially power training prescription. PMID:26240658

  16. The Effect of the Number of Sets on Power Output for Different Loads

    Directory of Open Access Journals (Sweden)

    Morales-Artacho Antonio J.

    2015-06-01

    Full Text Available There is much debate concerning the optimal load (OL for power training. The purpose of this study was to investigate the effect of the number of sets performed for a given load on mean power output (Pmean. Fourteen physically active men performed 3 sets of 3 bench-press repetitions with 30, 40 and 50 kg. The highest mean power value (Pmax across all loads and Pmean were compared when data were taken from the first set at each absolute load vs. from the best of three sets performed. Pmean increased from the first to the third set (from 5.99 ± 0.81 to 6.16 ± 0.96 W·kg−1, p = 0.017, resulting in a main effect of the set number (p 0.05. Pmax and velocity were significantly affected by the method employed to determine Pmean at each load (p < 0.05. These results show a positive effect of the number of sets per load on Pmean, affecting Pmax, OL and potentially power training prescription.

  17. Impacts of Ripple Current to the Loading and Lifetime of Power Semiconductor Device

    DEFF Research Database (Denmark)

    Ma, Ke; Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    The thermal loading of power electronics devices is determined by many factors and has being a crucial design consideration because it is closely related to the reliability and cost of the converter system. In this paper the impacts of the ripple current to the loss and thermal loading, as well...... as reliability performances of power devices are comprehensively investigated and tested. It is concluded that the amplitude of ripple current may modify the loss and thermal loading of the power devices, especially under the conditions of converter with low power output, and thus the lifetime of devices could...

  18. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training.

    Directory of Open Access Journals (Sweden)

    J M Sarabia

    Full Text Available It has been suggested that strength training effects (i.e. neural or structural vary, depending on the total repetitions performed and velocity loss in each training set.The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training.Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]. The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM] and repetitions at maximum power (4 to 9 repetitions, or 'reps'. Volume (sets x repetitions was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%-66.6% of 1RM. The training programme ran over 11 weeks (2 sessions per week; 4-5 sets per session; 3-minute rests between sets, with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST and cortisol (SC concentrations. Rate of perceived exertion (RPE and power output were recorded in all sessions.Following the intermediate test, PPO was increased in the OP group for each load (10.9%-13.2%. Following the post-test, both experimental groups had increased 1RM (11.8%-13.8% and PPO for each load (14.1%-19.6%. Significant decreases in PPO were found for the TT group during all sets (4.9%-15.4%, along with significantly higher RPE (37%.OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE.

  19. Three-phase Power Flow Calculation of Low Voltage Distribution Network Considering Characteristics of Residents Load

    Science.gov (United States)

    Wang, Yaping; Lin, Shunjiang; Yang, Zhibin

    2017-05-01

    In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.

  20. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  1. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  2. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  3. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  4. Remote Area Power Supply (RAPS) load and resource profiles.

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Lauren (Energetics, Inc., Washington, DC); Skolnik, Edward G. (Energetics, Inc., Washington, DC); Marchionini, Brian (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

    2007-07-01

    In 1997, an international team interested in the development of Remote Area Power Supply (RAPS) systems for rural electrification projects around the world was organized by the International Lead Zinc Research Organization (ILZRO) with the support of Sandia National Laboratories (SNL). The team focused on defining load and resource profiles for RAPS systems. They identified single family homes, small communities, and villages as candidates for RAPS applications, and defined several different size/power requirements for each. Based on renewable energy and resource data, the team devised a ''strawman'' series of load profiles. A RAPS system typically consists of a renewable and/or conventional generator, power conversion equipment, and a battery. The purpose of this report is to present data and information on insolation levels and load requirements for ''typical'' homes, small communities, and larger villages around the world in order to facilitate the development of robust design practices for RAPS systems, and especially for the storage battery component. These systems could have significant impact on areas of the world that would otherwise not be served by conventional electrical grids.

  5. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  6. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  7. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    Science.gov (United States)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

  8. Method of bringing nuclear power plant to fractional electrical load conditions

    International Nuclear Information System (INIS)

    Iljunin, V.G.; Kuznetsoy, I.A.; Murogov, V.M.; Shmelev, A.N.

    1978-01-01

    A method is described of bringing a nuclear power plant to fractional electric load conditions, which power plant comprises at least two nuclear reactors, at least one nuclear reactor being a breeder and both reactors transferring heat to the turbine working substance, consisting in that the consumption of the turbine working substance is reduced in accordance with a predetermined fractional load. At the same time, the amount of heat being transferred from the nuclear reactors to the turbine working substance is reduced, for which purpose the reactors are included in autonomous cooling circuits to successively transfer heat to the turbine working substance. The breeding reactor is included in the cooling circuit with a lower coolant temperature, the temperature of the coolant at the inlet and outlet of the breeder being reduced to a level ensuring the operation of the nuclear power plant in predetermined fractional load conditions, due to which the power of the breeder is increased, and afterheat is removed

  9. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    OpenAIRE

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible e...

  10. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  11. The effects of loaded and unloaded high-velocity resistance training on functional fitness among community-dwelling older adults.

    Science.gov (United States)

    Glenn, Jordan M; Gray, Michelle; Binns, Ashley

    2015-11-01

    Physical function declines up to 4% per year after the age of 65. High-velocity training is important for maintaining muscular power and ultimately, physical function; however, whether performing high-velocity training without external resistance increases functional fitness among older adults remains unclear. The purpose of this investigation was to evaluate loaded and unloaded high-velocity training on lower body muscular power and functional fitness in older adults. Fifty-seven community-dwelling older adults (n = 16 males, n = 41 females) participated in this study. Inclusion criteria comprised ≥65 years of age, ≥24 on the Mini-mental state examination and no falls within past year. Two groups completed a 20-week high-velocity training intervention. The non-weighted group (UNLOAD, n = 27) performed the protocol without external load while the intervention group (LOAD, n = 30) used external loads via exercise machines. Functional fitness was assessed using the Short Physical Performance Battery (SPPB), Senior Fitness Test (SFT), hand-grip and lower body power measures. Multivariate ANOVA revealed that both groups had significant improvements for average (17.21%) and peak (9.26%) lower body power, along with the SFT arm curl (16.94%), chair stand (20.10%) and 8 ft. up-and-go (15.67%). Improvements were also noticed for SPPB 8 ft. walk (25.21%). However, improvements for all functional fitness measures were independent of training group. Unloaded high-velocity training increased functional fitness and power the same as loaded training. The ability of high-velocity movements to elicit gains in functional fitness without external loads may help health professionals develop fitness programs when time/space is limiting factor. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Probability problems in seismic risk analysis and load combinations for nuclear power plants

    International Nuclear Information System (INIS)

    George, L.L.

    1983-01-01

    This workshop describes some probability problems in power plant reliability and maintenance analysis. The problems are seismic risk analysis, loss of load probability, load combinations, and load sharing. The seismic risk problem is to compute power plant reliability given an earthquake and the resulting risk. Component survival occurs if its peak random response to the earthquake does not exceed its strength. Power plant survival is a complicated Boolean function of component failures and survivals. The responses and strengths of components are dependent random processes, and the peak responses are maxima of random processes. The resulting risk is the expected cost of power plant failure

  13. Application of computational intelligence techniques for load shedding in power systems: A review

    International Nuclear Information System (INIS)

    Laghari, J.A.; Mokhlis, H.; Bakar, A.H.A.; Mohamad, Hasmaini

    2013-01-01

    Highlights: • The power system blackout history of last two decades is presented. • Conventional load shedding techniques, their types and limitations are presented. • Applications of intelligent techniques in load shedding are presented. • Intelligent techniques include ANN, fuzzy logic, ANFIS, genetic algorithm and PSO. • The discussion and comparison between these techniques are provided. - Abstract: Recent blackouts around the world question the reliability of conventional and adaptive load shedding techniques in avoiding such power outages. To address this issue, reliable techniques are required to provide fast and accurate load shedding to prevent collapse in the power system. Computational intelligence techniques, due to their robustness and flexibility in dealing with complex non-linear systems, could be an option in addressing this problem. Computational intelligence includes techniques like artificial neural networks, genetic algorithms, fuzzy logic control, adaptive neuro-fuzzy inference system, and particle swarm optimization. Research in these techniques is being undertaken in order to discover means for more efficient and reliable load shedding. This paper provides an overview of these techniques as applied to load shedding in a power system. This paper also compares the advantages of computational intelligence techniques over conventional load shedding techniques. Finally, this paper discusses the limitation of computational intelligence techniques, which restricts their usage in load shedding in real time

  14. Beam loading in high-energy storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1974-06-01

    The analysis of beam loading in the RF systems of high-energy storage rings (for example, the PEP e/sup /minus//e/sup +/ ring) is complicated by the fact that the time, T/sub b/, between the passage of successive bunches is comparable to the cavity filling time, T/sub b/. In this paper, beam loading expressions are first summarized for the usual case in which T/sub b/ /much lt/ T/sub f/. The theory of phase oscillations in the heavily-beam-loaded case is considered, and the dependence of the synchrotron frequency and damping constant for the oscillations on beam current and cavity tuning is calculated. Expressions for beam loading are then derived which are valid for any value of the ratio T/sub b//T/sub f/. It is shown that, for the proposed PEP e/sup /minus//e/sup +/ ring parameters, the klystron power required is increased by about 3% over that calculated using the standard beam loading expressions. Finally, the analysis is extended to take into account the additional losses associated with the excitation of higher-order cavity modes. A rough numerical estimate is made of the loss enhancement to be expected for PEP RF system. It is concluded that this loss enhancement might be substantial unless appropriate measures are taken in the design and tuning of the accelerating structure

  15. New approaches to provide ride-through for critical loads in electric power distribution systems

    Science.gov (United States)

    Montero-Hernandez, Oscar C.

    2001-07-01

    The extensive use of electronic circuits has enabled modernization, automation, miniaturization, high quality, low cost, and other achievements regarding electric loads in the last decades. However, modern electronic circuits and systems are extremely sensitive to disturbances from the electric power supply. In fact, the rate at which these disturbances happen is considerable as has been documented in recent years. In response to the power quality concerns presented previously, this dissertation is proposing new approaches to provide ride-through for critical loads during voltage disturbances with emphasis on voltage sags. In this dissertation, a new approach based on an AC-DC-AC system is proposed to provide ride-through for critical loads connected in buildings and/or an industrial system. In this approach, a three-phase IGBT inverter with a built in Dc-link voltage regulator is suitably controlled along with static by-pass switches to provide continuous power to critical loads. During a disturbance, the input utility source is disconnected and the power from the inverter is connected to the load. The remaining voltage in the AC supply is converted to DC and compensated before being applied to the inverter and the load. After detecting normal utility conditions, power from the utility is restored to the critical load. In order to achieve an extended ride-through capability a second approach is introduced. In this case, the Dc-link voltage regulator is performed by a DC-DC Buck-Boost converter. This new approach has the capability to mitigate voltage variations below and above the nominal value. In the third approach presented in this dissertation, a three-phase AC to AC boost converter is investigated. This converter provides a boosting action for the utility input voltages, right before they are applied to the load. The proposed Pulse Width Modulation (PWM) control strategy ensures independent control of each phase and compensates for both single-phase or poly

  16. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  17. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    International Nuclear Information System (INIS)

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed

  18. Mirror benders for high thermal loading

    International Nuclear Information System (INIS)

    Bailey, W.; Vickery, A.P.

    1983-01-01

    The thermal conditions in high power mirrors can be very complex and the exact calculation of their thermal behaviour requires very detailed calculations. However by making some simplifying assumptions it is possible to make an analysis which indicates the sort of performance that can be expected. Further by consideration of the simplifying assumptions it is possible to see how the design may contain features to mitigate the effects that occur in the real world. A simple treatment of thermal perturbations in mirror benders is presented. The design features which can help a bender to operate with a high thermal flux are looked at. In conclusion, the way to proceed to higher thermal loadings when passive methods prove inadequate is suggested. (author)

  19. 77 FR 70484 - Preoperational Testing of Onsite Electric Power Systems To Verify Proper Load Group Assignments...

    Science.gov (United States)

    2012-11-26

    ...-1294, ``Preoperational Testing of On-Site Electric Power Systems to Verify Proper Load Group... entitled ``Preoperational Testing of On- Site Electric Power Systems to Verify Proper Load Group... Electric Power Systems to Verify Proper Load Group Assignments, Electrical Separation, and Redundancy...

  20. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  1. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  2. On-load Tap Changer Diagnosis on High-Voltage Power Transformers using Dynamic Resistance Measurements

    NARCIS (Netherlands)

    Erbrink, J.J.

    2011-01-01

    High-voltage transformers have tap changers to regulate the voltage in the high-voltage network when the load changes. Those tap changers are subject to different degradation mechanisms and need regular maintenance. Various defects, like contact degradation, often remain undetected and the

  3. Dynamic analysis of a pumped-storage hydropower plant with random power load

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  4. Mid-term load forecasting of power systems by a new prediction method

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2008-01-01

    Mid-term load forecasting (MTLF) becomes an essential tool for today power systems, mainly in those countries whose power systems operate in a deregulated environment. Among different kinds of MTLF, this paper focuses on the prediction of daily peak load for one month ahead. This kind of load forecast has many applications like maintenance scheduling, mid-term hydro thermal coordination, adequacy assessment, management of limited energy units, negotiation of forward contracts, and development of cost efficient fuel purchasing strategies. However, daily peak load is a nonlinear, volatile, and nonstationary signal. Besides, lack of sufficient data usually further complicates this problem. The paper proposes a new methodology to solve it, composed of an efficient data model, preforecast mechanism and combination of neural network and evolutionary algorithm as the hybrid forecast technique. The proposed methodology is examined on the EUropean Network on Intelligent TEchnologies (EUNITE) test data and Iran's power system. We will also compare our strategy with the other MTLF methods revealing its capability to solve this load forecast problem

  5. High-frequency micro-machined power inductors

    International Nuclear Information System (INIS)

    Wang, N.; O'Donnell, T.; Roy, S.; Brunet, M.; McCloskey, P.; O'Mathuna, S.C.

    2005-01-01

    Power inductors have been fabricated on silicon substrates using low-temperature IC compatible processes. The electrical properties of these micro-inductors have been measured and discussed. A maximum quality factor of 6 at 4 MHz has been achieved with an inductance value of about 160 nH. The DC saturation currents of the non-gapped and gapped inductors are ∼500 and 700 mA, respectively. The relatively high Q factor and the load current characteristics allow these micro-machined inductors to be used in integrated power converters

  6. Voltage Sag Mitigation and Load Reactive Power Compensation by UPQC

    OpenAIRE

    Ajitha, P; Jananisri, D

    2014-01-01

    This paper presents Unified Power Quality Conditioner(UPQC) that consist of series inverter and shunt inverter in back to back configuration which simultaneously compensate the power quality(PQ) problems of both voltage sag and load reactive power compensation . In this paper ,Neural network is tool which is considered for solving power quality problems. The simulation results from MATLAB/SIMULINK are discussed to validate the proposed method.

  7. Net load forecasting for high renewable energy penetration grids

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Nonnenmacher, Lukas; Coimbra, Carlos F.M.

    2016-01-01

    We discuss methods for net load forecasting and their significance for operation and management of power grids with high renewable energy penetration. Net load forecasting is an enabling technology for the integration of microgrid fleets with the macrogrid. Net load represents the load that is traded between the grids (microgrid and utility grid). It is important for resource allocation and electricity market participation at the point of common coupling between the interconnected grids. We compare two inherently different approaches: additive and integrated net load forecast models. The proposed methodologies are validated on a microgrid with 33% annual renewable energy (solar) penetration. A heuristics based solar forecasting technique is proposed, achieving skill of 24.20%. The integrated solar and load forecasting model outperforms the additive model by 10.69% and the uncertainty range for the additive model is larger than the integrated model by 2.2%. Thus, for grid applications an integrated forecast model is recommended. We find that the net load forecast errors and the solar forecasting errors are cointegrated with a common stochastic drift. This is useful for future planning and modeling because the solar energy time-series allows to infer important features of the net load time-series, such as expected variability and uncertainty. - Highlights: • Net load forecasting methods for grids with renewable energy generation are discussed. • Integrated solar and load forecasting outperforms the additive model by 10.69%. • Net load forecasting reduces the uncertainty between the interconnected grids.

  8. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training

    Science.gov (United States)

    Moya-Ramón, M.; Hernández-Davó, J. L.; Fernandez-Fernandez, J.; Sabido, R.

    2017-01-01

    Background It has been suggested that strength training effects (i.e. neural or structural) vary, depending on the total repetitions performed and velocity loss in each training set. Purpose The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training). Methods Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]). The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM]) and repetitions at maximum power (4 to 9 repetitions, or ‘reps’). Volume (sets x repetitions) was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%–66.6% of 1RM). The training programme ran over 11 weeks (2 sessions per week; 4–5 sets per session; 3-minute rests between sets), with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO) with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST) and cortisol (SC) concentrations. Rate of perceived exertion (RPE) and power output were recorded in all sessions. Results Following the intermediate test, PPO was increased in the OP group for each load (10.9%–13.2%). Following the post-test, both experimental groups had increased 1RM (11.8%–13.8%) and PPO for each load (14.1%–19.6%). Significant decreases in PPO were found for the TT group during all sets (4.9%–15.4%), along with significantly higher RPE (37%). Conclusion OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE. PMID:29053725

  9. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Cygan, P J [Army Communications-Electronics Command (CECOM), Fort Monmouth, NJ (United States). Research and Development Center

    1999-05-01

    A hybrid power source was demonstrated to successfully power a simulated power load encountered in portable military electronics and communications equipment. The hybrid system consisted of a 25 W proton exchange membrane fuel cell (PEMFC) stack connected in parallel with a 70 F capacitor bank. The cyclic regime of 18.0 W for 2 min followed by 2.5 W for 18 min was chosen as the baseline for the simulation of power load. The operating potential cut-off voltage for pass/failure was set to 3.0 V. At room temperature (23-25 C), the PEMFC alone could not handle the described baseline regime with the PEMFC operating potential dropping below the cut-off voltage within 10 s. The hybrid, however, continuously powered the same regime for 25 h. Its operating potential never reached the voltage cut-off point, not even during the high load of 18.0 W. The tests with hybrid configuration were aborted after 25 h of operation with no signs of output degradation, suggesting that further extended operation was possible. (orig.)

  10. Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels

    Science.gov (United States)

    Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.

    2014-03-01

    Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.

  11. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Directory of Open Access Journals (Sweden)

    Jia Zhao

    2013-01-01

    Full Text Available Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA. This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  12. A location selection policy of live virtual machine migration for power saving and load balancing.

    Science.gov (United States)

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  13. Efficiency Optimization Methods in Low-Power High-Frequency Digitally Controlled SMPS

    Directory of Open Access Journals (Sweden)

    Aleksandar Prodić

    2010-06-01

    Full Text Available This paper gives a review of several power efficiency optimization techniques that are utilizing advantages of emerging digital control in high frequency switch-mode power supplies (SMPS, processing power from a fraction of watt to several hundreds of watts. Loss mechanisms in semiconductor components are briefly reviewed and the related principles of online efficiency optimization through power stage segmentation and gate voltage variation presented. Practical implementations of such methods utilizing load prediction or data extraction from a digital control loop are shown. The benefits of the presented efficiency methods are verified through experimental results, showing efficiency improvements, ranging from 2% to 30%,depending on the load conditions.

  14. Correlated wind-power production and electric load scenarios for investment decisions

    International Nuclear Information System (INIS)

    Baringo, L.; Conejo, A.J.

    2013-01-01

    Highlights: ► Investment models require an accurate representation of the involved uncertainty. ► Demand and wind power production are correlated and uncertain parameters. ► Two methodologies are provided to represent uncertainty and correlation. ► An accurate uncertainty representation is crucial to get optimal results. -- Abstract: Stochastic programming constitutes a useful tool to address investment problems. This technique represents uncertain input data using a set of scenarios, which should accurately describe the involved uncertainty. In this paper, we propose two alternative methodologies to efficiently generate electric load and wind-power production scenarios, which are used as input data for investment problems. The two proposed methodologies are based on the load- and wind-duration curves and on the K-means clustering technique, and allow representing the uncertainty of and the correlation between electric load and wind-power production. A case study pertaining to wind-power investment is used to show the interest of the proposed methodologies and to illustrate how the selection of scenarios has a significant impact on investment decisions.

  15. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  16. Transistor-based filter for inhibiting load noise from entering a power supply

    Science.gov (United States)

    Taubman, Matthew S

    2013-07-02

    A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

  17. Microprocessor control unit of thyristor regulator of microhydroelectric power station ballast load

    International Nuclear Information System (INIS)

    Nomokonova, Yu; Bogdanov, E

    2014-01-01

    The operational principle of microhydroelectric power station ballast load is presented. The comparative overview of the mathematical modeling methods is performed. The ranges of thyristors optimal work are shown as a result of the regulator regimes analysis. Shows the necessity of regulation the ballast load in microhydroelectric power station with help of developed algorithm of the program for microprocessor control

  18. Transient beam loading and rf power distribution in the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Raka, E.C.

    1986-01-01

    Transient beam loading will occur in the SSC at injection as the fifteen individual batches from the High Energy Booster are loaded box-car fashion into the main rings. Periodic transient beam loading will be present also at injection due to the gaps between the successive batches as well as the gap that remains to be filled. Even after the rings have been ''filled'' there will remain the abort gap of 3.1 μsec. This can produce significant modulation of the phase and amplitude of the rf voltage seen by those bunches immediately following it unless corrective measures are taken. Two different methods of reducing this modulation will be discussed, each of which put certain requirements on the rf power distribution system

  19. A novel monochromator for high heat-load synchrotron x-ray radiation

    International Nuclear Information System (INIS)

    Khounsary, A.M.

    1992-01-01

    The high heat load associated with the powerful and concentrated x-ray beams generated by the insertion devices at a number of present and many of the future (planned or under construction) synchrotron radiation facilities pose a formidable engineering challenge in the designer of the monochromators and other optical devices. For example, the Undulator A source on the Advanced Photon Source (APS) ring (being constructed at the Argonne National Laboratory) will generate as much as 10 kW of heat deposited on a small area (about 1 cm 2 ) of the first optics located some 24 m from the source. The peak normal incident heat flux can be as high as 500 W/mm 2 . Successful utilization of the intense x-ray beams from insertion devices critically depends on the development, design, and availability of optical elements that provide acceptable performance under high heat load. Present monochromators can handle, at best, heat load levels that are an order of magnitude lower than those generated by such sources. The monochromator described here and referred to as the open-quote inclinedclose quotes monochromator can provide a solution to high heat-load problems

  20. Automatic Power Control for Daily Load-following Operation using Model Predictive Control Method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [KH, Daejeon (Korea, Republic of)

    2009-10-15

    Under the circumstances that nuclear power occupies more than 50%, nuclear power plants are required to be operated on load-following operation in order to make the effective management of electric grid system and enhanced responsiveness to rapid changes in power demand. Conventional reactors such as the OPR1000 and APR1400 have a regulating system that controls the average temperature of the reactor core relation to the reference temperature. This conventional method has the advantages of proven technology and ease of implementation. However, this method is unsuitable for controlling the axial power shape, particularly the load following operation. Accordingly, this paper reports on the development of a model predictive control method which is able to control the reactor power and the axial shape index. The purpose of this study is to analyze the behavior of nuclear reactor power and the axial power shape by using a model predictive control method when the power is increased and decreased for a daily load following operation. The study confirms that deviations in the axial shape index (ASI) are within the operating limit.

  1. Exploring novel high power density concepts for attractive fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A. [California State Univ., Los Angeles, CA (United States). Dept. of Mechanical Engineering; APEX Team

    1999-05-01

    The advanced power extraction study is aimed at exploring innovative concepts for fusion power technology (FPT) that can tremendously enhance the potential of fusion as an attractive and competitive energy source. Specifically, the study is exploring new and `revolutionary` concepts that can provide the capability to efficiently extract heat from systems with high neutron and surface heat loads while satisfying all the FPT functional requirements and maximizing reliability, maintainability, safety, and environmental requirements. The primary criteria for measuring performance of the new concepts are: (1) high power density capability with a peak neutron wall load (NWL) of {proportional_to}10 MW m{sup -2} and surface heat flux of {proportional_to}2 MW m{sup -2}; (2) high power conversion efficiency, {proportional_to}40% net; and (3) clear potential to achieve high availability; specifically low failure rate, large design margin, and short downtime for maintenance. A requirement that MTBF{>=}43 MTTR was derived as a necessary condition to achieve the required first wall/blanket availability, where MTBF is the mean time between failures and MTTR is the mean time to recover. Highlights of innovative and promising new concepts that may satisfy these criteria are provided. (orig.) 40 refs.

  2. A Power Load Distribution Algorithm to Optimize Data Center Electrical Flow

    Directory of Open Access Journals (Sweden)

    Paulo Maciel

    2013-07-01

    Full Text Available Energy consumption is a matter of common concern in the world today. Research demonstrates that as a consequence of the constantly evolving and expanding field of information technology, data centers are now major consumers of electrical energy. Such high electrical energy consumption emphasizes the issues of sustainability and cost. Against this background, the present paper proposes a power load distribution algorithm (PLDA to optimize energy distribution of data center power infrastructures. The PLDA, which is based on the Ford-Fulkerson algorithm, is supported by an environment called ASTRO, capable of performing the integrated evaluation of dependability, cost and sustainability. More specifically, the PLDA optimizes the flow distribution of the energy flow model (EFM. EFMs are responsible for estimating sustainability and cost issues of data center infrastructures without crossing the restrictions of the power capacity that each device can provide (power system or extract (cooling system. Additionally, a case study is presented that analyzed seven data center power architectures. Significant results were observed, achieving a reduction in power consumption of up to 15.5%.

  3. Nonsafety loads on glass 1E power sources, revisited

    International Nuclear Information System (INIS)

    Lewin, J.

    1980-01-01

    The supply of some nonsafety loads from class 1E power sources is allowed by industry standards (IEEE Standards 308 and 384) and by US Nuclear Regulatory Commission Regulatory Guides 1.32 and 1.75. This has been questioned as a possible source of degradation of the class 1E system, and this power deals with assessment of the effects of this practice on the reliability of the power supply for engineered safety features (ESF) systems

  4. Explosive magnetic flux compression plate generators as fast high-energy power sources

    International Nuclear Information System (INIS)

    Caird, R.S.; Erickson, D.J.; Garn, W.B.; Fowler, C.M.

    1976-01-01

    A type of explosive driven generator, called a plate generator, is described. It is capable of delivering electrical energies in the MJ range at TW power levels. Plane wave detonated explosive systems accelerate two large-area metal plates to high opposing velocities. An initial magnetic field is compressed and the flux transferred to an external load. The characteristics of the plate generator are described and compared with those of other types of generators. Methods of load matching are discussed. The results of several high-power experiments are also given

  5. High-power three-port three-phase bidirectional DC-DC converter

    NARCIS (Netherlands)

    Tao, H.; Duarte, J.L.; Hendrix, M.A.M.

    2007-01-01

    This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy

  6. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient

  7. Power system security enhancement through direct non-disruptive load control

    Science.gov (United States)

    Ramanathan, Badri Narayanan

    The transition to a competitive market structure raises significant concerns regarding reliability of the power grid. A need to build tools for security assessment that produce operating limit boundaries for both static and dynamic contingencies is recognized. Besides, an increase in overall uncertainty in operating conditions makes corrective actions at times ineffective leaving the system vulnerable to instability. The tools that are in place for stability enhancement are mostly corrective and suffer from lack of robustness to operating condition changes. They often pose serious coordination challenges. With deregulation, there have also been ownership and responsibility issues associated with stability controls. However, the changing utility business model and the developments in enabling technologies such as two-way communication, metering, and control open up several new possibilities for power system security enhancement. This research proposes preventive modulation of selected loads through direct control for power system security enhancement. Two main contributions of this research are the following: development of an analysis framework and two conceptually different analysis approaches for load modulation to enhance oscillatory stability, and the development and study of algorithms for real-time modulation of thermostatic loads. The underlying analysis framework is based on the Structured Singular Value (SSV or mu) theory. Based on the above framework, two fundamentally different approaches towards analysis of the amount of load modulation for desired stability performance have been developed. Both the approaches have been tested on two different test systems: CIGRE Nordic test system and an equivalent of the Western Electric Coordinating Council test system. This research also develops algorithms for real-time modulation of thermostatic loads that use the results of the analysis. In line with some recent load management programs executed by utilities, two

  8. Load leveling efforts of The Hokkaido Electric Power Co. Inc.; Hokkaido Denryoku no fuka heijunka eno torikumi ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Hokkaido Electric Power Co., Inc., aiming to enhance power generation efficiency through power load levelling, strives to expand and substantiate its electricity billing menu and to popularize and encourage the use of levelling-oriented apparatuses and systems most of which are designed for utilizing midnight power. The billing menu has in it a snow-melting power which is cut off for load levelling during the peak demand time zone. For domestic use, a time zone-specified lighting system named Dream Eight is created, which is one of the billing systems dependent upon time zone. Introduced therein for industrial use is a demand/supply adjustment contract system. Furthermore, in compliance with the amended Electricity Business Law that came into force in 1995, efforts are under way for revising the period wherein power is to be supplied for melting snow, expanding the scope of application of the power supply system dependent upon time zone, and newly introducing a heat accumulation assisted peak adjustment contract system and an operation adjustment contract system. As for business efforts in relation to load levelling, the company proposes household electrical systems centering about 200V high-efficiency apparatuses, electric water warmer contributing to the enhancement of year-round load levelling, popularization and reinforcement of electric snow melting systems, and power utilizing technologies capable of meeting local demands raised for example by agriculture and fishery.

  9. Analysis of the reactive power consumption and the harmonics in the network by the non-linear electrical loads

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The non linear electrical loads can give rise to a number of disturbances in electrical power networks. Among them, the high consumption of relative power is to be noted and so is the several harmonic components which may be injected in the industry system and very often in the utility system. So, by using appropriate technical considerations, as well as measurements in typical special electrical loads, such negative effects are analyzed and ways of minimizing them are suggested. (author) 3 refs., 11 figs., 6 tabs.

  10. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  11. Controlled load with supporting power grid property; Gesteuerte Verbraucher mit netzstuetzender Eigenschaft

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Olaf; Potthoff, Ulrich [Fraunhofer-Institut fuer Verkehrs- und Infrastruktursysteme (IVI), Dresden (Germany)

    2012-07-01

    In the German grid, the proportion of volatile energy is steadily increasing for several years. The ratio between energy production and consumption must be always balanced. With the unsteady supply of renewable energy in particular, the power plant and grid control is facing new challenges. At the Fraunhofer Institute for Transportation and Infrastructure Systems was analyzed, if power regulation of selected loads could make a contribution to the reliability of supply. The power consumption should be regulated as a function of the available energy supply. As suitable loads stationary refrigeration equipment or the growing number of plug-in electric vehicles have been identified. The Fraunhofer IVT's approach is an autonomous and decentralized system in which each load accommodates its consumption automatically based on locally determinable network parameters. (orig.)

  12. Filter and window assemblies for high power insertion device synchrotron radiation sources

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Viccaro, P.J.; Kuzay, T.M.

    1992-01-01

    The powerful beams of x-ray radiation generated by insertion devices at high power synchrotron facilities deposit substantial amounts of localized heat in the front end and optical components that they intercept. X-ray beams from undulator sources, in particular, are confined to very narrow solid angles and therefore impose very high absorbed heat fluxes. This paper is devoted to a detailed study of the design of windows for the Advanced Photon Source undulators and wigglers, emphasizing alternative design concepts, material considerations, and cooling techniques necessary for handling the high heat load of the insertion devices. Various designs are thermally and structurally analyzed by numerically simulating full-power operating conditions. This analysis also has relevance to the design and development of other beam line components which are subjected to the high heat loads of insertion devices

  13. Impact evaluation of conducted UWB transients on loads in power-line networks

    Science.gov (United States)

    Li, Bing; Månsson, Daniel

    2017-09-01

    Nowadays, faced with the ever-increasing dependence on diverse electronic devices and systems, the proliferation of potential electromagnetic interference (EMI) becomes a critical threat for reliable operation. A typical issue is the electronics working reliably in power-line networks when exposed to electromagnetic environment. In this paper, we consider a conducted ultra-wideband (UWB) disturbance, as an example of intentional electromagnetic interference (IEMI) source, and perform the impact evaluation at the loads in a network. With the aid of fast Fourier transform (FFT), the UWB transient is characterized in the frequency domain. Based on a modified Baum-Liu-Tesche (BLT) method, the EMI received at the loads, with complex impedance, is computed. Through inverse FFT (IFFT), we obtain time-domain responses of the loads. To evaluate the impact on loads, we employ five common, but important quantifiers, i.e., time-domain peak, total signal energy, peak signal power, peak time rate of change and peak time integral of the pulse. Moreover, to perform a comprehensive analysis, we also investigate the effects of the attributes (capacitive, resistive, or inductive) of other loads connected to the network, the rise time and pulse width of the UWB transient, and the lengths of power lines. It is seen that, for the loads distributed in a network, the impact evaluation of IEMI should be based on the characteristics of the IEMI source, and the network features, such as load impedances, layout, and characteristics of cables.

  14. EPR: High load variation performances with the 'Tmode' core control

    International Nuclear Information System (INIS)

    Grossetete, A.

    2008-01-01

    The load variation performances on a PWR are directly linked to the core control design. This design is mainly characterized by the definition of the control rod banks and the way to both perform the banks movements and to modify the core boron concentration by injection of boric acid or water. The following paper presents the principles of the T mode, the new fully automatic core control mode for the EPR which provides high performance in terms of maneuverability and optimizes the effluents. First, the paper describes the division of the control rods into two control banks (Pbank for temperature and Hbank for power distribution). Then typical movements of these banks during power changes are shown. Then, the principle of the 3 control loops (Tave, AO, Pmax), used to obtain these desired control rod movements, is given. Finally, a load following transient simulation is presented. (authors)

  15. EPR: high load variation performances with the 'TMODE' core control

    International Nuclear Information System (INIS)

    Pairot, Frederic

    2008-01-01

    The load variation performances on a PWR are directly linked to the core control design. This design is mainly characterized by the definition of the control rod banks and the way to both perform the banks movements and to modify the core boron concentration by injection of boric acid or water. The following paper presents the principles of the T mode, the new fully automatic core control mode for the EPR which provides high performance in terms of maneuverability and optimizes the effluents. First, the paper describes the division of the control rods into two control banks (Pbank for temperature and Hbank for power distribution). Then typical movements of these banks during power changes are shown. Then, the principle of the 3 control loops (Tave, AO, Pmax), used to obtain these desired control rod movements, is given. Finally, a load following transient simulation is presented. (author)

  16. Observer-Based Load Frequency Control for Island Microgrid with Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    Chaoxu Mu

    2017-01-01

    Full Text Available As renewable energy is widely integrated into the power system, the stochastic and intermittent power generation from renewable energy may cause system frequency deviating from the prescribed level, especially for a microgrid. In this paper, the load frequency control (LFC of an island microgrid with photovoltaic (PV power and electric vehicles (EVs is investigated, where the EVs can be treated as distributed energy storages. Considering the disturbances from load change and PV power, an observer-based integral sliding mode (OISM controller is designed to regulate the frequency back to the prescribed value, where the neural network observer is used to online estimate the PV power. Simulation studies on a benchmark microgrid system are presented to illustrate the effectiveness of OISM controller, and comparative results also demonstrate that the proposed method has a superior performance for stabilizing the frequency over the PID control.

  17. Reliability Constrained Priority Load Shedding for Aerospace Power System Automation

    Science.gov (United States)

    Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)

    2000-01-01

    The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.

  18. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  19. High voltage superconducting switch for power application

    International Nuclear Information System (INIS)

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  20. Attentional capture under high perceptual load.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-12-01

    Attentional capture by abrupt onsets can be modulated by several factors, including the complexity, or perceptual load, of a scene. We have recently demonstrated that observers are less likely to be captured by abruptly appearing, task-irrelevant stimuli when they perform a search that is high, as opposed to low, in perceptual load (Cosman & Vecera, 2009), consistent with perceptual load theory. However, recent results indicate that onset frequency can influence stimulus-driven capture, with infrequent onsets capturing attention more often than did frequent onsets. Importantly, in our previous task, an abrupt onset was present on every trial, and consequently, attentional capture might have been affected by both onset frequency and perceptual load. In the present experiment, we examined whether onset frequency influences attentional capture under conditions of high perceptual load. When onsets were presented frequently, we replicated our earlier results; attentional capture by onsets was modulated under conditions of high perceptual load. Importantly, however, when onsets were presented infrequently, we observed robust capture effects. These results conflict with a strong form of load theory and, instead, suggest that exposure to the elements of a task (e.g., abrupt onsets) combines with high perceptual load to modulate attentional capture by task-irrelevant information.

  1. An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications

    Science.gov (United States)

    Lee, Hyung-Min; Ghovanloo, Maysam

    2011-01-01

    We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666

  2. A no-load RF calorimeter

    Science.gov (United States)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  3. Optimisation of load control

    International Nuclear Information System (INIS)

    Koponen, P.

    1998-01-01

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  4. Optimisation of load control

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P [VTT Energy, Espoo (Finland)

    1998-08-01

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  5. Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting

    Institute of Scientific and Technical Information of China (English)

    Xia Hua; Gang Zhang; Jiawei Yang; Zhengyuan Li

    2015-01-01

    Aiming at the low accuracy problem of power system short⁃term load forecasting by traditional methods, a back⁃propagation artifi⁃cial neural network (BP⁃ANN) based method for short⁃term load forecasting is presented in this paper. The forecast points are re⁃lated to prophase adjacent data as well as the periodical long⁃term historical load data. Then the short⁃term load forecasting model of Shanxi Power Grid (China) based on BP⁃ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP⁃ANN method is simple and with higher precision and practicality.

  6. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  7. Maximum power point tracker for portable photovoltaic systems with resistive-like load

    Energy Technology Data Exchange (ETDEWEB)

    De Cesare, G.; Caputo, D.; Nascetti, A. [Department of Electronic Engineering, University of Rome La Sapienza via Eudossiana, 18 00184 Rome (Italy)

    2006-08-15

    In this work we report on the design and realization of a maximum power point tracking (MPPT) circuit suitable for low power, portable applications with resistive load. The design rules included cost, size and power efficiency considerations. A novel scheme for the implementation of the control loop of the MPPT circuit is proposed, combining good performance with compact design. The operation and performances were simulated at circuit schematic level with simulation program with integrated circuit emphasis (SPICE). The improved operation of a PV system using our MPPT circuit was demonstrated using a purely resistive load. (author)

  8. Systems and methods for providing power to a load based upon a control strategy

    Science.gov (United States)

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  9. Power Load Event Detection and Classification Based on Edge Symbol Analysis and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2012-01-01

    Full Text Available Energy signature analysis of power appliance is the core of nonintrusive load monitoring (NILM where the detailed data of the appliances used in houses are obtained by analyzing changes in the voltage and current. This paper focuses on developing an automatic power load event detection and appliance classification based on machine learning. In power load event detection, the paper presents a new transient detection algorithm. By turn-on and turn-off transient waveforms analysis, it can accurately detect the edge point when a device is switched on or switched off. The proposed load classification technique can identify different power appliances with improved recognition accuracy and computational speed. The load classification method is composed of two processes including frequency feature analysis and support vector machine. The experimental results indicated that the incorporation of the new edge detection and turn-on and turn-off transient signature analysis into NILM revealed more information than traditional NILM methods. The load classification method has achieved more than ninety percent recognition rate.

  10. High-precision performance testing of the LHC power converters

    CERN Document Server

    Bastos, M; Dreesen, P; Fernqvist, G; Fournier, O; Hudson, G

    2007-01-01

    The magnet power converters for LHC were procured in three parts, power part, current transducers and control electronics, to enable a maximum of industrial participation in the manufacturing and still guarantee the very high precision (a few parts in 10-6) required by LHC. One consequence of this approach was several stages of system tests: factory reception tests, CERN reception tests, integration tests , short-circuit tests and commissioning on the final load in the LHC tunnel. The majority of the power converters for LHC have now been delivered, integrated into complete converter and high-precision performance testing is well advanced. This paper presents the techniques used for high-precision testing and the results obtained.

  11. Impact evaluation of conducted UWB transients on loads in power-line networks

    Directory of Open Access Journals (Sweden)

    B. Li

    2017-09-01

    Full Text Available Nowadays, faced with the ever-increasing dependence on diverse electronic devices and systems, the proliferation of potential electromagnetic interference (EMI becomes a critical threat for reliable operation. A typical issue is the electronics working reliably in power-line networks when exposed to electromagnetic environment. In this paper, we consider a conducted ultra-wideband (UWB disturbance, as an example of intentional electromagnetic interference (IEMI source, and perform the impact evaluation at the loads in a network. With the aid of fast Fourier transform (FFT, the UWB transient is characterized in the frequency domain. Based on a modified Baum–Liu–Tesche (BLT method, the EMI received at the loads, with complex impedance, is computed. Through inverse FFT (IFFT, we obtain time-domain responses of the loads. To evaluate the impact on loads, we employ five common, but important quantifiers, i.e., time-domain peak, total signal energy, peak signal power, peak time rate of change and peak time integral of the pulse. Moreover, to perform a comprehensive analysis, we also investigate the effects of the attributes (capacitive, resistive, or inductive of other loads connected to the network, the rise time and pulse width of the UWB transient, and the lengths of power lines. It is seen that, for the loads distributed in a network, the impact evaluation of IEMI should be based on the characteristics of the IEMI source, and the network features, such as load impedances, layout, and characteristics of cables.

  12. Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-06-01

    Full Text Available The capacity factor of a power plant is the ratio of generation over its potential generation. It is an important measure to describe wind and solar resources. However, the fluctuating nature of renewable power generation makes it difficult to integrate all generation at times. Whenever generation exceeds the load, curtailment or storage of energy is required. With increasing renewable shares in the power system, the level of curtailment will further increase. In this work, the influence of the curtailment on the capacity factors for a highly renewable German power system is studied. An effective capacity factor is introduced, and the implications for the distribution of renewable power plants are discussed. Three years of highly-resolved weather data were used to model wind and solar power generation. Together with historical load data and a transmission model, a possible future German power system was simulated. It is shown that effective capacity factors for unlimited transmission are strongly reduced by up to 60% (wind and 70% (photovoltaics and therefore of limited value in a highly renewable power system. Furthermore, the results demonstrate that wind power benefits more strongly from a reinforced transmission grid than photovoltaics (PV does.

  13. Wind Farm Active Power Dispatch for Output Power Maximizing Based on a Wind Turbine Control Strategy for Load Minimizing

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2015-01-01

    Inclusion of the wake effect in the wind farm control design (WF) can increase the total captured power by wind turbines (WTs), which is usually implemented by derating upwind WTs. However, derating the WT without a proper control strategy will increase the structural loads, caused by operation...... in stall mode. Therefore, the WT control strategy for derating operation should be considered in the attempt at maximizing the total captured power while reducing structural loads. Moreover, electrical power loss on the transmission system inside a WF is also not negligible for maximizing the total output...... power of the WF. In this paper, an optimal active power dispatch strategy based on a WT derating strategy and considering the transmission loss is proposed for maximizing the total output power. The active power reference of each WT is chosen as the optimization variable. A partial swarm optimizing...

  14. Simplified High-Power Inverter

    Science.gov (United States)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  15. Durability of Low Platinum Fuel Cells Operating at High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Polevaya, Olga [Nuvera Fuel Cells Inc.; Blanchet, Scott [Nuvera Fuel Cells Inc.; Ahluwalia, Rajesh [Argonne National Lab; Borup, Rod [Los-Alamos National Lab; Mukundan, Rangachary [Los-Alamos National Lab

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  16. Optimized Power Dispatch in Wind Farms for Power Maximizing Considering Fatigue Loads

    DEFF Research Database (Denmark)

    Zhang, Baohua; N. Soltani, Mohsen; Hu, Weihao

    2018-01-01

    Wake effects in a wind farm (WF) include the wind velocity deficit and added turbulence. The wind velocity deficit may bring significant loss of the wind power and the added turbulence may cause extra fatigue load on the wind turbines (WTs). Inclusion of the wake effects in the wind farm control...... at a series of turbulence intensity, mean wind speed and active power reference to form a lookup table, which is used for the WF control. The proposed strategy is compared with WT MPPT control strategy and WF MPPT control strategy. The simulation results show the effectiveness of the proposed strategy....

  17. Power factor improvement in three-phase networks with unbalanced inductive loads using the Roederstein ESTAmat RPR power factor controller

    Science.gov (United States)

    Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.

    2018-01-01

    The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).

  18. Feasibility Study for High Power RF – Energy Recovery in Particle Accelerators

    CERN Document Server

    Betz, Michael

    2010-01-01

    When dealing with particle accelerators, especially in systems with travelling wave structures and low beam loading, a substantial amount of RF power is dissipated in 50Ω termination loads. For the Super Proton Synchrotron (SPS) at Cern this is 69 % of the incident RF power or about 1 MW. Different ideas, making use of that otherwise dissipated power, are presented and their feasibility is reviewed. The most feasible one, utilizing an array of semiconductor based RF/DC modules, is used to create a design concept for energy recovery in the SPS. The modules are required to operate at high power, high efficiency and with low harmonic radiation. Besides the actual RF rectifier, they contain additional components to ensure a graceful degradation of the overall system. Different rectifier architectures and semiconductor devices are compared and the most suitable ones are chosen. Two prototype devices were built and operated with up to 400 W of pulsed RF power. Broadband measurements – capturing all harmonics up ...

  19. Space station electrical power distribution analysis using a load flow approach

    Science.gov (United States)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  20. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  1. High voltage, high power operation of the plasma erosion opening switch

    International Nuclear Information System (INIS)

    Neri, J.M.; Boller, J.R.; Ottinger, P.F.; Weber, B.V.; Young, F.C.

    1987-01-01

    A Plasma Erosion Opening Switch (PEOS) is used as the opening switch for a vacuum inductive storage system driven by a 1.8-MV, 1.6-TW pulsed power generator. A 135-nH vacuum inductor is current charged to ∼750 kA in 50 ns through the closed PEOS which then opens in <10 ns into an inverse ion diode load. Electrical diagnostics and nuclear activations from ions accelerated in the diode yield a peak load voltage (4.25 MV) and peak load power (2.8 TW) that are 2.4 and 1.8 times greater than ideal matched load values for the same generator pulse

  2. Ultra-long-pulse microwave negative high voltage power supply with fast protection

    International Nuclear Information System (INIS)

    Xu Weihua; Wu Junshuan; Zheng Guanghua; Huang Qiaolin; Yang Chunsheng; Zhou Yuanwei; Chen Yonghao

    1998-01-01

    Two 1.4 MW high voltage power supply (HVPS) modules with 3-5 s pulse duration have been developed for LHCD experiment in the HT-7 tokamak. The power source consists of a pulsed generator and the electric circuit. Duration of the ultra-long-pulse is controlled by switching-on dc relay immediately and switching-off ac contactor after a given time, and the fast protection is executed by a crowbar. Due to the soft starting of the power source, the problem of overvoltage induced by dc relay switching-on has been solved. Each power supply module outputs a rated power (-35 kV, 40 A) on the dummy load. With the klystrons connected as the load of the power supply modules, LHCD experiments have been conducted successfully in the HT-7 tokamak

  3. Power-aware load balancing of large scale MPI applications

    OpenAIRE

    Etinski, Maja; Corbalán González, Julita; Labarta Mancho, Jesús José; Valero Cortés, Mateo; Veidenbaum, Alex

    2009-01-01

    Power consumption is a very important issue for HPC community, both at the level of one application or at the level of whole workload. Load imbalance of a MPI application can be exploited to save CPU energy without penalizing the execution time. An application is load imbalanced when some nodes are assigned more computation than others. The nodes with less computation can be run at lower frequency since otherwise they have to wait for the nodes with more computation blocked in MPI calls. A te...

  4. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  5. PROBABILISTIC FLOW DISTRIBUTION AS A REACTION TO THE STOCHASTICITY OF THE LOAD IN THE POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    A. M. Hashimov

    2016-01-01

    Full Text Available For the analysis and control of power systems deterministic approaches that are implemented in the form of well-known methods and models of calculation of steady-state and transient modes are mostly use in current practice. With the use of these methods it is possible to obtain solutions only for fixed circuit parameters of the system scheme and assuming that active and reactive powers as well as generation in nodal points of the network remain the same. In reality the stochastic character of power consumption cause the casual fluctuations of voltages at the nodes and power flows in electric power lines of the power system. Such casual fluctuations of operation can be estimated with the use of probabilistic simulation of the power flows. In the article the results of research of the influence of depth of casual fluctuations of the load power of the system on the probability distribution of voltage at nodes as well as on the flows of active and reactive power in the lines are presented. Probabilistic modeling of flow under stochastic load change is performed for different levels of fluctuations and under loading of the mode of the system up to peak load power. Test study to quantify the effect of stochastic variability of loads on the probabilistic distribution parameters of the modes was carried out on behalf of the electrical network of the real power system. The results of the simulation of the probability flow distribution for these fluctuations of the load, represented in the form of discrete sample values of the active power obtained with the use of the analytical Monte-Carlo method, and real data measurements of their values in the network under examination were compared.

  6. Optimization Strategy for Economic Power Dispatch Utilizing Retired EV Batteries as Flexible Loads

    Directory of Open Access Journals (Sweden)

    Shubo Hu

    2018-06-01

    Full Text Available With the increasing penetration of new and renewable energy, incorporating variable adjustable power elements on the demand side is of particular interest. The utilization of batteries as flexible loads is a hot research topic. Lithium-ion batteries are key components in electric vehicles (EVs in terms of capital cost, mass and size. They are retired after around 5 years of service, but still retain up to 80% of their nominal capacity. Disposal of waste batteries will become a significant issue for the automotive industry in the years to come. This work proposes the use of the second life of these batteries as flexible loads to participate in the economic power dispatch. The characteristics of second life batteries (SLBs are varied and diverse, requiring a new optimization strategy for power dispatch at the system level. In this work, SLBs are characterized and their operating curves are obtained analytically for developing an economic power dispatch model involving wind farms and second life batteries. In addition, a dispatch strategy is developed to reduce the dispatch complex brought by the disperse spatial and time distribution of EVs and decrease the system operating cost by introducing incentive and penalty costs in regulating the EV performance. In theory, SLBs are utilized to reduce the peak-valley difference of power loads and to stabilize the power system. Test results based on a ten-unit power system have verified the effectiveness of the proposed dispatch model and the economic benefit of utilizing SLBs as flexible loads in power systems. This work may provide a viable solution to the disposal of waste batteries from EVs and to the stable operation of fluctuating power systems incorporating stochastic renewable energy.

  7. New series active power filter for computers loads and small non-linear loads

    Energy Technology Data Exchange (ETDEWEB)

    Tarnini, M.Y. [Hariri Canadian Univ., Meshref (Lebanon)

    2009-07-01

    This paper proposed the use of a single-phase series active power filter to reduce voltage total harmonic distortion and provide improved power quality. Control schemes were developed using simple control algorithms and a reduced number of current transducers. The circuit was comprised of a power supply and zero crossing detector; a hall-effect current sensor and signal conditioning circuit; a microcontroller circuit; a driving circuit; and an inverter bridge. The filter corrected fundamental and sinusoidal voltage amplitudes. The amplitude of the fundamental current in the series filter was controlled using a microcontroller placed between the load voltage and a pre-established reference point. Experiments were conducted to test the source voltage and source current after compensation using a prototype of the filter. The control system provided effective correction of the power factor and harmonic distortion, and reached steady state in approximately 2 cycles. It was concluded that the compensator can also be adapted for use in 3-phase systems. 13 refs., 1 tab., 14 figs.

  8. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Science.gov (United States)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  9. Plato (power load analysis tool) - a module of west wall monitoring system

    International Nuclear Information System (INIS)

    Ranjan, Sutapa; Travere, Jean-marcel; Moreau, P.

    2015-01-01

    The mandate of the WEST (W Environment for Steady-state Tokamak) project, is to upgrade the medium- sized superconducting Tokamak, Tore Supra in a major scale. One of it's objectives, is to also act as a test-bed for ITER divertor components, to be procured and used in ITER. WEST would be installing actively cooled Tungsten divertor elements, like the ones to be used in ITER. These components would be tested under two experimental scenarios: high power (Ip = 0.8MA, lasting 30s with 15MW injected power) and high fluence (Ip = 0.6 MA, lasting 1000s with 12 MW injected power). Heat load on the divertor target will range from a few MW/m 2 up to 20 MW/m 2 depending on the X point location and the heat flux decay length. The tungsten Plasma Facing Components (PFCs) are less tolerant to overheating than their Carbon counterparts and prevention of their burnout is a major concern. It is in this context that the Wall Monitoring System (WMS) - a software framework aimed at monitoring the health of the Wall components, was conceived. WMS has been divided into three parts: a) a pre-discharge power load analysis tool to check compatibility between plasma scenario and PFC's operational limits in terms of heat flux b) a real-time system during discharge, to take into account all necessary measurements involved in the PFCs protection c) a set of analysis tools that would be used post-discharge, that would access WEST database and compare predicted and experimental results. This paper presents an overview of PLATo - the pre-pulse module of WMS that has been recently developed under IPR-IRFM research collaboration. PLAto has two major components - one that produces heat flux information of the PFCS and the other that produces energy graphs depending on shot profile defined by time variant magnetic equilibrium and injected power profiles. Preliminary results will be presented based on foreseen WEST plasma reference scenarios. (author)

  10. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimal control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.

  11. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Science.gov (United States)

    Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun

    2017-05-01

    Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  12. A Dynamic Model for Load Balancing in Cloud Infrastructure

    Directory of Open Access Journals (Sweden)

    Jitendra Bhagwandas Bhatia

    2015-08-01

    Full Text Available This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform-independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement violations and saves power. To achieve this, incoming requests are monitored for sudden burst, a prediction model is employed to maintain high availability and a power-aware algorithm is applied for choosing a suitable physical node for a virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.For anyone building a private, public or hybrid IaaS cloud infrastructure, load balancing of virtual hosts on a limited number of physical nodes, becomes a crucial aspect. This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement violations and saves power. To achieve this, incoming requests are monitored for sudden burst, prediction model is employed to maintain high availability and power aware algorithm is applied for choosing a suitable physical node for virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.

  13. Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Liu, Zhe; Wang, Dan; Jia, Hongjie; Djilali, Ned

    2014-01-01

    Highlights: • The interactive mechanism between system and PHEVs is presented. • The charging load self-management without sacrificing user requirements is proposed. • The charging load self-management is coupled to system operation risk analysis. • The charging load self-management can reduce the extra risk brought by PHEVs. • The charging load self-management can shift charging power to the time with low risk. - Abstract: Many jurisdictions around the world are supporting the adoption of electric vehicles through incentives and the deployment of a charging infrastructure to reduce greenhouse gas emissions. Plug-in hybrid electric vehicles (PHEVs), with offer mature technology and stable performance, are expected to gain an increasingly larger share of the consumer market. The aggregated effect on power grid due to large-scale penetration of PHEVs needs to be analyzed. Nighttime-charging which typically characterizes PHEVs is helpful in filling the nocturnal load valley, but random charging of large PHEV fleets at night may result in new load peaks and valleys. Active response strategy is a potentially effective solution to mitigate the additional risks brought by the integration of PHEVs. This paper proposes a power system operation risk analysis framework in which charging load self-management is used to control system operation risk. We describe an interactive mechanism between the system and PHEVs in conjunction with a smart charging model is to simulate the time series power consumption of PHEVs. The charging load is managed with adjusting the state transition boundaries and without violating the users’ desired charging constraints. The load curtailment caused by voltage or power flow violation after outages is determined by controlling charging power. At the same time, the system risk is maintained under an acceptable level through charging load self-management. The proposed method is implemented using the Roy Billinton Test System (RBTS) and

  14. Very High Frequency Galvanic Isolated Offline Power Supply

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf

    During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...... inverters with a single combined rectifier. The converter designed to deliver 9 W to a 60 V LED load and is achieving an efficiency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that offline VHF converter can be implemented with high efficiencies even for low power applications...... are described together with the possibility of using capacitors as the power galvanic isolation, both methods of creating galvanic isolation are implemented in converters. Regarding EMC a series of converters with different filter implementations are examined. The results from the conducted mea-surement from 150...

  15. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    OpenAIRE

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle; Pedersen, Tom Søndergaard

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has therefore been developed. The system is implemented as a complement, producing control signals to be added to those of the existing boiler control system, a concept which has various practical advanta...

  16. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  17. Multi-timescale modelling for the loading behaviours of power electronics converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2015-01-01

    The thermal dynamics of power device, referred as “thermal cycling”, are closely related to the reliability as well as the cost of the power electronics converter. However, the device loading is disturbed by many factors of the converter system which present at various times-constants from micro...

  18. Power Stabilization Strategy of Random Access Loads in Electric Vehicles Wireless Charging System at Traffic Lights

    Directory of Open Access Journals (Sweden)

    Linlin Tan

    2016-10-01

    Full Text Available An opportunity wireless charging system for electric vehicles when they stop and wait at traffic lights is proposed in this paper. In order to solve the serious power fluctuation caused by random access loads, this study presents a power stabilization strategy based on counting the number of electric vehicles in a designated area, including counting method, power source voltage adjustment strategy and choice of counting points. Firstly, the circuit model of a wireless power system with multi-loads is built and the equation of each load is obtained. Secondly, after the counting method of electric vehicles is stated, the voltage adjustment strategy, based on the number of electric vehicles when the system is at a steady state, is set out. Then, the counting points are chosen according to power curves when the voltage adjustment strategy is adopted. Finally, an experimental prototype is implemented to verify the power stabilization strategy. The experimental results show that, with the application of this strategy, the charging power is stabilized with the fluctuation of no more than 5% when loads access randomly.

  19. Power analysis and simulation of a vehicle under combined loads

    International Nuclear Information System (INIS)

    Khayyam, H.; Kouzani, A.Z.; Khoshmanesh, K.; Hu, E.

    2008-01-01

    Reducing fuel consumption in vehicles offers many obvious economic benefits, and also helps reduce air pollution emission levels. Mechanical engineers and automotive researches have continuously searched for ways to optimize fuel consumption in vehicles. This paper presented an analytical model of fuel consumption (AMFC) in an effort to coordinate the driving power and manage the overall fuel consumption for an internal combustion engine vehicle. The model calculated the different loads applied on the vehicle, such as road-slope, road-friction, wind-drag, accessories, and mechanical losses. It also solved the combustion equation of the engine under different working conditions including various fuel compositions, excess airs and air inlet temperatures. The model then determined the contribution of each load to signify the energy distribution and power flows of the vehicle. In order to assess the model's sensitivity to different loads, the following four simulations were conducted: flat-windless, flat-windy, sloppy-windless, sloppy-windy. The average fuel consumption for the four simulations was presented. The paper outlined the specification of the vehicle and environment as well as the simulation methodology. The model, algorithm, slope simulation, and drive strategy were presented. It was concluded that the power consumption significantly increased where the slope friction came into play and that the model has the potential to assist in vehicle energy management. 16 refs., 4 tabs., 14 figs

  20. Load control services in the management of power system security costs

    International Nuclear Information System (INIS)

    Jayantilal, A.; Strbac, G.

    1999-01-01

    The new climate of deregulation in the electricity industry is creating a need for a more transparent cost structure and within this framework the cost of system security has been a subject of considerable interest. Traditionally power system security has been supplied by out-of-merit generation, in the short term, and transmission reinforcement, in the long term. This paper presents a method of analysing the role of load-demand in the management of power system security costs by utilising load control services (LCS). It also proposes a competitive market to enable bidding from various participants within the electricity industry to supply system security. (author)

  1. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    Science.gov (United States)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  2. MAGY: An innovative high voltage-low current power supply for gyrotron

    International Nuclear Information System (INIS)

    Siravo, Ugo; Alex, Juergen; Bader, Michael; Carpita, Mauro; Fasel, Damien; Gavin, Serge; Perez, Albert

    2011-01-01

    From the electrical point of view, the body and the anode of high power gyrotrons behave as capacitive loads. A highly dynamic power supply is, therefore, hard to achieve. The MAGY concept (Modulator for the Anode of a triode type GYrotron) embodies an innovative solution to manage the capacitive current ensuring a very low ripple on the output voltage. It consists of a series of independent, bi-directional and regulated DC sources. Compared to existing topologies, this solution requires a smaller number of power modules. It avoids internal high frequency modulation and simultaneously offers high resolution of the output voltage and a wide range of operating scenarios.

  3. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar; Tom, Nathan

    2017-09-01

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  4. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  5. An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Vijith Vijayakumaran Nair

    2015-06-01

    Full Text Available In near-field wireless-powered biomedical implants, the receiver voltage largely overrides the compliance of low-voltage power receiver systems. To limit the induced voltage, generally, low-voltage topologies utilize limiter circuits, voltage clippers or shunt regulators, which are power-inefficient methods. In order to overcome the voltage limitation and improve power efficiency, we propose an integrated chip high-voltage power receiver based on the step down approach. The topology accommodates voltages as high as 30 V and comprises a high-voltage semi-active rectifier, a voltage reference generator and a series regulator. Further, a battery management circuit that enables safe and reliable implant battery charging based on analog control is proposed and realized. The power receiver is fabricated in 0.35-μm high-voltage Bipolar-CMOS-DMOStechnology based on the LOCOS0.35-μm CMOS process. Measurement results indicate 83.5% power conversion efficiency for a rectifier at 2.1 mA load current. The low drop-out regulator based on the current buffer compensation and buffer impedance attenuation scheme operates with low quiescent current, reduces the power consumption and provides good stability. The topology also provides good power supply rejection, which is adequate for the design application. Measurement results indicate regulator output of 4 ± 0.03 V for input from 5 to 30 V and 10 ± 0.05 V output for input from 11 to 30 V with load current 0.01–100 mA. The charger circuit manages the charging of the Li-ion battery through all if the typical stages of the Li-ion battery charging profile.

  6. Effects of interruptible load program on equilibrium outcomes of electricity markets with wind power

    Energy Technology Data Exchange (ETDEWEB)

    An, Xuena; Zhang, Shaohua; Li, Xue [Shanghai Univ. (China). Key Lab. of Power Station Automation Technology

    2013-07-01

    High wind power penetration presents a lot of challenges to the flexibility and reliability of power system operation. In this environment, various demand response (DR) programs have got much attention. As an effective measure of demand response programs, interruptible load (IL) programs have been widely used in electricity markets. This paper addresses the problem of impacts of the IL programs on the equilibrium outcomes of electricity wholesale markets with wind power. A Cournot equilibrium model of wholesale markets with wind power is presented, in which IL programs is included by a market demand model. The introduction of the IL programs leads to a non-smooth equilibrium problem. To solve this equilibrium problem, a novel solution method is proposed. Numerical examples show that IL programs can lower market price and its volatility significantly, facilitate the integration of wind power.

  7. The Impact of Load Carriage on Measures of Power and Agility in Tactical Occupations: A Critical Review.

    Science.gov (United States)

    Joseph, Aaron; Wiley, Amy; Orr, Robin; Schram, Benjamin; Dawes, J Jay

    2018-01-07

    The current literature suggests that load carriage can impact on a tactical officer's mobility, and that survival in the field may rely on the officer's mobility. The ability for humans to generate power and agility is critical for performance of the high-intensity movements required in the field of duty. The aims of this review were to critically examine the literature investigating the impacts of load carriage on measures of power and agility and to synthesize the findings. The authors completed a search of the literature using key search terms in four databases. After relevant studies were located using strict inclusion and exclusion criteria, the studies were critically appraised using the Downs and Black Checklist and relevant data were extracted and tabled. Fourteen studies were deemed relevant for this review, ranging in percentage quality scores from 42.85% to 71.43%. Outcome measures used in these studies to indicate levels of power and agility included short-distance sprints, vertical jumps, and agility runs, among others. Performance of both power and agility was shown to decrease when tactical load was added to the participants. This suggests that the increase in weight carried by tactical officers may put this population at risk of injury or fatality in the line of duty.

  8. The Impact of Load Carriage on Measures of Power and Agility in Tactical Occupations: A Critical Review

    Directory of Open Access Journals (Sweden)

    Aaron Joseph

    2018-01-01

    Full Text Available The current literature suggests that load carriage can impact on a tactical officer’s mobility, and that survival in the field may rely on the officer’s mobility. The ability for humans to generate power and agility is critical for performance of the high-intensity movements required in the field of duty. The aims of this review were to critically examine the literature investigating the impacts of load carriage on measures of power and agility and to synthesize the findings. The authors completed a search of the literature using key search terms in four databases. After relevant studies were located using strict inclusion and exclusion criteria, the studies were critically appraised using the Downs and Black Checklist and relevant data were extracted and tabled. Fourteen studies were deemed relevant for this review, ranging in percentage quality scores from 42.85% to 71.43%. Outcome measures used in these studies to indicate levels of power and agility included short-distance sprints, vertical jumps, and agility runs, among others. Performance of both power and agility was shown to decrease when tactical load was added to the participants. This suggests that the increase in weight carried by tactical officers may put this population at risk of injury or fatality in the line of duty.

  9. Cloud-based design of high average power traveling wave linacs

    Science.gov (United States)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  10. Short-term load and wind power forecasting using neural network-based prediction intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  11. Load Flow and Short Circuit Analysis of the Class III Power System of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. K.; Jung, H. S

    2005-12-15

    The planning, design, and operation of electric power system require engineering studies to assist in the evaluation of the system performance, reliability, safety and economics. The Class III power of HANARO supplies power for not only HANARO but also RIPF and IMEF. The starting current of most ac motors is five to ten times normal full load current. The loads of the Class III power are connected in consecutive orders at an interval for 10 seconds to avoid excessive voltage drop. This technical report deals with the load flow study and motor starting study for the Class III power of HANARO using ETAP(Electrical Transient Analyzer Program) to verify the capacity of the diesel generator. Short-circuit studies are done to determine the magnitude of the prospective currents flowing throughout the power system at various time intervals after a fault occurs. Short-circuit studies can be performed at the planning stage in order to help finalize the system layout, determine voltage levels, and size cables, transformers, and conductors. From this study, we verify the short circuit current capacity of air circuit breaker(ACB) and automatic transfer switch(ATS) of the Class III power.

  12. We Need to Talk... Developing Communicating Power Supplies to Monitor & Control Miscellaneous Electric Loads

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Andrew; Lanzisera, Steven; Liao, Anna; Meier, Alan

    2014-08-11

    Plug loads represent 30percent of total electricity use in residential buildings. Significant energy savings would result from an accurate understanding of which miscellaneous electric devices are using energy, at what time, and in what quantity. Commercially available plug load monitoring and control solutions replace or limit the attached device's native controls - forcing the user to adapt to a separate set of controls associated with the monitoring and control hardware. A better solution is integration of these capabilities at the power supply level. In this paper, we demonstrate a method achieving this integration. Our solution allows unobtrusive power monitoring and control while retaining native device control features. Further, our prototype enables intelligent behaviors by allowing devices to respond to the state of one another automatically. The CPS enables energy savings while demonstrating an added level of functionality to the user. If CPS technology became widespread in devices, a combination of automated and human interactive solutions would enable high levels of energy savings in buildings.

  13. Vce-based methods for temperature estimation of high power IGBT modules during power cycling - A comparison

    DEFF Research Database (Denmark)

    Amoiridis, Anastasios; Anurag, Anup; Ghimire, Pramod

    2015-01-01

    . This experimental work evaluates the validity and accuracy of two Vce based methods applied on high power IGBT modules during power cycling tests. The first method estimates the chip temperature when low sense current is applied and the second method when normal load current is present. Finally, a correction factor......Temperature estimation is of great importance for performance and reliability of IGBT power modules in converter operation as well as in active power cycling tests. It is common to be estimated through Thermo-Sensitive Electrical Parameters such as the forward voltage drop (Vce) of the chip...

  14. Load-Following Voltage Controller Design for a Static Space Nuclear Power System

    International Nuclear Information System (INIS)

    Parlos, Alexander G.; Onbasioglou, Fetiye O.; Metzger, John D.

    2000-01-01

    The reliability of static space nuclear power systems (SNPSs) could be improved through the use of backup devices in addition to shunt regulators, as currently proposed for load following. Shunt regulator failure leading to reactor shutdown is possible, as is the possible need to deliver somewhat higher power level to the load than originally expected. A backup system is proposed in SNPSs to eliminate the possibility of a single-point failure in the shunt regulators and to increase the overall system power delivery capability despite changing mission needs and component characteristics. The objective of this paper is to demonstrate the feasibility of such a backup device for voltage regulation in static SNPSs that is capable of overcoming system variations resulting from operation at different power levels. A dynamic compensator is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery method. The resulting compensators are gain scheduled using the SNPS electric power as the scheduling variable, resulting in a nonlinear compensator. The performance of the gain-scheduled compensator is investigated extensively using an SNPS simulator. The simulations demonstrate the effects of the fuel temperature reactivity coefficient variations on the load-following capabilities of the SNPS. Robustness analysis results demonstrate that the proposed controller exhibits significant operational flexibility, and it can be considered for long-term space mission requiring significant levels of autonomy

  15. Very fast, high peak-power, planar triode amplifiers for driving optical gates

    International Nuclear Information System (INIS)

    Howland, M.M.; Davis, S.J.; Gagnon, W.L.

    1979-01-01

    Recent extensions of the peak power capabilities of planar triodes have made possible the latter's use as very fast pulse amplifiers, to drive optical gates within high-power Nd:glass laser chains. These pulse amplifiers switch voltages in the 20 kV range with rise times of a few nanoseconds, into crystal optical gates that are essentially capacitive loads. This paper describes a simplified procedure for designing these pulse amplifiers. It further outlines the use of bridged-T constant resistance networks to transform load capacitance into pure resistance, independent of frequency

  16. The relationship between loads and power of a rotor and an actuator disc

    International Nuclear Information System (INIS)

    Van Kuik, Gijs A M

    2014-01-01

    Most state of the art rotor design methods are based on the actuator disc theory developed about one century ago. The actuator disc is an axisymmetric permeable surface carrying a load that represents the load on a real rotor with a finite number of blades N. However, the mathematics of the transition from a real rotor load to an axisymmetrically loaded disc is not yet presented in literature. By formulating an actuator disc equation of motion in which the Bernoulli constant H is expressed in kinematical terms, a comparison of the power conversion and load on the disc and rotor is possible. For both the converted power is expressed as a change of angular momentum times rotational speed. The limits for N → ∞ while the chord c → 0, the rotational speed Ω → ∞, the load F becoming uniform by ∂F/∂r → 0 and the thickness ε → 0 confirm that the classical disc represents the rotor with an infinite number of blades. Furthermore, the expressions for the blade load are compared to the expressions in current design and analysis tools. The latter do not include the load on chord-wise vorticity. Including this is expected to give a better modelling of the tip and root flow

  17. The relationship between loads and power of a rotor and an actuator disc

    Science.gov (United States)

    van Kuik, Gijs A. M.

    2014-12-01

    Most state of the art rotor design methods are based on the actuator disc theory developed about one century ago. The actuator disc is an axisymmetric permeable surface carrying a load that represents the load on a real rotor with a finite number of blades N. However, the mathematics of the transition from a real rotor load to an axisymmetrically loaded disc is not yet presented in literature. By formulating an actuator disc equation of motion in which the Bernoulli constant H is expressed in kinematical terms, a comparison of the power conversion and load on the disc and rotor is possible. For both the converted power is expressed as a change of angular momentum times rotational speed. The limits for N → ∞ while the chord c → 0, the rotational speed Ω → ∞, the load F becoming uniform by ∂F/∂r → 0 and the thickness epsilon → 0 confirm that the classical disc represents the rotor with an infinite number of blades. Furthermore, the expressions for the blade load are compared to the expressions in current design and analysis tools. The latter do not include the load on chord-wise vorticity. Including this is expected to give a better modelling of the tip and root flow.

  18. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Directory of Open Access Journals (Sweden)

    Yiming Zhang

    2017-05-01

    Full Text Available Wireless Power Transfer (WPT has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  19. Automatic Control of Reactor Temperature and Power Distribution for a Daily Load following Operation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [Korea Hydro and Nuclear Power Institute, Daejeon (Korea, Republic of)

    2010-10-15

    An automatic control method of reactor power and power distribution was developed for a daily load following operation of APR1400. This method used a model predictive control (MPC) methodology having second-order plant data. And it utilized a reactor power ratio and axial shape index as control variables. However, the reactor regulating system of APR1400 is operated by the difference between the average temperature of the reactor core and the reference temperature, which is proportional to the turbine load. Thus, this paper reports on the model predictive control methodology using fourth-order plant data and a reactor temperature instead of the reactor power shape. The purpose of this study is to develop a revised automatic controller and analyze the behavior of the nuclear reactor temperature (Tavg) and the axial shape index (ASI) using the MPC method during a daily load following operation

  20. Transient and steady-state tests of the space power research engine with resistive and motor loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  1. Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  2. Decentralized model predictive based load frequency control in an interconnected power system

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, T.H., E-mail: tarekhie@yahoo.co [High Institute of Energy, South Valley University (Egypt); Bevrani, H., E-mail: bevrani@ieee.or [Dept. of Electrical Engineering and Computer Science, University of Kurdistan (Iran, Islamic Republic of); Hassan, A.A., E-mail: aahsn@yahoo.co [Faculty of Engineering, Dept. of Electrical Engineering, Minia University, Minia (Egypt); Hiyama, T., E-mail: hiyama@cs.kumamoto-u.ac.j [Dept. of Electrical Engineering and Computer Science, Kumamoto University, Kumamoto (Japan)

    2011-02-15

    This paper presents a new load frequency control (LFC) design using the model predictive control (MPC) technique in a multi-area power system. The MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. Each local area controller is designed independently such that stability of the overall closed-loop system is guaranteed. A frequency response model of multi-area power system is introduced, and physical constraints of the governors and turbines are considered. The model was employed in the MPC structures. Digital simulations for both two and three-area power systems are provided to validate the effectiveness of the proposed scheme. The results show that, with the proposed MPC technique, the overall closed-loop system performance demonstrated robustness in the face of uncertainties due to governors and turbines parameters variation and loads disturbances. A performance comparison between the proposed controller and a classical integral control scheme is carried out confirming the superiority of the proposed MPC technique.

  3. Decentralized model predictive based load frequency control in an interconnected power system

    International Nuclear Information System (INIS)

    Mohamed, T.H.; Bevrani, H.; Hassan, A.A.; Hiyama, T.

    2011-01-01

    This paper presents a new load frequency control (LFC) design using the model predictive control (MPC) technique in a multi-area power system. The MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. Each local area controller is designed independently such that stability of the overall closed-loop system is guaranteed. A frequency response model of multi-area power system is introduced, and physical constraints of the governors and turbines are considered. The model was employed in the MPC structures. Digital simulations for both two and three-area power systems are provided to validate the effectiveness of the proposed scheme. The results show that, with the proposed MPC technique, the overall closed-loop system performance demonstrated robustness in the face of uncertainties due to governors and turbines parameters variation and loads disturbances. A performance comparison between the proposed controller and a classical integral control scheme is carried out confirming the superiority of the proposed MPC technique.

  4. Computer-aided load monitoring system for nuclear power plant steel framing structures

    International Nuclear Information System (INIS)

    Skaczylo, A.T.; Fung, S-J; Hooks, R.W.

    1984-01-01

    The design of nuclear power plant steel framing structures is a long and involved process. It is often complicated by numerous changes in design loads as a result of additions, deletions and modifications of HVAC hangers, cable tray hangers, electric conduit hangers, and small bore and large bore mechanical component supports. Manual tracking of load changes of thousands of supports and their impact to the structural steel design adequacy is very time-consuming and is susceptible to errors. This paper presents a computer-aided load monitoring system using the latest technology of data base management and interactive computer software. By linking the data base to analysis and investigation computer programs, the engineer has a very powerful tool to monitor not only the load revisions but also their impact on the steel structural floor framing members and connections. Links to reporting programs allow quick information retrieval in the form of comprehensive reports. Drawing programs extract data from the data base to draw hanger load system drawings on a computer-aided drafting system. These capabilities allow engineers to minimize modifications by strategically locating new hangers or rearranging auxiliary steel configuration

  5. High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis

    Science.gov (United States)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.

  6. Performance assessment of a power loaded supercapacitor based on manufacturer data

    International Nuclear Information System (INIS)

    Mellincovsky, Martin; Kuperman, Alon; Lerman, Chaim; Aharon, Ilan; Reichbach, Noam; Geula, Gal; Nakash, Ronen

    2013-01-01

    Highlights: • Analytic performance of a power loaded supercapacitor is derived. • Power and energy capabilities based on manufacturer data are obtained. • Power limitations based on depth of discharge are presented. - Abstract: Analytical derivation of constant power loaded supercapacitor behavior is presented in the paper. Simple RC model based on manufacturer datasheet extracted parameters is employed. Power and energy related figures of merit are obtained from the derived expressions and compared to the datasheet provided values. It is revealed that some of the performance characteristics provided in most of the datasheets are theoretical and cannot be achieved in practice. The process of a realistic Ragone plot derivation based on the proposed method is described in the paper as well. It is shown that the lower limit of supercapacitor voltage imposes certain limits on power and energy capabilities of the device. Extended simulation and experimental results are provided in order to reinforce the proposed method and justify the selected RC model for describing the supercapacitor performance. By appropriate comparison of simulations and experiments it is proven that the selected model, while being oversimplified and low order, may be used to predict supercapacitor behavior with reasonable accuracy to perform at least an initial design

  7. Modeling and simulation of stand-alone hybrid power system with fuzzy MPPT for remote load application

    Directory of Open Access Journals (Sweden)

    Bogaraj T.

    2015-09-01

    Full Text Available Many parts of remote locations in the world are not electrified even in this Advanced Technology Era. To provide electricity in such remote places renewable hybrid energy systems are very much suitable. In this paper PV/Wind/Battery Hybrid Power System (HPS is considered to provide an economical and sustainable power to a remote load. HPS can supply the maximum power to the load at a particular operating point which is generally called as Maximum Power Point (MPP. Fuzzy Logic based MPPT (FLMPPT control method has been implemented for both Solar and Wind Power Systems. FLMPPT control technique is implemented to generate the optimal reference voltage for the first stage of DC-DC Boost converter in both the PV and Wind energy system. The HPS is tested with variable solar irradiation, temperature, and wind speed. The FLMPPT method is compared with P&O MPPT method. The proposed method provides a good maximum power operation of the hybrid system at all operating conditions. In order to combine both sources, the DC bus voltage is made constant by employing PI Controllers for the second stage of DC-DC Buck-Boost converter in both Solar and Wind Power Systems. Battery Bank is used to store excess power from Renewable Energy Sources (RES and to provide continuous power to load when the RES power is less than load power. A SPWM inverter is designed to convert DC power into AC to supply three phase load. An LC filter is also used at the output of inverter to get sinusoidal current from the PWM inverter. The entire system was modeled and simulated in Matlab/Simulink Environment. The results presented show the validation of the HPS design.

  8. Different Predictive Control Strategies for Active Load Management in Distributed Power Systems with High Penetration of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Zong, Yi; Bindner, Henrik W.; Gehrke, Oliver

    2013-01-01

    In order to achieve a Danish energy supply based on 100% renewable energy from combinations of wind, biomass, wave and solar power in 2050 and to cover 50% of the Danish electricity consumption by wind power in 2020, it requires more renewable energy in buildings and industries (e.g. cold stores......, greenhouses, etc.), and to coordinate the management of large numbers of distributed energy resources with the smart grid solution. This paper presents different predictive control (Genetic Algorithm-based and Model Predictive Control-based) strategies that schedule controlled loads in the industrial...... and residential sectors, based on dynamic power price and weather forecast, considering users’ comfort settings to meet an optimization objective, such as maximum profit or minimum energy consumption. Some field tests were carried out on a facility for intelligent, active and distributed power systems, which...

  9. Forecasting loads and prices in competitive power markets

    International Nuclear Information System (INIS)

    Bunn, D.W.

    2000-01-01

    This paper provides a review of some of the main methodological issues and techniques which have become innovative in addressing the problem of forecasting daily loads and prices in the new competitive power markets. Particular emphasis is placed upon computationally intensive methods, including variable segmentation, multiple modeling, combinations, and neural networks for forecasting the demand side, and strategic simulation using artificial agents for the supply side

  10. Load frequency control of an asynchronous restructured power system

    African Journals Online (AJOL)

    This paper presents the analysis of load frequency control (LFC) of a two-area restructured power system interconnected via parallel ac/dc transmission links. Simulation results show that the limitations of PI controller can be overcome by including Fuzzy logic concept and thereby the dynamic performance can be improved ...

  11. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  12. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  13. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  14. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  15. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  16. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  17. Effects of Different Relative Loads on Power Performance During the Ballistic Push-up.

    Science.gov (United States)

    Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R

    2017-12-01

    Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Effects of different relative loads on power performance during the ballistic push-up. J Strength Cond Res 31(12): 3411-3416, 2017-The purpose of this investigation was to examine the effect of load on force and power performance during a ballistic push-up. Sixty (24.5 ± 4.3 years, 1.75 ± 0.07 m, and 80.8 ± 13.5 kg) recreationally active men who participated in this investigation completed all testing and were included in the data analysis. All participants were required to perform a 1 repetition maximum bench press, and ballistic push-ups without external load (T1), with 10% (T2) and 20% (T3) of their body mass. Ballistic push-ups during T2 and T3 were performed using a weight loaded vest. Peak and mean force, power, as well as net impulse and flight time were determined for each ballistic push-up. Peak and mean force were both significantly greater (p ballistic push-up, regardless of the participants' level of strength.

  18. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study....... The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear...

  19. Power flow control strategy in distribution network for dc type distributed energy resource at load bus

    International Nuclear Information System (INIS)

    Hanif, A.; Choudhry, M.A.

    2013-01-01

    This research work presents a feed forward power flow control strategy in the secondary distribution network working in parallel with a DC type distributed energy resource (DER) unit with SPWM-IGBT Voltage Source Converter (VSC). The developed control strategy enables the VSC to be used as power flow controller at the load bus in the presence of utility supply. Due to the investigated control strategy, power flow control from distributed energy resource (DER) to common load bus is such that power flows to the load without facing any power quality problem. The technique has an added advantage of controlling power flow without having a dedicated power flow controller. The SPWM-IGBT VSC is serving the purpose of dc-ac converter as well as power flow controller. Simulations for a test system using proposed power flow control strategy are carried out using SimPower Systems toolbox of MATLAB at the rate and Simulink at the rate. The results show that a reliable, effective and efficient operation of DC type DER unit in coordination with main utility network can be achieved. (author)

  20. 40 CFR 86.1772-99 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Road load power, test weight, and inertia weight class determination. 86.1772-99 Section 86.1772-99 Protection of Environment ENVIRONMENTAL... for Light-Duty Vehicles and Light-Duty Trucks § 86.1772-99 Road load power, test weight, and inertia...

  1. Partial thorium loading in the initial core of Kakrapar atomic power reactor

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1993-01-01

    The first unit of Kakrapar nuclear power station has gone critical with some thorium oxide fuel bundles loaded in its core. The thorium helps to flatten the power by reducing neutron flux in the centre of the reactor. However, the placing of the thorium had to be planned with care, because if the neutron flux at a point where a safety rod is located is depressed, the reactivity worth of the safety rod gets reduced. Using a dynamic programing approach, the Reactor Engineering Division of Bhabha Atomic Research Centre worked out a satisfactory configuration for loading the thorium bundles

  2. Demonstration project: Load management on the user side at power shortages

    International Nuclear Information System (INIS)

    Lindskoug, Stefan

    2005-10-01

    The risk for power shortages during extreme cold weather has increased in Sweden. Comments are made that high electricity spot prices are important for holding down the demand. Through the consumers' higher price sensitivity, the electricity system can be operated with lower reserve capacity. The objective of the demonstration project is to show methods for reducing the electricity demand at the national level at high spot prices. An important prerequisite is that the measures must be profitable for all parties involved. Four separate studies were made, two concerning households, one industry and one for the district heating sector. The conclusion from the studies is that load management on the customer's side is an economic alternative to investment in new production capacity

  3. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    Science.gov (United States)

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  4. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    Directory of Open Access Journals (Sweden)

    Yuanfu Mo

    Full Text Available In a vehicular ad hoc network (VANET, the periodic exchange of single-hop status information broadcasts (beacon frames produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  5. Evaluation of high temperature gas reactor for demanding cogeneration load follow

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Hino, Ryutaro

    2012-01-01

    Modular nuclear reactor systems are being developed around the world for new missions among which is cogeneration for industries and remote areas. Like existing fossil energy counterpart in these markets, a nuclear plant would need to demonstrate the feasibility of load follow including (1) the reliability to generate power and heat simultaneously and alone and (2) the flexibility to vary cogeneration rates concurrent to demand changes. This article reports the results of JAEA's evaluation on the high temperature gas reactor (HTGR) to perform these duties. The evaluation results in a plant design based on the materials and design codes developed with JAEA's operating test reactor and from additional equipment validation programs. The 600 MWt-HTGR plant generates electricity efficiently by gas turbine and 900degC heat by a topping heater. The heater couples via a heat transport loop to industrial facility that consumes the high temperature heat to yield heat product such as hydrogen fuel, steel, or chemical. Original control methods are proposed to automate transition between the load duties. Equipment challenges are addressed for severe operation conditions. Performance limits of cogeneration load following are quantified from the plant system simulation to a range of bounding events including a loss of either load and a rapid peaking of electricity. (author)

  6. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    Science.gov (United States)

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  7. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  8. A model of market power in electricity industries subject to peak load pricing

    International Nuclear Information System (INIS)

    Arellano, Maria-Soledad; Serra, Pablo

    2007-01-01

    This paper studies the exercise of market power in price-regulated electricity industries under peak-load pricing and merit order dispatching, but where investment decisions are taken by independent generating companies. Within this context, we show that producers can exercise market power by under-investing in base-load capacity, compared to the welfare-maximizing configuration. We also show that when there is free entry with an exogenous fixed entry cost that is later sunk, more intense competition results in higher welfare but fewer firms. (author)

  9. Current multiplier to improved generator-to-load coupling for pulse-power generators

    International Nuclear Information System (INIS)

    Chuvatin, A.S.; Rudakov, L.I.; Weber, B.V.; Bayol, F.; Cadiergues, R.

    2005-01-01

    The circuit presented improves the coupling of existing and future pulsed power generators to physical loads. The efficiency of the proposed current multiplication scheme could theoretically exceed the values for a typical direct load-to-generator circuit. The scheme could be beneficial for use in actual applications and two examples of such applications are given [ru

  10. Reactor control device for controlling load of nuclear power plant

    International Nuclear Information System (INIS)

    Hirota, Tadakuni; Yokoyama, Terukuni; Masuda, Jiro.

    1981-01-01

    Purpose: To improve the load follow-up capacity of a nuclear reactor by automatically controlling the width of the not-sensing band of a control rod inserting and removing discriminator circuit. Constitution: When load control operations such as automatic load control, automatic frequency control, governor free operation and so forth are conducted, the width of a not sensing band of a control rod inserting and removing discriminator circuit is ao automatically controlled that the not sensing band width may return to ordinary value in a normal operation by avoiding the fast repetition of inserting and removing control rods by increasing the width of the insensing band if the period of a control deviation signal produced due to the variation in the load is quickly repeated and varied in correspondence to the control deviation signal. That is, a circuit for varying the insensing band of the control circuit for driving a control mechanism is provided to reduce the amount of driving the control rods in a load control operation and to reduce the strain of the power distribution of the nuclear reactor, thereby improving the load control capacity. (Yoshihara, H.)

  11. Radial power distribution shaping within a PWR fuel assembly utilizing asymmetrically loaded gadolinia-bearing fuel pins

    International Nuclear Information System (INIS)

    Stone, I.Z.

    1992-01-01

    As in-core fuel management designs evolve to meet the demands of increasing energy output, more innovative methods are developed to maintain power peaking within acceptable thermal margin limits. In-core fuel management staff must utilize various loading pattern strategies such as cross-core movement of fuel assemblies, multibatch enrichment schemes, and burnable absorbers as the primary means of controlling the radial power distribution. The utilization of fresh asymmetrically loaded gadolinia-bearing assemblies as a fuel management tool provides an additional means of controlling the radial power distribution. At Siemens Nuclear Power Corporation (SNP), fresh fuel assemblies fabricated with asymmetrically loaded gadolinia-bearing fuel rods have been used successfully for several cycles of reactor operation. Asymmetric assemblies are neutronically modeled using the same tools and models that SNP uses to model symmetrically loaded gadolinia-bearing fuel assemblies. The CASMO-2E code is used to produce the homogenized macroscopic assembly cross sections for the nodal core simulator. Optimum fuel pin locations within the asymmetrical assembly are determined using the pin-by-pin PDQ7 assembly core model for each new assembly design. The optimum pin location is determined by the rod loading that minimizes the peak-to-average pin power

  12. Balancing Power Absorption and Structural Loading for a Novel Fixed-Bottom Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Alan D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.

  13. Balancing Power Absorption and Structural Loading for an Assymmetric Heave Wave-Energy Converter in Regular Waves: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-07-01

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would require the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.

  14. High heat load x-ray optics research and development at the Advanced Photon Source -- An overview

    International Nuclear Information System (INIS)

    Lee, Wah-Keat; Mills, D.M.

    1993-09-01

    Insertion devices at third generation synchrotron radiation sources such as the APS are capable of producing x-ray beams with total power in excess of 7 kilowatts or power densities of 150 watts/mm 2 at a typical location of the optical components. Optical elements subjected to these types of heat fluxes will suffer considerably unless carefully designed to withstand these unprecedented power loadings. At the Advanced Photon Source (APS), we have an aggressive R ampersand D program aimed at investigating possible methods to mitigate thermal distortions. The approaches being studied include, improved heat exchangers, use of liquid gallium and liquid nitrogen as coolants, novel crystal geometries, power filtering, and replacement of silicon with diamond for crystal monochromators. This paper will provide an overview of the high heat load x-ray optics program at the APS

  15. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... (WPP) equipped with a WPP voltage controller and comparisons are presented. The models of wind turbine and WPP voltage controller are kindly provided by Siemens Wind Power A/S for this work. The study is based on modal analysis which are complemented with simulations on the nonlinear system....

  16. Effect of SMES unit in load following contract in a restructured power ...

    African Journals Online (AJOL)

    user

    In order to achieve interconnected operation of a power system, an electric energy system must be maintained at a desired operating level characterized by nominal frequency, voltage ... path to exchange contract data as well as measurements to do load following in real-time. .... through its power conversion system (PCS).

  17. Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling

    DEFF Research Database (Denmark)

    Tan, Kang Miao; Ramachandaramurthy, Vigna K.; Yong, Jia Ying

    2017-01-01

    -to-grid optimization algorithm is implemented and tested in MATLAB software (R2013a, MathWorks, Natick, MA, USA). The performance of the optimization algorithm depends heavily on the setting of the target load, power grid load and capability of the grid-connected electric vehicles. Hence, the performance...... of the proposed algorithm under various target load and electric vehicles’ state of charge selections were analysed. The effectiveness of the vehicle-to-grid scheduling to implement the appropriate peak load shaving and load levelling services for the grid load variance minimization is verified under various...

  18. Use of Three-Level Power Converters in Wind-Driven Permanent-Magnet Synchronous Generators with Unbalanced Loads

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2015-06-01

    Full Text Available This paper describes the design and implementation of three-level power converters for wind-driven permanent-magnet synchronous generators with unbalanced loads. To increase voltage stress and reduce current harmonics in the electrical power generated by a wind generator, a three-phase, three-level rectifier is used. Because a synchronous rotating frame is used on the AC-input side, the use of a neutral-point-clamped controller is proposed to increase the power factor to unity and reduce current harmonics. Furthermore, a novel six-leg inverter is proposed for transferring energy from the DC voltage to a three-phase, four-wire AC source with a constant voltage and a constant frequency. The power converters also contain output transformers and filters for power buffering and filtering, respectively. All three output phase voltages are fed back to control the inverter output during load variations. A digital signal processor is used as the core control device for implementing a 1.5 kV, 75 kW drive system. Experimental data show that the power factor is successfully increased to unity and the total current harmonic distortion is 3.2% on the AC-input side. The entire system can attain an efficiency of 91%, and the voltage error between the upper and lower capacitors is approximately zero. Experimental results that confirm the high performance of the proposed system are presented.

  19. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  20. High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors.

    Science.gov (United States)

    Huang, Zi-Hang; Song, Yu; Feng, Dong-Yang; Sun, Zhen; Sun, Xiaoqi; Liu, Xiao-Xia

    2018-04-24

    Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO 2 with ultrahigh mass loading of 10 mg cm -2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO 2 nanosheets and secondary one-dimensional α-MnO 2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO 2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm -2 (or a specific capacitance of 304 F g -1 ) at 3 mA cm -2 and an excellent rate capability comparable to those of low mass loading MnO 2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO 2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm -3 at the power density of 0.28 W cm -3 for aqueous ASC and 8.0 mWh cm -3 at 0.65 W cm -3 for all-solid ASC), superior to most state-of-the-art supercapacitors.

  1. A fast and optimized dynamic economic load dispatch for large scale power systems

    International Nuclear Information System (INIS)

    Musse Mohamud Ahmed; Mohd Ruddin Ab Ghani; Ismail Hassan

    2000-01-01

    This paper presents Lagrangian Multipliers (LM) and Linear Programming (LP) based dynamic economic load dispatch (DELD) solution for large-scale power system operations. It is to minimize the operation cost of power generation. units subject to the considered constraints. After individual generator units are economically loaded and periodically dispatched, fast and optimized DELD has been achieved. DELD with period intervals has been taken into consideration The results found from the algorithm based on LM and LP techniques appear to be modest in both optimizing the operation cost and achieving fast computation. (author)

  2. Power transformer additional load losses separation procedure

    Directory of Open Access Journals (Sweden)

    Kostić Miloje M.

    2011-01-01

    Full Text Available The proposed procedure is based on the fact that total transformer losses (PLL1,n, determined by short circuit test, can be separated into two components: the eddy current losses in the windings (PEC1,n and stray flux losses (PSL1,n in iron parts of construction as well as in the transformer tank walls. The total additional load losses, PLLd1 and PLLdh, are determined by short circuit test results, conducted at rated frequency (f1 and at increased harmonic frequency (fh=h*f1. Using so obtained total additional load losses, PLLd1 and PLLdh, which can be expressed in the form PLLdh=PEC1,n*h2 + PSL1,n*h, the corresponding rate additional load losses values PEC1,n and PSL1,n are derived. At the end, for given load with predefined high harmonics content, (Ih/I1n, relative to rated current, the total additional load losses value ΣPLLdh > PLLd1, is found. In such a way all harmonics up to hmax are taken into account.

  3. Impact of extreme load requirements and quality assurance on nuclear power plant costs

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1993-01-01

    Definitive costs, applicable to nuclear power plant concrete structures, as a function of National Regulatory Requirements, standardization, the effect of extreme load design associated with both design basis accidents and extreme external events and quality assurance are difficult to develop since such effects are interrelated and not only differ widely from country to country, project to project but also vary in time. Table 1 shows an estimate of the of the overall plant cost effects of external event extreme load design on nuclear power plant design for the U.S -and selected foreign countries for which experience with LWRs exist- Germany is the most expensive primarily due to a military aircraft crash resistance. However, the German requirement for 4 safeguards trains rather than 2 and the containment design requirement to consider one Steam Generator blowdown concurrent with a RCS blowdown. This presentation will concentrate on the direct current impact extreme load design and quality assurance have on concrete structures, systems and components for nuclear plants. This presentation is considered timely due to the increased interest in the c potential backfit of Eastern European nuclear power stations of the WWER 440 and WWER 1000 types which typically did not consider the extreme loads identified in Table 1 and accident loads in Table 3 and quality assurance in Table 5 in their original design. Concrete structures in particular are highlighted because they typically form the last barrier to radioactive release from the containment and other Safety Related Structures

  4. Multi-objective Extremum Seeking Control for Enhancement of Wind Turbine Power Capture with Load Reduction

    Science.gov (United States)

    Xiao, Yan; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.

  5. Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2013-01-01

    Full Text Available Considering the load frequency control (LFC of large-scale power system, a robust distributed model predictive control (RDMPC is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints (GRC is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem is formulated as convex optimization problem with linear matrix inequalities (LMI that can be solved efficiently. It minimizes an upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness in the presence of power system dynamic uncertainties.

  6. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  7. Possible standards for relieving the load of operational thermal power plants to the minimum of the power system's electric loads

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, M.I.; Smirnov, I.A.

    1988-03-01

    Describes how operational measures involving feeding the steam extraction load into existing off-peak hot-water boilers produce a reduction in electric power at night and on public holidays by an average of 35% without the need for reconstruction, special equipment or changing the heat circuit. This method enables coal-fired central heating systems to be relieved by 20-30% and gaz-mazout systems (the majority) by 50-70%. To compensate for the loss of manoeuverability in central heating units on holidays in the colder period of the year, it may be necessary to stop supplementary power units (KEhS units) several times a year. 5 refs.

  8. A 600kV 15mA Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage

    International Nuclear Information System (INIS)

    Su Tongling; Zhang Yimin; Chen Shangwen; Liu Yantong; Lv Huiyi; Liu Jiangtao

    2006-01-01

    A Cockcroft-Walton high-voltage power supply with high stability and low-ripple voltage has been developed. This power supply has been operated in a ns pulse neutron generator. The maximum non-load voltage is 600kV while the working voltage and load current are 550kV and 15mA, respectively. The tested results indicate that when the power supply is operated at 300kV, 6.7mA and the input voltage varies +/-10%, the long-term stability of the output voltage is S=(0.300-1.006)x10 -3 . The ripple voltage is δU P-P =6.2V at 300kV, 6.8-8.3mA and the ratio of δU P-P to the output voltage V H is δU P-P /V H =2.1x10 -5

  9. Recent research in electric power pricing and load management

    International Nuclear Information System (INIS)

    Tabors, R.D.

    1990-01-01

    Reliable electricity is a necessity for industrial and economic development. In the developing nations, power systems are growing rapidly. Typically, demand for electricity grows faster than either total energy demand or gross domestic product. Load management systems and innovative tariff structures offer to utilities potentially significant operating and capital cost savings through increased efficiency. Benefits must be weighed against the costs of implementation, communication, control and monitoring. When comparing developed and developing country utilities one may conclude that the developing countries may have far more to gain from direct load management and innovative tariff systems. They may be able to introduce variable (cost dependent/time dependent) reliability as opposed to the constant reliability expected in the USA and Western Europe; and many utilities may be able to design more flexible (and less costly) utility systems around a combination of load management and pricing structures, that encourage a higher level of interaction between customer and utility than is the case in the more developed utilities. (author). 84 refs

  10. A novel on-chip high to low voltage power conversion circuit

    International Nuclear Information System (INIS)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong; Lai Xinquan; Ye Qiang; Li Xianrui

    2009-01-01

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 μm BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm 2 area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  11. A novel on-chip high to low voltage power conversion circuit

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong [Institute of Mechano-electronic Engineering, Xidian University, Xi' an 71007 (China); Lai Xinquan; Ye Qiang; Li Xianrui, E-mail: whui94@126.co [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China)

    2009-03-15

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 mum BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm{sup 2} area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  12. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  13. Reactor G1: high power experiments

    International Nuclear Information System (INIS)

    Laage, F. de; Teste du Baillet, A.; Veyssiere, A.; Wanner, G.

    1957-01-01

    The experiments carried out in the starting-up programme of the reactor G1 comprised a series of tests at high power, which allowed the following points to be studied: 1- Effect of poisoning by Xenon (absolute value, evolution). 2- Temperature coefficients of the uranium and graphite for a temperature distribution corresponding to heating by fission. 3- Effect of the pressure (due to the coiling system) on the reactivity. 4- Calibration of the security rods as a function of their position in the pile (1). 5- Temperature distribution of the graphite, the sheathing, the uranium and the air leaving the canals, in a pile running normally at high power. 6- Neutron flux distribution in a pile running normally at high power. 7- Determination of the power by nuclear and thermodynamic methods. These experiments have been carried out under two very different pile conditions. From the 1. to the 15. of August 1956, a series of power increases, followed by periods of stabilisation, were induced in a pile containing uranium only, in 457 canals, amounting to about 34 tons of fuel. A knowledge of the efficiency of the control rods in such a pile has made it possible to measure with good accuracy the principal effects at high temperatures, that is, to deal with points 1, 2, 3, 5. Flux charts giving information on the variations of the material Laplacian and extrapolation lengths in the reflector have been drawn up. Finally the thermodynamic power has been measured under good conditions, in spite of some installation difficulties. On September 16, the pile had its final charge of 100 tons. All the canals were loaded, 1,234 with uranium and 53 (i.e. exactly 4 per cent of the total number) with thorium uniformly distributed in a square lattice of 100 cm side. Since technical difficulties prevented the calibration of the control rods, the measurements were limited to the determination of the thermodynamic power and the temperature distributions (points 5 and 7). This report will

  14. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu; Chaaban, Anas; Shen, Chao; Elgala, Hany; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment's results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  15. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    International Nuclear Information System (INIS)

    Hosseini, M.; Shayanfar, H.A.; Fotuhi-Firuzabad, M.

    2009-01-01

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems.

  16. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, M.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran); Fotuhi-Firuzabad, M. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-06-15

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems. (author)

  17. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  18. Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations

    International Nuclear Information System (INIS)

    Eliasi, H.; Menhaj, M.B.; Davilu, H.

    2011-01-01

    Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.

  19. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  20. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.

    Science.gov (United States)

    Bogen, J; Bønsnes, T E

    2001-02-05

    When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with

  1. Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

    OpenAIRE

    M. Zaidabadi nejad; G.R. Ansarifar

    2018-01-01

    Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the impor...

  2. Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak

    Science.gov (United States)

    Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli

    2007-04-01

    In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.

  3. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    Science.gov (United States)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  4. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  5. Load follow operation in nuclear power plants and its influence on PWR fuel behaviour

    International Nuclear Information System (INIS)

    Nagino, Y.; Miyazaki, Y.

    1980-01-01

    The contribution of nuclear power generation to our company's grid system is becoming greater each year, which makes it necessary to operate nuclear power plants with load follow mode in the near future. (author)

  6. Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2014-01-01

    Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

  7. Analysis of underground concrete pipelines subjected to seismic high-frequency loads

    OpenAIRE

    Abbasiverki, Roghayeh

    2016-01-01

    Buried pipelines are tubular structures that are used for transportation of important liquid materials and gas in order to provide safety for human life. During an earthquake, imposed loads from soil deformations on concrete pipelines may cause severe damages, possibly causing disturbance in vital systems, such as cooling of nuclear power facilities. The high level of safety has caused a demand for reliable seismic analyses, also for structures built in the regions that have not traditionally...

  8. Operation and thermal loading of three-level Neutral-Point-Clamped wind power converter under various grid faults

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2012-01-01

    In order to fulfill the continuous growing grid-side demands, the full-scale power converters are becoming more and more popular in the wind power application. Nevertheless, the more severe loading of the power semiconductor devices in the full-scale power converters, especially during Low Voltage...... Ride Through (LVRT) operation under grid faults, may compromise the reliability of the system and consequently further increase its cost. In this paper, the impact of various grid faults on a three-level Neutral-Point-Clamped (3L-NPC) grid-converter in terms of thermal loading of power semiconductor...

  9. Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems

    Science.gov (United States)

    Abdel-Karim, Noha

    This thesis is motivated by the recognition that sources of uncertainties in electric power systems are multifold and may have potentially far-reaching effects. In the past, only system load forecast was considered to be the main challenge. More recently, however, the uncertain price of electricity and hard-to-predict power produced by renewable resources, such as wind and solar, are making the operating and planning environment much more challenging. The near-real-time power imbalances are compensated by means of frequency regulation and generally require fast-responding costly resources. Because of this, a more accurate forecast and look-ahead scheduling would result in a reduced need for expensive power balancing. Similarly, long-term planning and seasonal maintenance need to take into account long-term demand forecast as well as how the short-term generation scheduling is done. The better the demand forecast, the more efficient planning will be as well. Moreover, computer algorithms for scheduling and planning are essential in helping the system operators decide what to schedule and planners what to build. This is needed given the overall complexity created by different abilities to adjust the power output of generation technologies, demand uncertainties and by the network delivery constraints. Given the growing presence of major uncertainties, it is likely that the main control applications will use more probabilistic approaches. Today's predominantly deterministic methods will be replaced by methods which account for key uncertainties as decisions are made. It is well-understood that although demand and wind power cannot be predicted at very high accuracy, taking into consideration predictions and scheduling in a look-ahead way over several time horizons generally results in more efficient and reliable utilization, than when decisions are made assuming deterministic, often worst-case scenarios. This change is in approach is going to ultimately require new

  10. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    Science.gov (United States)

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  11. Design of a high-power test model of the PEP-II rf cavity

    International Nuclear Information System (INIS)

    Schwarz, H.D.; Bell, R.A.; Hodgson, J.A.

    1993-05-01

    The design of a normal-conducting high-power test cavity (HPTC) for PEP-II is described. The cavity includes HOM loading waveguides and provisions for testing two alternate input coupling schemes. 3-D electromagnetic field simulations provided input information for the surface power deposition. Finite element codes were utilized for thermal and stress analyses of the cavity to arrive at a suitable mechanical design capable of handling the high power dissipation. The mechanical design approach with emphasis on the cooling channel layout and mechanical stress reduction is described

  12. A Power System Emergency Control Scheme in the Presence of High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar

    developed in this project may also constitute the lower level of a hierarchical control strategy, which can be activated in case of losing the communication with the control center. Modern power protection relays often provide several protection schemes inside of one common package. However, they normally...... from distant units to the incidence place. In this thesis, localization of both load-frequency control an load shedding are fulfilled using locally measured voltage drop data in the decentralized control strategy. The proposed load shedding scheme is coordinated with existing plant protection relays......, which are normally installed on the conventional synchronous machines. Considering the frequency-time characteristic of plant protection relays in the load curtailing plan makes the proposed scheme preventive against successive outage of generation units by them, which worsen the stability of power...

  13. Load flow analysis for determining the location of NPP power distribution in West Kalimantan

    International Nuclear Information System (INIS)

    Citra Candranurani; Rizki Finnansyah Setya Budi; Sahala M Lumbanraja

    2015-01-01

    Electricity crisis condition happened in West Kalimantan (Kalbar) as a result of power plant capacity almost equal to the peak load. The system will experience a shortfall if there are plants that not operating and do not have reserve. The policy of electricity planning until 2022 is replacing diesel power plant with steam power plant. For long-term planning is required the role of new and renewable energy in order to reduce dependency on fossil fuel consumption, such as NPP utilization. The purpose of this study was to determine the optimum location of the NPP power distribution in order to prepare electricity infrastructure. Load flow calculation in this study using ETAP 12.5 software. NPP is planned to supply base load, so the optimum capacity factor is above 80 %. The result show that there are three location where NPP can generate over 80 % of its capacity, namely: Mempawah Substation, Singkawang Substation, and Sambas Substation. The most optimum located in Mempawah Substation with capacity factor 83.5 %. The location of the three Substation are onshore and in line with one requirement for NPP construction, namely: the availability of cooling water. (author)

  14. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...... vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price...... signal from the day ahead market the economical incentives for an EDV-owner will be small. If the EDV's can participate in the regulation of the grid through ancillary services the incentives will be increased to an attractive level....

  15. Facing the challenges of distribution systems operation with high wind power penetration

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    power flow in 60kV distribution networks through controlling the ability of wind power plants (WPPs) to generate or absorb reactive power. This paper aims to understand the characteristics of a distribution network with high penetration of distributed generation. A detailed analysis of the active...... and reactive power flows in a real distribution network under different wind and load conditions based on actual measurements is performed in order to understand the correlation between the consumption, wind power production, and the network losses. Conclusive remarks are presented, briefly expressing......This paper addresses the challenges associated with the operation of a distribution system with high penetration of wind power. The paper presents some preliminary investigations of an ongoing Danish research work, which has as main objective to reduce the network losses by optimizing the reactive...

  16. Investigation of load leveling in Hokuriku Electric Power Co., Inc.; Hokuriku denryoku no fuka heijunka eno torikumi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Hokuriku Electric Power Co., Inc. aims at an around 2% improvement of the load factor up to 2005, by which the quick and proper service and the proposal of load leveling menu are planned. This paper describes an outline of the investigation of load leveling. Various programs have been proposed so that the customers can further shift the load by their consideration. Proposed systems include the time-of-day electricity rate system, the load regulation contract system for industries, the seasonal time-of-day rate system, the electric power system for snowmelt in which the load is dumped at the peak, and the secondary electric power system for snowmelt. Accompanying with the revision of electric utility law, the enlargement of its available time, the price reduction, and the discount rate system for the ice regenerative air conditioners have been provided. For the business activities, a demonstration model house was exhibited to indicate a proper house with local characteristics in Hokuriku district. Furthermore, the spreading activities of regenerative systems and the consulting activities have been positively promoted. 4 figs., 1 tab.

  17. Determination of the wind power systems load to achieve operation in the maximum energy area

    Science.gov (United States)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  18. Worst-case residual clipping noise power model for bit loading in LACO-OFDM

    KAUST Repository

    Zhang, Zhenyu

    2018-03-19

    Layered ACO-OFDM enjoys better spectral efficiency than ACO-OFDM, but its performance is challenged by residual clipping noise (RCN). In this paper, the power of RCN of LACO-OFDM is analyzed and modeled. As RCN is data-dependent, the worst-case situation is considered. A worst-case indicator is defined for relating the power of RCN and the power of noise at the receiver, wherein a linear relation is shown to be a practical approximation. An LACO-OFDM bit-loading experiment is performed to examine the proposed RCN power model for data rates of 6 to 7 Gbps. The experiment\\'s results show that accounting for RCN has two advantages. First, it leads to better bit loading and achieves up to 59% lower overall bit-error rate (BER) than when the RCN is ignored. Second, it balances the BER across layers, which is a desired property from a channel coding perspective.

  19. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    Science.gov (United States)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  20. Economic emission dispatching with variations of wind power and loads using multi-objective optimization by learning automata

    International Nuclear Information System (INIS)

    Liao, H.L.; Wu, Q.H.; Li, Y.Z.; Jiang, L.

    2014-01-01

    Highlights: • Apply multi-objective optimization by learning automata to power system. • Sequentially dimensional search and state memory are incorporated. • Track dispatch under significant variations of wind power and load demand. • Good performance in terms of accuracy, distribution and computation time. - Abstract: This paper is concerned with using multi-objective optimization by learning automata (MOLA) for economic emission dispatching in the environment where wind power and loads vary. With its capabilities of sequentially dimensional search and state memory, MOLA is able to find accurate solutions while satisfying two objectives: fuel cost coupled with environmental emission and voltage stability. Its searching quality and efficiency are measured using the hypervolume indicator for investigating the quality of Pareto front, and demonstrated by tracking the dispatch solutions under significant variations of wind power and load demand. The simulation studies are carried out on the modified midwestern American electric power system and the IEEE 118-bus test system, in which wind power penetration and load variations present. Evaluated on these two power systems, MOLA is fully compared with multi-objective evolutionary algorithm based on decomposition (MOEA/D) and non-dominated sorting genetic algorithm II (NSGA-II). The simulation results have shown the superiority of MOLA over NAGA-II and MOEA/D, as it is able to obtain more accurate and widely distributed Pareto fronts. In the dynamic environment where the operation condition of both wind speed and load demand varies, MOLA outperforms the other two algorithms, with respect to the tracking ability and accuracy of the solutions

  1. Degradation Processes in High-Power Diode Lasers under External Optical Feedback

    DEFF Research Database (Denmark)

    Tomm, Jens. W.; Hempel, Martin; Petersen, Paul Michael

    2013-01-01

    The effect of moderate external feedback on the gradual degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is analyzed. Eventually the quantum well that actually experiences the highest total optical load remains unaffected by the aging, while severe impact...

  2. Perspective loads of transformer substations at development of urban power supply systems

    Directory of Open Access Journals (Sweden)

    Svetlana Guseva

    2012-06-01

    Full Text Available In work the system approach to formation of the urban power supply system is given. The hierarchical structure of the construction, voltage levels and load densities is considered. The mathematical and geometrical modeling of service areas for transformer substations of diff erent voltage is fulfi lled. Determination of perspective loads of transformer substations is given. The method of graphic placement of transformer substations in the city territory for new substations at existing structure of networks is off ered. The calculation program Microsoft EXCEL and the graphic program AutoCad are used for realization of method. The method allows fi nding a rational decision for the development of urban power supply system on the beginning design stages in conditions of the information uncertainty.

  3. A high-performance micro electret power generator based on microball bearings

    International Nuclear Information System (INIS)

    Yang, Zhaohui; Wang, Jing; Zhang, Jinwen

    2011-01-01

    In this paper, a high-performance micro electret power generator fabricated by simple bulk micromachining technology is presented. It has microballs as movable bearings for harvesting changing low-frequency vibration energy from the environment. The silicon V-grooves where the microballs slide have very smooth (1 1 1) planes, and so the device is sensitive to very slight vibration and almost has no resonant frequency. A plasma-enhanced chemical vapour deposition SiO 2 /Si 3 N 4 double layer was used as the electret. The device was fabricated by simple micromachining technology suitable for mass production except for microball assembly. The influence of various frequencies and accelerations on the performance was studied in detail. The measurement results of this electret micro power generator show that the optimal load is proportional to the frequency, and inversely proportional to the acceleration. The peak-to-peak output charge and output power were 72 nC and 5.9 µW respectively at 20 Hz and 0.7 g with the optimal resistive load 626 kΩ. The work frequencies range from 100 Hz to a lower frequency (1 Hz). 112 nW can still be obtained in the minimum acceleration of 0.05 g at 10 Hz with the optimal resistive load, indicating that this device has high sensitivity. The possible application of our device in scavenging energy from low-frequency irregular movements, such as human motion, was proved by a primary experiment

  4. Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players?

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Pickering, Stuart L; Newton, Michael J

    2011-08-01

    The purpose of this study was to ascertain whether cluster training led to improved power training adaptations in the preseason preparation of elite level rugby union players. Eighteen highly trained athletes were divided into 2 training groups, a traditional training (TT, N = 9) group and a cluster training (CT, N = 9) group before undertaking 8 weeks of lower body resistance training. Force-velocity-power profiling in the jump squat movement was undertaken, and maximum strength was assessed in the back squat before and after the training intervention. Two-way analysis of variance and magnitude-based inferences were used to assess changes in maximum strength and force, velocity, and power values pretraining to posttraining. Both TT and CT groups significantly (p benefit of cluster type loading in training prescription for lower body power development.

  5. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    Science.gov (United States)

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p training loads and IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  6. Fatigue analysis of CANFLEX-NU fuel elements subjected to power-cyclic loads

    International Nuclear Information System (INIS)

    Sim, Ki Seob; Suk, Ho Chun.

    1997-08-01

    This report describes the fatigue analysis of the CANDU advanced fuel, so-called CANFLEX-NU, subjected to power-cyclic loads more than 1,000. The CANFLEX-NU bundle is composed of 43 elements with natural uranium fuel. As a result, the CANFLEX-NU fuel elements will maintain good integrity under the condition of 1,500 power-cycles. (author). 4 refs., 19 figs

  7. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  8. Development of DC active filter for high magnetic field stable power supply

    International Nuclear Information System (INIS)

    Wang Lei; Liu Xiaoning

    2008-01-01

    The DC active filter (DAF), with very low current ripple, of the stable power supply system of high magnetic field device is developed by using the PWM and parallel active power filter technique. Due to the PWM control technique, the required DAF current can be obtained and the current ripple can be compensated by means of monitoring the load voltage, and the current ripple becomes very low by adjusting the load voltage. The simulation and analysis show that this system can respond to the reference quickly and is effective in suppressing the harmonics, especially the low-order harmonics. The feasibility of the proposed scheme is proved on the equipment built in the laboratory. (authors)

  9. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems

    Directory of Open Access Journals (Sweden)

    Farshid Keynia

    2011-03-01

    Full Text Available Short-term load forecast (STLF is an important operational function in both regulated power systems and deregulated open electricity markets. However, STLF is not easy to handle due to the nonlinear and random-like behaviors of system loads, weather conditions, and social and economic environment variations. Despite the research work performed in the area, more accurate and robust STLF methods are still needed due to the importance and complexity of STLF. In this paper, a new neural network approach for STLF is proposed. The proposed neural network has a novel learning algorithm based on a new modified harmony search technique. This learning algorithm can widely search the solution space in various directions, and it can also avoid the overfitting problem, trapping in local minima and dead bands. Based on this learning algorithm, the suggested neural network can efficiently extract the input/output mapping function of the forecast process leading to high STLF accuracy. The proposed approach is tested on two practical power systems and the results obtained are compared with the results of several other recently published STLF methods. These comparisons confirm the validity of the developed approach.

  10. Demand side resource operation on the Irish power system with high wind power penetration

    DEFF Research Database (Denmark)

    Keane, A.; Tuohy, A.; Meibom, Peter

    2011-01-01

    part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation...... of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect....... of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some...

  11. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Science.gov (United States)

    2010-07-01

    ... adjusted loaded vehicle weight, as defined in § 86.094-2 or 86.1803-01 as applicable. For all other vehicles, test weight basis shall be loaded vehicle weight, as defined in § 86.082-2 or 86.1803-01 as... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load power, test weight, and...

  12. Power System Stability Using Decentralized Under Frequency and Voltage Load Shedding

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Faria Da; Bak, Claus Leth

    2014-01-01

    information to shed the loads with higher voltage decay first. Therefore, this approach deals with coordination of voltage and frequency information instead of independent methods. Numerical simulations which are carried out in DigSilent PowerFactory software confirm the efficiency of proposed methodology...

  13. High voltage power supplies for INDUS-2 RF system

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  14. Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics.

    Science.gov (United States)

    Minamoto, Takehiro; Shipstead, Zach; Osaka, Naoyuki; Engle, Randall W

    2015-07-01

    Studies on visual cognitive load have reported inconsistent effects of distractor interference when distractors have visual characteristic that are similar to the cognitive load. Some studies have shown that the cognitive load enhances distractor interference, while others reported an attenuating effect. We attribute these inconsistencies to the amount of cognitive load that a person is required to maintain. Lower amounts of cognitive load increase distractor interference by orienting attention toward visually similar distractors. Higher amounts of cognitive load attenuate distractor interference by depleting attentional resources needed to process distractors. In the present study, cognitive load consisted of faces (Experiments 1-3) or scenes (Experiment 2). Participants performed a selective attention task in which they ignored face distractors while judging a color of a target dot presented nearby, under differing amounts of load. Across these experiments distractor interference was greater in the low-load condition and smaller in the high-load condition when the content of the cognitive load had similar visual characteristic to the distractors. We also found that when a series of judgments needed to be made, the effect was apparent for the first trial but not for the second. We further tested an involvement of working memory capacity (WMC) in the load effect (Experiment 3). Interestingly, both high and low WMC groups received an equivalent effect of the cognitive load in the first distractor, suggesting these effects are fairly automatic.

  15. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  16. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  17. Estimation of loads for the design of support for the rotary machine in nuclear power plant

    International Nuclear Information System (INIS)

    Gupta, S.K.; Chatterjee, B.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Full text: In a nuclear power plant two major equipment, which have a rotating shaft are pump in the primary heat transport system and turbine in the secondary system. In both cases, the shaft seizure leads to transfer of very large load to the supports. These supports, if not designed for these loads may fail and lead to missile generation. The missile generation should be avoided as it may hit and damage safety related systems. The pump of the primary heat transport system (PHTS) of a nuclear power plant is normally centrifugal type run by an induction motor. If the pump shaft seizes, the seizure load will be experienced by the pump shaft and support structure. Due to the presence of the flywheel, the total moment of inertia of the pump motor assembly is quite high. Hence the resisting torque be many times higher than the motor starting torque. Besides, the electric torque will continue to apply as the motor trip on overload current is delayed by several seconds to avoid inadvertent trip during start up. The electric torque would initially increase and then decrease as the shaft speed decreases. Part of the seizure load will be absorbed by the pump supports passed through the pump shaft. Seizure torque will depend on pump seizure time. Lesser the seizure time, higher would be the load on the pump support. If the pump shaft fails then the supports would see relatively less load. The turbine in the secondary system has a large inertia due to blades. In case of a seizure the generator is tripped in hundreds of milliseconds. The load experienced by supports due to seizure, is significantly enhanced in the first few seconds due to steam supply before it is cut off. These rotating machines are normally not designed for safe shutdown earthquakes (SSE) where integrity of the system is to be ensured. Shaft seizure can be considered as a consequential failure for SSE. In that case, the supports would simultaneously see an earthquake load on supports in addition to seizure

  18. A broadband high-efficiency Doherty power amplifier using symmetrical devices

    Science.gov (United States)

    Cheng, Zhiqun; Zhang, Ming; Li, Jiangzhou; Liu, Guohua

    2018-04-01

    This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz. Project supported by the National Natural Science Foundation of China (No. 60123456), the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001), and the Zhejiang Provincial Public Technology Research Project (No. 2016C31070).

  19. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  20. Regenerative electronic load for electric power sources tests using capacitive idling converter; Carga eletronica regenerativa para testes de fontes de energia eletrica utilizando conversor com capacitor flutuante

    Energy Technology Data Exchange (ETDEWEB)

    Vendrusculo, Edson Adriano

    1996-07-01

    The conventional method for testing power supplies, batteries, uninterruptible power supply and other sources of electric power uses resistors as load. This results in wasted heat and increases the equipment production cost. This work presents a Regenerative electronic Load to substitute those resistors. The basic topology is a capacitive idling Cuk converter. This converter allows to control independently the input current and permits to provide a sinusoidal output current. An appropriate gate command allows to have some soft-commutation without the use of any auxiliary circuit. The same converter, with input and output changed, can operate as a Power Supply with Input Power Factor Correction. The characteristics of soft-commutation and high efficiency are maintained. A simple high-efficiency transformer allows output isolation. All theoretical results are experimentally verified. (author)

  1. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  2. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    International Nuclear Information System (INIS)

    Yamamoto, K; Müller, A; Favrel, A; Landry, C; Avellan, F

    2014-01-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated

  3. Performance of a high efficiency high power UHF klystron

    International Nuclear Information System (INIS)

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  4. System considerations for airborne, high power superconducting generators

    International Nuclear Information System (INIS)

    Southall, H.L.; Oberly, C.E.

    1979-01-01

    The design of rotating superconducting field windings in high power generators is greatly influenced by system considerations. Experience with two superconducting generators designed to produce 5 and 20 Mw resulted in a number of design restrictions. The design restrictions imposed by system considerations have not prevented low weight and high voltage power generation capability. The application of multifilament Nb;sub 3;Sn has permitted a large thermal margin to be designed into the rotating field winding. This margin permits the field winding to remain superconducting under severe system operational requirements. System considerations include: fast rotational startup, fast ramped magnetic fields, load induced transient fields and airborne cryogen logistics. Preliminary selection of a multifilament Nb;sub 3;Sn cable has resulted from these considerations. The cable will carry 864 amp at 8.5K and 6.8 Tesla. 10 refs

  5. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  6. Modelling of mitigation of the power divertor loading for the EU DEMO through Ar injection

    Science.gov (United States)

    Subba, Fabio; Aho-Mantila, Leena; Coster, David; Maddaluno, Giorgio; Nallo, Giuseppe F.; Sieglin, Bernard; Wenninger, Ronald; Zanino, Roberto

    2018-03-01

    In this paper we present a computational study on the divertor heat load mitigation through impurity injection for the EU DEMO. The study is performed by means of the SOLPS5.1 code. The power crossing the separatrix is considered fixed and corresponding to H-mode operation, whereas the machine operating condition is defined by the outboard mid-plane upstream electron density and the impurity level. The selected impurity for this study is Ar, based on its high radiation efficiency at SOL characteristic temperatures. We consider a conventional vertical target geometry for the EU DEMO and monitor target conditions for different operational points, considering as acceptability criteria the target electron temperature (≤5 eV to provide sufficiently low W sputtering rate) and the peak heat flux (below 5-10 MW m-2 to guarantee safe steady-state cooling conditions). Our simulations suggest that, neglecting the radiated power deposition on the plate, it is possible to satisfy the desired constraints. However, this requires an upstream density of the order of at least 50% of the Greenwald limit and a sufficiently high argon fraction. Furthermore, if the radiated power deposition is taken into account, the peak heat flux on the outer plate could not be reduced below 15 MW m-2 in these simulations. As these simulations do not take into account neutron loading, they strongly indicate that the vertical target divertor solution with a radiative front distributed along the divertor leg has a very marginal operational space in an EU DEMO sized reactor.

  7. Simulation of control performance under house load transients for nuclear power plant

    International Nuclear Information System (INIS)

    Liao Zhongyue; Wang Yuanlong; Tang Yuyuan; Liu Jiong

    1999-01-01

    The CATIA2 code is used to simulate the extreme normal transients--house load transients of Qinshan Phase II 600 MW nuclear power plant. The simulating results show that all of the reactor main parameters are operating in the allowable ranges, the reactor system is stable, and the control characteristics of the nuclear power plant is satisfactory. They are also good in agreement with Framatome's results

  8. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  9. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  10. Prioritized rule based load management technique for residential building powered by PV/battery system

    Directory of Open Access Journals (Sweden)

    T.R. Ayodele

    2017-06-01

    Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.

  11. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2015-06-01

    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  12. Power loads in the limiter phase of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Holger; Jakubowski, Marcin; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Wurden, Glen [Los Alamos National Laboratory, Los Alamos (United States)

    2016-07-01

    Wendelstein 7-X (W7-X), an advanced stellarator with five-fold symmetry, will start its initial plasma operation phase(OP1.1) in December 2015. In OP1.1 the plasma-wall interaction is realized with 5 graphite limiters installed on the inboard side of the plasma vessel, which should efficiently intercept >99% of the convective plasma heat load at the plasma edge with the chosen magnetic configuration. Assuming an even distribution of power loads among all 5 limiters, discharges with 2 MW of ECRH heating power could be run for up to a second. Calculations shows typical three separate helical magnetic flux bundles of different connection length in the order of a few tens of meters. These form 3-D structure of magnetic footprints results in localized peaks in the limiter power deposition patterns. The heterogenous temperature distribution pattern will be investigated with two IR cameras. The heat flux density will be evaluated with the THEODOR code from evolution of the surface temperature data. Together with two sets of Langmuir probes in module 5 this provides enough data to resolve experimentally different channels of heat transport towards the limiter in OP1.1 plasmas. Additionally, the obtained data will be compared against the output of EMC3-Eirene calculations to identify the channels of energy transport at the plasma boundary in the first operation phase of W7-X.

  13. Demand Response Load Following of Source and Load Systems

    DEFF Research Database (Denmark)

    Hu, Jianqiang; Cao, Jinde; Yong, Taiyou

    2017-01-01

    This paper presents a demand response load following strategy for an interconnected source and load system, in which we utilize traditional units and population of cooling thermostatically controlled loads (TCLs) to follow the mismatched power caused by the load activities and the renewable power...... injection in real time. In the demand side of power systems, these TCLs are often affiliated to a bus load agent and can be aggregated to multiple TCL aggregators. Firstly, aggregate evaluation of the TCL aggregator is carried out based on a bilinear aggregate model so as to derive the available regulation...

  14. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  15. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  16. Tuning of PID load frequency controller for power systems

    International Nuclear Information System (INIS)

    Tan Wen

    2009-01-01

    PID tuning of load frequency controllers for power systems is discussed in this paper. The tuning method is based on a two-degree-of-freedom internal model control (IMC) design method, and the performance of the resulting PID controller is related to two tuning parameters thus detuning is easy when necessary. Then an anti-GRC scheme is proposed to overcome the generation rate constraints. Finally, the method is extended to two-area cases.

  17. Behavior of a nuclear power plant ventilation stack for wind loads

    International Nuclear Information System (INIS)

    Venkatachalapathy, V.

    2012-01-01

    This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependant on overall size of the stack, proper sizing of the stack geometry is important for reducing wind loads. The present study investigated the influence of engineered backfill soil on lateral response of ventilation stack. Ignoring backfill soil stiffness up to ground height does not allow to predict actual critical wind velocity causing across wind oscillation. The results show that proposed modification in the stack geometry modeled using 2D beam-spring elements is economical than that of single tapered geometry. Shaft diameter reduced in the proposed geometry indicates that there is a scope for overall space savings in the NPP layout. (author)

  18. Hysteresis Control for Shunt Active Power Filter under Unbalanced Three-Phase Load Conditions

    Directory of Open Access Journals (Sweden)

    Z. Chelli

    2015-01-01

    Full Text Available This paper focuses on a four-wire shunt active power filter (APF control scheme proposed to improve the performance of the APF. This filter is used to compensate harmonic distortion in three-phase four-wire systems. Several harmonic suppression techniques have been widely proposed and applied to minimize harmonic effects. The proposed control scheme can compensate harmonics and reactive power of the nonlinear loads simultaneously. This approach is compared to the conventional shunt APF reference compensation strategy. The developed algorithm is validated by simulation tests using MATLAB Simulink. The obtained results have demonstrated the effectiveness of the proposed scheme and confirmed the theoretical developments for balanced and unbalanced nonlinear loads.

  19. Development of a method of lifetime assessment of power plant components under complex multi-axial vibration loads

    International Nuclear Information System (INIS)

    Fesich, Thomas M.

    2012-01-01

    In general, technical components are loaded and stressed by forces and moments both constant and variable over time. Multi-axial stress conditions can arise as a function of the load on, and/or the geometry of, a component. Assessing the impact on stability of multi-axial stress conditions is a problem for which no generally valid solution has as yet been found, especially when loads and stresses vary over time. This is also due to the fact that the development over time of stresses can give rise to very complex stress conditions. Assessing the lifetime of power plant components subjected to complex vibration loads and stresses often is not reliable if performed by means of conventional codes and approaches, or is associated with high degrees of conservatism. The MPA AIM-Life concept developed at the Stuttgart MPA/IMWF, which is an advanced and verified strength hypothesis based on energy considerations, allows such assessments to be made more reliably, numerically efficient, and avoiding excessive conservatism. (orig.)

  20. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  1. Experiments on high-power ion beam generation in self-insulated diodes

    International Nuclear Information System (INIS)

    Bystritskii, V.M.; Glyshko, Yu.A.; Sinerbrjukhov, A.A.; Kharlov, A.V.

    1991-01-01

    Experimental results are given on high-power ion beams (HPIB) generation in a vacuum spherical focusing diode with self-magnetic insulation, obtained from the nanosecond accelerator PARUS with 0.2-TW power and 60-ns pulse duration for a matched load. When the passive plasma source of the ions was used, the efficiency of the HPIB generation was measured to be as high as 20% for 700-kV diode voltage and 10-kA/cm 2 beam density in the focal plane. The application of a coaxial plasma opening switch (POS) prior to the diode resulted in a factor-of-1.8 increase in the diode power in comparison with a match operation in the absence of a POS. (author)

  2. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  3. Advances in electric power and energy systems load and price forecasting

    CERN Document Server

    2017-01-01

    A comprehensive review of state-of-the-art approaches to power systems forecasting from the most respected names in the field, internationally. Advances in Electric Power and Energy Systems is the first book devoted exclusively to a subject of increasing urgency to power systems planning and operations. Written for practicing engineers, researchers, and post-grads concerned with power systems planning and forecasting, this book brings together contributions from many of the world’s foremost names in the field who address a range of critical issues, from forecasting power system load to power system pricing to post-storm service restoration times, river flow forecasting, and more. In a time of ever-increasing energy demands, mounting concerns over the environmental impacts of power generation, and the emergence of new, smart-grid technologies, electricity price forecasting has assumed a prominent role within both the academic and industrial ar nas. Short-run forecasting of electricity prices has become nece...

  4. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip

    2015-01-01

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  5. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  6. Safe protocols for generating power pulses with heterogeneous populations of thermostatically controlled loads

    International Nuclear Information System (INIS)

    Sinitsyn, Nikolai A.; Kundu, Soumya; Backhaus, Scott

    2013-01-01

    Highlights: ► Algorithms to produce useful load response from a heterogeneous group of TCLs. ► Generation of sharp power pulses without initiating any unwanted oscillation. ► Open-loop methods, not requiring any detailed system modeling. ► One-way, utility-to-consumer, communication. ► Potential use in secondary frequency regulation, generation-load balancing, etc. - Abstract: We explore methods to use thermostatically controlled loads (TCLs), such as water heaters and air conditioners, to provide ancillary services by assisting in balancing generation and load. We show that by adding simple imbedded instructions and a small amount of memory to temperature controllers of TCLs, it is possible to design open-loop control algorithms capable of creating short-term pulses of demand response without unwanted power oscillations associated with temporary synchronization of the TCL dynamics. By moving a small amount of intelligence to each of the end point TCL devices, we are able to leverage our knowledge of the time dynamics of TCLs to shape the demand response pulses for different power system applications. A significant benefit of our open-loop method is the reduction from two-way to one-way broadcast communication which also eliminates many basic consumer privacy issues. In this work, we focus on developing the algorithms to generate a set of fundamental pulse shapes that can subsequently be used to create demand response with arbitrary profiles. Demand response control methods, such as the one developed here, open the door to fast, nonperturbative control of large aggregations of TCLs

  7. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  8. A knowledge-based system for control of xenon-induced spatial power oscillations during load-follow operations

    International Nuclear Information System (INIS)

    Chung, Sun-Kyo; Danofsky, R.A.; Spinrad, B.I.

    1988-01-01

    As is well known, large pressurized water reactors (PWRs) are subject to xenon-induced axial power oscillations at some time during a given cycle. Attention to this behavior is required during load-follow operations. A knowledge-based system for controlling xenon-induced spatial power oscillations is described. Experience with a limited set of load-follow patterns has demonstrated that the system is capable of providing advice on appropriate control actions. A simulation model, coupled with a rule-learning process, has been found to be a useful way for determining appropriate weights for the rules that relate power patterns and control actions

  9. On estimation of reliability for pipe lines of heat power plants under cyclic loading

    International Nuclear Information System (INIS)

    Verezemskij, V.G.

    1986-01-01

    One of the possible methods to obtain a quantitative estimate of the reliability for pipe lines of the welded heat power plants under cyclic loading due to heating-cooling and due to vibration is considered. Reliability estimate is carried out for a common case of loading by simultaneous cycles with different amplitudes and loading asymmetry. It is shown that scattering of the breaking number of cycles for the metal of welds may perceptibly decrease reliability of the welded pipe line

  10. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  11. Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy

    International Nuclear Information System (INIS)

    Tang, Yanmei; Bai, Yan; Huang, Congzhi; Du, Bin

    2015-01-01

    Highlights: • A disturbance rejection solution to the load frequency control issue is proposed. • Several power systems with wind energy conversation system have been tested. • A tuning algorithm of the controller parameters was proposed. • The performance of the proposed approach is better than traditional controllers. - Abstract: A new grid load frequency control approach is proposed for the doubly fed induction generator based wind power plants. The load frequency control issue in a power system is undergoing fundamental changes due to the rapidly growing amount of wind energy conversation system, and concentrating on maintaining generation-load balance and disturbance rejection. The prominent feature of the linear active disturbance rejection control approach is that the total disturbance can be estimated and then eliminated in real time. And thus, it is a feasible solution to deal with the load frequency control issue. In this paper, the application of the linear active disturbance rejection control approach in the load frequency control issue for a complex power system with wind energy conversation system based on doubly fed induction generator is investigated. The load frequency control issue is formulated as a decentralized multi-objective optimization control problem, the solution to which is solved by the hybrid particle swarm optimization technique. To show the effectiveness of the proposed control scheme, the robust performance testing based on Monte-Carlo approach is carried out. The performance superiority of the system with the proposed linear active disturbance rejection control approach over that with the traditional proportional integral and fuzzy-proportional integral-based controllers is validated by the simulation results

  12. Effects of Unloaded vs. Loaded Plyometrics on Speed and Power Performance of Elite Young Soccer Players

    Directory of Open Access Journals (Sweden)

    Ronaldo Kobal

    2017-09-01

    produce worthwhile improvements in maximal speed and power performances, which is possible related to the interference of concurrent training effects. New training strategies should be developed to ensure adequate balance between power and endurance loads throughout short (and high-volume soccer preseasons.

  13. To Problem Pertaining to Provision of Electric Power Load Schedules of Power Sys- tems while Involving Potential of Power Technological Sources of Industrial Enterprises

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2010-01-01

    Full Text Available The paper considers a possibility to use co-generated complexes having heat technological industrial load for operation in accordance with the requirements of irregularity of electric power generation schedule.

  14. Magnetoelastic Demagnetization of Steel under Cyclic Loading

    Science.gov (United States)

    Muratov, K. R.; Novikov, V. F.; Neradovskii, D. F.; Kazakov, R. Kh.

    2018-01-01

    Magnetoelastic demagnetization of steel samples under cyclic tensile loads has been analyzed. It has been established that values of residual magnetization that correspond to peak loads are characterized by the power-law dependence on the number of loading cycles. In some cases, in the region of high loads, the qualitative transition to exponential dependence has been observed. Coefficients of the power-law approximation of peak magnetization depend on the value of amplitude load and have specific characteristics in the vicinity of characteristic loads. The ratios of approximated slide load coefficients depending on the load are common for the three considered samples, and there is an outburst in the vicinity of the fatigue limit, which can be used as the basis for developing the rapid nondestructive method for determination of this limit.

  15. A high efficiency PWM CMOS class-D audio power amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhangming; Liu Lianxi; Yang Yintang [Institute of Microelectronics, Xidian University, Xi' an 710071 (China); Lei Han, E-mail: zmyh@263.ne [Xi' an Power-Rail Micro Co., Ltd, Xi' an 710075 (China)

    2009-02-15

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 mum CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 muA. The active area of the class-D audio power amplifier is about 1.47 x 1.52 mm{sup 2}. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  16. A high efficiency PWM CMOS class-D audio power amplifier

    International Nuclear Information System (INIS)

    Zhu Zhangming; Liu Lianxi; Yang Yintang; Lei Han

    2009-01-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 x 1.52 mm 2 . With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  17. A high efficiency PWM CMOS class-D audio power amplifier

    Science.gov (United States)

    Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei

    2009-02-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  18. Research on calorimeter for high-power microwave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024 (China)

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  19. Research on calorimeter for high-power microwave measurements.

    Science.gov (United States)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  20. A Wind Farm Active Power Dispatch Strategy for Fatigue Load Reduction

    DEFF Research Database (Denmark)

    Zhang, Baohua; N. Soltani, Mohsen; Hu, Weihao

    2016-01-01

    One of the biggest challenges in wind farm management is to cope with requirements from the grid companies and to optimize efficiency and minimize wear on wind turbines. This paper addresses an optimized active power dispatch strategy of a wind farm to reduce the fatigue load of wind turbines, wh...

  1. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-01-15

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\\\access point (AP) and multiple VLC\\\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  2. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\access point (AP) and multiple VLC\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  3. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  4. Voltage resonant inverter as a power source

    OpenAIRE

    Lupenko, Anatoliy; Stakhiv, Petro

    2014-01-01

    The operation mode of a voltage resonant inverter as a power source with variable load is analyzed. In order to reduce load power variations, an approach to development of the inverter’s load power response based on providing similar positive and negative power deviations from its nominal value has been proposed. The design procedure for resonant inverter with open loop structure as a power source has been elaborated. For a high pressure sodium lamp as a load, the power deviation of about 4% ...

  5. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  6. Thermo-Micromechanical Damage Models of Airfield Concrete Pavement Under High Temperature Loading

    National Research Council Canada - National Science Library

    Ju, J

    1998-01-01

    ...) or auxiliary Power Unit (APU). The APU is a low-power has turbine that provides compressed air, from a load driven compressor, for starting the main engines and for operating auxiliary systems during ground maintenance...

  7. Comparison of the Velocity and Power Parameters during Loaded-Squat Jump Exercise of National Athletes in Different Branches*

    Science.gov (United States)

    Can, Ibrahim; Cihan, Hamit; Ari, Erdal; Bayrakdaroglu, Serdar

    2018-01-01

    The aim of this investigation is to compare velocity and power variables during loaded-squat jump (SJ[subscript Loaded]) exercise of national athletes dealing with different sports branches and to identify whether velocity and power parameters become different or not according to branches. In accordance with this purpose, a total of 36 national…

  8. 40 CFR 86.129-94 - Road load power, test weight, inertia weight class determination, and fuel temperature profile.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load power, test weight, inertia... Procedures § 86.129-94 Road load power, test weight, inertia weight class determination, and fuel temperature... duty trucks 1,2,3 Test weightbasis 4,5 Test equivalent test weight(pounds) Inertia weight class(pounds...

  9. Large Banks of Negative Differential Resistance Nonlinear Loads: A Hidden Threat to Power System Quality

    Directory of Open Access Journals (Sweden)

    Mahmood Ahmad

    2018-01-01

    Full Text Available DSM (Demand Side Management is a short term and comparatively low cost solution for energy starved countries. Replacement of IB (Incandescent Bulbs with CFL (Compact Fluorescent Lamps has proved its success throughout the world. The same solution, at larger scale, was proposed to Pakistan to mitigate power shortage on short term basis. Accordingly in year 2008, ADB (Asian Development Bank conducted a study and it was found that replacement of conventional IB with 30 million CFL will result into series of benefits for the stake holders and above all the Environment. The study, unfortunately didn’t take enough consideration of effect of CFLs on the power system being nonlinear device and so the power quality issues remained a secondary consideration. The focus of this paper remains on the effect of such non-linear load on consumers, it also envisages the erratic behaviour of such large penetration of CFLs on direct single phase, three phase, digital as well as electromechanical energy meters, under different loading conditions e.g. resistive load, SMPS (Switch Mode Power Supply, half and full-wave rectifiers. It also reflects harmonic pollution caused by CFLs, their effect on power system quality and the registration ability of electromechanical as well as digital energy meters. To this end Harmonic spectrum was recorded up to the 31st harmonic.

  10. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  11. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid...

  12. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  13. Resonant power converter driving and inductive load like a discharge lamp

    NARCIS (Netherlands)

    2010-01-01

    A resonant power converter (1) for driving an inductive load as, e.g. an inductively coupled gas- discharge lamp, is designed for operation at an operational frequency (Fop) of 13.56 MHz and comprises: a series arrangement of a first inductor (L1) and a first controllable switch (Q1) connected to a

  14. Target experiments with high-power proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Baumung, K; Bluhm, H; Hoppe, P; Rusch, D; Singer, J; Stoltz, O [Forschungszentrum Karlsruhe (Germany); Kanel, G I; Razorenov, S V; Utkin, A V [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Chemical Physics

    1997-12-31

    At the Karlsruhe Light Ion Facility KALE a pulsed high-power proton beam (50 ns, 0.15 TW/cm{sup 2}, 8 mm fwhm focus diameter, 1.7 MeV peak proton energy) is used to generate short, intense pressure pulses or to ablatively accelerate targets 10-100 {mu}m thick to velocities > 10 km/s. The velocity history of the rear target surface is recorded by line-imaging laser Doppler velocimetry with high spatial ({>=} 10 {mu}m) and temporal ({>=} 200 ps) resolution, and provides information on proton beam parameters, and on the state of the matter at high energy densities and intense loading. Utilizing the bell-shaped power density profile the authors demonstrated a new straightforward method for measuring the shock pressure that leads to material melting in the rarefaction wave. For the first time, the dynamic tensile strength was measured across a crystal grain boundary, and using targets with a 1D periodic structure, the growth rate of a Rayleigh Taylor instability could be measured for the first time in direct drive experiments with an ion beam. (author). 8 figs., 15 refs.

  15. Development of an intelligent high-voltage direct-current power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Zhao Xiuliang

    1997-01-01

    The operation and performances of a new type direct-current high-voltage power supply are described. The power supply with intelligent feature is controlled by a single-chip microcomputer (8031), and various kinds of output voltage can be preset. The output-voltage is monitored and regulated by the single-chip microcomputer and displayed by LED. The output voltage is stable when the load current is within the allowable limits

  16. Transient analysis of house load operation for LNPP

    International Nuclear Information System (INIS)

    Shi Junying; Zheng Bin

    2000-01-01

    The author analysis the transient of house load operation for Ling'ao Nuclear Power Plant by using the methods of dynamic simulation and closed loops of primary and secondary system. The transient of house load operation from 100% FP is the most severe that can occur on the unit in normal operation because it causes immediately shedding of 95% of turbine load and requires the unit to operate steadily at reduced power. The results show that the transient can be successful both at beginning of core life and manual house load operation. However, more attentions must be paid to automatic house load operation caused by grid fault at toward end of core life because the success of the transient could be threatened by the actuation of the protection of high flux and high flux rate

  17. Valence of wind power, photovoltaic and peak-load power plants as a part of the entire electricity system

    International Nuclear Information System (INIS)

    Schüppel, A.

    2014-01-01

    The transition to a higher share of renewable energy sources in the electricity sector leads to a multitude of challenges for the current electricity system. Within this thesis, the development of wind power and photovoltaics generation capacities in Germany is analysed based on the evaluation of technical and economic criteria. In order to derive those criteria, different scenarios with a separated and combined increase of wind and photovoltaics capacity are simulated using the model ATLANTIS. The results are compared to a reference scenario without additional wind and PV capacities. Furthermore, the value and functionality of the energy only market based on economic methods, as well as the value of peak load power plants based on opportunity costs are determined. The results of this thesis show, that the current market system is able to gain an additional annual welfare of four to six billion Euro at the best. This result shows that the task of optimising the power plant dispatch is well fulfilled by the current market design. However, the effects, e.g. fuel costs, which may influence this margin. The value of wind power and photovoltaics within the overall electricity system can be derived from the effort which is necessary to integrate these generation technologies into the existing system, and the changes in total costs of electricity generation. Based on the evaluation of time dependencies (seasonality of energy yield from wind and PV) as well as the development of total generation costs, the conclusion can be drawn that wind power is the more suitable RES generation technology for Germany. However, when it comes to grid integration measures, PV shows better results due to a higher generation potential in Southern Germany, which leads to a higher degree of utilisation. Therefore, there is no need to transport electricity from Northern to Southern Germany as it is the case with wind power. A common expansion of wind power and photovoltaics even shows slight

  18. Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability....... To validate the stability with the above stabilizers in a DC microgrid with parallel interfacing converters and CPL, the impedance matching approach is employed. The output impedance of the source converter and input impedance of the load are calculated respectively, and the influence of droop control...

  19. Supplementation with a Polyphenol-Rich Extract, PerfLoad®, Improves Physical Performance during High-Intensity Exercise: A Randomized, Double Blind, Crossover Trial

    Directory of Open Access Journals (Sweden)

    Julien Cases

    2017-04-01

    Full Text Available Workout capacity is energy-production driven. To produce peak metabolic power outputs, the organism predominantly relies more on anaerobic metabolism, but this undoubtedly has a negative and limiting impact on muscle function and performance. The aim of the study was to evaluate if an innovative polyphenol-based food supplement, PerfLoad®, was able to improve metabolic homeostasis and physical performance during high-intensity exercises under anaerobic conditions. The effect of a supplementation has been investigated on fifteen recreationally-active male athletes during a randomized, double-blind and crossover clinical investigation. The Wingate test, an inducer of an unbalanced metabolism associated to oxidative stress, was used to assess maximum anaerobic power during a high-intensity exercise on a cycle ergometer. Supplementation with PerfLoad® correlated with a significant increase in total power output (5%, maximal peak power output (3.7%, and average power developed (5%, without inducing more fatigue or greater heart rate. Instead, oxidative homeostasis was stabilized in supplemented subjects. Such results demonstrated that PerfLoad® is a natural and efficient solution capable of, similarly to training benefits, helping athletes to improve their physical performance, while balancing their metabolism and reducing exercise-induced oxidative stress.

  20. Automatic determination of pressurized water reactor core loading patterns that maximize beginning-of-cycle reactivity within power-peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine a good estimate of the core loading pattern, which minimizes fuel cycle costs for a pressurized water reactor (PWR). Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern that maximizes core reactivity while satisfying power peaking, discharge burnup, and other constraints. The method utilizes a two-dimensional, coarse-mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern. First-order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, end-of-cycle burnup. Monte Carlo integer programming is then used to determine a near-optimal loading pattern within a range of loading patterns near the reference pattern. The process then repeats with the new loading pattern as the reference loading pattern and terminates when no better loading pattern can be determined. The process was applied with both reactivity maximization and radial power-peaking minimization as objectives. Results on a typical large PWR indicate that the cost of obtaining an 8% improvement in radial power-peaking margin is ≅2% in fuel cycle costs, for the reload core loaded without burnable poisons that was studied

  1. Unstable propagation behavior of a ductile crack in SUS-304 stainless steel under high compliance tensile loading

    International Nuclear Information System (INIS)

    Tomoda, Yoshio

    1981-01-01

    In relation to the safe maintenance of nuclear power plants, it is necessary to prevent reactor coolant pipings from burst type failure caused by the unstable propagation of defects and cracks, such as stress corrosion cracking and fatigue cracks. In ductile materials, crack propagation is stable in tensile loading under fixed grip condition, when a specimen is controlled to deform in proportion to the increase of tensile load. However, it has been known that the instability of ductile cracks occurs after tensile load reached the maximum, especially under constant loading condition arising in the loading devices with high compliance or low tensile rigidity. In order to confirm the reliability of SUS 304 stainless pipes subjected to SCC, the crack propagation behavior was examined with the specimens having center cracks, using both testing machines with high compliance and low compliance. The instability of ductile cracks and the propagation velocity of unstable cracks were analyzed, and the calculated results were compated with the experimental results. Not only the compliance of testing machines but also the conditions of specimens affected the propagation of cracks. (Kako, I.)

  2. Utilization of controllable load for system operations services - Potential in the power system; Utnyttjande av styrbara laster foer systemdrifttjaenster - Potential i kraftsystemet

    Energy Technology Data Exchange (ETDEWEB)

    Bojrup, Martin; Petersson, Andreas; Agneholm, Evert

    2013-04-15

    The frequency quality in the synchronized Nordic power system has decreased significantly during the last years. At the same time the procurement costs for frequency control services from the producers has increased dramatically. The decreased frequency quality has also resulted in an increased wear on production units taking part in frequency control. The large scale integration of renewable s, such as wind power, will probably result in a need for more frequency control resources. In order to increase the frequency control resources in the power system and find more cost efficient solutions this project suggests a development of a method for load control based on grid frequency. The suggested load control is applicable on loads fed by a variable-speed drive (VSD) and the purpose is to use energy loads, i.e. loads that not necessary need a constant power. By using the control capacity in these loads the power consumption from these loads can be controlled without causing any notable inconveniences for the customers. In the report the future potential is estimated for different ancillary services. As the installation of new VSDs and exchange of existing VSDs are performed to a large extent every year it is possible, already some years after implementation, to see an impact in the power system.

  3. A Hybrid Power Control Concept for PV Inverters with Reduced Thermal Loading

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    on a single-phase PV inverter under yearly operation is presented with analyses of the thermal loading, lifetime, and annual energy yield. It has revealed the trade-off factors to select the power limit and also verified the feasibility and the effectiveness of the proposed control concept.......This letter proposes a hybrid power control concept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum Power Point Tracking (MPPT) control or a Constant Power Generation (CPG) control depending on the instantaneous available power from the PV panels....... The essence of the proposed concept lies in the selection of an appropriate power limit for the CPG control to achieve an improved thermal performance and an increased utilization factor of PV inverters,and thus to cater for a higher penetration level of PV systems with intermittent nature. A case study...

  4. Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft

    Directory of Open Access Journals (Sweden)

    Cun SHI

    2018-05-01

    Full Text Available This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator (LS-EHA. Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under high-speed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded. Keywords: Coupling lubrication model, Electro-Hydrostatic Actuator (EHA, High-speed pump, Partial abrasion, Slipper pair, Variable load

  5. Activities of everyday life with high spinal loads.

    Directory of Open Access Journals (Sweden)

    Antonius Rohlmann

    Full Text Available Activities with high spinal loads should be avoided by patients with back problems. Awareness about these activities and knowledge of the associated loads are important for the proper design and pre-clinical testing of spinal implants. The loads on an instrumented vertebral body replacement have been telemetrically measured for approximately 1000 combinations of activities and parameters in 5 patients over a period up to 65 months postoperatively. A database containing, among others, extreme values for load components in more than 13,500 datasets was searched for 10 activities that cause the highest resultant force, bending moment, torsional moment, or shear force in an anatomical direction. The following activities caused high resultant forces: lifting a weight from the ground, forward elevation of straight arms with a weight in hands, moving a weight laterally in front of the body with hanging arms, changing the body position, staircase walking, tying shoes, and upper body flexion. All activities have in common that the center of mass of the upper body was moved anteriorly. Forces up to 1650 N were measured for these activities of daily life. However, there was a large intra- and inter-individual variation in the implant loads for the various activities depending on how exercises were performed. Measured shear forces were usually higher in the posterior direction than in the anterior direction. Activities with high resultant forces usually caused high values of other load components.

  6. 1993 Pacific Northwest Loads and Resources Study.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-12-01

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  7. Operation and Management of Thermostatically Controlled Loads for Providing Regulation Services to Power Grids

    Science.gov (United States)

    Vanouni, Maziar

    The notion of demand-side participation in power systems operation and control is on the verge of realization because of the advancement in the required technologies an tools like communications, smart meters, sensor networks, large data management techniques, large scale optimization method, etc. Therefore, demand-response (DR) programs can be one of the prosperous solutions to accommodate part of the increasing demand for load balancing services which is brought about by the high penetration of intermittent renewable energies in power systems. This dissertation studies different aspects of the DR programs that utilized the thermostatically controlled loads (TCLs) to provide load balancing services. The importance of TCLs among the other loads lie on their flexibility in power consumption pattern while the customer/end-user comfort is not (or minimally) impacted. Chapter 2 discussed a previously presented direct load control (DLC) to control the power consumption of aggregated TCLs. The DLC method performs a power tracking control and based on central approach where a central controller broadcasts the control command to the dispersed TCLs to toggle them on/off. The central controller receives measurement feedback from the TCLs once per couple of minutes to run a successful forecast process. The performance evaluation criteria to evaluate the load balancing service provided by the TCLs are presented. The results are discussed under different scenarios and situation. The numerical results show the proper performance of the DLC method. This DLC method is used as the control method in all the studies in this dissertation. Chapter 3 presents performance improvements for the original method in Chapter 2 by communicating two more pieces of information called forecast parameters (FPs). Communicating improves the forecast process in the DLC and hence, both performance accuracy and the amount of tear-and-wear imposed on the TCLs. Chapter 4 formulates a stochastic

  8. Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs

    Institute of Scientific and Technical Information of China (English)

    Yi Zhang; Xiangjie Liu; Bin Qu

    2017-01-01

    Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control(DMPC) based on coordination scheme.The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints(GRCs), load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed–loop performance, and computational burden with the physical constraints.

  9. Residential Load Manageability Factor Analyses by Load Sensitivity Affected by Temperature

    Directory of Open Access Journals (Sweden)

    N. Eskandari

    2016-12-01

    Full Text Available Load side management is the basic and significant principle to keeping the balance between generation side and consumption side of electrical power energy. Load side management on typical medium voltage feeder is the power energy consumption control of connected loads with variation of essential parameters that loads do reaction to their variation. Knowing amount of load's reaction to each parameters variation in typical medium voltage feeder during the day, leads to gain Load Manageability Factor (LMF for that specific feeder that helps power utilities to manage their connected loads. Calculating this LMF needs to find out each types of load with unique inherent features behavior to each parameters variation. This paper results and future work results will help us to catch mentioned LMF. In this paper analysis of residential load behavior due to temperature variation with training artificial neural network will be done. Load behavior due to other essential parameters variations like energy pricing variation, major event happening, and power utility announcing to the customers, and etc will study in future works. Collecting all related works results in a unit mathematical equation or an artificial neural network will gain LMF.

  10. Maximal loads acting on legs of powered roof support unit in longwalls with bumping hazards

    Institute of Scientific and Technical Information of China (English)

    StanislawSzweda

    2001-01-01

    In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction bf the rock mass, are discussed. The measurements have been taken in the Iongwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs Fro, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs Fst.p Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a Iongwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advanta igeous influence on their life, Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit

  11. APEX and ALPS, high power density technology programs in the U.S

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Berk, S.; Abdou, M.; Mattas, R.

    1999-02-01

    In fiscal year (FY) 1998 two new fusion technology programs were initiated in the US, with the goal of making marked progress in the scientific understanding of technologies and materials required to withstand high plasma heat flux and neutron wall loads. APEX is exploring new and revolutionary concepts that can provide the capability to extract heat efficiently from a system with high neutron and surface heat loads while satisfying all the fusion power technology requirements and achieving maximum reliability, maintainability, safety, and environmental acceptability. ALPS program is evaluating advanced concepts including liquid surface limiters and divertors on the basis of such factors as their compatibility with fusion plasma, high power density handling capabilities, engineering feasibility, lifetime, safety and R and D requirements. The APEX and ALPS are three-year programs to specify requirements and evaluate criteria for revolutionary approaches in first wall, blanket and high heat flux component applications. Conceptual design and analysis of candidate concepts are being performed with the goal of selecting the most promising first wall, blanket and high heat flux component designs that will provide the technical basis for the initiation of a significant R and D effort beginning in FY2001. These programs are also considering opportunities for international collaborations

  12. Study of pulse stretching in high current power supplies using multipulse techniques

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1977-01-01

    Considerable interest exists at Fermilab to increase the pulse width of the Neutrino Focusing Horn to permit an increase in beam spill length from twenty (20) microseconds to one (1) millisecond. Two techniques to do this were examined: (1) a high current transformer, and (2) increased bank capacitance using the multi-power supply technique. The transformer is the most straightforward conceptually; it is, however, a complicated device requiring sizable changes to the existing horn power supply. This alternative is briefly reviewed. The second scheme involves pulsing a 20 kv 200 ka power supply to establish the required load current and then maintaining this current by the sequential pulsing of a number of low voltage high current power supplies. This alternative is discussed in detail with the results of tests performed on the Fermilab Focusing Horn System

  13. Analysis of Valve Requirements for High-Efficiency Digital Displacement Fluid Power Motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital displacement fluid power motors have been shown to enable high-efficiency operation in a wide operation range, including the part load range where conventional fluid power motors suffers from poor efficiencies. The use of these digital displacement motors set new requirements for the valve...... transition time and flow-pressure coefficient are normalized, leading to a presentation of the general efficiency map of the digital displacement motor. Finally the performance of existing commercial valves with respect to digital motors is commented....

  14. Power law scaling in synchronization of brain signals depends on cognitive load

    Directory of Open Access Journals (Sweden)

    Jose Luis ePerez Velazquez

    2014-05-01

    Full Text Available As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task. There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa, which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviours.

  15. The integrity of CANDU fuel during load following

    International Nuclear Information System (INIS)

    Tayal, M.; Manzer, A.M.; Sejnoha, R.; Hains, A.J.

    1989-08-01

    This paper summarizes data and analyses of integrity and of physics of CANDU fuel during load following. Measurements of irradiated fuel show that power cycles do not enhance release of fission gas. Data from research reactors show that the power cycles cause cyclic strains in the sheath. Finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath. The stresses and the strains are well into the plastic range. The cyclic loads 'use up' some fraction of the sheath's resistance to environmentally-assisted cracking (EAC), depending on the details of the fuel design and of then power cycles. The balance of the sheath's resistance to EAC continues to be available to counteract static loads. Thousands of fuel bundles have experienced many power cycles in research and in commercial reactors. Overall integrity of fuel bundles is well over 99%. Thus, CANDU fuel continues to show good performance in both base-load and load-following reactors

  16. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  17. The impact of external optical feedback on the degradation behavior of high-power diode lasers

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...... unaffected, severe impact is observed to the cladding layers and the waveguide. Consequently hardening of diode lasers for operation under external optical feedback must necessarily involve claddings and waveguide, into which the quantum well is embedded.......The impact of external feedback on high-power diode laser degradation is studied. For this purpose early stages of gradual degradation are prepared by accelerated aging of 808-nm-emitting AlGaAs-based devices. While the quantum well that actually experiences the highest total optical load remains...

  18. Measuring power output intermittency and unsteady loading in a micro wind farm model

    OpenAIRE

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2016-01-01

    In this study porous disc models are used as a turbine model for a wind-tunnel wind farm experiment, allowing the measurement of the power output, thrust force and spatially averaged incoming velocity for every turbine. The model's capabilities for studying the unsteady turbine loading, wind farm power output intermittency and spatio temporal correlations between wind turbines are demonstrated on an aligned wind farm, consisting of 100 wind turbine models.

  19. Application of the load flow and random flow models for the analysis of power transmission networks

    International Nuclear Information System (INIS)

    Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro

    2012-01-01

    In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

  20. Engineering and physics of high-power-density, compact, reversed-field-pinch fusion reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Krakowski, R.A.; Schultz, K.R.; Steiner, D.

    1989-01-01

    The technical feasibility and key developmental issues of compact, high-power-density Reversed-Field-Pinch (RFP) reactors are the primary results of the TITAN RFP reactor study. Two design approaches emerged, TITAN-I and TITAN-II, both of which are steady-state, DT-burning, circa 1000 MWe power reactors. The TITAN designs are physically compact and have a high neutron wall loading of 18 MW m 2 . Detailed analyses indicate that: a) each design is technically feasible; b) attractive features of compact RFP reactors can be realized without sacrificing the safety and environmental potential of fusion; and c) major features of this particular embodiment of the RFP reactor are retained in a design window of neutron wall loading ranging from 10 to 20 MW/m 2 . A major product of the TITAN study is the identification and quantification of major engineering and physics requirements for this class of RFP reactors. These findings are the focus of this paper. (author). 26 refs.; 4 figs.; 1 tab

  1. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  2. Laboratory Load Model Based on 150 kVA Power Frequency Converter and Simulink Real-Time – Concept, Implementation, Experiments

    Directory of Open Access Journals (Sweden)

    Robert Małkowski

    2016-09-01

    Full Text Available First section of the paper provides technical specification of laboratory load model basing on 150 kVA power frequency converter and Simulink Real-Time platform. Assumptions, as well as control algorithm structure is presented. Theoretical considerations based on criteria which load types may be simulated using discussed laboratory setup, are described. As described model contains transformer with thyristor-controlled tap changer, wider scope of device capabilities is presented. Paper lists and describes tunable parameters, both: tunable during device operation and changed only before starting the experiment. Implementation details are given in second section of paper. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Third section describes performed laboratory tests. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule. Different operation modes of control algorithm are described: apparent power control, active and reactive power control, active and reactive current RMS value control.

  3. The prediction of the impact of climatic factors on short-term electric power load based on the big data of smart city

    Science.gov (United States)

    Qiu, Yunfei; Li, Xizhong; Zheng, Wei; Hu, Qinghe; Wei, Zhanmeng; Yue, Yaqin

    2017-08-01

    The climate changes have great impact on the residents’ electricity consumption, so the study on the impact of climatic factors on electric power load is of significance. In this paper, the effects of the data of temperature, rainfall and wind of smart city on short-term power load is studied to predict power load. The authors studied the relation between power load and daily temperature, rainfall and wind in the 31 days of January of one year. In the research, the authors used the Matlab neural network toolbox to establish the combinational forecasting model. The authors trained the original input data continuously to get the internal rules inside the data and used the rules to predict the daily power load in the next January. The prediction method relies on the accuracy of weather forecasting. If the weather forecasting is different from the actual weather, we need to correct the climatic factors to ensure accurate prediction.

  4. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  5. Effects of high power ion Bernstein waves on a tokamak plasma

    International Nuclear Information System (INIS)

    Ono, M.; Beiersdorfer, P.; Bell, R.

    1987-04-01

    Ion Bernstein wave heating (IBWH) has been investigated on PLT with up to 650 kW of rf power coupled to the plasma, exceeding the ohmic power of 550 kW. Plasma antenna loading of 2 Ω has been observed, resulting in 80 to 90% of the rf power being coupled to the plasma. An ion heating efficiency of ΔT/sub i/(0)n/sub e//P/sub rf/ = 6 x 10 13 eV cm -3 /kW, without high energy tail ions, has been observed up to the maximum rf power. The deuterium particle confinement during high power IBWH increases significantly (as much as 300%). Associated with it, a longer injected impurity confinement time, reduced drift wave turbulence activity, frequency shifts of drfit wave turbulence, and development of a large negative edge potential were observed. The energy confinement time, however, shows some degradation from the ohmic value, which can be attributed to the enhanced radiation loss observed during IBWH. The ion heating and energy confinement time are relatively independent of plasma current

  6. Operation of Power Grids with High Penetration of Wind Power

    Science.gov (United States)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  7. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  8. Ground-fault protection of insulated high-voltage power networks in mines

    Energy Technology Data Exchange (ETDEWEB)

    Pudelko, H

    1976-09-01

    Safety of power networks is discussed in underground black coal mines in Poland. Safety in mines with a long service life was compared with safety in mines constructed since 1950. Power networks and systems protecting against electric ground-faults in the 2 mine groups are comparatively evaluated. Systems for protection against electric ground-faults in mine high-voltage networks with an insulated star point of the transformer are characterized. Fluctuations of resistance of electrical insulation under conditions of changing load are analyzed. The results of analyses are given in 14 diagrams. Recommendations for design of systems protecting against electric ground-faults in 6 kV mine power systems are made. 7 references.

  9. Stability Enhancement Based on Virtual Impedance for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2015-01-01

    In this paper, a converter-based DC microgrid is studied. By considering the impact of each component in DC microgrids on system stability, a multi-stage configuration is employed, which includes the source stage, interface converter stage between buses and common load stage. In order to study th....... It can be seen that by using the proposed stabilizers, the unstable poles induced by the CPLs are forced to move into the stable region. The proposed method is verified by the MATLAB/Simulink model of multi-stage DC microgrids with three distributed power generation units.......In this paper, a converter-based DC microgrid is studied. By considering the impact of each component in DC microgrids on system stability, a multi-stage configuration is employed, which includes the source stage, interface converter stage between buses and common load stage. In order to study...... the overall stability of the above DC microgrid with constant power loads (CPLs), a comprehensive small-signal model is derived by analyzing the interface converters in each stage. The instability issue induced by the CPLs is revealed by using the criteria of impedance matching. Meanwhile, virtual...

  10. Design and Implementation of a High Quality Power Supply Scheme for Distributed Generation in a Micro-Grid

    Directory of Open Access Journals (Sweden)

    Mingchao Xia

    2013-09-01

    Full Text Available A low carbon, high efficiency and high quality power supply scheme for Distributed Generation (DG in a micro-grid is presented. A three-phase, four-leg DG grid-interfacing converter based on the improved structure of a Unified Power Quality Conditioner (UPQC, including a series converter and a parallel converter is adopted, and improved indirect and direct control strategies are proposed. It can be observed that these strategies effectively compensate for voltage sags, voltage swells and voltage distortion, as well as voltage power quality problems resulting from the nonlinear and unbalanced loads in a micro-grid. While solving the coupling interference from series–parallel, the grid-interfacing converter can achieve proper load power sharing in a micro-grid. In particular, an improved minimum-energy compensation method is proposed that can overcome the conventional compensation algorithm defects, ensure the load voltage’s phase angle stability, improve the voltage compensating ability and range, reduce the capacity and cost of converters, and reduce the shock of micro-grid switching between grid-connected mode and islanded mode. Moreover, the advantages/disadvantages and application situation of the two improved control strategies are analyzed. Finally, the performance of the proposed control strategies has been verified through a MATLAB/Simulink simulation under various operating conditions.

  11. Impact of Battery Energy Storage System Operation Strategy on Power System: An Urban Railway Load Case under a Time-of-Use Tariff

    Directory of Open Access Journals (Sweden)

    Hyeongig Kim

    2017-01-01

    Full Text Available Customer-owned battery energy storage systems (BESS have been used to reduce electricity costs of energy storage owners (ESOs under a time-of-use (TOU tariff in Korea. However, the current TOU tariff can unintentionally induce customer’s electricity usage to have a negative impact on power systems. This paper verifies the impact of different BESS operation strategies on power systems under a TOU tariff by analyzing the TOU tariff structure and the customer’s load pattern. First, several BESS operation strategies of ESO are proposed to reduce the electricity cost. In addition, a degradation cost calculation method for lithium ion batteries is considered for the ESO to determine the optimal BESS operation strategy that maximizes both electricity cost and annual investment cost. The optimal BESS operation strategy that maximizes ESO’s net benefit is illustrated by simulation using an urban railway load data from Namgwangju Station, Korea. The results show that BESS connected to urban railway loads can negative impact power system operation. This is due to the high BESS degradation costs and lack of incentive of differential rates in TOU tariff that can effectively induce proper demand response.

  12. Power control method for load-frequency control operation in BWRs

    International Nuclear Information System (INIS)

    Ie, Shin-ichiroo; Ohgo, Yu-kiharu; Itou, Tetsuo; Shida, Tooichi

    1991-01-01

    The preliminary design of an advanced power control method for fast load-following [load frequency control (LFC)] maneuvers in a boiling water reactor (BWR) is described in this paper. Application of a multivariable control method using an optimal linear quadratic (LQ) regulator theory effectively improves control system performance when system variables have significant interactions such as in BWRs. The control problem, however, demands strict constraints on system variable from the standpoint of plant operation. These constraints require the control system to have a nonlinear property for better improvement. Therefore, the effectiveness of LQ control is limited by these constraints, because it is based on a linear model. A new method is needed to compensate for the nonlinear property. In this study, the authors propose a new method using fuzzy reasoning with LQ control to achieve nonlinear compensation

  13. A high-performance stand-alone solar PV power system for LED lighting

    KAUST Repository

    Huang, B. J.

    2010-06-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system using pulse width modulation (PWM) technique was developed for battery charging control which can increase the charging capacity by 78%. For high-efficiency lighting, the LED is directly driven by battery using a PWM discharge control to eliminate a DC/DC converter. Two solar-powered LED lighting systems (50W and 100W LED) were built. The long-term outdoor tests have shown that the loss of load probability for full-night lighting requirement is zero for 50W LED and 3.6% for 100W LED. © 2010 IEEE.

  14. Using active power filter to compensate the current component of asymmetrical non-linear load in the four wire network

    Directory of Open Access Journals (Sweden)

    Руслан Володимирович Власенко

    2016-07-01

    Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage

  15. Impact of onsite solar generation on system load demand forecast

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Pedro, Hugo T.C.; Coimbra, Carlos F.M.

    2013-01-01

    Highlights: • We showed the impact onsite solar generation on system demand load forecast. • Forecast performance degrades by 9% and 3% for 1 h and 15 min forecast horizons. • Error distribution for onsite case is best characterized as t-distribution. • Relation between error, solar penetration and solar variability is characterized. - Abstract: Net energy metering tariffs have encouraged the growth of solar PV in the distribution grid. The additional variability associated with weather-dependent renewable energy creates new challenges for power system operators that must maintain and operate ancillary services to balance the grid. To deal with these issues power operators mostly rely on demand load forecasts. Electric load forecast has been used in power industry for a long time and there are several well established load forecasting models. But the performance of these models for future scenario of high renewable energy penetration is unclear. In this work, the impact of onsite solar power generation on the demand load forecast is analyzed for a community that meets between 10% and 15% of its annual power demand and 3–54% of its daily power demand from a solar power plant. Short-Term Load Forecasts (STLF) using persistence, machine learning and regression-based forecasting models are presented for two cases: (1) high solar penetration and (2) no penetration. Results show that for 1-h and 15-min forecasts the accuracy of the models drops by 9% and 3% with high solar penetration. Statistical analysis of the forecast errors demonstrate that the error distribution is best characterized as a t-distribution for the high penetration scenario. Analysis of the error distribution as a function of daily solar penetration for different levels of variability revealed that the solar power variability drives the forecast error magnitude whereas increasing penetration level has a much smaller contribution. This work concludes that the demand forecast error distribution

  16. An aggregated approach to harmonic modelling of loads in power distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Moellerstedt, E.

    1998-06-01

    The use of power electronics have given possibilities for more sophisticated control of power networks. This creates new demands on power network modelling. The models must not only allow for efficient and accurate simulation, but also be suitable for analysis and control design. The Harmonic Norton Equivalent presented in this thesis addresses two problems that are central in control theory, namely model reduction and system identification. It is essential to have simple representations of large systems, and there must be a way to obtain these simple models experimentally, as detailed modelling most often is too complicated. The Harmonic Norton Equivalent has its roots in the method of harmonic balance. It is a frequency domain description of loads in electric networks and describes a linear relation between the current spectrum and the voltage spectrum. The linearization implies that aggregation of loads for model reduction is a straightforward, non-iterative procedure. The models can be obtained through analytical calculations, measurements or time domain simulations. A procedure for experimental estimation of model parameters is presented. The procedure is used to estimate the parameters of a dimmer model from measurements on a real dimmer. The obtained model shows a very good agreement with validation data 24 refs, 24 figs

  17. Environmental Aspects of Load Management

    International Nuclear Information System (INIS)

    Abaravicius, Juozas

    2004-02-01

    This study approaches load management from an environmental perspective. It identifies and discusses the possible environmental benefits of load management and evaluates their significance, primary focusing on CO 2 emissions reduction. The analysis is carried out on two levels: national - the Swedish electricity market, and local - one electric utility in southern Sweden. Our results show the importance of considering the influence of site-specific or level-specific conditions on the environmental effects of load management. On the national level, load management measures can hardly provide significant environmental benefits, due to the high hydropower production in Sweden, which is the demand following production source. Emission reductions will rather be the result of energy efficiency measures, which will cut the load demand as well as the energy demand. However, when it comes to a local (utility) level, where load management is considered as an alternative to an installation of peak diesel power plant, the benefits are clear. It is demonstrated that significant CO 2 emissions savings can be achieved due to avoided peak diesel power production

  18. Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL

    2017-01-01

    In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.

  19. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  20. Developmental efforts of RF collinear load for 10 MeV, 6 kW travelling wave Linac

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Kumar, Harish; Soni, R.K.; Dwivedi, Jishnu; Thakurta, A.C.; Wanmode, Y.D.; Pareek, Prashant; Senthil Kumar, S; Shinde, R.S.

    2015-01-01

    RRCAT is developing a 10 MeV, 6 kW Travelling Wave Electron Linac for radiation processing applications. The remnant RF power from the Linac structure is taken out by output RF coupler and absorbed by the waveguide load. RF collinear load is an improved technique for absorption of the remnant RF power. It replaces the output RF coupler, RF window and waveguide load leading to reduction in size of magnetic elements and less transverse beam instabilities. In addition, it uses the remnant RF power to increase the electron beam energy. The collinear load consists of a number of copper cavities coated with microwave absorbing material at inner surfaces and brazed to the Linac structure at the end. Development of the collinear load has been started at RRCAT and a prototype low power collinear load using Kanthal (FeCrAl alloy) coating has been developed. Further works are going on the development of high power collinear load using FeSiAl alloy. The paper describes the development of the Kanthal based prototype low power collinear load as well as the works for the development of FeSiAl alloy based high power collinear load. (author)

  1. Phase shift PWM with double two-switch bridge for high power capacitor charging

    International Nuclear Information System (INIS)

    Karandikar, U.S.; Singh, Yashpal; Thakurta, A.C.

    2013-01-01

    Pulse power supply systems working at higher voltage and high repetition rate demands for higher power from capacitor chargers. Capacitor charging requirement become more challenging in such cases. In pulse power circuits, energy storage capacitor should be charged to its desired voltage before the next switching occurs. It is discharged within a small time, delivering large pulse power. A capacitor charger has to work with wide load variation repeatedly. Many schemes are used for this purpose. The proposed scheme aims at reducing stresses on switches by reducing peak current and their evils. A high voltage power supply is designed for capacitor charging. The proposed scheme is based on a Phase-Shifted PWM without using any extra component to achieve soft switching. Indirect constant average current capacitor charging is achieved with a simple control scheme. A double two-switch bridge is proposed to enhance reliability. Power supply has been developed to charge a capacitor of 50 μF to 2.5 kV at 25 Hz. (author)

  2. Loading capacities and failure modes of various reinforced concrete slabs subjected to high-speed loading

    International Nuclear Information System (INIS)

    Saito, H.; Imamura, A.; Takeuchi, M.; Okamoto, S.; Kasai, Y.; Tsubota, H.; Yoshimura, M.

    1993-01-01

    The objective of this study was to clarify experimentally and analytically the loading capacities, deformations and failure modes of various types of reinforced concrete structures subjected to loads applied at various loading rates. Flat slabs, slabs with beams and cylindrical walls were tested under static, low-speed and high-speed loading. Analysis was applied to estimate the test results by the finite element method using a layered shell element. The analysis closely simulated the experimental results until punching shear failure occurred. (author)

  3. Optimal design of high-speed loading spindle based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  4. An analysis of hybrid power generation systems for a residential load

    Directory of Open Access Journals (Sweden)

    Ceran Bartosz

    2017-01-01

    Full Text Available This paper presents the results of an energetic and economical analysis of a hybrid power generation system (HPGS which utilises photovoltaic modules, wind turbines, fuel cells and an electrolyzer with hydrogen tank working as the energy storage. The analysis was carried out for three different residential loads, local solar radiation and local wind speed, based on the real measurement values. The analysis shows the optimal solution and the limits of the investment costs required for the system construction. The presented results confirm the effectiveness of the proposed approach, which could be assumed as a very useful tool in the design and analysis of a hybrid power generation system.

  5. Process for improving the load factor of an electricity generating power station

    International Nuclear Information System (INIS)

    Rostaing, Michel.

    1974-01-01

    A description is given of a process for improving the load factor of an electricity generating power station feeding a supply network in which all or part of the power not required by the network during off-peak hours is used for producing hydrogen which is then stored. The stored hydrogen is then burned and the heat generated is employed for superheating the steam generated by the nuclear reactor of the power plant. This combustion is carried out permanently. The hydrogen is produced by water electrolysis. The oxygen also produced in this manner is used as a comburent in the combustion of the hydrogen. The reactor is of the pressurized water type [fr

  6. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy

    DEFF Research Database (Denmark)

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli

    2015-01-01

    of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. Methods/Design: The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator...... cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform...

  7. Factors affecting the potential of direct load control for non-generating utilities. Final report. [Distribution and wholesale power supply interaction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-01

    Several alternatives are available for achieving load management, including direct or voluntary control of customer loads, customer or utility energy storage systems for diurnal load shifting, and expanded interconnection and operation of electric power systems. All of these alternatives are available to the fully integrated (generating, transmitting and distributing) electric utility and the analysis of their effects encompasses the power supply and delivery system. However, the costs and benefits of the alternatives to the fully integrated electric utility are perhaps not so obvious. Therefore, by considering a non-generating utility, this analysis focuses upon the distribution system and wholesale power supply interaction as a step toward an analysis including the power supply and delivery system. This report develops an analysis procedure and discusses some of the relevant factors to be consdered in the application of direct load control for a non-generating utility system. The analysis concentrates on the distribution system only to determine the effect of rates and payback as a result of direct load control. Thus, the study is responsive to the specific needs of the non-generating utility. This analysis of direct load control encompasses the determination of those loads amenable to control, the selection of a suitable one-way communications system to rend control and the estimation of expected benefits and costs. The complementary functions to the application of direct load control such as automatic meter reading via the addition of a bi-directional communications system and voltage control are not included in the analysis but are detailed for future consideration.

  8. Distributed photovoltaic architecture powering a DC bus: Impact of duty cycle and load variations on the efficiency of the generator

    Science.gov (United States)

    Allouache, Hadj; Zegaoui, Abdallah; Boutoubat, Mohamed; Bokhtache, Aicha Aissa; Kessaissia, Fatma Zohra; Charles, Jean-Pierre; Aillerie, Michel

    2018-05-01

    This paper focuses on a photovoltaic generator feeding a load via a boost converter in a distributed PV architecture. The principal target is the evaluation of the efficiency of a distributed photovoltaic architecture powering a direct current (DC) PV bus. This task is achieved by outlining an original way for tracking the Maximum Power Point (MPP) taking into account load variations and duty cycle on the electrical quantities of the boost converter and on the PV generator output apparent impedance. Thereafter, in a given sized PV system, we analyze the influence of the load variations on the behavior of the boost converter and we deduce the limits imposed by the load on the DC PV bus. The simultaneous influences of 1- the variation of the duty cycle of the boost converter and 2- the load power on the parameters of the various components of the photovoltaic chain and on the boost performances are clearly presented as deduced by simulation.

  9. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  10. Stimulus recognition occurs under high perceptual load: Evidence from correlated flankers.

    Science.gov (United States)

    Cosman, Joshua D; Mordkoff, J Toby; Vecera, Shaun P

    2016-12-01

    A dominant account of selective attention, perceptual load theory, proposes that when attentional resources are exhausted, task-irrelevant information receives little attention and goes unrecognized. However, the flanker effect-typically used to assay stimulus identification-requires an arbitrary mapping between a stimulus and a response. We looked for failures of flanker identification by using a more-sensitive measure that does not require arbitrary stimulus-response mappings: the correlated flankers effect. We found that flanking items that were task-irrelevant but that correlated with target identity produced a correlated flanker effect. Participants were faster on trials in which the irrelevant flanker had previously correlated with the target than when it did not. Of importance, this correlated flanker effect appeared regardless of perceptual load, occurring even in high-load displays that should have abolished flanker identification. Findings from a standard flanker task replicated the basic perceptual load effect, with flankers not affecting response times under high perceptual load. Our results indicate that task-irrelevant information can be processed to a high level (identification), even under high perceptual load. This challenges a strong account of high perceptual load effects that hypothesizes complete failures of stimulus identification under high perceptual load. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Dominik [Frankfurt Institute for Advanced Studies (FIAS) and Frankfurt International Graduate School for Science, Johann Wolfgang Goethe Universitaet, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main (Germany); von Bremen, Lueder [ForWind - Center for Wind Energy Research, University of Oldenburg, Marie-Curie-Str. 1, D-26129 Oldenburg (Germany); Greiner, Martin [Corporate Research and Technology, Siemens AG, D-81730 Muenchen (Germany); Aarhus School of Engineering and Institute of Mathematical Sciences, Aarhus University, Ny Munkegade 118, 8000 Aarhus C (Denmark); Hoffmann, Clemens [Corporate Research and Technology, Siemens AG, D-81730 Muenchen (Germany); Speckmann, Markus; Bofinger, Stefan [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Koenigstor 59, D-34119 Kassel (Germany)

    2010-11-15

    The renewable power generation aggregated across Europe exhibits strong seasonal behaviors. Wind power generation is much stronger in winter than in summer. The opposite is true for solar power generation. In a future Europe with a very high share of renewable power generation those two opposite behaviors are able to counterbalance each other to a certain extent to follow the seasonal load curve. The best point of counterbalancing represents the seasonal optimal mix between wind and solar power generation. It leads to a pronounced minimum in required stored energy. For a 100% renewable Europe the seasonal optimal mix becomes 55% wind and 45% solar power generation. For less than 100% renewable scenarios the fraction of wind power generation increases and that of solar power generation decreases. (author)

  12. Analysis of relationships between hourly electricity price and load in deregulated real-time power markets

    International Nuclear Information System (INIS)

    Lo, K.L.; Wu, Y.K.

    2004-01-01

    Risk management in the electric power industry involves measuring the risk for all instruments owned by a company. The value of many of these instruments depends directly on electricity prices. In theory, the wholesale price in a real-time market should reflect the short-run marginal cost. However, most markets are not perfectly competitive, therefore by understanding the degree of correlation between price and physical drivers, electric traders and consumers can manage their risk more effectively and efficiently. Market data from two power-pool architectures, both pre-2003 ISO-NE and Australia's NEM, have been studied. The dynamic character of electricity price is mean-reverting, and consists of intra-day and weekly variations, seasonal fluctuations, and instant jumps. Parts of them are affected by load demands. Hourly signals on both price and load are divided into deterministic and random components with a discrete Fourier transform algorithm. Next, the real-time price-load relationship for periodic and random signals is examined. In addition, time-varying volatility models are constructed on random price and random load with the GARCH model, and the correlation between them analysed. Volatility plays a critical role on evaluating option pricing and risk management. (author)

  13. Effects of 4-Week Training Intervention with Unknown Loads on Power Output Performance and Throwing Velocity in Junior Team Handball Players.

    Directory of Open Access Journals (Sweden)

    Rafael Sabido

    Full Text Available To compare the effect of 4-week unknown vs known loads strength training intervention on power output performance and throwing velocity in junior team handball players.Twenty-eight junior team-handball players (17.2 ± 0.6 years, 1.79 ± 0.07 m, 75.6 ± 9.4 kgwere divided into two groups (unknown loads: UL; known loads: KL. Both groups performed two sessions weekly consisting of four sets of six repetitions of the bench press throw exercise, using the 30%, 50% and 70% of subjects' individual 1 repetition maximum (1RM. In each set, two repetitions with each load were performed, but the order of the loads was randomised. In the KL group, researchers told the subjects the load to mobilise prior each repetition, while in the UL group, researchers did not provide any information. Maximal dynamic strength (1RM bench press, power output (with 30, 50 and 70% of 1RM and throwing velocity (7 m standing throw and 9 m jumping throw were assessed pre- and post-training intervention.Both UL and KL group improved similarly their 1RM bench press as well as mean and peak power with all loads. There were significant improvements in power developed in all the early time intervals measured (150 ms with the three loads (30, 50, 70% 1RM in the UL group, while KL only improved with 30% 1RM (all the time intervals and with 70% 1RM (at certain time intervals. Only the UL group improved throwing velocity in both standing (4.7% and jumping (5.3% throw (p > 0.05.The use of unknown loads has led to greater gains in power output in the early time intervals as well as to increases in throwing velocity compared with known loads. Therefore unknown loads are of significant practical use to increase both strength and in-field performance in a short period of training.

  14. Effects of 4-Week Training Intervention with Unknown Loads on Power Output Performance and Throwing Velocity in Junior Team Handball Players.

    Science.gov (United States)

    Sabido, Rafael; Hernández-Davó, Jose Luis; Botella, Javier; Moya, Manuel

    2016-01-01

    To compare the effect of 4-week unknown vs known loads strength training intervention on power output performance and throwing velocity in junior team handball players. Twenty-eight junior team-handball players (17.2 ± 0.6 years, 1.79 ± 0.07 m, 75.6 ± 9.4 kg)were divided into two groups (unknown loads: UL; known loads: KL). Both groups performed two sessions weekly consisting of four sets of six repetitions of the bench press throw exercise, using the 30%, 50% and 70% of subjects' individual 1 repetition maximum (1RM). In each set, two repetitions with each load were performed, but the order of the loads was randomised. In the KL group, researchers told the subjects the load to mobilise prior each repetition, while in the UL group, researchers did not provide any information. Maximal dynamic strength (1RM bench press), power output (with 30, 50 and 70% of 1RM) and throwing velocity (7 m standing throw and 9 m jumping throw) were assessed pre- and post-training intervention. Both UL and KL group improved similarly their 1RM bench press as well as mean and peak power with all loads. There were significant improvements in power developed in all the early time intervals measured (150 ms) with the three loads (30, 50, 70% 1RM) in the UL group, while KL only improved with 30% 1RM (all the time intervals) and with 70% 1RM (at certain time intervals). Only the UL group improved throwing velocity in both standing (4.7%) and jumping (5.3%) throw (p > 0.05). The use of unknown loads has led to greater gains in power output in the early time intervals as well as to increases in throwing velocity compared with known loads. Therefore unknown loads are of significant practical use to increase both strength and in-field performance in a short period of training.

  15. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    Science.gov (United States)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  16. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Science.gov (United States)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  17. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  18. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  19. Synchronized Pulsed dc - dc Converter as Maximum Power Position Tracker with Wide Load and Insolation Variation for Stand Alone PV System

    International Nuclear Information System (INIS)

    Hardik, P. Desai; Ranjan Maheshwari

    2011-01-01

    This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)

  20. Maximum attainable power density and wall load in tokamaks underlying reactor relevant constraints

    International Nuclear Information System (INIS)

    Borrass, K.; Buende, R.

    1979-09-01

    The characteristic data of tokamaks optimized with respect to their power density or wall load are determined. Reactor relevant constraints are imposed, such as a fixed plant net power output, a fixed blanket thickness and the dependence of the maximum toroidal field on the geometry and conductor material. The impact of finite burn times is considered. Various scaling laws of the toroidal beta with the aspect ratio are discussed. (orig.) 891 GG/orig. 892 RDG [de