WorldWideScience

Sample records for high power lithium

  1. Liquid lithium for high power density fragmentation targets

    Science.gov (United States)

    Nolen, J. A.; Reed, C. B.; Hassanein, A.; Morrissey, D. J.; Ottarson, J. H.; Sherrill, B. M.

    2001-10-01

    Windowless liquid lithium targets for in-flight fragmentation or fission of high power heavy ion beams are being developed for the U.S. RIA project. With uranium beam power of 100 kW and a beam spot diameter of 1 mm the power density in the target is over 1 MW/cm3. Thermal analysis for this example indicates a very low peak temperature for the lithium when flowing at a linear velocity of 10 m/s. A vacuum test chamber is under construction at Argonne at an existing liquid lithium facility to demonstrate a 2 cm thick windowless target. As a first step towards using liquid lithium target technology at a nuclear physics fragmentation facility, a lower power target is being constructed for use at the NSCL. This target will use beryllium windows with flowing lithium. It is designed for beams between oxygen and calcium with beam power above 3 kW. The tapered beryllium windows are each 1 mm thick for the calcium beams and 7 mm thick for the oxygen beams. The lithium is 5 mm thick. This gives an overall target thickness ranging from about 1 g/cm2 to 3 g/cm2 which is adjusted by moving the target vertically. The designs of these targets and the status of the prototypes will be discussed.

  2. Benefits of Nanostructuring Electrodes for High-Energy and High-Power Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    Joachim; Maier

    2007-01-01

    1 Results One of the greatest challenges for our society is providing powerful electrochemical energy storage devices with both high energy and high power densities. Rechargeable lithium-based batteries are amongst the most promising candidates in terms of energy density,the achievement of high power density is hindered by kinetic problems of the electrode materials.This contribution that emphasizes the power of nanostructuring for electrodes in lithium-based batteries,deals with several nanostructured ...

  3. A high power lithium thionyl chloride battery for space applications

    Science.gov (United States)

    Shah, Pinakin M.

    1993-03-01

    A high power, 28 V, 330 A h, active lithium thionyl chloride battery has been developed for use as main and payload power sources on an expendable launch vehicle. Nine prismatic cells, along with the required electrical components and a built-in heater system, are efficiently packaged resulting in significant weight savings over presently used silver-zinc batteries. The high rate capability is achieved by designing the cells with a large electrochemical surface area and impregnating an electrocatalyst, polymeric phthalocyanine, into the carbon cathodes. Passivation effects are reduced with the addition of sulfur dioxide into the thionyl chloride electrolyte solution. The results of conducting a detailed thermal analysis are utilized to establish the heater design parameters and the thermal insulation requirements of the battery. An analysis of cell internal pressure and vent characteristics clearly illustrates the margins of safety under different operating conditions. Performance of fresh cells is discussed using polarization scan and discharge data at different rates and temperatures. Self-discharge rate is estimated based upon test results on cells after storage. Results of testing a complete prototype battery are described.

  4. Diagnosis of power fade mechanisms in high-power lithium-ion cells

    Science.gov (United States)

    Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  5. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  6. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  7. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    Science.gov (United States)

    2016-02-01

    AFRL-RX-WP-JA-2016-0323 OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS...DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 16 October 2015 Interim 6 May 2010 – 16 September 2015 4. TITLE AND SUBTITLE...OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b

  8. Abuse behavior of high-power, lithium-ion cells

    Science.gov (United States)

    Spotnitz, R.; Franklin, J.

    Published accounts of abuse testing of lithium-ion cells and components are summarized, including modeling work. From this summary, a set of exothermic reactions is selected with corresponding estimates of heats of reaction. Using this set of reactions, along with estimated kinetic parameters and designs for high-rate batteries, models for the abuse behavior (oven, short-circuit, overcharge, nail, crush) are developed. Finally, the models are used to determine that fluorinated binder plays a relatively unimportant role in thermal runaway.

  9. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  10. High-power liquid-lithium jet target for neutron production

    CERN Document Server

    Halfon, S; Kijel, D; Paul, M; Berkovits, D; Eliyahu, I; Feinberg, G; Friedman, M; Hazenshprung, N; Mardor, I; Nagler, A; Shimel, G; Tessler, M; Silverman, I

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can diss...

  11. Identifying fade mechanisms in high-power lithium-ion cells.

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, D. P.; Knuth, J.; Dees, D. W.; Jansen, A. N.; Sammann, E.; Haasch, R.; Twesten, R. D.; MacLaren, S.; Chemical Engineering; Univ. of Illinois

    2004-01-01

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  12. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Dan; Shi, Dingqin; Xia, Yonggao; Qiao, Lin; Li, Xianfeng; Zhang, Huamin

    2017-02-28

    Separators with high security, reliability, and rate capacity are in urgent need for the advancement of high power lithium ion batteries. The currently used porous polyolefin membranes are critically hindered by their low thermal stability and poor electrolyte wettability, which further lead to low rate capacity. Here we present a novel promising porous polybenzimidazole (PBI) membrane with super high thermal stability and electrolyte wettability. The rigid structure and functional groups in the PBI chain enable membranes to be stable at temperature as high as 400 °C, and the unique flame resistance of PBI could ensure the high security of a battery as well. In particular, the prepared membrane owns 328% electrolyte uptake, which is more than two times higher than commercial Celgard 2325 separator. The unique combination of high thermal stability, high flame resistance and super high electrolyte wettability enable the PBI porous membranes to be highly promising for high power lithium battery.

  13. A single lithium-ion battery protection circuit with high reliability and low power consumption

    Institute of Scientific and Technical Information of China (English)

    Jiang Jinguang; Li Sen

    2014-01-01

    A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed.The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range.The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range.In order to reduce the circuit's power consumption,a sleep state control circuit is developed.Additionally,the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source.The proposed protection circuit is fabricated in a 0.5 μm mixed-signal CMOS process.The measured reference voltage is 1.19 V,the overvoltage is 4.2 V and the undervoltage is 2.2 V.The total power is about 9μW.

  14. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-06-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  15. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  16. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Chao Yan

    2017-01-01

    Full Text Available Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge–charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.

  17. Performance degradation of high-power lithium-ion cells-Electrochemistry of harvested electrodes

    Science.gov (United States)

    Abraham, D. P.; Knuth, J. L.; Dees, D. W.; Bloom, I.; Christophersen, J. P.

    The performance of 18650-type high-power lithium-ion cells is being evaluated as part of the U.S. Department of Energy's (DOEs) Advanced Technology Development (ATD) program. In this article, we present accelerated aging data acquired on 18650-cells containing LiNi 0.8Co 0.15Al 0.05O 2- or LiNi 0.8Co 0.1Al 0.1O 2-based positive electrodes, MAG-10 graphite-based negative electrodes, and 1.2-M LiPF 6 in EC:EMC (3:7 by wt.) electrolyte. Capacity and impedance data acquired on electrodes harvested from these cells highlight the contributions of the positive and negative electrodes to the degradation of cell performance. We also describe test methodologies used to examine the electrochemical characteristics of the harvested electrodes. Identifying and optimizing cell components responsible for performance degradation should enable the development of new lithium-ion cell chemistries that will meet the 15-year cell calendar life goal established by DOEs FreedomCar initiative.

  18. Diagnostic examination of thermally abused high-power lithium-ion cells

    Science.gov (United States)

    Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H.

    The inherent thermal instability of lithium-ion cells is a significant impediment to their widespread commercialization for hybrid-electric vehicle applications. Cells containing conventional organic electrolyte-based chemistries are prone to thermal runaway at temperatures around 180 °C. We conducted accelerating rate calorimetry measurements on high-power 18650-type lithium-ion cells in an effort to decipher the sequence of events leading to thermal runaway. In addition, electrode and separator samples harvested from a cell that was heated to 150 °C then air-quenched to room temperature were examined by microscopy, spectroscopy, and diffraction techniques. Self-heating of the cell began at 84 °C. The gases generated in the cell included CO 2 and CO, and smaller quantities of H 2, C 2H 4, CH 4, and C 2H 6. The main changes on cell heating to 150 °C were observed on the anode surface, which was covered by a thick layer of surface deposits that included LiF and inorganic and organo-phosphate compounds. The sources of gas generation and the mechanisms leading to the formation of compounds observed on the electrode surfaces are discussed.

  19. Performance degradation of high-power lithium-ion cells - Electrochemistry of harvested electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, D.P.; Knuth, J.L.; Dees, D.W.; Bloom, I. [Argonne National Laboratory, Argonne, IL 60439 (United States); Christophersen, J.P. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2007-07-10

    The performance of 18650-type high-power lithium-ion cells is being evaluated as part of the U.S. Department of Energy's (DOEs) Advanced Technology Development (ATD) program. In this article, we present accelerated aging data acquired on 18650-cells containing LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}- or LiNi{sub 0.8}Co{sub 0.1}Al{sub 0.1}O{sub 2}-based positive electrodes, MAG-10 graphite-based negative electrodes, and 1.2-M LiPF{sub 6} in EC:EMC (3:7 by wt.) electrolyte. Capacity and impedance data acquired on electrodes harvested from these cells highlight the contributions of the positive and negative electrodes to the degradation of cell performance. We also describe test methodologies used to examine the electrochemical characteristics of the harvested electrodes. Identifying and optimizing cell components responsible for performance degradation should enable the development of new lithium-ion cell chemistries that will meet the 15-year cell calendar life goal established by DOEs FreedomCar initiative. (author)

  20. Failure modes in high-power lithium-ion batteries for use inhybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-06-22

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode and DEC-EC-LiPF{sub 6} electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF{sub 6} salt in the electrolyte at elevated temperature.

  1. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  2. Graphene-based lithium ion capacitor with high gravimetric energy and power densities

    Science.gov (United States)

    Ajuria, Jon; Arnaiz, Maria; Botas, Cristina; Carriazo, Daniel; Mysyk, Roman; Rojo, Teofilo; Talyzin, Alexandr V.; Goikolea, Eider

    2017-09-01

    Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors. In this work, we report a lithium ion capacitor (LIC) entirely based on graphene. On the one hand, the negative -battery-type- electrode consists of a self-standing, binder-free 3D macroporous foam formed by reduced graphene oxide and decorated with tin oxide nanoparticles (SnO2-rGO). On the other hand, the positive -capacitor-type- electrode is based on a thermally expanded and physically activated reduced graphene oxide (a-TEGO). For comparison purposes, a symmetric electrical double layer capacitor (EDLC) using the same activated graphene in 1.5 M Et4NBF4/ACN electrolyte is also assembled. Built in 1 M LiPF6 EC:DMC, the graphene-based LIC shows an outstanding, 10-fold increase in energy density with respect to its EDLC counterpart at low discharge rates (up to 200 Wh kg-1). Furthermore, it is still capable to deliver double the energy in the high power region, within a discharge time of few seconds.

  3. Sandwich-like heat-resistance composite separators with tunable pore structure for high power high safety lithium ion batteries

    Science.gov (United States)

    Shi, Junli; Shen, Tao; Hu, Huasheng; Xia, Yonggao; Liu, Zhaoping

    2014-12-01

    We demonstrate a new kind of composite separators. A unique feature of the separators is the three-tier structure, i.e. the crosslinked polyethylene glycol (PEG) skin layer being formed on both sides of the nonwoven separators by in-situ polymerization and the large pores in the interior of the nonwoven separators being remained. The surface pore structure and the thickness of the skin layer could be adjusted by controlling the concentration of the coating solution. The skin layer is proved to be able to provide internal short circuit protection, to contribute a more stable interfacial resistance and to alleviate liquid electrolyte leakage effectively, yielding an excellent cyclability. The remained large pores in the interior of the composite separators could provide an access for the fast transportation of lithium ions, giving rise to a very high ion conductivity. The polyimide (PI) nonwoven is employed to ensure enhanced thermal stability of the composite separators. More notably, the composite separators fabricated from the coating solution with a composition ratio of 20 wt% provide superior cell performances owing to the well-tailored microporous structure, comparing with the commercialized polypropylene (PP) separator, which show great promise for the application in the high power lithium ion batteries.

  4. A model Based Desing of a Thermal Management System for a High Power Lithium-Ion Battery Pack.

    OpenAIRE

    Nieto Aguirrezabala, N. (Nerea); Blanco Barro, F.J. (Francisco Javier); Ramos, J.C. (Juan Carlos)

    2014-01-01

    In the present thesis an improved design methodology is proposed for TMSs (Thermal Management Systems) for high power lithium-ion battery packs used in traction applications. The methodology involves the development of different mathematical models for heat generation, transmission, and dissipation and their coupling and integration in the battery pack design methodology in order to improve overall safety and performance. The sequence of steps to be followed according to the...

  5. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    Science.gov (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  6. Development and analysis of a lithium carbon monofluoride battery-lithium ion capacitor hybrid system for high pulse-power applications

    Science.gov (United States)

    Smith, Patricia H.; Sepe, Raymond B.; Waterman, Kyle G.; Myron, L. Jeff

    2016-09-01

    Although Li/CFx and Li/CFxMnO2 have two of the highest energy densities of all commercial lithium primary batteries known to date, they are typically current-limited and therefore are not used in high-power applications. In this work, a Li/CFxMnO2 battery (BA-5790) was hybridized with a 1000 F lithium ion capacitor to allow its use for portable electronic devices requiring 100 W 1-min pulses. An intelligent, power-management board was developed for managing the energy flow between the components. The hybrid architecture was shown to maintain the battery current to a level that minimized energy loss and thermal stress. The performance of the Li/CFxMnO2 hybrid was compared to the standard Li/SO2 battery (BA-5590). The hybrid was shown to deliver the same number of 100 W pulse cycles as two BA-5590 batteries, resulting in a weight savings of 30% and a volumetric reduction of 20%. For devices requiring 8 h of operational time or less, a 5-cell Li/CFxMnO2 hybrid was found to be a lighter (55%) and smaller (45%) power source than the existing two BA-5590 battery option, and a lighter (42%) and smaller (27%) option than 1½ BA-5790 batteries alone. At higher power requirements (>100 W), further weight and size improvements can be expected.

  7. Performance Model for High-Power Lithium Titanate Oxide Batteries based on Extended Characterization Tests

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2015-01-01

    Lithium-ion (Li-ion) batteries are found nowadays not only in portable/consumer electronics but also in more power demanding applications, such as stationary renewable energy storage, automotive and back-up power supply, because of their superior characteristics in comparison to other energy...... storage technologies. Nevertheless, prior to be used in any of the aforementioned application, a Li-ion battery cell must be intensively characterized and its behavior needs to be understood. This can be realized by performing extended laboratory characterization tests and developing Li-ion battery...... performance models. Furthermore, accurate performance models are necessary in order to analyze the behavior of the battery cell under different mission profiles, by simulation; thus, avoiding time and cost demanding real life tests. This paper presents the development and the parametrization of a performance...

  8. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  9. On-chip high-power porous silicon lithium ion batteries with stable capacity over 10000 cycles (Presentation Recording)

    Science.gov (United States)

    Westover, Andrew S.; Freudiger, Daniel; Gani, Zarif; Share, Keith; Oakes, Landon; Carter, Rachel E.; Pint, Cary L.

    2015-09-01

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium ion battery anode with over 50x power density and 100x energy density improvement compared to identically prepared on-chip porous silicon supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA/cm2) where lithium locally intercalates into the nanoporous silicon, but not underlying bulk silicon material. This prevents the degradation and poor cycling performance that is commonly observed from deep storage in bulk silicon materials. As a result, this device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mAh/cm2, without notable capacity fade. This work demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration of energy storage into electronics, photovoltaics, and other silicon-based technology.

  10. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  11. High-power durability of LiCoO2 thin film electrode modified with amorphous lithium tungsten oxide

    Science.gov (United States)

    Hayashi, Tetsutaro; Matsuda, Yasutaka; Kuwata, Naoaki; Kawamura, Junichi

    2017-06-01

    To investigate electrochemical performances of an amorphous lithium tungsten oxide (LWO) layer, an amorphous LWO-modified LiCoO2 (LCO) thin film electrode is fabricated by pulsed laser deposition and is exposed under a humid environment. The amorphous LWO-modified LCO exhibits high capacity retention of 80% at a rapid charge-discharge rate of 20 C. Conversely, the bare LCO exhibits capacity retention of 0% at the rates of 20 C. Electrochemical impedance spectroscopy demonstrates that the LWO-modified LCO maintains a low interfacial resistance after the cycling test compared with the bare LCO. X-ray photoemission spectroscopy (XPS), scanning transmission microscopy (STEM), and electron energy loss spectroscopy (EELS) indicate the presence of Li2CO3 on the surface of the bare LCO electrode and a thick degraded surface layer of CoO structure on the surface of LCO primary particle after electrochemical tests. XPS, STEM, and EELS indicate the presence of low amounts of Li2CO3 on the surface of the LWO-modified LCO, the LCO layer remains in a normal state, and LWO layer maintains the amorphous LWO state after the tests. Thus, the amorphous LWO protective layer contributes to suppressing the degradation of LCO and maintaining an amorphous LWO state with a lithium ion conductor, resulting in high-power durability.

  12. Porous LiFePO4/C microspheres as high-power cathode materials for lithium ion batteries.

    Science.gov (United States)

    Sun, Bing; Wang, Ying; Wang, Bei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu

    2013-05-01

    Porous LiFePO4/C microspheres were synthesized by a novel hydrothermal reaction combined with high-temperature calcinations. The morphology of the prepared material was investigated by field-emission scanning electron microscopy. Porous microspheres with diameters around 1-3 microm were obtained, which consisting of primary LiFePO4 nanoparticles. The electrochemical performances of the as-prepared LiFePO4 microspheres were evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling. The carbon coated LiFePO4 microspheres showed lower polarization, higher rate capability, and better cycling stability than that of pristine LiFePO4 microspheres, indicating the potential application as the cathode material for high-power lithium ion batteries.

  13. Novel germanium/polypyrrole composite for high power lithium-ion batteries.

    Science.gov (United States)

    Gao, Xuanwen; Luo, Wenbin; Zhong, Chao; Wexler, David; Chou, Shu-Lei; Liu, Hua-Kun; Shi, Zhicong; Chen, Guohua; Ozawa, Kiyoshi; Wang, Jia-Zhao

    2014-08-29

    Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis was carried out to determine the polypyrrole content. The electrochemical properties of the samples have been investigated and their suitability as anode materials for the lithium-ion battery was examined. The discharge capacity of the Ge nanoparticles calculated in the Ge-polypyrrole composite is 1014 mAh g(-1) after 50 cycles at 0.2 C rate, which is much higher than that of pristine germanium (439 mAh g(-1)). The composite also demonstrates high specific discharge capacities at different current rates (1318, 1032, 661, and 460 mAh g(-1) at 0.5, 1.0, 2.0, and 4.0 C, respectively). The superior electrochemical performance of Ge-polypyrrole composite could be attributed to the polypyrrole core, which provides an efficient transport pathway for electrons. SEM images of the electrodes have demonstrated that polypyrrole can also act as a conductive binder and alleviate the pulverization of electrode caused by the huge volume changes of the nanosized germanium particles during Li(+) intercalation/de-intercalation.

  14. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  15. Symposium on High Power, Ambient Temperature Lithium Batteries, 180th Meeting of the Electrochemical Society, Phoenix, AZ, Oct. 13-17, 1991, Proceedings

    Science.gov (United States)

    Clark, W. D. K. (Editor); Halpert, Gerald (Editor)

    1992-01-01

    Papers presented in these proceedings are on the state of the art in high-power lithium batteries, a design analysis of high-power Li-TiS2 battery, the performance and safety features of spiral wound lithium/thionyl chloride cells, the feasibility of a superhigh energy density battery of the Li/BrF3 electrochemical system, and an enhanced redox process of disulfide compounds and their application in high energy storage. Attention is also given to the structure and charge-discharge characteristics of mesophase-pitch based carbons, a study of carbons and graphites as anodes for lithium rechargeable cells, Li metal-free rechargeable Li(1+x)Mn2O4/carbon cells, and rechargeable lithium batteries using V6O13/V5O5 as the positive electrode material. Other papers discuss the electrochemical stability of organic electrolytes in contact with solid inorganic cathode materials, the electrochemical behavior of methyl formate solutions, and the interface between a solid polymer electrolyte and lithium anode.

  16. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade

    Energy Technology Data Exchange (ETDEWEB)

    Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

    2004-02-28

    High-power lithium-ion cells for transportation applications are being developed and studied at Argonne National Laboratory. The current generation of cells containing LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based cathodes, graphite-based anodes, and LiPF6-based electrolytes show loss of capacity and power during accelerated testing at elevated temperatures. Negative electrode samples harvested from some cells that showed varying degrees of power and capacity fade were examined by X-ray photoelectron spectroscopy (XPS). The samples exhibited a surface film on the graphite, which was thicker on samples from cells that showed higher fade. Furthermore, solvent-based compounds were dominant on samples from low power fade cells, whereas LiPF{sub 6}-based products were dominant on samples from high power fade cells. The effect of sample rinsing and air exposure is discussed. Mechanisms are proposed to explain the formation of compounds suggested by the XPS data.

  17. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries

    Science.gov (United States)

    Xing, Ling-Bao; Xi, Kai; Li, Qiuyan; Su, Zhong; Lai, Chao; Zhao, Xinsheng; Kumar, R. Vasant

    2016-01-01

    Sulfur is an attractive cathode material in energy storage devices since its high theoretical capacity of 1672 mAh g-1. However, practical application of lithium sulfur (Li-S) batteries can be achieved only when the major barriers, including the insulating nature of element sulfur and shuttling effect of polysulfides (Li2Sx, x = 3-8), are tackled. Here, nitrogen, sulfur-codoped (N,S-codoped) sponge-like graphene, which presents a high reversible capacity, is used as electroactive interlayer for Li-S batteries to address these issues. An impressive high capacity of 2193.2 mAh g-1 can be obtained for the sulfur cathodes with such an interlayer at the rate of 0.2C, and it can be stably maintained at 829.4 mAh g-1 at the rate of 6C, for which the contribution from the electroactive interlayer is ca. 30.0%. High energy density of 418.5 Wh Kg-1 still can be released at the power density of 4.55 kW kg-1 (6C) based on the total mass of the sulfur cathode and interlayer for the assembled Li-S batteries.

  18. Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery.

    Science.gov (United States)

    Ahn, Wook; Seo, Min Ho; Jun, Yun-Seok; Lee, Dong Un; Hassan, Fathy M; Wang, Xiaolei; Yu, Aiping; Chen, Zhongwei

    2016-01-27

    To meet the requirements of both high energy and power density with cycle durability of modern EVs, we prepared a novel nanosulfur granular assembled film coated on the three-dimensional graphene sponge (3D-GS) composite as a high-performance active material for rechargeable lithium sulfur batteries. Instead of conventional graphene powder, three-dimensional rGO sponge (3D-rGO) is employed for the composite synthesis, resulting in a sulfur film directly in contact with the underlying graphene layer. This significantly improves the overall electrical conductivity, strategically addressing challenges of conventional composites of low sulfur utilization and dissolution of polysulfides. Additionally, the synthesis mechanism of 3D-GS is elucidated by XPS and DFT analyses, where replacement of hydroxyl group of 3D-rGO sponge by sulfur (S8) is found to be thermodynamically favorable. As expected, 3D-GS demonstrates outstanding discharge capacity of 1080 mAh g(-1) at a 0.1C rate, and 86.2% capacity retention even after 500 cycles at a 1.0C rate.

  19. Thermal Analysis of a Fast Charging Technique for a High Power Lithium-Ion Cell

    Directory of Open Access Journals (Sweden)

    Victor Manuel García Fernández

    2016-11-01

    Full Text Available The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-constant voltage (CV/fast discharge (4C in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a thermal model. Heat generation is dominated by the irreversible component associated with cell overpotential, although evidence of the reversible component is also observed, associated with the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell-specific heats and the cell materials’ thickness. The model adjustment of the experimental data during the 2 min resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.

  20. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  1. Air breathing lithium power cells

    Science.gov (United States)

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  2. Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell

    Directory of Open Access Journals (Sweden)

    Odile Capron

    2015-09-01

    Full Text Available This paper investigates the thermal behaviour of a large lithium iron phosphate (LFP battery cell based on its electrochemical-thermal modelling for the predictions of its temperature evolution and distribution during both charge and discharge processes. The electrochemical-thermal modelling of the cell is performed for two cell geometry approaches: homogeneous (the internal region is considered as a single region and discrete (the internal region is split into smaller regions for each layer inside the cell. The experimental measurements and the predictions of the cell surface temperature achieved with the simulations for both approaches are in good agreement with 1.5 °C maximum root mean square error. From the results, the maximum cell surface temperature and temperature gradient between the internal and the surface regions are around 31.3 °C and 1.6 °C. The temperature gradient in the radial direction is observed to be greater about 1.1 °C compared to the longitudinal direction, which is caused by the lower thermal conductivity of the cell in the radial compared to the longitudinal direction. During its discharge, the reversible, the ohmic and the reaction heat generations inside the cell reach up to 2 W, 7 W and 17 W respectively. From the comparison of the two modelling approaches, this paper establishes that the homogeneous modelling of the cell internal region is suitable for the study of a single cylindrical cell and is appropriate for the two-dimensional thermal behaviour investigation of a battery module made of multiple cells.

  3. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  4. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    Science.gov (United States)

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  5. Novel electrolytes for Li{sub 4}Ti{sub 5}O{sub 12}-based high power lithium ion batteries with nitrile solvents

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Pechy, Peter; Zakeeruddin, Shaik M.; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Exnar, Ivan [HPL, PSE-B, CH-1015 Lausanne (Switzerland)

    2005-08-26

    With the aim of improving the rate capability and the safety of nanocrystalline Li{sub 4}Ti{sub 5}O{sub 12}-based high power lithium ion batteries, two high boiling point nitrile-based electrolytes namely, 3-ethoxypropionitrile (CH{sub 3}CH{sub 2}OCH{sub 2}CH{sub 2}CN, EPN)/1M LiTFSI and 3-(2,2,2-trifluoro)ethoxypropionitrile (CF{sub 3}CH{sub 2}OCH{sub 2}CH{sub 2}CN, FEPN)/1M LiTFSI, are investigated in this study. Both electrolytes demonstrated superior rate capability to that of EC+DMC-based electrolyte, owing to the fast interfacial charge transfer process of lithium insertion/extraction. (author)

  6. Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography

    Science.gov (United States)

    Ender, Moses; Joos, Jochen; Weber, André; Ivers-Tiffée, Ellen

    2014-12-01

    Graphite negative electrodes from a high-power and a high-energy cylindrical lithium-ion cell are reconstructed using X-ray nano-tomography. Large volumes and high resolution are required for an in-depth comparison of the design aspects for high-power and high-energy anode. Hence, quite big volumes of 2.37·106 μm3 and 1.27·106 μm3 have to be analyzed to cover the entire thickness of both anode layers. High resolutions of 273 nm and 233 nm voxel size are chosen for assessing volume specific graphite surface area, among other parameters, precisely. A hysteresis segmentation method is adapted for segmentation, featuring a symmetrical growing of both graphite and pore phase. Surface areas are calculated using the marching cube algorithm, particle sizes are calculated based on the Euclidean distance transform (EDT) and tortuosity values are calculated by solving the transport equation using a finite volume scheme in MATLAB. Analysis of these parameters leads to the assumption, that the electrolyte transport is limited by the pore structure of the high-energy graphite anode.

  7. LiMnBO₃ nanobeads as an innovative anode material for high power lithium ion capacitor applications.

    Science.gov (United States)

    Kaliyappan, Karthikeyan; Amaresh, Samuthirapandiyan; Lee, Yun-Sung

    2014-07-23

    A novel approach was made to fabricate lithium ion hybrid capacitor (Li-HC) having LiMnBO3 nanobead (LMB-NB) anode and polyaniline nanofiber (PANI) cathode in 1 M LiPF6 organic electrolyte. LMB-NB and PANI nanofibers were synthesized using urea assisted microwave-solvothermal method and chemical polymerization process, respectively. The PANI/LMB-NB cell showed improved electrochemical capacitive behavior as compared to activated carbon (AC)/LMB-NB cell due to the characteristic conductivity and the morphological feature of PANI as well as LMB-NB electrodes. A discharge capacitance (DCcell) of ∼125 F g(-1) was obtained at a current density of 1 A g(-1) between the potential range 0 and 3 V for PANI/LMB-NB cell, while AC/LMB-NB cell delivered only 77 F g(-1) at the same current density. Moreover, PANI/LMB-NB cell exhibited excellent rate performance with the DCcell of about 55 F g(-1) at 2.25 A g(-1) and still retained 94% of the initial value after 30 000 charge-discharge cycles. In addition, maximum energy and power densities of 42 Wh kg(-1) and 5350 W kg(-1), respectively, were achieved from PANI/LMB-NB cell. The obtained DCcell, energy, and power densities along with prolonged cyclic life for PANI/LMB-NB cell are some of the best ever reported values for Li-HC as compared to the cells constructed with various lithium intercalating materials.

  8. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites.

    Science.gov (United States)

    Zhong, Yiren; Yang, Mei; Zhou, Xianlong; Luo, Yuting; Wei, Jinping; Zhou, Zhen

    2015-02-01

    MnCO3 particles uniformly distributed on large-area graphene form 2D composites whose large-area character enables them to self-assemble face-to-face into orderly packed electrodes. Such regular structures form continuous and efficient transport networks, leading to outstanding lithium storage with high capacity, ultralong cycle life, and excellent rate capability--all characteristics that are required for high-power lithium-ion batteries.

  9. A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries

    Science.gov (United States)

    Ye, Fei; Zhao, Bote; Ran, Ran; Shao, Zongping

    2015-09-01

    Although intensive efforts have been made during the past decades, development of an anode material with high specific capacity and stable cycling performance for lithium-ion batteries (LIBs) using a cost-effective preparation method still remains challenging. Herein, we report a polyaniline (PANI)-coated mechanochemically synthesized SnO2/graphene (SG) nanocomposite via in situ polymerization. PANI-coated nanocomposites are successfully prepared with different raw material mass ratios (aniline:SG, 0.15:1, 0.2:1, 0.25:1). The nanocomposite with initial aniline:SG mass ratio of 0.2:1 (20%PANI-SG) contains an optimal structure housing genuine PANI nanofibers as conductive bridges and a relatively high surface area of 158.5 m2 g-1; furthermore, it exhibits a stable cycling performance over 100 cycles at high current density (1000 mA g-1) with a specific capacity of more than twice that of the starting SG electrode at the 100th cycle. Additionally, this material achieved an outstanding cycling rate with current densities changing stepwise from 100 to 3000 mA g-1 and back, and exhibited a specific capacity of 467 mA h g-1 even at 2000 mA g-1. In terms of the electrochemical stability, rate capability and cost-effective preparation process, the PANI-SG nanocomposite is a viable anode material for next-generation high-power and high-energy LIBs.

  10. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  11. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  12. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  13. Feedback energy formation system of lithium battery with high power factor%高功率因数锂电池化成能量回馈系统

    Institute of Scientific and Technical Information of China (English)

    黄海宏; 张燕锋; 陈天伦; 何震

    2014-01-01

    As the critical process in battery production, battery formation is related to the trait and quality of battery and directly affects its production cost.A formation energy feedback system of lithium battery with high power factor is present, which includes monitor, AC/DC bi-directional converter and DC/DC bi-directional converter.Two-way transfer of energy and high power factor in AC side can be achieved by AC/DC bi-directional converter, and DC/DC bi-directional converter can realize the charge and discharge of lithium batteries.The working principle of AC/DC bi-directional converter and DC/DC bi-directional converter was analyzed, and the experimental prototype func-tion was validated through experiments.%电池化成作为电池生产过程中的关键工序关系到电池的特性和质量,并直接影响电池的生产成本。设计了一套带能量回馈功能的高功率因数锂电池化成系统,包含监控、AC/DC双向变流器和DC/DC双向变换器。 AC/DC双向变流器可实现能量的双向传递和交流侧高功率因数,双向DC/DC变换器用于实现锂电池的充、放电。对AC/DC双向变流器和双向DC/DC变换器的工作原理进行了分析,并通过实验对实验样机进行功能验证。

  14. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.; Kung, Harold H. [Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208 (United States)

    2011-11-15

    Introducing a high density of in-plane, nanometer-sized carbon vacancies in graphene sheets greatly enhances ion diffusion across the sheets in a Si-graphene composite. The flexible, self-supporting three-dimensional conducting graphenic scaffold incorporating Si nanoparticles exhibit excellent rate performance and tolerance to structural deformation, which represents an attractive high power-high capacity anode material for Li-ion batteries. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance

    Science.gov (United States)

    Varzi, Alberto; Bresser, Dominic; von Zamory, Jan; Müller, Franziska; Passerini, Stefano

    2014-01-01

    An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon-coated ZnFe2O4 nanoparticle-based anode and a LiFePO4-multiwalled carbon nanotube-based cathode, both aqueous processed with Na-carboxymethyl cellulose, are combined, for the first time, in a Li-ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre-lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg−1 and 3.72 W kg−1, respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C-rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity. PMID:26190956

  16. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.

    Science.gov (United States)

    Ha, Sung Hoon; Lee, Yun Jung

    2015-01-26

    Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications.

  17. ZnFe2O4-C/LiFePO4-CNT: A Novel High-Power Lithium-Ion Battery with Excellent Cycling Performance.

    Science.gov (United States)

    Varzi, Alberto; Bresser, Dominic; von Zamory, Jan; Müller, Franziska; Passerini, Stefano

    2014-07-15

    An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon-coated ZnFe2O4 nanoparticle-based anode and a LiFePO4-multiwalled carbon nanotube-based cathode, both aqueous processed with Na-carboxymethyl cellulose, are combined, for the first time, in a Li-ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre-lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg(-1) and 3.72 W kg(-1), respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C-rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity.

  18. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  19. Solid-state synthesis of Li{sub 4}Ti{sub 5}O{sub 12} for high power lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung-Woo [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ryu, Ji Heon [Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Jeong, Joayoung [Cell Precedence Development Group, Samsung SDI, Yongin 446-577 (Korea, Republic of); Yoon, Dang-Hyok, E-mail: dhyoon@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2013-09-05

    Highlights: •High energy milling using 0.30 and 0.45 mm beads for Li{sub 4}Ti{sub 5}O{sub 12} synthesis. •Synthesis of 162 nm-sized pure Li{sub 4}Ti{sub 5}O{sub 12} by solid-state reaction. •Spray drying using fine starting materials to confer paste tackiness. •High capacity of 174 mAh/g and adequate rate properties for high power LIBs applications. -- Abstract: Li{sub 4}Ti{sub 5}O{sub 12} was synthesized by a solid-state reaction between Li{sub 2}CO{sub 3} and anatase TiO{sub 2} for applications to high power lithium ion batteries. The starting materials underwent 6 h of high energy milling using ZrO{sub 2} beads with two different sizes, 0.30 and 0.45 mm. The smaller ZrO{sub 2} beads resulted in finer starting materials. Spray drying was also performed on the 0.30 mm beads-treated particles to enhance the screen printability of a paste containing this powder. The finer starting materials showed a pure 162 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} due to the decreased diffusion length for a solid-state reaction, whereas the 0.45 mm beads-treated starting materials resulted in a 242 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} phase containing 2 wt.% of rutile TiO{sub 2} that had transformed from the anatase phase during heat treatment at 800 °C for 3 h. The finer Li{sub 4}Ti{sub 5}O{sub 12} showed higher charge capacity and better charge/discharge rates than the coarser particles, which highlights the importance of the primary particle size on the electrochemical properties of Li{sub 4}Ti{sub 5}O{sub 12} for high power applications. The fine Li{sub 4}Ti{sub 5}O{sub 12} particles had a discharge capacity of 174 mAh/g at 0.1 C and capacity retention of 80% at 10.0 C.

  20. High rate lithium/thionyl chloride bipolar battery development

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P.G. [Yardney Technical Products, Inc., Pawcatuck, CT (United States); Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1995-04-01

    The lithium/thionyl chloride (Li/SOCl{sub 2}) electrochemistry is capable of providing high power and high specific power, especially under pulse discharge conditions, when cells containing thin components are arranged in a bipolar configuration. This paper describes recent work concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells for Sonobuoy application. (orig.)

  1. High rate lithium/thionyl chloride bipolar battery development

    Science.gov (United States)

    Russell, P. G.; Goebel, F.

    The lithium/thionyl chloride ( {Li}/{SOCl2}) electrochemistry is capable of providing high power and high specific power, especially under pulse discharge conditions, when cells containing thin components are arranged in a bipolar configuration. This paper describes recent work concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells for Sonobuoy application.

  2. Lithium Battery Power Delivers Electric Vehicles to Market

    Science.gov (United States)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  3. Influence of lithium content on high rate cycleability of layered Li 1+ xNi 0.30Co 0.30Mn 0.40O 2 cathodes for high power lithium-ion batteries

    Science.gov (United States)

    Santhanam, R.; Jones, Philip; Sumana, Adusumilli; Rambabu, B.

    Layered Li 1+ xNi 0.30Co 0.30Mn 0.40O 2 (x = 0, 0.05, 0.10, 0.15) materials have been synthesized using citric acid assisted sol-gel method. The materials with excess lithium showed distinct differences in the structure and the charge and discharge characteristics. The rate capability tests were performed and compared on Li 1+ xNi 0.30Co 0.30Mn 0.40O 2 (x = 0, 0.05, 0.10, 0.15) cathode materials. Among these materials, Li 1.10Ni 0.30Co 0.30Mn 0.40O 2 cathode demonstrated higher discharge capacity than that of the other cathodes. Upon extended cycling at 1C and 8C, Li 1.10Ni 0.30Co 0.30Mn 0.40O 2 showed better capacity retention when compared to other materials with different lithium content. Li 1.10Ni 0.30Co 0.30Mn 0.40O 2 exhibited 93 and 90% capacity retention where as Li 1.05Ni 0.30Co 0.30Mn 0.40O 2, Li 1.15Ni 0.30Co 0.30Mn 0.40O 2, and Li 1.00Ni 0.30Co 0.30Mn 0.40O 2 exhibited only 84, 71, and 63% (at 1C), and 79, 66 and 40% (at 10C) capacity retention, respectively, after 40 cycles. The enhanced high rate cycleability of Li 1.10Ni 0.30Co 0.30Mn 0.40O 2 cathode is attributed to the improved structural stability due to the formation of appropriate amount of Li 2MnO 3-like domains in the transition metal layer and decreased Li/Ni disorder (i.e., Ni content in the Li layer).

  4. Pulse Power Capability Estimation of Lithium Titanate Oxide-based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Loan

    2016-01-01

    The pulse power capability (PPC) represents one of the parameters that describe the performance behavior of Lithium-ion batteries independent on the application. Consequently, extended information about the Li-ion battery PPC and its dependence on the operating conditions become necessary. Thus......, this paper analyzes the power capability characteristic of a 13Ah high power Lithium Titanate Oxide-based battery and its dependence on temperature, load current and state-of-charge. Furthermore, a model to predict the discharging PPC of the battery cell at different temperatures and load currents for three...

  5. Pulse Power Capability Estimation of Lithium Titanate Oxide-based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Loan

    2016-01-01

    The pulse power capability (PPC) represents one of the parameters that describe the performance behavior of Lithium-ion batteries independent on the application. Consequently, extended information about the Li-ion battery PPC and its dependence on the operating conditions become necessary. Thus......, this paper analyzes the power capability characteristic of a 13Ah high power Lithium Titanate Oxide-based battery and its dependence on temperature, load current and state-of-charge. Furthermore, a model to predict the discharging PPC of the battery cell at different temperatures and load currents for three...

  6. High-power lithium-ion capacitor using LiMnBO3 -nanobead anode and polyaniline-nanofiber cathode with excellent cycle life.

    Science.gov (United States)

    Karthikeyan, Kaliyappan; Amaresh, Samuthirapandian; Lee, Sol-Nip; An, Jae-Yeon; Lee, Yun-Sung

    2014-08-01

    LiMnBO3 nanobeads (LMB-NB) with uniform size and distribution were synthesized using a urea-assisted microwave/solvothermal method. The potential application of LMB-NBs as an anode for a lithium-ion hybrid capacitor (Li-AHC) was tested with a polyaniline-nanofiber (PANI-NF) cathode in a nonaqueous LiPF6 (1 M)-ethylene carbonate/dimethyl carbonate electrolyte. Cyclic voltammetry (CV) and charge-discharge (C/DC) studies revealed that the PANI-NF/LMB-NB cell showed an exceptional capacitance behavior between 0-3 V along with a prolonged cycle life. A discharge capacitance of about 125 F g(-1) , and energy and power densities of about 42 Wh kg(-1) and 1500 W kg(-1) , respectively, could be obtained at a current density of 1 A g(-1) ; those Li-AHC values are higher relative to cells containing various lithium intercalation materials in nonaqueous electrolytes. In addition, the PANI-NF/LMB-NB cell also had an outstanding rate performance with a capacitance of 54 F g(-1) and a power density of 3250 W kg(-1) at a current density of 2.25 A g(-1) and maintained 94% of its initial value after 30000 cycles. This improved capacitive performance with an excellent electrochemical stability could be the result of the morphological features and inherent conductive nature of the electroactive species.

  7. An improved high-performance lithium-air battery

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh gcarbon-1 and 3 A gcarbon-1, respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  8. High rate lithium-thionyl chloride bipolar battery development

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P.G.; Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1994-12-31

    The lithium/thionyl chloride system is capable of providing both high power and high energy density when cells containing thin components are arranged in a bipolar configuration. Electrode current densities in excess of 300mA/cm{sup 2} are achieved during pulse discharge. The present work is concerned with bipolar cell design, cathode evaluation, component manufacturing methods, and the assembly and testing of bipolar modules containing up to 150 cells.

  9. Characterizing rapid capacity fade and impedance evolution in high rate pulsed discharged lithium iron phosphate cells for complex, high power loads

    Science.gov (United States)

    Wong, Derek N.; Wetz, David A.; Heinzel, John M.; Mansour, Azzam N.

    2016-10-01

    Three 26650 LiFePO4 (LFP) cells are cycled using a 40 A pulsed charge/discharge profile to study their performance in high rate pulsed applications. This profile is used to simulate naval pulsed power loads planned for deployment aboard future vessels. The LFP cells studied experienced an exponential drop in their usable high-rate recharge capacity within sixty cycles due to a rapid rise in their internal resistance. Differential capacitance shows that the voltage window for charge storage is pushed outside of the recommended voltage cutoff limits. Investigation into the state of health of the electrodes shows minimal loss of active material from the cathode to side reactions. Post-mortem examination of the anodic surface films reveals a large increase in the concentration of reduced salt compounds indicating that the pulsed profile creates highly favorable conditions for LiPF6 salt to break down into LiF. This film slows the ionic movement at the interface, affecting transfer kinetics, resulting in charge buildup in the bulk anode without successful energy storage. The results indicate that the use of these cells as a power supply for high pulsed power loads is hindered because of ionically resistant film development and not by an increasing rate of active material loss.

  10. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  11. High-Cycle-Life Lithium Cell

    Science.gov (United States)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  12. Performances of a lithium-carbon ``lithium ion``battery for electric powered vehicle; Performances d`un accumulateur au lithium-carbone ``Lithium Ion`` pour vehicule electrique

    Energy Technology Data Exchange (ETDEWEB)

    Broussely, M.; Planchat, J.P.; Rigobert, G.; Virey, D.; Sarre, G. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France)

    1996-12-31

    The lithium battery, also called `lithium-carbon` or `lithium ion`, is today the most promising candidate that can reach the expected minimum traction performances of electric powered vehicles. Thanks to a more than 20 years experience on lithium generators and to a specific research program on lithium batteries, the SAFT company has developed a 100 Ah electrochemical system, and full-scale prototypes have been manufactured for this application. These prototypes use the Li{sub x}NiO{sub 2} lithiated graphite electrochemical pair and were tested in terms of their electrical performances. Energy characteristics of 125 Wh/kg and 265 Wh/dm{sup 3} could be obtained. The possibility of supplying a power greater than 200 W/kg, even at low temperature (-10 deg. C) has been demonstrated with these elements. A full battery set of about 20 kWh was built and its evaluation is in progress. It comprises the electronic control systems for the optimum power management during charge and output. (J.S.) 9 refs.

  13. High-capacity nanocarbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn

    2015-02-15

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g{sup −1}. • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g{sup −1} and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g{sup −1} at 0.1 A g{sup −1} for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g{sup −1} at 4 A g{sup −1} for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability.

  14. Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun-Seok; Choi, Eun-Sun [Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo, 200-701 (Korea, Republic of); Kim, Jong Hun [Batteries R and D, LG Chem, Yusong-gu, Daejon, 305-380 (Korea, Republic of); Lee, Sang-Young, E-mail: syleek@kangwon.ac.kr [Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo, 200-701 (Korea, Republic of)

    2011-05-30

    Highlights: > Microporous-structured PVdF-HFP/PET composite nonwoven separators for Li-batteries. > Well-developed microporous structure and liquid electrolyte wettability. > Provision of facile ion transport and suppressed growth of cell impedance. > Superior cell performance at high-voltages/high-current densities. - Abstract: We demonstrate potential application of a new composite non-woven separator, which is comprised of a phase inversion-controlled, microporous polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) gel polymer electrolyte and a polyethylene terephthalate (PET) non-woven support, to high-voltage and high-power lithium-ion batteries. In comparison to a commercialized polyethylene (PE) separator, the composite non-woven separator exhibits distinct improvements in microporous structure and liquid electrolyte wettability. Based on the understanding of the composite non-woven separator, cell performances of the separator at challenging charge/discharge conditions are investigated and discussed in terms of ion transport of the separator and AC impedance of the cell. The aforementioned advantageous features of the composite non-woven separator play a key role in providing facile ion transport and suppressing growth of cell impedance during cycling, which in turn contribute to superior cell performances at harsh charge/discharge conditions such as high voltages and high current densities.

  15. High power nano-LiMn2O4 cathode materials with high-rate pulse discharge capability for lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Chen Ying-Chao; Xie Kai; Pan Yi; Zheng Chun-Man; Wang Hua-Lin

    2011-01-01

    Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn2O4 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73% at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.

  16. Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-ion Batteries used in Augmented Wind Power Plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina;

    2014-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... both the capacity fade and the power capability decrease of the selected Lithium-ion battery cells. In the proposed methodology both calendar and cycling lifetime tests were considered since both components are influencing the lifetime of Lithium-ion batteries. Furthermore, the proposed methodology...

  17. Sulfur/graphitic hollow carbon sphere nano-composite as a cathode material for high-power lithium-sulfur battery.

    Science.gov (United States)

    Shin, Eon Sung; Kim, Min-Seop; Cho, Won Il; Oh, Si Hyoung

    2013-08-03

    The intrinsic low conductivity of sulfur which leads to a low performance at a high current rate is one of the most limiting factors for the commercialization of lithium-sulfur battery. Here, we present an easy and convenient method to synthesize a mono-dispersed hollow carbon sphere with a thin graphitic wall which can be utilized as a support with a good electrical conductivity for the preparation of sulfur/carbon nano-composite cathode. The hollow carbon sphere was prepared from the pyrolysis of the homogenous mixture of the mono-dispersed spherical silica and Fe-phthalocyanine powder in elevated temperature. The composite cathode was manufactured by infiltrating sulfur melt into the inner side of the graphitic wall. The electrochemical cycling shows a capacity of 425 mAh g-1 at 3 C current rate which is more than five times larger than that for the sulfur/carbon black nano-composite prepared by simple ball milling.

  18. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Lithium ion battery technology has the potential to meet the requirements of high energy density and high power density applications. A continuous search for novel materials is pursued continually to exploit the latent potential of this technology. In this review paper, methods for preparation of Lithium Iron Phosphate are discussed which include solid state and solution based synthesis routes. The methods to improve the electrochemical performance of lithium iron phosphate are presented in detail.

  19. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review

    OpenAIRE

    T.V.S.L. Satyavani; Srinivas Kumar, A.; P.S.V. Subba Rao

    2016-01-01

    Lithium ion battery technology has the potential to meet the requirements of high energy density and high power density applications. A continuous search for novel materials is pursued continually to exploit the latent potential of this technology. In this review paper, methods for preparation of Lithium Iron Phosphate are discussed which include solid state and solution based synthesis routes. The methods to improve the electrochemical performance of lithium iron phosphate are presented in d...

  20. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode

    Science.gov (United States)

    Liu, Chao; Liu, Xingang; Tan, Jiang; Wang, Qingfu; Wen, Hao; Zhang, Chuhong

    2017-02-01

    Nitrogen-doped graphene nanosheets (NGNS) are prepared by a novel mechanochemical method via all-solid-state ball-milling graphite with urea. The ball-milling process does not only successfully exfoliate the graphite into multi-layer (low cost and good water solubility that can simplify the fabrication process. The as-prepared NGNS are investigated in detail by XRD, SEM, HRTEM, TGA, XPS and Raman spectroscopy. The doping nitrogens are around 3.15% and dominated (>94%) by pyrindic-N and pyrrolic-N which facilitates the NGNS with enhanced electronic conductivity and Li-ion storage capability. For the first time, we demonstrate that the all-solid-state prepared NGNS exhibits, especially at high currents, enhanced cycling stability and rate capability as Lithium ion battery (LIB) anode active material when compared to pristine graphite and undoped graphene in half-cell configuration. The method presented in this article may provide a simple, clean, economical and scalable strategy for preparation of NGNS as a feasible and promising anode material for LIBs.

  1. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 2. Following 3 formation cycles

    Energy Technology Data Exchange (ETDEWEB)

    Haasch, Richard T.; Abraham, Daniel A.

    2016-12-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopy (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.

  2. Introduction to a series of LiNi 0.8 Co 0.2 O 2 -based high-power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haasch, Richard T.; Abraham, Daniel A.

    2016-12-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopy (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.

  3. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 1. Fresh electrode

    Energy Technology Data Exchange (ETDEWEB)

    Haasch, Richard T.; Abraham, Daniel A.

    2016-12-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopy (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.

  4. A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Zhang, Ze-Wen; Huang, Jia-Qi; Zhang, Ge; Xie, Jin; Xu, Wen-Tao; Shi, Jia-Le; Chen, Xiang; Cheng, Xin-Bing; Zhang, Qiang

    2016-11-01

    A cooperative interface constructed by "lithiophilic" nitrogen-doped graphene frameworks and "sulfiphilic" nickel-iron layered double hydroxides (LDH@NG) is proposed to synergistically afford bifunctional Li and S binding to polysulfides, suppression of polysulfide shuttles, and electrocatalytic activity toward formation of lithium sulfides for high-performance lithium-sulfur batteries. LDH@NG enables high rate capability, long lifespan, and efficient stabilization of both sulfur and lithium electrodes.

  5. Power capability of LiTDI-based electrolytes for lithium-ion batteries

    Science.gov (United States)

    Paillet, Sabrina; Schmidt, Gregory; Ladouceur, Sébastien; Fréchette, Joël; Barray, Francis; Clément, Daniel; Hovington, Pierre; Guerfi, Abdelbast; Vijh, Ashok; Cayrefourcq, Ian; Zaghib, Karim

    2015-10-01

    We report results obtained with lithium 4,5-dicyano-2-(trifluoromethyl) imidazolide (LiTDI), which we believe is a promising lithium salt for electrolytes in lithium-ion batteries. This "Hückel"- type salt has high charge delocalizations which contribute to good lithium-ion dissociation. In addition, it has high thermal stability and safer degradation products compared to LiPF6, which were identified by TGA-MS. It also does not corrode but passivate the aluminum current collector. Cyclic voltammetry measurements showed a stability up to 4.5 V, which is sufficient for use with standard cathode materials. The power capability of half cells containing LiTDI in EC/DEC was evaluated with standard cathodes used in lithium-ion batteries: LFP, NMC, LCO and LMO. Two LiTDI concentrations were investigated: 1 M and 0.6 M and compared with a reference electrolyte: 1 M LiPF6. In spite of a slightly lower conductivity than the LiPF6, LiTDI (1 M and 0.6 M) shows similar power capability up to 2C with LFP (84% of specific capacity recovered), 10C with NMC (61% of specific capacity recovered), and up to 20C for LMO (88% of specific capacity recovered). Furthermore, better power capability was obtained with 0.6 M LiTDI with LCO, which yielded 82% of specific capacity recovered at 1C (67% for 1 M LiTDI and 1 M LiPF6).

  6. High Capacity Anodes for Advanced Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  7. Lithium

    Science.gov (United States)

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  8. Study on the L–H transition power threshold with RF heating and lithium-wall coating on EAST

    DEFF Research Database (Denmark)

    Chen, Leifeng; Xu, G.S.; Nielsen, Anders Henry

    2016-01-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency (RF) heating and lithium-wall coating is investigated experimentally on EAST for two sets of walls: an all carbon wall (C) and molybdenum chamber and a carbon divertor (Mo/C). For both sets of walls......, a minimum power threshold Pthr of ~0.6 MW was found when the EAST operates in a double null (DN) divertor configuration with intensive lithium-wall coating. When operating in upper single null (USN) or lower single null (LSN), the power threshold depends on the ion ∇B drift direction. The low density...

  9. High-power lithium ion batteries based on preorganized necklace type Li4Ti5O12/VACNT nano-composites

    Science.gov (United States)

    Pawlitzek, Fabian; Pampel, Jonas; Schmuck, Martin; Althues, Holger; Schumm, Benjamin; Kaskel, Stefan

    2016-09-01

    Li4Ti5O12 as anode material for high power Li+-ion batteries is very promising due to its unique electronic properties. However, the lack of electronic conductivity as well as the low Li+-ion diffusion coefficient are major drawbacks in achieving high power densities. In this work, therefore, we prepared a nano-composite consisting of vertically aligned carbon nanotube arrays decorated with in-situ grown necklace type Li4Ti5O12 nanoparticles. Owing to this structure the electrodes exhibit outstanding rate performances with specific capacities of 110 mAh g-1 up to 300C and cycling performance with high capacity retention of 97% after 500 cycles at 10C. Thus, the combination of short Li+-ion diffusion distances within Li4Ti5O12 particles, remarkable electronic conductivity by carbon nanotubes directly grown on the current collector as well as a high contact surface area due to an open pore geometry is essential in achieving high power Li4Ti5O12 anodes.

  10. High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries

    Science.gov (United States)

    Lübke, Mechthild; Johnson, Ian; Makwana, Neel M.; Brett, Dan; Shearing, Paul; Liu, Zhaolin; Darr, Jawwad A.

    2015-10-01

    A range of phase-pure anatase TiO2 (∼5 nm) and Sn-doped TiO2 nanoparticles with the formula Ti1-xSnxO2 (where x = 0, 0.06, 0.11 and 0.15) were synthesized using a continuous hydrothermal flow synthesis (CHFS) reactor. Charge/discharge cycling tests were carried out in two different potential ranges of 3 to 1 V and also a wider range of 3 to 0.05 V vs Li/Li+. In the narrower potential range, the undoped TiO2 nanoparticles display superior electrochemical performance to all the Sn-doped titania crystallites. In the wider potential range, the Sn-doped samples perform better than undoped TiO2. The sample with composition Ti0.85Sn0.15O2, shows a capacity of ca. 350 mAh g-1 at an applied constant current of 100 mA g-1 and a capacity of 192.3 mAh g-1 at a current rate of 1500 mA g-1. After 500 charge/discharge cycles (at a high constant current rate of 382 mA g-1), the same nanomaterial anode retains a relatively high specific capacity of 240 mAh g-1. The performance of these nanomaterials is notable, particularly as they are processed into electrodes, directly from the CHFS process (after drying) without any post-synthesis heat-treatment, and they are made without any conductive surface coating.

  11. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  12. Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2013-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium-ion batteries. The results obtained at the end of the accelerated ageing process can be used for the parametrization of a performance-degradation lifetime model. In the proposed...... methodology both calendar and cycling lifetime tests are considered since both components are influencing the lifetime of Lithium-ion batteries. The methodology proposes also a lifetime model verification stage, where Lithium-ion battery cells are tested at normal operating conditions using an application...

  13. Li(Ni0.40Mn0.40Co0.15Al0.05)O2: A promising positive electrode material for high-power and safe lithium-ion batteries

    Science.gov (United States)

    Bains, J.; Croguennec, L.; Bréger, J.; Castaing, F.; Levasseur, S.; Delmas, C.; Biensan, Ph.

    2011-10-01

    Li1.11(Ni0.40Mn0.39Co0.16Al0.05)0.89O2 was synthesized through coprecipitation of a mixed hydroxide followed by calcination with LiOH·H2O during 10 h at 500 °C and 950 °C. Electrochemical tests and their comparison with those obtained for an industrial Li(Ni1-y-zCoyAlz)O2 material reveal that Li1.11(Ni0.40Mn0.39Co0.16Al0.05)0.89O2 shows good charge-discharge performance, even at high rate according to a protocol well established by car-makers for testing power abilities of batteries for electric and hybrid electric vehicles. In addition, this material shows a significant improvement in thermal stability in the highly deintercalated state (charged state of the battery) over the industrial material. Equivalent (or higher) energy and power densities with a significantly greater thermal stability make of Li1.11(Ni0.40Mn0.39Co0.16Al0.05)0.89O2 an interesting candidate as positive electrode material for large lithium-ion batteries.

  14. Novel High Rate Lithium Intercalation Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Application of amorphous V2O5/carbon/neodymium oxide (Nd2O3) composite is one of ways to surmount the lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3.and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.

  15. High Energy Lithium-Ion VES Cells And Batteries Performances

    Science.gov (United States)

    Castric, A.-F.; Lawson, S.; Borthomieu, Y.

    2011-10-01

    b Saft's Space VES range of lithium-ion cells have been designed specifically to meet the satellites on-board power need, while meeting the legitimate high levels of requirements for space products. The purpose of the paper is to develop how the VES batteries designs have progressively evolved in order to accommodate the needs, requirements and constraints evolutions. The following topics will be presented: - Description of the main design features of the VES Li- ion batteries. - How the optimised battery configuration is selected against the required EOL power need or other constraints. - Presentation of the batteries performances (electrical, mechanical, thermal, interface, weight, ...). - Measures implemented in order to maintain these performances, and to guarantee the best product quality as per space standards.

  16. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    Science.gov (United States)

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices.

  17. Stellar 30-keV neutron capture in 94,96Zr and the 90Zr(gamma,n)89Zr photonuclear reaction with a high-power liquid-lithium target

    CERN Document Server

    Tessler, M; Arenshtam, A; Feinberg, G; Friedman, M; Halfon, S; Kijel, D; Weissman, L; Aviv, O; Berkovits, D; Eisen, Y; Eliyahu, I; Haquin, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Yungrais, Z

    2015-01-01

    A high-power Liquid-Lithium Target (LiLiT) was used for the first time for neutron production via the thick-target 7Li(p,n)7Be reaction and quantitative determination of neutron capture cross sections. Bombarded with a 1-2 mA proton beam at 1.92 MeV from the Soreq Applied Research Accelerator Facility (SARAF), the setup yields a 30-keV quasi-Maxwellian neutron spectrum with an intensity of 3-5e10 n/s, more than one order of magnitude larger than present near-threshold 7Li(p,n) neutron sources. The setup was used here to determine the 30-keV Maxwellian averaged cross section (MACS) of 94Zr and 96Zr as 28.0+-0.6 mb and 12.4+-0.5 mb respectively, based on activation measurements. The precision of the cross section determinations results both from the high neutron yield and from detailed simulations of the entire experimental setup. We plan to extend our experimental studies to low-abundance and radioactive targets. In addition, we show here that the setup yields intense high-energy (17.6 and 14.6 MeV) prompt cap...

  18. Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes

    CERN Document Server

    Bai, Peng

    2016-01-01

    Lithium-air batteries have been considered as ultimate solutions for the power source of long-range electrified transportation, but state-of-the-art prototypes still suffer from short cycle life, low efficiency and poor power output. Here, a lithium-bromine rechargeable fuel cell using highly concentrated bromine catholytes is demonstrated with comparable specific energy, improved power density, and higher efficiency. The cell is similar in structure to a hybrid-electrolyte Li-air battery, where a lithium metal anode in nonaqueous electrolyte is separated from aqueous bromine catholytes by a lithium-ion conducting ceramic plate. The cell with a flat graphite electrode can discharge at a peak power density around 9mW cm-2 and in principle could provide a specific energy of 791.8 Wh kg-1, superior to most existing cathode materials and catholytes. It can also run in regenerative mode to recover the lithium metal anode and free bromine with 80-90% voltage efficiency, without any catalysts. Degradation of the sol...

  19. Power System Electronics Accommodation for a Lithium Ion Battery on the Space Technology 5 (ST5) Mission

    Science.gov (United States)

    Castell, Karen; Day, John H. (Technical Monitor)

    2001-01-01

    ST5 mission requirements include validation of Lithium-ion battery in orbit. Accommodation in the power system for Li-ion battery can be reduced with smaller amp-hour size, highly matched cells when compared to the larger amp-hour size approach. Result can be lower system mass and increased reliability.

  20. High capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  1. High-rate lithium thionyl-chloride battery development

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, W.R.; Weigand, D.E.

    1993-12-31

    We have developed a lithium thionyl-chloride cell for use in a high rate battery application to provide power for a missile computer and stage separation detonators. The battery pack contains 20 high surface area ``DD`` cells wired in a series-parallel configuration to supply a nominal 28 volts with a continuous draw of 20 amperes. The load profile also requires six squib firing pulses of one second duration at a 20 ampere peak. Performance and safety of the cells were optimized in a ``D`` cell configuration before progressing to the longer ``DD` cell. Active surface area in the ``D`` cell is 735 cm{sup 2}, and 1650 cm{sup 2} in the ``DD`` cell. The design includes 1.5M LiAlCl{sub 4}/SOCl{sub 2} electrolyte, a cathode blend of Shawinigan Acetylene Black and Cabot Black Pearls 2000 carbons, Scimat ETFE separator, and photoetched current collectors.

  2. High Energy Density Battery Lithium Thionyl Chloride Improved Reverse Voltage Design.

    Science.gov (United States)

    1981-12-01

    BATTERY LITHIUM THIONYL CHLORIDE IMPROVED R-ETC(U) DEC 81 A E ZOLLA N660011-C-0310...HIGH ENERGY DENSITY BATTERY LITHIUM THIONYL CHLORIDE IMPROVED REVERSE VOLTAGE DESIGN Dr. A. E. Zolla Altus Corporation C:1 1610 Crane Court San Jose...reverse aide If necesary and identify by block number) Lithium Battery Lithium Thionyl Chloride High Energy Density Battery Voltage Reversal Battery

  3. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan;

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  4. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  5. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.

    Science.gov (United States)

    Yao, Xiayin; Liu, Deng; Wang, Chunsheng; Long, Peng; Peng, Gang; Hu, Yong-Sheng; Li, Hong; Chen, Liquan; Xu, Xiaoxiong

    2016-11-09

    High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode-solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-solid-state lithium batteries. Here, we report a general interfacial architecture, i.e., Li7P3S11 electrolyte particles anchored on cobalt sulfide nanosheets, by an in situ liquid-phase approach. The anchored Li7P3S11 electrolyte particle size is around 10 nm, which is the smallest sulfide electrolyte particles reported to date, leading to an increased contact area and intimate contact interface between electrolyte and active materials. The neat Li7P3S11 electrolyte synthesized by the same liquid-phase approach exhibits a very high ionic conductivity of 1.5 × 10(-3) S cm(-1) with a particle size of 0.4-1.0 μm. All-solid-state lithium batteries employing cobalt sulfide-Li7P3S11 nanocomposites in combination with the neat Li7P3S11 electrolyte and Super P as the cathode and lithium metal as the anode exhibit excellent rate capability and cycling stability, showing reversible discharge capacity of 421 mAh g(-1) at 1.27 mA cm(-2) after 1000 cycles. Moreover, the obtained all-solid-state lithium batteries possesses very high energy and power densities, exhibiting 360 Wh kg(-1) and 3823 W kg(-1) at current densities of 0.13 and 12.73 mA cm(-2), respectively. This contribution demonstrates a new interfacial design for all-solid-state battery with high performance.

  6. Stellar 30-keV neutron capture in 94, 96Zr and the Zr90(γ,nZr89 photonuclear reaction with a high-power liquid-lithium target

    Directory of Open Access Journals (Sweden)

    M. Tessler

    2015-12-01

    Full Text Available A high-power Liquid-Lithium Target (LiLiT was used for the first time for neutron production via the thick-target Li7(p,nBe7 reaction and quantitative determination of neutron capture cross sections. Bombarded with a 1–2 mA proton beam at 1.92 MeV from the Soreq Applied Research Accelerator Facility (SARAF, the setup yields a 30-keV quasi-Maxwellian neutron spectrum with an intensity of 3–5×1010 n/s, more than one order of magnitude larger than present near-threshold Li7(p,n neutron sources. The setup was used here to determine the 30-keV Maxwellian averaged cross section (MACS of 94Zr and 96Zr as 28.0±0.6 mb and 12.4±0.5 mb respectively, based on activation measurements. The precision of the cross section determinations results both from the high neutron yield and from detailed simulations of the entire experimental setup. We plan to extend our experimental studies to low-abundance and radioactive targets. In addition, we show here that the setup yields intense high-energy (17.6 and 14.6 MeV prompt capture γ rays from the Li7(p,γBe8 reaction with yields of ∼3×108γs−1mA−1 and ∼4×108γs−1mA−1, respectively, evidenced by the Zr90(γ,nZr89 photonuclear reaction.

  7. Charging and discharging tests for obtaining an accurate dynamic electro-thermal model of high power lithium-ion pack system for hybrid and EV applications

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Camacho, Oscar Mauricio Forero; Nørgård, Per Bromand

    2013-01-01

    circuit model, based on the runtime battery model and the Thevenin circuit model, with parameters obtained from the tests and depending on SOC, current and temperature has been implemented in MATLAB/Simulink and Power Factory. A good alignment between simulations and measurements has been found....

  8. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  9. In situ growth of MOFs on the surface of si nanoparticles for highly efficient lithium storage: Si@MOF nanocomposites as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Han, Yuzhen; Qi, Pengfei; Feng, Xiao; Li, Siwu; Fu, Xiaotao; Li, Haiwei; Chen, Yifa; Zhou, Junwen; Li, Xingguo; Wang, Bo

    2015-02-04

    A simple yet powerful one-pot strategy is developed to prepare metal-organic framework-coated silicon nanoparticles via in situ mechanochemical synthesis. After simple pyrolysis, the thus-obtained composite shows exceptional electrochemical properties with a lithium storage capacity up to 1050 mA h g(-1), excellent cycle stability (>99% capacity retention after 500 cycles) and outstanding rate performance. These characteristics, combined with their high stability and ease of fabrication, make such Si@MOF nanocomposites ideal alternative candidates as high-energy anode materials in lithium-ion batteries.

  10. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  11. Lithium Ferrite as the Cathode of the Electrochemical Power Sources: the Perspectives of Sol-gel Synthesis Method

    Directory of Open Access Journals (Sweden)

    O.M. Uhorchuk

    2015-06-01

    Full Text Available Synthesis of highly dispersed systems of lithium-ferrite oxide spinel, obtained by the low-temperature sol-gel method, with the subsequent auto combustion and the comparison of these systems’ characteristics with the analogous ones of the conventional ceramic method are performed. It is shown that the systems synthesized by solid-phase and sol-gel methods are the single phase structures with the space group P4332. The sol-gel method of auto combustion made it possible to increase the size of crystallites in more than 4 times and the specific area of the surface in 20 times. Obtained by sol-gel method lithium pentaferrit is suggested to be used as the cathode of lithium power sources.

  12. Lithium

    Science.gov (United States)

    Lithium is used to treat and prevent episodes of mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal ...

  13. Development of novel cathodes for high energy density lithium batteries

    Science.gov (United States)

    Bhargav, Amruth

    Lithium based batteries have become ubiquitous with our everyday life. They have propelled a generation of smart personal electronics and electric transport. Their use is now percolating to various fields as a source of energy to facilitate the operation of devices from nanoscale to mega scale. This need for a portable energy source has led to tremendous scientific interest in this field to develop electrochemical devices like batteries with higher capacities, longer cycle life and increased safety at a low cost. To this end, the research presented in this thesis focuses on two emerging and promising technologies called lithium-oxygen (Li-O2) and lithium-sulfur (Li-S) batteries. These batteries can offer an order of magnitude higher capacities through cheap, environmentally safe and abundant elements namely oxygen and sulfur. The first work introduces the concept of closed system lithium-oxygen batteries wherein the cell contains the discharge product of Li-O2 batteries namely, lithium peroxide (Li2O2) as the starting active material. The reversibility of this system is analyzed along with its rate performance. The possible use of such a cathode in a full cell is explored. Also, this concept is used to verify if all the lithium can be extracted from the cathode in the first charge. In the following work, lithium peroxide is chemically synthesized and deposited in a carbon nanofiber matrix. This forms a free standing cathode that shows high reversibility. It can be cycled up to 20 times and while using capacity control protocol, a cycle life of 50 is obtained. The cause of cell degradation and failure is also analyzed. In the work on full cell lithium-sulfur system, a novel electrolyte is developed that can support reversible lithium insertion and extraction from a graphite anode. A method to deposit solid lithium polysulfide is developed for the cathode. Coupling a lithiated graphite anode with the cathode using the new electrolyte yields a full cell whose

  14. High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery

    Science.gov (United States)

    Liu, Ming; He, Yan-Bing; Lv, Wei; Zhang, Chen; Du, Hongda; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2014-12-01

    It has been indicated that anatase TiO2 is a promising anode material for lithium ion power battery from many previous researches. Whereas, in this work, we find that the anatase TiO2, when used as an anode for lithium ion battery, has high catalytic activity to initiate the decarboxylation reaction of electrolyte solution, resulting in the large generation of sole gaseous component, CO2. The ROLi species and the new phase of flake-like Li2TiF6 material are the main reaction products between anatase TiO2 and LiPF6 based electrolyte solution. This work provides important and urgent information that the surface chemistry of anatase TiO2 used as the anode material of lithium ion battery must be modified to suppress its catalytic activity for the decomposition of solvents.

  15. A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries.

    Science.gov (United States)

    Zhu, Xiaoming; Jiang, Xiaoyu; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-11-04

    The safety concern is a critical obstacle to large-scale energy storage applications of lithium-ion batteries. A thermostable separator is one of the most effective means to construct the safe lithium-ion batteries. Herein, we demonstrate a novel ceramic (SiO2)-grafted PE separator prepared by electron beam irradiation. The separator shows similar thickness and pore structure to the bare separator, while displaying strong dimensional thermostability, as the shrinkage ratio is only 20% even at an elevated temperature of 180 °C. Besides, the separator is highly electrochemically inert, showing no adverse effect on the energy and power output of the batteries. Considering the excellent electrochemical and thermal stability, the SiO2-grafted PE separator developed in this work is greatly beneficial for constructing safer lithium-ion batteries.

  16. High-discharge-rate lithium ion battery

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  17. TiO2 quantum dots embedded in bamboo-like porous carbon nanotubes as ultra high power and long life anodes for lithium ion batteries

    Science.gov (United States)

    Tang, Yakun; Liu, Lang; Wang, Xingchao; Jia, Dianzeng; Xia, Wei; Zhao, Zongbin; Qiu, Jieshan

    2016-07-01

    TiO2 quantum dots embedded in bamboo-like porous carbon nanotubes have been constructed through the pyrolysis of sulfonated polymer nanotubes and TiO2 hybrids. The TiO2 quantum dots are formed during the pyrolysis, due to the space confinement within the highly cross-linked copolymer networks. The sulfonation degree of the polymer nanotubes is a critical factor to ensure the formation of the unique interpenetrating structure. The nanocomposites exhibit high reversible capacity of 523 mAh g-1 at 100 mA g-1 after 200 cycles, excellent rate capability and superior long-term cycling stability at high current density, which could attain a high discharge capacity of 189 mAh g-1 at 2000 mA g-1 for up to 2000 cycles. The enhanced electrochemical performance of the nanocomposites benefit from the uniform distribution of TiO2 quantum dots, high electronic conductivity of porous carbons and unique interpenetrating structure, which simultaneously solved the major problems of TiO2 anode facing the pulverization, loss of electrical contact and particle aggregation.

  18. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  19. 3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Guan Wu; Ran Ran; Bote Zhao; Yujing Sha; Chao Su; Yingke Zhou; Zongping Shao

    2014-01-01

    Amorphous carbon and graphene co-modified LiFePO4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment. Various characterization techniques, including XRD, M ¨ossbauer spectra, Raman spectra, SEM, TEM, BET, O2-TPO, galvano charge-discharge, CV and EIS were applied to investigate the phase composition, carbon content, morphological structure and electrochemical performance of the synthesized samples. The effect of introducing way of carbon sources on the properties and performance of LiFePO4/C/graphene composite was paid special attention. Under optimized synthetic conditions, highly crystalized olivine-type LiFePO4 was successfully obtained with electron conductive Fe2P and FeP as the main impurity phases. SEM and TEM analyses demonstrated the graphene sheets were randomly distributed inside the sample to create an open structured LiFePO4 with respect to graphene, while the glucose-derived carbon mainly coated over LiFePO4 particles which effectively connected the graphene sheets and LiFePO4 particles to result in a more efficient charge transfer process. As a result, favorable electrochemical performance was achieved. The performance of the amorphous carbon-graphene co-modified LiFePO4 was further progressively improved upon cycling in the first 200 cycles to reach a reversible specific capacity as high as 97 mAh·g-1 at 10 C rate.

  20. Hierarchical LiMn2O4 Hollow Cubes with Exposed {111} Planes as High-Power Cathodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Wu, Yu; Cao, Chuanbao; Zhang, Junting; Wang, Lin; Ma, Xilan; Xu, Xingyan

    2016-08-01

    Hierarchical LiMn2O4 hollow cubes with exposed {111} planes have been synthesized using cube-shaped MnCO3 precursors, which are fabricated through a facile co-precipitation reaction. Without surface modification, the as-prepared LiMn2O4 exhibits excellent cyclability and superior rate capability. Surprisingly, even over 70% of primal discharge capacity can be maintained for up to 1000 cycles at 50 C, and with only about 72 s of discharge time the as-prepared materials can deliver initial discharge capacity of 96.5 mA h g(-1). What is more, the materials have 98.4% and 90.7% capacity retentions for up to 100 cycles at 5 C under the temperatures of 25 and 60 °C, respectively. The superior electrochemical performance can be attributed to the unique hierarchical and interior hollow structure, exposed {111} planes, and high-quality crystallinity.

  1. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries.

    Science.gov (United States)

    Chen, Chengcheng; Huang, Yanan; An, Cuihua; Zhang, Hao; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2015-01-01

    Cu-doped Li4 Ti5 O12 -TiO2 nanosheets were synthesized by a facile, cheap, and environmentally friendly solution-based method. These nanostructures were investigated as an anode material for lithium-ion batteries. Cu doping was found to enhance the electron conductivity of the materials, and the amount of Cu doped controlled the crystal structure and content of TiO2 . In addition, the samples, which benefit from multiphases and doping, exhibited much improved capacity, cycle performance, and high rate capability over Cu-free Li4 Ti5 O12 -TiO2 . The discharge capacity of the 0.05 Cu-doped sample was 190 mAh g(-1) at 1C, and even 144 mAh g(-1) was obtained at 30C after 100 cycles. Moreover, after 500 cycles at 30C, the discharge capacity remained at approximately 130 mAh g(-1) . The excellent electrochemical performance of the cell demonstrated that Cu-doping was able to adjust and control the Li4 Ti5 O12 -TiO2 system appropriately.

  2. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries.

    Science.gov (United States)

    Feng, Xuejiao; Yang, Jun; Bie, Yitian; Wang, Jiulin; Nuli, Yanna; Lu, Wei

    2014-11-07

    Nano/micro-structured pSi and pSi/CNT particles were synthesized from nano-SiO2 as both a template and silicon precursor via a combination of spray drying and magnesiothermic reduction, followed by a nano-layer carbon coating by chemical vapor deposition to obtain a nano/micro-structured pSi/C and pSi/CNT/C composite. In the hierarchical microstructure of the pSi/CNT/C composite, Si nanoparticles less than 20 nm in size were homogenously dispersed in an electronically conductive and porous network of multiwall carbon nanotubes, which can accommodate the volume changes in Si and improve the structural and conductive stability during repeated cycles leading to excellent electrochemical performance. The pSi/CNT/C presented reversible capacities of ca. 2100 mA h g(-1) at 1 A g(-1) and ca. 1370 mA h g(-1) at a high current rate of 5 A g(-1). Its capacity retention after 100 cycles was 95.5% at 1 A g(-1).

  3. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  4. Nano-Sponge Ionic Liquid-Polymer Composite Electrolytes for Solid-State Lithium Power Sources

    Science.gov (United States)

    2010-01-01

    Journal of Power Sources 195 (2010) 867–871 Contents lists available at ScienceDirect Journal of Power Sources journa l homepage: www.e lsev ier .com...locate / jpowsour Short communication Nano-sponge ionic liquid–polymer composite electrolytes for solid-state lithium power sources Kang-Shyang...As storage becomesmore important in alternative technologies, these systems are evolving the need for safe, compact, rechargeable power sources continues

  5. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium wallsa)

    Science.gov (United States)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.; Widmann, K.; Tritz, K.

    2015-05-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  6. Silver based batteries for high power applications

    Science.gov (United States)

    Karpinski, A. P.; Russell, S. J.; Serenyi, J. R.; Murphy, J. P.

    The present status of silver oxide-zinc technology and applications has been described by Karpinski et al. [A.P. Karpinski, B. Makovetski, S.J. Russell, J.R. Serenyi, D.C. Williams, Silver-Zinc: status of technology and applications, Journal of Power Sources, 80 (1999) 53-60], where the silver-zinc couple is still the preferred choice where high specific energy/energy density, coupled with high specific power/power density are important for high-rate, weight or size/configuration sensitive applications. Perhaps the silver oxide cathode can be considered one of the most versatile electrode materials. When coupled with other anodes and corresponding electrolyte management system, the silver electrode provides for a wide array of electrochemical systems that can be tailored to meet the most demanding, high power requirements. Besides zinc, the most notable include cadmium, iron, metal hydride, and hydrogen electrode for secondary systems, while primary systems include lithium and aluminum. Alloys including silver are also available, such as silver chloride, which when coupled with magnesium or aluminum are primarily used in many seawater applications. The selection and use of these couples is normally the result of a trade-off of many factors. These include performance, safety, risk, reliability, and cost. When high power is required, silver oxide-zinc, silver oxide-aluminum, and silver oxide-lithium are the most energetic. For moderate performance (i.e., lower power), silver oxide-zinc or silver-cadmium would be the system of choice. This paper summarizes the suitability of the silver-based couples, with an emphasis on the silver-zinc system, as primary or rechargeable power sources for high energy/power applications.

  7. High Power Factor Power Design

    Directory of Open Access Journals (Sweden)

    Zhang Jing-yi

    2013-07-01

    Full Text Available The PFC circuit takes UCC28019 made by TI Company as the core of system control, realize the power factor correction circuit functions, and the circuit power factor can be measured. Through a variety of detection circuit, with the support SCM control. And 30V~36V output voltage regulator can be set; with over-current protection circuits function, and be able to automatically back. Output current, voltage, and little significant value are displayed by display modules.

  8. Nano-Composite Cathodes for High Performance Lithium Ion Microbatteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TPL Inc. proposes to develop a novel, high performance, nanostructured cathode material for lithium ion (Li-ion) batteries. The proposed approach will modify lithium...

  9. Large-format lithium-ion batteries for electric power storage

    Science.gov (United States)

    Haruna, H.; Itoh, S.; Horiba, T.; Seki, E.; Kohno, K.

    We have been developing lithium-ion batteries for electric power storage and have chosen cell chemistries having a high energy density and long life. The cell chemistry consisted of a positive electrode containing a lithium-manganese spinel or a mixture of it with a layered-manganese-based material, and a negative electrode containing a hard carbon. The 8 Ah-class cells consisting of these cell chemistries showed that their extrapolated lives were long enough to withstand a cycling load for 10 years of use. A comparison of the cycle life data with the storage life data suggested the possibility to separate the capacity fading caused only by the storage and that only by the cycling, which is expected to be the basis of a prediction method for the calendar life. However, much work still needs to be done to achieve it. We also manufactured two types of 100 Ah-class cells as an experiment based on the results for the 8 Ah-class cells. They showed specific energies of 100 Wh kg -1 and 106 Wh kg -1.

  10. Lifetime and economic analyses of lithium-ion batteries for balancing wind power forecast error

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stroe, Ana-Irina

    2015-01-01

    is considered. In this paper, the economic feasibility of lithium-ion batteries for balancing the wind power forecast error is analysed. In order to perform a reliable assessment, an ageing model of lithium-ion battery was developed considering both cycling and calendar life. The economic analysis considers two......, it was found that for total elimination of the wind power forecast error, it is required to have a 25-MWh Li-ion battery energy storage system for the considered 2 MW WT....

  11. Tracking inhomogeneity in high-capacity lithium iron phosphate batteries

    Science.gov (United States)

    Paxton, William A.; Zhong, Zhong; Tsakalakos, Thomas

    2015-02-01

    Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery under operating conditions. In this paper, we use EDXRD with ultrahigh energy synchrotron radiation to track inhomogeneity in a cycled high-capacity lithium iron phosphate cell under in-situ and operando conditions. A sequence of depth-profile x-ray diffraction spectra are collected with 40 μm resolution as the cell is discharged. Additionally, nine different locations of the cell are tracked independently throughout a second discharge process. In each case, a two-peak reference intensity ratio analysis (RIR) was used on the LiFePO4 311 and the FePO4 020 reflections to estimate the relative phase abundance of the lithiated and non-lithiated phases. The data provide a first-time look at the dynamics of electrochemical inhomogeneity in a real-world battery. We observe a strong correlation between inhomogeneity and overpotential in the galvanic response of the cell. Additionally, the data closely follow the behavior that is predicted by the resistive-reactant model originally proposed by Thomas-Alyea. Despite a non-linear response in the independently measured locations, the behavior of the ensemble is strikingly linear. This suggests that effects of inhomogeneity can be elusive and highlights the power of the EDXRD technique.

  12. Lithium manganese spinel materials for high-rate electrochemical applications

    Institute of Scientific and Technical Information of China (English)

    Anna V. Potapenko; Sviatoslav A. Kirillov

    2014-01-01

    In order to successively compete with supercapacitors, an ability of fast discharge is a must for lithium-ion batteries. From this point of view, stoichiometric and substituted lithium manganese spinels as cathode materials are one of the most prospective candidates, especially in their nanosized form. In this article, an overview of the most recent data regarding physico-chemical and electrochemical properties of lithium manganese spinels, especially, LiMn2O4 and LiNi0.5Mn1.5O4, synthesized by means of various methods is presented, with special emphasis of their use in high-rate electrochemical applications. In particular, specific capacities and rate capabilities of spinel materials are analyzed. It is suggested that reduced specific capacity is determined primarily by the aggregation of material particles, whereas good high-rate capability is governed not only by the size of crystallites but also by the perfectness of crystals. The most technologically advantageous solutions are described, existing gaps in the knowledge of spinel materials are outlined, and the ways of their filling are suggested, in a hope to be helpful in keeping lithium batteries afloat in the struggle for a worthy place among electrochemical energy systems of the 21st century.

  13. MoS2/C Multilayer Nanospheres as an Electrode Base for Lithium Power Sources.

    Science.gov (United States)

    Shyyko, Lyudmyla O; Kotsyubynsky, Volodymyr O; Budzulyak, Ivan M; Sagan, Piotr

    2016-12-01

    Multilayer nanospheres with alternating 2H-MoS2 and C layers were studied as a cathode base for lithium power sources. Interesting hierarchical structure, synergetic effect, and the presence of defects as supplementary active sites, introduced by the additional annealing at 773 K in Ar atmosphere, have determined the conductivity, referred to symmetric hopping or random barrier model, and led to achieve the high values of specific capacity of 3700, 1390, and 790 A h kg(-1) at currents 0.1, 0.3, and 0.5 C. Such unusual result was never reported before and could be explained by combining of the faradaic and non-faradaic accumulation processes within electrode material.

  14. MoS2/C Multilayer Nanospheres as an Electrode Base for Lithium Power Sources

    Science.gov (United States)

    Shyyko, Lyudmyla O.; Kotsyubynsky, Volodymyr O.; Budzulyak, Ivan M.; Sagan, Piotr

    2016-05-01

    Multilayer nanospheres with alternating 2H-MoS2 and C layers were studied as a cathode base for lithium power sources. Interesting hierarchical structure, synergetic effect, and the presence of defects as supplementary active sites, introduced by the additional annealing at 773 K in Ar atmosphere, have determined the conductivity, referred to symmetric hopping or random barrier model, and led to achieve the high values of specific capacity of 3700, 1390, and 790 A h kg-1 at currents 0.1, 0.3, and 0.5 C. Such unusual result was never reported before and could be explained by combining of the faradaic and non-faradaic accumulation processes within electrode material.

  15. High power fiber lasers

    Institute of Scientific and Technical Information of China (English)

    LOU Qi-hong; ZHOU Jun

    2007-01-01

    In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in de-tail. 1050 W CW output and 133 W pulsed output are ob-tained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.

  16. Preparation of All-Ceramic, High Performance Li-ion Batteries for Deep Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium (Li) ion batteries are among the most promising power sources for many civilian, military and space applications due to their high power and high energy...

  17. High Power/High Temperature Battery Development

    Science.gov (United States)

    1992-09-01

    dcruit stand The bipolar conliguration permits cello be closely packed, share cell walls, and combine the functions of wall and intercell connector. The...LUthco Symp. on Lithium Chem., Ed. R. Bach , John Wiley and Sons, N.Y. M. Wliams, st. al., Proc. 32nd Power Sources Conf., p 658 If (1986). C.D...on Electron Devices ATTN: Documents 2011 Crystal Drive, Suite 307 002 Adington, VA 22202 Page 43 Plop 2 O nlPage Elstronlo Technooyand DvcsLaomtory

  18. Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performance lithium ion battery

    Science.gov (United States)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Islam, Md Tariqul; Karim, Hasanul; Ramabadran, Navaneet; Noveron, Juan C.; Lin, Yirong

    2015-09-01

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO2 nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode-electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge-discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  19. Nb2O5 microstructures: a high-performance anode for lithium ion batteries

    Science.gov (United States)

    Liu, Sainan; Zhou, Jiang; Cai, Zhenyang; Fang, Guozhao; Pan, Anqiang; Liang, Shuquan

    2016-11-01

    We report the synthesis of three-dimensional (3D) urchin-like Nb2O5 microstructures by a facile hydrothermal approach with subsequent annealing treatment. As anode materials for lithium-ion batteries, the 3D urchin-like Nb2O5 microstructures exhibit superior electrochemical performance with excellent rate capability as well as long-term cycling stability. The electrode delivers high capacity of 131 mA h g-1 after 1000 cycles at a high current density of 1 A g-1. The excellent electrochemical performance suggests the 3D urchin-like Nb2O5 microstructures may be a promising anode candidate for high-power lithium ion batteries.

  20. High-throughput theoretical design of lithium battery materials

    Science.gov (United States)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  1. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  2. Canada Lithium Corp. powers it up : Val d'Or property could be key to helping meet global demand for lithium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Advances in battery technology powering vehicles will help to reduce greenhouse gas (GHG) emissions in Canada. The sale of hybrid cars has been growing steadily in the country. This article discussed a company that is currently raising funds to finance a lithium extraction facility near Val d'Or, Quebec. Future lithium demand is expected to grow as a result of increased usage of hybrid vehicles. Canada's largest auto parts maker recently announced that it would invest up to $600 million on new plants for making lithium-ion batteries. 1 fig.

  3. Outcome of lithium prophylaxis: a prospective follow-up of affective disorder patients assigned to high and low serum lithium levels

    DEFF Research Database (Denmark)

    Vestergaard, Per; Licht, Rasmus Wentzer; Brodersen, Anders Torp

    1998-01-01

    The purpose of the study was to examine the outcome of long-term lithium treatment in consecutively admitted affective disorder patients assigned to high and low serum lithium levels. A total of 91 patients were diagnosed according to DSM-III criteria and randomly allocated to two open treatment...... on lithium, and 42 patients (46%) discontinued lithium or were lost to follow-up. No effect of treatment group was seen, either for the total patient group or for the large subgroup of bipolar patients when analysed separately. A number of patients did not maintain their original assignment to the high serum...... groups in which prophylactic lithium was administered in high (serum lithium 0.8-1.0 mmol L-1) and low (serum lithium 0.5-0.8 mmol L-1) doses, respectively. The patients were followed for 2 years or until discontinuation of lithium treatment or readmission to hospital for recurrence of affective illness...

  4. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    Science.gov (United States)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  5. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  6. Selection and impedance based model of a lithium ion battery technology for integration with virtual power plant

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina;

    2013-01-01

    is to integrate lithium-ion batteries into virtual power plants; thus, the power system stability and the energy quality can be increased. The selection of the best lithium-ion battery candidate for integration with wind power plants is a key aspect for the economic feasibility of the virtual power plant......The penetration of wind power into the power system has been increasing in the recent years. Therefore, a lot of concerns related to the reliable operation of the power system have been addressed. An attractive solution to minimize the limitations faced by the wind power grid integration...

  7. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.

    Science.gov (United States)

    Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna

    2014-10-22

    Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.

  8. A review on lithium-ion power battery thermal management technologies and thermal safety

    Science.gov (United States)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  9. Lithium-Ion Battery Power Degradation Modelling by Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2017-01-01

    This paper investigates the use of the electrochemical impedance spectroscopy (EIS) technique as an alternative to the DC pulses technique for estimating the power capability decrease of Lithium-ion batteries during calendar ageing. Based on results obtained from calendar ageing tests performed...... at different conditions during one to two years, a generalized model that estimates the battery power capability decrease as function of the resistance Rs increase (obtained from EIS) was proposed and successfully verified....

  10. High conducting oxide--sulfide composite lithium superionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  11. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  12. [Treatment of acute lithium intoxication with high-flux haemodialysis membranes].

    Science.gov (United States)

    Peces, R; Fernández, E J; Regidor, D; Peces, C; Sánchez, R; Montero, A; Selgas, R

    2006-01-01

    Lithium carbonate is commonly prescribed for the treatment of bipolar (manic-depressive) disorders. However, because of its narrow therapeutic index an excessive elevation of serum lithium concentration, either during chronic maintenance therapy or after an acute overdose, can result in serious toxicity. In addition to supportive care, the established treatment of severe lithium toxicity is haemodialysis. Conventional haemodialysis can reduce serum lithium rapidly, but post-dialysis rebound elevations with recurrent toxicity have been documented in old publications. High-flux membranes should be capable of removing more lithium per hour of haemodialysis, but published values are not available. We report here three patients with acute lithium intoxication who were treated successfully with bicarbonate and high-flux haemodialysis membranes. Our patients presented with a severe degree of intoxication, based on the amount of drug ingested, the initial serum lithium level, the severity of neurologic symptoms and systemic manifestations. Two patients developed acute renal failure probably as a result of volume depletion since it was rapidly reversible by haemodialysis and infusion therapy. In addition, consecutive haemodialysis sessions and improvement of renal function allowed a rapid decrease in serum lithium levels without haemodynamic instability or rebound elevations in lithium concentration. The effectiveness of the procedure in these cases can be attributed to the use of bicarbonate dialysate and high-efficiency dialysers. This is the first report describing the effect of high-efficiency dialysers on lithium pharmacokinetic. Using this technique the elimination rate of lithium was found to be greater than previously reported with haemodialysis.

  13. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    °C, although the film thickness was over 1 mum. Lithium titanate with the spinel structure is also an important anode material for high power applications. It has a unique feature of zero volume change during lithium ion intercalation, which gives its excellent performance when as nanoparticles. Our results show that a slight reduction of the titanium using hydrogen leads to a high capacity at a high rate even at moderate particle size. Silicon is currently of considerable interest as an anode for lithium secondary electrochemical batteries. The Li-Si alloy system, having average operating voltages below 500 mV versus lithium, can take up to 3.4 lithium ions during intercalation. It is also well known that a 300% volume dilatation is associated with alloying 3.4 lithium atoms per silicon atom. M-Si (M = Fe, Co, and Ni) alloys with nano-silicon domains were introduced as the anode materials for lithium ion batteries. An improved electrochemical performance was found.

  14. High Power Cryogenic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  15. Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode

    Science.gov (United States)

    Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip

    2017-01-01

    Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g‑1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g‑1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g‑1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material.

  16. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries

    Science.gov (United States)

    Fleischhammer, Meike; Waldmann, Thomas; Bisle, Gunther; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2015-01-01

    The differences in the safety behaviour between un-aged and aged high-power 18650 lithium-ion cells were investigated at the cell and material level by Accelerating Rate Calorimetry (ARC) and Simultaneous Thermal Analysis (STA). Commercial cells containing a LixNi1/3Mn1/3Co1/3O2/LiyMn2O4 blend cathode, a carbon/graphite anode and a PP/PE/PP trilayer separator were aged by high-rate and low temperature cycling, leading to (i) mechanical deformation of the jelly roll and (ii) lithium plating on the anode. The results show a strong influence of the ageing history on the safety behaviour. While cycling at high current does not have a strong influence on the cell safety, lithium plating leads to a significant increase of heat formation during thermal runaway and thus to a higher hazard of safety.

  17. Materials and mechanisms of high temperature lithium sulfide batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kaun, T.D.; Hash, M.C.; Henriksen, G.L.; Jansen, A.N.; Vissers, D.R.

    1994-05-01

    New materials have encouraged development of bipolar Li-Al/FeS{sub 2} batteries for electric vehicle (EV) applications. Current technology employs a two-phase Li-alloy negative electrode low-melting, LiCl-rich LiCl-LiBr-KBr molten salt electrolyte, and either an FeS or an upper-plateau (UP) FeS{sub 2} positive electrode. These components are assembled in a sealed bipolar battery configuration. Use of the two-phase Li-alloy ({alpha} + {beta} Li-Al and Li{sub 5}Al{sub 5}Fe{sub 2}) negative electrode provides in situ overcharge tolerance that renders the bipolar design viable. Employing LiCl-rich LiCl-LiBr-KBr electrolyte in ``electrolyte-starved`` calls achieves low-burdened cells, that possess low area-specific impedance; comparable to that of flooded cells using LiCl-LiBr-KBr eutectic electrolyte. The combination of dense UP FeS{sub 2} electrodes and low-melting electrolyte produces a stable and reversible couple, achieving over 1000 cycle life in flooded cells, with high power capabilities. In addition, a family of stable sulfide ceramic/sealant materials was developed that produce high-strength bonds between a variety of metals and ceramics, which renders lithium/iron suffide bipolar stacks practical. Bipolar Li-Al/FeS{sub 2} cells and four-cell stacks using these seals are being built and tested in the 13 cm diameter size for EV applications. To date, Li-Al/FeS{sub 2} cells have attained 400 W/kg power at 80% DOD and 180 Wh/kg energy at the 30 W/kg rate. When cell performance characteristics are used to model full-scale EV and hybrid vehicle (HV) batteries, they are projected to meet or exceed the performance requirements for a large variety of EV and HV applications. Efficient production and application of Li-alloys and Li-salt electrolyte are critical to approaching battery cost objectives.

  18. High Temperature Solid State Lithium Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  19. Silver: high performance anode for thin film lithium ion batteries

    Science.gov (United States)

    Taillades, G.; Sarradin, J.

    Among metals and intermetallic compounds, silver exhibits a high specific capacity according to the formation of different Ag-Li alloys (up to AgLi 12) in a very low voltage range versus lithium (0.250-0 V). Electrochemical results including Galvanostatic Intermittent Titration Technique (GITT) as well as cycling behaviour experiments confirmed the interesting characteristics of silver thin film electrodes prepared by radio frequency (r.f.) sputtering. XRD patterns recorded at different electrochemical stages of the alloying/de-alloying processes showed the complexity of the silver-lithium system under dynamic conditions. Cycling life depends on several parameters and particularly of the careful choice of cut-off voltages. In very well monitored conditions, galvanostatic cycles exhibited flat reversible plateaus with a minimal voltage value (0.050 V) between charge and discharge, a feature of great interest in the use of an electrode. The first results of a lithium ion battery with both silver and LiMn 1.5Ni 0.5O 4 thin films are presented.

  20. 氧化镍钴锂(NCA)体系高功率锂离子的设计研究%Design and investigations of LiNi0.8Co0.15Al0.05O2(NCA)system high power lithium ion cells

    Institute of Scientific and Technical Information of China (English)

    蒋宁懿; 潘磊; 张健; 李成章

    2012-01-01

    The rechargeable lithium ion batteries with high-power capabilities have become an important power source tor portable electronic devices such as cellular phones and laptop computers.In addition,they have attracted the attention of the automotive industry for applications in hybrid electric vehicles (HEV).In this paper,2 Ah soft-package,20 Ah and 18650 cylindrical high power lithium ion cells with LiNi0.8CO0.15Al0.05O2(NCA) cathode/carbon anode chemical system were prepared.The electrochemical tests were performed to investigate the electrode formula design,separator material and thickness,electrolyte system and their influence on the power ability and cyclability of cells.%具有高功率性能的锂离子二次电池已广泛应用于手机电池、笔记本电池等便携式电源领域.此外,以HEV为代表的动力电池的研制也逐渐成为高功率锂离子电池的研究热点.选用了氧化镍钴锂(NCA)/中间相碳微球材料体系制备了2Ah软包装、20Ah圆柱形及18650功率型动力电池,并进行了相关电化学测试.探讨了电极配方设计、隔膜材质及厚度、电解液体系对电池大倍率放电性能和循环性能的影响.

  1. High Power Switching Transistor

    Science.gov (United States)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  2. High temperature lithium cells with solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  3. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  4. Highly Conductive Solvent-Free Polymer Electrolytes for Lithium Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Robert Filler, Zhong Shi and Braja Mandal

    2004-10-21

    In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

  5. Studies Leading to the Development of High-Rate Lithium Sulfuryl Chloride Battery Technology.

    Science.gov (United States)

    1982-09-01

    greatest attention has been given to the lithium - thionyl chloride (Li/SOC12 ) system. Cells and batteries have been demonstrated with energy densities...Studies Leading to the Development of High-Rate Lithium Sulfuryl Chloride Battery Technology John C. Hall and Mark Koch Gould Research Center, Materials...High-Rate 11182to 33182 Lithium -Sulfuryl Chloride Battery Technology 1_1/82_to_3/31/82 S. PERFORMING ORO. REPORT NUMBER 2 7. AUTHOR(*) S. CONTRACT OR

  6. Response of NSTX liquid lithium divertor to high heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2013-07-15

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.

  7. Lithium rich cathode/graphite anode combination for lithium ion cells with high tolerance to near zero volt storage

    Science.gov (United States)

    Crompton, K. R.; Staub, J. W.; Hladky, M. P.; Landi, B. J.

    2017-03-01

    Management of reversible lithium is an advantageous approach to design lithium ion cells that are tolerant to near zero volt (NZV) storage under fixed resistive load towards highly controllable, enhanced user-inactive safety. Presently, the first cycle loss from a high energy density Li-rich HE5050 cathode is used to provide excess reversible lithium when paired with an appropriately capacity matched mesocarbon microbead (MCMB) anode. Cells utilizing 1.2 M LiPF6 3:7 v/v ethylene carbonate:ethyl methyl carbonate electrolyte and a lithium reference were used for 3-electrode testing. After conditioning, a fixed resistive load was applied to 3-electrode cells for 72 or 168-h during which the anode potential and electrode asymptotic potential (EAP) remained less than the copper dissolution potential. After multiple storage cycles (room temperature or 40 °C), the NZV coulombic efficiency (cell reversibility) exceeded 97% and the discharge capacity retention was >98%. Conventional 2-electrode HE5050/MCMB pouch cells stored at NZV or open circuit for 3 days had nearly identical rate capability (up to 5C) and discharge performance stability (for 500 cycles under a 30% depth of discharge low-earth-orbit regime). Thus, lithium ion cells with appropriately capacity matched HE5050/MCMB electrodes have excellent tolerance to prolonged NZV storage, which can lead to enhanced user-inactive safety.

  8. Stopping power of {sup 1}H and {sup 4}He in lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Barradas, N.P., E-mail: nunoni@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Bobadela LRS (Portugal); Laboratório de Engenharia Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Bobadela LRS (Portugal); Marques, J.G. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Bobadela LRS (Portugal); Laboratório de Engenharia Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001 (Portugal)

    2014-08-01

    Highlights: •We measured the stopping power of {sup 1}H in LiNbO{sub 3} between 0.27 and 2.33 MeV. •We measured the stopping power of {sup 4}He in LiNbO{sub 3} between 0.44 and 2.33 MeV. •Good agreement was found with SRIM2012 calculations. -- Abstract: Lithium niobate is an important material for applications in bulk optoelectronics and integrated optics devices. Ion beam analysis methods are often used to study this material. However, to our knowledge a single study has been presented in 1996 on measurement of stopping powers in LiNbO{sub 3} at velocities usual in ion beam analysis, for protons and deuterons near the stopping power maximum. The results were 15% lower than the values calculated from the elemental Li, Nb and O stopping powers then available together with the Bragg rule. In practice, all ion beam analysis studies of LiNbO{sub 3} still use the Bragg rule. We have used a bulk method, previously developed by us and applied successfully to other systems, to determine experimentally the stopping power of lithium niobate for {sup 1}H and {sup 4}He ions in the energy range 0.3–2.3 MeV. The results of our measurements and bulk method analysis are presented and discussed in the context of currently available stopping power calculations.

  9. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  10. High Power Dye Lasers

    Science.gov (United States)

    1975-09-30

    art capabilities for developmental models of hydrogen thyratrons and solid state thyristors. Table II-l is a list of switches that have been... thyratron Table II-l Switch Ignitron GE, GL - 37207 Hydrogen Thyratron High Power Switches Peak Cur. (kA) RMS Cm. (A) 300 120 Max. Rep Rate...for 2 usec Pulse Cli„) 8 1. EG&G HY-5 2. EW. GHT9 3. EG&G Develop- mental model Thyristors 5 7.5 15 125 335 350 300 1000 300 RCA

  11. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    Science.gov (United States)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  12. Development of Highly-Conductive Polyelectrolytes for Lithium Batteries

    Science.gov (United States)

    Shriver, D. F.; Ratner, M. A.; Vaynman, S.; Annan, K. O.; Snyder, J. F.

    2003-01-01

    Future NASA and Air Force missions require reliable and safe sources of energy with high specific energy and energy density that can provide thousands of charge-discharge cycles at more than 40% depth- of-discharge and that can operate at low temperatures. All solid-state batteries have substantial advantages with respect to stability, energy density, storage fife and cyclability. Among all solid-state batteries, those with flexible polymer electrolytes offer substantial advantages in cell dimensionality and commensurability, low temperature operation and thin film design. The above considerations suggest that lithium-polymer electrolyte systems are promising for high energy density batteries and should be the systems of choice for NASA and US Air Force applications. Polyelectrolytes (single ion conductors) are among most promising avenues for achieving a major breakthrough 'in the applicability of polymer- based electrolyte systems. Their major advantages include unit transference number for the cation, reduced cell polarization, minimal salt precipitation, and favorable electrolyte stability at interfaces. Our research is focused on synthesis, modeling and cell testing of single ion carriers, polyelectrolytes. During the first year of this project we attempted the synthesis of two polyelectrolytes. The synthesis of the first one, the poly(ethyleneoxide methoxy acrylateco-lithium 1,1,2-trifluorobutanesulfonate acrylate, was attempted few times and it was unsuccessful. We followed the synthetic route described by Cowie and Spence. The yield was extremely low and the final product could not be separated from the impurities. The synthesis of this polyelectrolyte is not described in this report. The second polyelectrolyte, comb polysiloxane polyelectrolyte containing oligoether and perfluoroether sidechains, was synthesized in sufficient quantity to study the range of properties such as thermal stability, Li- ion- conductivity and stability toward lithium metal. Also

  13. Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries

    Science.gov (United States)

    Zhang, Hong; Zhang, Yin; Xu, Tiange; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-10-01

    A microporous poly(m-phenylene isophthalamide) (PMIA) separator with high safety (high-heat resistance and self extinguishing), high porosity and excellent liquid electrolyte wettability was prepared by the traditional nonsolvent introduced phase separation process. Due to the high-heat resistance of PMIA material, the as-prepared separator exhibited a negligible thermal shrank ratio at 160 °C for 1 h. Meanwhile, benefiting from its high porosity and excellent wettability in liquid electrolyte, the liquid electrolyte uptake and the ionic conductivity of the separator were higher than that of the commercial PP-based separators. Furthermore, the cell assembled with this separator showed better cycling performance and superior rate capacity compared to those with PP-based separators. These results suggested that the PMIA separator is very attractive for high-heat resistance and high-power density lithium-ion batteries.

  14. LiNi0.8Co0.2O2-based high-power lithium-ion battery positive electrodes analyzed by X-ray photoelectron spectroscopy: 4. Following calendar-life test for 8 weeks at 50 °C, 60% state-of-charge (3.747 V)

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Daniel A; Haasch, Richard T.

    2017-01-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopy (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.

  15. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 3. Following calendar-life test for 12 weeks at 40 °C, 60% state-of-charge (3.747 V)

    Energy Technology Data Exchange (ETDEWEB)

    Haasch, Richard T.; Abraham, Daniel A.

    2016-12-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopy (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.

  16. Study on the L-H transition power threshold with RF heating and lithium-wall coating on EAST

    Science.gov (United States)

    Chen, L.; Xu, G. S.; Nielsen, A. H.; Gao, W.; Duan, Y. M.; Liu, H. Q.; Wang, L.; Li, M. H.; Wang, M.; Zhang, X. J.; Chen, R.; Wang, H. Q.; Sun, Z.; Ding, S. Y.; Yan, N.; Liu, S. C.; Shao, L. M.; Zhang, W.; Hu, G. H.; Li, J.; Zhang, L.; Wan, B. N.; the EAST Team

    2016-05-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency (RF) heating and lithium-wall coating is investigated experimentally on EAST for two sets of walls: an all carbon wall (C) and molybdenum chamber and a carbon divertor (Mo/C). For both sets of walls, a minimum power threshold P thr of ~0.6 MW was found when the EAST operates in a double null (DN) divertor configuration with intensive lithium-wall coating. When operating in upper single null (USN) or lower single null (LSN), the power threshold depends on the ion  ∇B drift direction. The low density dependence of the L-H power threshold, namely an increase below a minimum density, was identified in the Mo/C wall for the first time. For the C wall only the single-step L-H transition with limited injection power is observed whereas also the so-called dithering L-H transition is observed in the Mo/C wall. The dithering behaves distinctively in a USN, DN and LSN configuration, suggesting the divertor pumping capability is an important ingredient in this transition since the internal cryopump is located underneath the lower divertor. Depending on the chosen divertor configuration, the power across the separatrix P loss increases with neutral density near the lower X-point in EAST with the Mo/C wall, consistent with previous results in the C wall (Xu et al 2011 Nucl. Fusion 51 072001). These findings suggest that the edge neutral density, the ion  ∇B drift as well as the divertor pumping capability play important roles in the L-H power threshold and transition behaviour.

  17. Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells

    Science.gov (United States)

    Watanabe, Yuu; Kinoshita, Shin-ichi; Wada, Satoshi; Hoshino, Keiji; Morimoto, Hideyuki; Tobishima, Shin-ichi

    2008-05-01

    Sulfone-ester mixed solvent electrolytes were examined for 5 V-class high-voltage rechargeable lithium cells. As the base-electrolyte, sulfolane (SL)-ethyl acetate (EA) (1:1 mixing volume ratio) containing 1 M LiBF4 solute was investigated. Electrolyte conductivity, electrochemical stability, Li+ ion solvation behavior and cycleability of lithium electrode were evaluated. 13C NMR measurement results suggest that Li+ ions are solvated with both SL and EA. Charge-discharge cycling efficiency of lithium anode in SL-EA electrolytes was poor, being due to its poor tolerance for reduction. To improve lithium charge-discharge cycling efficiency in SL-EA electrolytes, following three trials were carried out: (i) improvement of the cathodic stability of electrolyte solutions by change in polarization through modification of solvent structure; isopropyl methyl sulfone and methyl isobutyrate were investigated as alternative SL and EA, respectively, (ii) suppression of the reaction between lithium and electrolyte solutions by addition of low reactivity surfactants of cycloalkanes (decalin and adamantane) or triethylene glycol derivatives (triglyme, 1,8-bis(tert-butyldimethylsilyloxy)-3,6-dioxaoctane and triethylene glycol di(methanesulfonate)) into SL-EA electrolytes, and (iii) change in surface film by addition of surface film formation agent of vinylene carbonate (VC) into SL-EA electrolytes. These trials made lithium cycling behavior better. Lithium cycling efficiency tended to increase with a decrease in overpotential. VC addition was most effective for improvement of lithium cycling efficiency among these additives. Stable surface film is formed on lithium anode by adding VC and the resistance between anode/electrolyte interfaces showed a constant value with an increase in cycle number. When the electrolyte solutions without VC, the interfacial resistance increased with an increase in cycle number. VC addition to SL-EA was effective not only for Li/LiCoO2 cell with charge

  18. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  19. Nanoengineering Titania for High Rate Lithium Storage: A Review

    Institute of Scientific and Technical Information of China (English)

    Chunhai Jiang; Jinsong Zhang

    2013-01-01

    Nanostructured titania have been intensively investigated as anode materials of Li-ion batteries for their excellent high rate performance.The size effects of TiO2 polymorphs (mainly rutile,anatase and TiO2-B) on their electrochemical performance and the latest efforts in nanoengineering titania anodes through enhancing their ionic or electronic transportation or both are reviewed in this work.We suppose that micron-or submicronsized porous structures assembled by TiO2 nanoparticles,nanowires/nanotubes or nanosheets with a high percentage of exposing high reactive facets together with a conductive percolating network are ideal anodes not only for high rate lithium storage but also for high packing densities of the active materials.

  20. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.

    Science.gov (United States)

    Liu, Wen; Oh, Pilgun; Liu, Xien; Lee, Min-Joon; Cho, Woongrae; Chae, Sujong; Kim, Youngsik; Cho, Jaephil

    2015-04-07

    High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2 . However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.

  1. Lithium Ion Batteries Ageing Analysis when used in a PV Power Plants

    DEFF Research Database (Denmark)

    Beltran, H.; Swierczynski, Maciej Jozef; Aparicio, N.

    2012-01-01

    This paper analyzes the integration of lithium ion (Li-ion) batteries into large scale grid-connected PV plants. It performs a systematic analysis on both the operation improvement obtained by a PV+ES power plant and the ageing experienced by the Li-ion batteries used as Energy Storage (ES) system...... when operating under different energy management strategies (EMS). In this paper, the PV+ES power plant structure is presented and the selection of Li-on batteries as ES system (ESS) is justified. Moreover, the simulation model used for studying the Li-ion battery ageing is explained and tested...

  2. Effect of sintering temperature on thermoelectric power of mixed lithium-zinc ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ravinder, D. (Dept. of Physics, Coll. of Engineering, Osmania Univ., Hyderabad (India))

    1992-01-01

    Thermoelectric power of polycrystalline lithium-zinc ferrites having the compositional formula Li{sub 0.5-x/2}Zn{sub x}Fe{sub 2.5-x/2}O{sub 4} (where x = 0.2, 0.4, 0.6, 0.8, and 1.0), sintered at 1200, 1250 and, 1300degC has been investigated over the temperature range 300 to 450 K by the hot probe method. The Seebeck coefficient (Q) is found to decrease with increasing sintering temperature, whereas the carrier concentration (n) and the charge carrier mobility ({mu}) are found to increase with increasing sintering temperature. Among all the mixed lithium-zinc ferrites, the one having a zinc content of 0.6 mole has a minimum value of Seebeck coefficient and maximum value of charge carrier concentration. (orig.).

  3. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  4. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  5. Online Reliable Peak Charge/Discharge Power Estimation of Series-Connected Lithium-Ion Battery Packs

    Directory of Open Access Journals (Sweden)

    Bo Jiang

    2017-03-01

    Full Text Available The accurate peak power estimation of a battery pack is essential to the power-train control of electric vehicles (EVs. It helps to evaluate the maximum charge and discharge capability of the battery system, and thus to optimally control the power-train system to meet the requirement of acceleration, gradient climbing and regenerative braking while achieving a high energy efficiency. A novel online peak power estimation method for series-connected lithium-ion battery packs is proposed, which considers the influence of cell difference on the peak power of the battery packs. A new parameter identification algorithm based on adaptive ratio vectors is designed to online identify the parameters of each individual cell in a series-connected battery pack. The ratio vectors reflecting cell difference are deduced strictly based on the analysis of battery characteristics. Based on the online parameter identification, the peak power estimation considering cell difference is further developed. Some validation experiments in different battery aging conditions and with different current profiles have been implemented to verify the proposed method. The results indicate that the ratio vector-based identification algorithm can achieve the same accuracy as the repetitive RLS (recursive least squares based identification while evidently reducing the computation cost, and the proposed peak power estimation method is more effective and reliable for series-connected battery packs due to the consideration of cell difference.

  6. Advanced Cathode Material For High Energy Density Lithium-Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  7. Performance Characterization of High Energy Commercial Lithium-ion Cells

    Science.gov (United States)

    Schneidegger, Brianne T.

    2010-01-01

    The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.

  8. A long-life lithium ion sulfur battery exploiting high performance electrodes.

    Science.gov (United States)

    Moreno, Noelia; Agostini, Marco; Caballero, Alvaro; Morales, Julián; Hassoun, Jusef

    2015-10-04

    A novel lithium ion sulfur battery is formed by coupling an activated ordered mesoporous carbon-sulfur (AOMC-S) cathode and a nanostructured tin-carbon anode. The lithium ion cell has improved reversibility, high energy content and excellent cycle life.

  9. Superacid-Based Lithium Salts For Polymer Electrolytes

    Science.gov (United States)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  10. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  11. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  12. Developments of high-voltage all-solid-state thin-film lithium ion batteries

    Science.gov (United States)

    Schwenzel, J.; Thangadurai, V.; Weppner, W.

    Powders of Li 2MMn 3O 8 (M = Fe, Co) were prepared by glycine nitrate combustion from the corresponding metal nitrates. The reaction products were pressed into pellets with the addition of 20 wt.% excess LiNO 3, which were used as targets for e-beam evaporation. A high-voltage all-solid-state thin-film lithium ion battery was demonstrated by the sequential deposition of spinel structured Li 2MMn 3O 8 (M = Co, Fe) as positive electrode by e-beam evaporation, LiPON as electrolyte, and metallic Al as negative electrode by sputtering in N 2 and Ar gas mixtures with specific power and gas flow rates. A lithium ion conductivity of ∼10 -6 S cm -1 was observed for the optimized thin-film LiPON electrolyte prepared under the condition of a chamber pressure of 2.6 × 10 -2 mbar and a power of 60-100 W. The chemical diffusion coefficient (D ˜) was found to be in the range 10 -13 to 10 -12 cm 2 s -1 for any composition x of Li 2- xMMn 3O 8 (M = Fe, Co) in the range from 0.1 to 1.6 by employing the galvanostatic intermittent titration technique (GITT). AC impedance studies revealed a charge transfer resistance of 260-290 Ω, a double layer capacity of ∼45-70 μF for an electrode area of 6.7 cm 2.

  13. High flux lithium antineutrino source with variable hard spectrum

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The high flux antineutrino source with hard antineutrino spectrum based on neutron activation of 7Li and subsequent fast beta-decay (T 1/2 = 0.84 s) of the 8Li isotope with emission of antineutrino with energy up to 13 MeV - is discussed. Creation of the intensive isotope neutrino source of hard spectrum will allow to increase the detection statistics of neutrino interaction and it is especially urgent for oscillation experiments. The scheme of the proposed neutrino source is based on the continuous transport of the created 8Li to the neutrino detector, which moved away from the place of neutron activation. Analytical expressions for lithium antineutrino flux is obtained. The discussed source will ensure to increase the cross section for reactions with deuteron from several times to tens compare to the reactor antineutrino spectrum. An another unique feature of the installation is the possibility to vary smoothly the hardness of the antineutrino spectrum.

  14. Thermoelectric properties of high pressure synthesized lithium and calcium double-filled CoSb3

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2017-01-01

    Full Text Available Lithium and calcium are inefficient filling elements of CoSb3 at ambient pressure, but show nice filling behavior under high pressure. In this work, we synthesized Li/Ca double-filled CoSb3 with high pressure synthesis method. The products show the skutterudite structure of Im3¯ symmetry. Thermoelectric properties were effectively enhanced through Li and Ca co-filling. For the optimal Li0.08Ca0.18Co4Sb12 sample, the power factor maintains a relatively high value over the whole measurement temperature range and peaks at 4700μWm−1K−2, meanwhile the lattice thermal conductivity is greatly suppressed, leading to a maximal ZT of 1.18 at 700 K. Current work demonstrates high pressure synthesis as an effective method to produce multiple elemental filled CoSb3 skutterudites.

  15. Performance comparisons and resistance modeling for multi-segment electrode designs of power-oriented lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-S. [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Chang, K.-H. [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013, Taiwan (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Hu, C.-C., E-mail: cchu@che.nthu.edu.t [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013, Taiwan (China); Cheng, T.-T. [E-ONE MOLI ENERGY CORP, Southern Taiwan Science Park, No. 10, Dali 2nd Rd., Shanhua, Tainan 74144, Taiwan (China)

    2010-09-01

    This study investigates the influence of tab position and quantity as well as multi-segment electrodes in cell design for the performance of an 18650 power-oriented lithium-ion cell. The resistances of cells with traditional and center-tab designs are simulated by a simplified model. It shows that tab position significantly influences the cell resistance even when other components in the cell are fixed. The performances of both center-tab and traditional designs are compared by the cell direct-current resistance (DCR), body temperature, and 15 A cycling test to demonstrate the impact of cell design. The multi-tab design also shows better performance than the single-tab design for power cells; however there are diminishing returns for cells with three or more tabs as the additional tabs do not significantly reduce the cell resistance. The two-tab design is concluded to be the best choice for an 18650 power cell considering the process ability and overall high-rate performance. The difference in the waste power between the center-tab and the traditional designs, which is transformed into heat, is the main reason for the poor high-rate cycling performance as expected. Such modeling provides a quick design reference for a power cell with new size to get the most suitable electrode design.

  16. Photovoltaic power, lithium batteries and network connection; Energia fotovoltaica, baterias de litio e conexao a rede

    Energy Technology Data Exchange (ETDEWEB)

    Schmiegel, A.U.; Koch, K.; Meissner, A.; Knaup, P. [Voltwerk Electronics (Germany); Jehoulet, C.; Schuh, H. [Saft Batteries (France); Landau, M.; Braun, M.; Bundenbender, K.; Geipel, R.; Vachette, C. [Fraunhofer IWES (Germany); Sauer, D.-U.; Magnor, D. [RWTH Aachen University (Germany). Institute for Solar Energy Systems - ISEA; Marcel, J.-C. [Tenosol (France)

    2011-11-15

    The Sun-ion, the system described in this article, combines storage technology based on the lithium ions with the high efficiency photovoltaic inverters, and supports two philosophies for personal use: off-grid, where the loads are directly connected to the inverter; and connected to the network, which makes up their own consumption when the load balancing in the network connection is zero. Performance measurements demonstrate the feasibility of the concept.

  17. Positron-Lithium Atom and Electron-Lithium Atom Scattering Systems at Intermediate and High Energies

    Institute of Scientific and Technical Information of China (English)

    K. Ratnavelu; S. Y. Ng

    2006-01-01

    @@ The coupled-channel optical method is used to study positron scattering by atomic lithium at energies ranging from the ionization threshold to 60 eV. The present method simultaneously treats the target channels and the positronium (Ps) channels in the coupled-channel method together with the continuum effects via an ab-initio optical potential. Ionization, elastic and inelastic cross sections in target channels, and the total cross section are also reported and compared with other theoretical and experimental data. A comparative study with the corresponding electron-lithium data is also reported.

  18. Advances in lithium and calcium high-rate oxyhalide batteries

    Science.gov (United States)

    Hagan, W. P.; Green, S.; Sargeant, D. G.; Packer, R. K.

    The characteristics of lithium and calcium oxyhalide battery systems are considered, with special attention given to those of lithium-thionyl chloride and lithium-sulfuryl chloride cells. It is shown that, for a capability of above 50 mA/sq cm, lithium-sulfuryl chloride is the preferred cell chemistry, although calcium-thionyl chloride (which is acceptable up to 50 mA/sq cm) may be preferrable if thermal management is a problem. Lithium-sulfuryl chloride cells were found to exhibit a form of concentration polarization which is strongly dependent on interelectrode separation. In such cells, interelectrode separations have to be minimized if premature failure is to be avoided.

  19. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries

    Science.gov (United States)

    Yi, Ting-Feng; Mei, Jie; Zhu, Yan-Rong

    2016-06-01

    Spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most promising high voltage cathode materials for future application due to its advantages of large reversible capacity, high thermal stability, low cost, environmental friendliness, and high energy density. LNMO can provide 20% and 30% higher energy density than traditional cathode materials LiCoO2 and LiFePO4, respectively. Unfortunately, LNMO-based batteries with LiPF6-based carbonate electrolytes always suffer from severe capacity deterioration and poor thermostability because of the oxidization of organic carbonate solvents and decomposition of LiPF6, especially at elevated temperatures and water-containing environment. Hence, it is necessary to systematically and comprehensively summarize the progress in understanding and modifying LNMO cathode from various aspects. In this review, the structure, transport properties and different reported possible fading mechanisms of LNMO cathode are first discussed detailedly. And then, the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of LNMO-based batteries, including synthesis, control of special morphologies, element doping and surface coating etc., especially at elevated temperatures. Finally, an insight into the future research and further development of LNMO cathode is discussed.

  20. High power evaluation of X-band high power loads

    CERN Document Server

    Matsumoto, Shuji; Syratchev, Igor; Riddone, Germana; Wuensch, Walter

    2010-01-01

    Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and few units showed possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented

  1. Lithium isotope separation by laser

    Energy Technology Data Exchange (ETDEWEB)

    Arisawa, T.; Maruyama, Y.; Suzuki, Y.; Shiba, K.

    1982-01-01

    A lithium isotope separation was performed using a laser isotope separation method. It was found that the lithium atoms with a natural isotopic abundance enhanced its /sup 6/Li concentration up to over 90% by tuning the laser wavelength to the /sup 2/Psub(1/2) of /sup 6/Li. Too high power, however, leads to a loss of enrichment due to the power broadening effect which was analysed by the equation of motion of density matrices.

  2. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...... determined by the performance at the system worst case operating point which is usually at minimum input voltage and maximum power. Except for the non-regulating V6 converters, all published solutions exhibit a very significant drop in conversion efficiency at minimum input voltage and maximum output power...

  3. Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance.

    Science.gov (United States)

    Li, Xifei; Hu, Yuhai; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang

    2013-12-21

    How to tune graphene nanosheets (GNSs) with various morphologies has been a significant challenge for lithium ion batteries (LIBs). In this study, three types of GNSs with varying size, edge sites, defects and layer numbers have been successfully achieved. It was demonstrated that controlling GNS morphology and microstructure has important effects on its cyclic performance and rate capability in LIBs. Diminished GNS layer number, decreased size, increased edge sites and increased defects in the GNS anode can be highly beneficial to lithium storage and result in increased electrochemical performance. Interestingly, GNSs treated with a hydrothermal approach delivered a high reversible discharge capacity of 1348 mA h g(-1). This study demonstrates that the controlled design of high performance GNS anodes is an important concept in LIB applications.

  4. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon;

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  5. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  6. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  7. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    Science.gov (United States)

    Zhao, Chenglong; Wang, Qidi; Lu, Yaxiang; Hu, Yong-Sheng; Li, Baohua; Chen, Liquan

    2017-05-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A2MO3-family layered compounds (A  =  Li, Na; M  =  Mn4+, Ru4+, etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible.

  8. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. In chapter 2, a review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning...

  9. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kang-Shyang; Andreoli, Enrico; Curran, Seamus A. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Sutto, Thomas E. [Naval Research Labs-DC, Materials Science and Technology Division, Washington, DC 20375 (United States); Ajayan, Pulickel [Department of Materials Engineering, Rice University, Houston, TX 77005 (United States); McGrady, Karen A. [Marine Corps System Command, 50 Tech Parkway, Garrisonville, VA 22463 (United States)

    2010-02-01

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1-n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm{sup -1}, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 C, and do not begin to thermally decompose until over 300 C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li{sub x}CoO{sub 2} where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles. (author)

  10. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  11. Fabricating high performance lithium-ion batteries using bionanotechnology

    Science.gov (United States)

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-01

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li+ ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  12. Advancing High Energy Lithium-Sulfur Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-Ion batteries have been a main source of energy for many aerospace applications over the past decade. Future space missions are facing a number of...

  13. High energy lithium-oxygen batteries - Transport barriers and thermodynamics

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    We show that it is possible to achieve higher energy density lithium-oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical roles played by multiple dynamic processes that have hindered implementation of the lithium-oxygen battery. © 2012 The Royal Society of Chemistry.

  14. A Lithium-Air Battery with a High Energy Air Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will advance an efficient and lightweight energy storage device for Oxygen Concentrators by developing a high specific energy lithium-air cell....

  15. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  16. Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Haifang Ni

    2016-06-01

    Full Text Available Spinel lithium titanate (Li4Ti5O12 has the advantages of structural stability, however it suffers the disadvantages of low lithium-ion diffusion coefficient as well as low conductivity. In order to solve issues, we reported a simple method to prepare carbon-coated Li4Ti5O12/CNTs (C@Li4Ti5O12/CNTs using stearic acid as surfactant and carbon source to prepare carbon coated nanosized particles. The obtained Li4Ti5O12 particles of 100 nm in size are coated with the carbon layers pyrolyzed from stearic acid and dispersed in CNTs matrix homogeneously. These results show that the synthesized C@Li4Ti5O12/CNTs material used as anode materials for lithium ion batteries, presenting a better high-rate performance (147 mA h g−1 at 20 C. The key factors affecting the high-rate properties of the C@Li4Ti5O12/CNTs composite may be related to the synergistic effects of the CNTs matrix and the carbon- coating layers with conductivity enhancement. Additionally, the amorphous carbon coating is an effective route to ameliorate the rate capability of Li4Ti5O12/CNTs.

  17. Highly crystalline lithium titanium oxide sheets coated with nitrogen-doped carbon enable high-rate lithium-ion batteries.

    Science.gov (United States)

    Han, Cuiping; He, Yan-Bing; Li, Baohua; Li, Hongfei; Ma, Jun; Du, Hongda; Qin, Xianying; Yang, Quan-Hong; Kang, Feiyu

    2014-09-01

    Sheets of Li4Ti5O12 with high crystallinity are coated with nitrogen-doped carbon (NC-LTO) using a controlled process, comprising hydrothermal reaction followed by chemical vapor deposition (CVD). Acetonitrile (CH3 CN) vapor is used as carbon and nitrogen source to obtain a thin coating layer of nitrogen-doped carbon. The layer enables the NC-LTO material to maintain its sheet structure during the high-temperature CVD process and to achieve high crystallinity. Doping with nitrogen introduces defects into the carbon coating layer, and this increased degree of disorder allows fast transportation of lithium ions in the layer. An electrode of NC-LTO synthesized at 700 °C exhibits greatly improved rate and cycling performance due to a markedly decreased total cell resistance and enhanced Li-ion diffusion coefficient (D(Li)). Specific capacities of 159.2 and 145.8 mA h g(-1) are obtained using the NC-LTO sheets, at charge/discharge rates of 1 and 10 C, respectively. These values are much higher than values for LTO particles did not undergo the acetonitrile CVD treatment. A capacity retention value as high as 94.7% is achieved for the NC-LTO sheets after 400 cycles in a half-cell at 5 C discharge rate.

  18. Investigation of high-rate lithium-thionyl chloride cells

    Science.gov (United States)

    Hayes, Catherine A.; Gust, Steven; Farrington, Michael D.; Lockwood, Judith A.; Donaldson, George J.

    Chemical analysis of a commercially produced high-rate D-size lithium-thionyl cell was carried out, as a function of rate of discharge (1 ohm and 5 ohms), depth of discharge, and temperature (25 C and -40 C), using specially developed methods for identifying suspected minor cell products or impurities which may effect cell performance. These methods include a product-retrieval system which involves solvent extraction to enhance the recovery of suspected semivolatile minor chemicals, and methods of quantitative GC analysis of volatile and semivolatile products. The nonvolatile products were analyzed by wet chemical methods. The results of the analyses indicate that the predominant discharge reaction in this cell is 4Li + 2SOCl2 going to 4LiCl + S + SO2, with SO2 formation decreasing towards the end of cell life (7 to 12 Ah). The rate of discharge had no effect on the product distribution. Upon discharge of the high-rate cell at -40 C, one cell exploded, and all others exhibited overheating and rapid internal pressure rise when allowed to warm up to room temperature.

  19. Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery

    Science.gov (United States)

    2012-06-01

    Hardwick, and J.- M. Tarascon, Nature Materials, vol. 11, pp 19-29, 2012. 2. Linden , D. (Ed), Handbook of Batteries , 2nd Edition, Mc-Graw-Hill, New...AFRL-RQ-WP-TP-2015-0053 MESOPOROUS NITROGEN DOPED CARBON-GLASS CERAMIC CATHODE FOR HIGH PERFORMANCE LITHIUM-OXYGEN BATTERY (POSTPRINT...DOPED CARBON-GLASS CERAMIC CATHODE FOR HIGH PERFORMANCE LITHIUM-OXYGEN BATTERY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  20. Electrochemical Performance of Highly Mesoporous Nitrogen Doped Carbon Cathode in Lithium-Oxygen Batteries (Postprint)

    Science.gov (United States)

    2011-03-01

    Chem. Lett. 1 (2010) 2193–2203. [3] F.T. Wagner, B. Lakshmanan, M.F. Mathias, J. Phys. Chem. Lett. 1 (2010) 2204–2219. [4] D. Linden (Ed.), Handbook ...AFRL-RQ-WP-TP-2015-0052 ELECTROCHEMICAL PERFORMANCE OF HIGHLY MESOPOROUS NITROGEN DOPED CARBON CATHODE IN LITHIUM-OXYGEN BATTERIES ...01 March 2011 4. TITLE AND SUBTITLE ELECTROCHEMICAL PERFORMANCE OF HIGHLY MESOPOROUS NITROGEN DOPED CARBON CATHODE IN LITHIUM-OXYGEN BATTERIES

  1. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    OpenAIRE

    Yubao Sun; Gai Li; Yuanchu Lai; Danli Zeng; Hansong Cheng

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp 3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batterie...

  2. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-11-26

    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  3. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    J C Travers

    2010-11-01

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium. The most common experimental arrangements are described, including both continuous wave fibre laser systems with over 100 W pump power, and picosecond mode-locked, master oscillator power fibre amplifier systems, with over 10 kW peak pump power. These systems can produce broadband supercontinua with over 50 and 1 mW/nm average spectral power, respectively. Techniques for numerical modelling of the supercontinuum sources are presented and used to illustrate some supercontinuum dynamics. Some recent experimental results are presented.

  4. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries.

    Science.gov (United States)

    Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka; Morito, Haruhiko; Yamane, Hisanori; Nara, Hiroki; Osaka, Tetsuya; Kyotani, Takashi

    2015-01-28

    Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell.

  5. Preparation and characterization of high salts polymer electrolyte based on poly(lithium acrylate)

    Institute of Scientific and Technical Information of China (English)

    TANG Ai-dong; HUANG Ke-long; PAN Chun-yue; LU Cui-hong

    2005-01-01

    Novel polymer electrolytes were prepared by highly mixing poly(lithium acrylate)(PPALi) with eutectic lithium salts of lithium acetate and lithium nitrate.Poly(lithium acrylate) was preparaed by inverse emulsion polymerization from crylic acid and LiOH.Phase transition temperatures were measured for all the eutectic lithium of binary system samples as a function of the concentration of Li(CH3 COO),and the mixtures exhibit the lowest phase transition temperatures of (448±2) K at about 50% (mass fraction) Li(CH3 COO).Thermogravimetry(TG)and X-ray diffraction(XRD) analysis indicate the formation of a novel polymer-salt complex.The highest conductivity(approximately 4.97 ×10-5S·cm-1) is found at room temperature with the electrolyte composition of eutectic mixture of about 80% (mass fraction),poly(lithium acrylate) 20% under quickly cooling condition,which is 150%higher than that under natural cooling condition.

  6. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    . They will be used not only for transportation, but also for medium and short term storage as well as for frequency stabilization in intermittent grid scale energy sources such as solar and wind. Thus, the development of new cheaper and safer battery materials with high energy and power density is very important......Lithium ion battery technology is the heart in operating modern technology devices such as mobile phones and laptops. However, as our society is moving towards the utilization of sustainable energy sources, batteries can be foreseen to become an even more important part of the energy infrastructure...... for a successful worldwide energy transition. The understanding of structural and compositional changes of bulk electrodes in batteries is undoubtedly important. However, it is often transport of electrons and ions across and through interfaces [1] (e.g., between lithiated and delithiated domains) which limits...

  7. High-powered manoeuvres

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    This week, CERN received the latest new transformers for the SPS. Stored in pairs in 24-tonne steel containers, these transformers will replace the old models, which have been in place since 1981.     The transformers arrive at SPS's access point 4 (BA 4). During LS1, the TE-EPC Group will be replacing all of the transformers for the main converters of the SPS. This renewal campaign is being carried out as part of the accelerator consolidation programme, which began at the start of April and will come to an end in November. It involves 80 transformers: 64 with a power of 2.6 megavolt-amperes (MVA) for the dipole magnets, and 16 with 1.9 MVA for the quadrupoles. These new transformers were manufactured by an Italian company and are being installed outside the six access points of the SPS by the EN-HE Group, using CERN's 220-tonne crane. They will contribute to the upgrade of the SPS, which should thus continue to operate as the injector for the LHC until 2040....

  8. Superconductivity of lithium-doped hydrogen under high pressure.

    Science.gov (United States)

    Xie, Yu; Li, Quan; Oganov, Artem R; Wang, Hui

    2014-02-01

    The high-pressure lattice dynamics and superconductivity of newly proposed lithium hydrides (LiH2, LiH6 and LiH8) have been extensively studied using density functional theory. The application of the Allen-Dynes modified McMillan equation and electron-phonon coupling calculations show that LiH6 and LiH8 are superconductors with critical temperatures (T(c)) of 38 K at 150 GPa for LiH6 and 31 K at 100 GPa for LiH8, while LiH2 is not a superconductor. The T(c) of LiH6 increases rapidly with pressure and reaches 82 K at 300 GPa due to enhancement of the electron-phonon coupling and the increased density of states at the Fermi level, while the T(c) of LiH8 remains almost constant.

  9. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  10. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  11. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    Science.gov (United States)

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  12. Acute high dose lithium-induced exacerbation of obsessive compulsive symptoms.

    Science.gov (United States)

    Umesh, Shreekantiah; Sinha, Vinod Kumar

    2014-05-01

    Obsessive compulsive disorder (OCD) is a chronic neuropsychiatric disorder whose pathophysiology is linked to serotonergic dysfunction. More recently, the role of glutamate has also been posited. Lithium is used as an adjunctive for the treatment of OCD which is found to enhance serotonergic transmission. We present a case of OCD who was on stable dose of sertraline developed exacerbation of obsessive compulsive symptoms with acute high dose of lithium but improved after dose reduction.

  13. Silicon oxide based high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  14. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hassoun, J.; Panero, S.; Scrosati, B. [Department of Chemistry, University of Rome ' ' La Sapienza' ' , P.le Aldo Moro 5, 00185 Rome (Italy); Simon, P.; Taberna, P.L. [CIRIMAT-UMR 5085 - Universite Paul Sabatier, route de Narbonne, 31062 Toulouse, Cedex 4 (France)

    2007-06-18

    Ni{sub 3}Sn{sub 4} intermetallic electrodes prepared into a revolutionary nanostructure, obtained by electrodeposition on a nanoarchitectured Cu substrate, are described. This structure controls the volume stress that accompanies the electrochemical process yielding a performance rarely observed with lithium metal storage electrodes. The new electrode shows impressive electrochemical behavior and cycles in lithium cells for more than 200 cycles with a stable high capacity. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  16. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  17. High Power Betavoltaic Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will dramatically improve the performance of tritium-powered betavoltaic batteries through the development of a high-aspect ratio, expanded...

  18. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Osborne, T.H. [General Atomics, 3550 General Atomics Ct., San Diego, CA 92121 (United States); Bell, M.G.; Bell, R.E.; Boyle, D.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Applied Physics and Applied Math Dept., Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, 7000 East Ave, PO Box 808, Livermore, CA 94551 (United States)

    2015-08-15

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D{sub α} emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ{sub E} and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  19. EURISOL High Power Targets

    CERN Document Server

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  20. High Rate, Long Lifespan LiV3 O8 Nanorods as a Cathode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Zhongxue; Xu, Fei; Cao, Shunan; Li, Zhengfeng; Yang, Hanxi; Ai, Xinping; Cao, Yuliang

    2017-05-01

    LiV3 O8 nanorods with controlled size are successfully synthesized using a nonionic triblock surfactant Pluronic-F127 as the structure directing agent. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques are used to characterize the samples. It is observed that the nanorods with a length of 4-8 µm and diameter of 0.5-1.0 µm distribute uniformly. The resultant LiV3 O8 nanorods show much better performance as cathode materials in lithium-ion batteries than normal LiV3 O8 nanoparticles, which is associated with the their unique micro-nano-like structure that can not only facilitate fast lithium ion transport, but also withstand erosion from electrolytes. The high discharge capacity (292.0 mAh g(-1) at 100 mA g(-1) ), high rate capability (138.4 mAh g(-1) at 6.4 A g(-1) ), and long lifespan (capacity retention of 80.5% after 500 cycles) suggest the potential use of LiV3 O8 nanorods as alternative cathode materials for high-power and long-life lithium ion batteries. In particular, the synthetic strategy may open new routes toward the facile fabrication of nanostructured vanadium-based compounds for energy storage applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-03-02

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm(-2) ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High power ferrite microwave switch

    Science.gov (United States)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  3. A highly efficient polysulfide mediator for lithium-sulfur batteries

    Science.gov (United States)

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F.

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host—manganese dioxide nanosheets serve as the prototype—reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind ‘higher’ polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g-1 at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

  4. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  5. High Power Amplifier and Power Supply

    Science.gov (United States)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  6. High-G Verification of Lithium-Polymer (Li-Po) Pouch Cells

    Science.gov (United States)

    2016-05-19

    options are available with different sizes , capacities, and charge/discharge rates. Lithium batteries are one available option that comes in many form...telemetry systems, it is the size constraint requirements that drives the choice of battery . The batteries investigated in this study that meet the...systems’ power and size requirements are the Hyperion G3CX 240 mAH and Power Stream GMB052025 (also known as GM052025). Details of the batteries are

  7. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses......This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...

  8. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability.

  9. The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study

    Science.gov (United States)

    Zhang, Congyan; Yu, Ming; Anderson, George; Ravinath Dharmasena, Ruchira; Sumanasekera, Gamini

    2017-02-01

    To completely understand lithium adsorption, diffusion, and capacity on the surface of phosphorene and, therefore, the prospects of phosphorene as an anode material for high-performance lithium-ion batteries (LIBs), we carried out density-functional-theory calculations and studied the lithium adsorption energy landscape, the lithium diffusion mobility, the lithium intercalation, and the lithium capacity of phosphorene. We also carried out, for the very first time, experimental measurement of the lithium capacity of phosphorene. Our calculations show that the lithium diffusion mobility along the zigzag direction in the valley of phosphorene was about 7 to 11 orders of magnitude faster than that along the other directions, indicating its ultrafast and anisotropic diffusivity. The lithium intercalation in phosphorene was studied by considering various Li n P16 configurations (n = 1-16) including single-side and double-side adsorptions. We found that phosphorene could accommodate up to a ratio of one Li per P atom (i.e. Li16P16). In particular, we found that, even at a high Li concentration (e.g. x = 1 in Li x P), there was no lithium clustering, and the structure of phosphorene (when fractured) is reversible during lithium intercalation. The theoretical value of the lithium capacity for a monolayer phosphorene is predicted to be above 433 mAh g-1, depending on whether Li atoms are adsorbed on the single side or the double side of phosphorene. Our experimental measurement of the lithium capacity for few-layer phosphorene networks shows a reversible stable value of ˜453 mAh g-1 even after 50 cycles. Our results clearly show that phosphorene, compared to graphene and other two-dimensional materials, has great promise as a novel anode material for high-performance LIBs.

  10. High Energy Density Lithium Battery System with an Integrated Low Cost Heater Sub-System for Missions on Titan. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project seeks to develop a 500 Wh/kg Lithium primary battery for intended application as the primary power source on landers and probes for future...

  11. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries.

    Science.gov (United States)

    Huang, Jia-Qi; Zhuang, Ting-Zhou; Zhang, Qiang; Peng, Hong-Jie; Chen, Cheng-Meng; Wei, Fei

    2015-03-24

    Lithium-sulfur batteries hold great promise for serving as next generation high energy density batteries. However, the shuttle of polysulfide induces rapid capacity degradation and poor cycling stability of lithium-sulfur cells. Herein, we proposed a unique lithium-sulfur battery configuration with an ultrathin graphene oxide (GO) membrane for high stability. The oxygen electronegative atoms modified GO into a polar plane, and the carboxyl groups acted as ion-hopping sites of positively charged species (Li(+)) and rejected the transportation of negatively charged species (Sn(2-)) due to the electrostatic interactions. Such electrostatic repulsion and physical inhibition largely decreased the transference of polysulfides across the GO membrane in the lithium-sulfur system. Consequently, the GO membrane with highly tunable functionalization properties, high mechanical strength, low electric conductivity, and facile fabrication procedure is an effective permselective separator system in lithium-sulfur batteries. By the incorporation of a permselective GO membrane, the cyclic capacity decay rate is also reduced from 0.49 to 0.23%/cycle. As the GO membrane blocks the diffusion of polysulfides through the membrane, it is also with advantages of anti-self-discharge properties.

  12. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries

    Science.gov (United States)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai

    2016-10-01

    To evaluate the continuous and instantaneous load capability of a battery, this paper describes a joint estimator for state-of-charge (SOC) and state-of-function (SOF) of lithium-ion batteries (LIB) based on Kalman filter (KF). The SOC is a widely used index for remain useful capacity left in a battery. The SOF represents the peak power capability of the battery. It can be determined by real-time SOC estimation and terminal voltage prediction, which can be derived from impedance parameters. However, the open-circuit-voltage (OCV) of LiFePO4 is highly nonlinear with SOC, which leads to the difficulties in SOC estimation. To solve these problems, this paper proposed an onboard SOC estimation method. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery, where the OCV is regarded as a linearized function of SOC. Then, the system states are estimated based on the KF. Besides, the factors that influence peak power capability are analyzed according to statistical data. Finally, the performance of the proposed methodology is demonstrated by experiments conducted on a LiFePO4 LIBs under different operating currents and temperatures. Experimental results indicate that the proposed approach is suitable for battery onboard SOC and SOF estimation.

  13. An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-01-01

    Full Text Available Open-circuit voltage (OCV is one of the most important parameters in determining state of charge (SoC of power battery. The direct measurement of it is costly and time consuming. This paper describes an adaptive scheme that can be used to derive OCV of the power battery. The scheme only uses the measurable input (terminal current and the measurable output (terminal voltage signals of the battery system and is simple enough to enable online implement. Firstly an equivalent circuit model is employed to describe the polarization characteristic and the dynamic behavior of the lithium-ion battery; the state-space representation of the electrical performance for the battery is obtained based on the equivalent circuit model. Then the implementation procedure of the adaptive scheme is given; also the asymptotic convergence of the observer error and the boundedness of all the parameter estimates are proven. Finally, experiments are carried out, and the effectiveness of the adaptive estimation scheme is validated by the experimental results.

  14. Integrated high quality factor lithium niobate microdisk resonators

    CERN Document Server

    Wang, Cheng; Lin, Zin; Atikian, Haig A; Venkataraman, Vivek; Huang, I-Chun; Stark, Peter; Lončar, Marko

    2014-01-01

    Lithium Niobate (LN) is an important nonlinear optical material. Here we demonstrate LN microdisk resonators that feature optical quality factor ~ 100,000, realized using robust and scalable fabrication techniques, that operate over a wide wavelength range spanning visible and near infrared. Using our resonators, and leveraging LN's large second order optical nonlinearity, we demonstrate on-chip second harmonic generation with a conversion efficiency of 0.109 W-1.

  15. Nanocatalysis for Primary and Secondary High Energy Lithium Oxygen Cells

    Science.gov (United States)

    2011-04-01

    included emulsified Teflon (Fuel Cell Earth, 60 wt% in water), and mixtures of styrene butadiene latex ( SBR , Euclid Chemical Company) and sodium...They were, emulsified PTFE (60wt%), 2:1 (by weight) SBR /CMC blend, and lithium acrylate. Figure 43 Comarative perfomence of cahodes containing 6...the oxygen reduction reaction in fuel cell cathodes by nitrogen doped carbon (obtained via pyrolysis of N-containing polymers) has been well

  16. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    Science.gov (United States)

    2015-04-24

    Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries, cathode... key consideration for batteries used in vehicle applications, the rate capability, cyclability, and safety of LIBs have been identified as critical...diffraction planes ( Figure 1). With the intercalation of the Al13 Keggin pillars, the position of the 001 plane shifts to 6.7 degrees two-theta, along with

  17. High performance nickel-metal hydride and lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, U.; Kruger, F.J.; Kuempers, J.; Maul, M.; Niggemann, E.; Schoenfelder, H.H. [VARTA Batterie AG, Kelkheim (Germany)

    1997-12-31

    The development of high performance traction batteries is a key issue for the future market acceptance of electric and hybrid vehicles. The Nickel-Metal Hydride (NiMH) system is besides Lithium-Ion (Li-Ion) the most promising battery system for electric vehicles. NiMH batteries have already penetrated the consumer market worldwide. Due to its high design flexibility and robustness the NiMH battery system is an ideal candidate for the whole range of battery applications from small consumer cells up to large traction batteries. Because of its high power capability for charging and discharging, the NiMH system is regarded as the optimum battery system for hybrid vehicles. VARTA is developing three different NiMH product lines: high energy, high power and ultra-high power cells. The specific energy of these products exceeds 80 Wh/kg (high energy cells) and a specific power of more than 1000 W/kg (ultra high power cells) can be achieved. The most prominent feature of the Li-Ion battery system is its high gravimetric and volumetric energy density. Although still in the early stage of development, large prismatic Li-Ion cells reach specific energies of more than 120 Wh/kg and energy densities over 300 Wh/l. There is a predicted potential for a further increase of the specific energy of more than 30% and for the energy density of above 60% during the next 4 years. The system works within a wide temperature range of {minus}20 to +60 C and can run up to 1200 cycles. The Li-Ion system represents the latest battery technology. It is expected to be the dominating technology for electric vehicles and aerospace applications. Therefore, VARTA has developed large prismatic cells up to 240 Wh employing low cost manganese spinell cathodes and carbon anodes. This talk describes VARTA`s high performance NiMH and Li-Ion cells as well as complete batteries.

  18. Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries

    Science.gov (United States)

    Zhang, Min; Qiu, Yongfu; Han, Yi; Guo, Yan; Cheng, Faliang

    2016-08-01

    Nanostructure materials often achieve low capacity when the active material mass loading is high. In this communication, high mass-loading tungsten nitride nanowires (WNNWs) were fabricated on a flexible carbon cloth by hydrothermal method and post annealing. The prepared electrode exhibited remarkable cyclic stability and attractive rate capability for lithium storage. It delivers at a current density of 200 mA g-1, a high capacity of 418 mAh g-1, which is higher than that of conventional graphite. This research opens more opportunity for the fabrication of three-dimensional metal nitrides as negative electrode material for flexible lithium ion batteries.

  19. High-Average Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  20. Nano-structured electrocatalysts for high performance lithium sulfur batteries

    Science.gov (United States)

    Mosavati, Negar

    Ni nanoparticles has been investigated as a carbon-free cathode material for dissolved polysulfide Li-S battery. A series of Ni nanoparticles with nominal particle size of 20, 40, and 100 nm have been used as electrocatalysts, and the effect of particle size on Li-S battery performance has been investigated. In addition, graphene has been chosen as a support to anchor the Ni nanoparticles, and the synergetic effect of carbon material and Ni nanoparticles on Li-S battery electrochemical performance has been studied. The results indicated there is a strong particle size effect. Ni/graphene electrode exhibits a capacity of 753 mAh g-1 sulfur after 40 cycles due to its high conductivity and electrocatalytic activity toward polysulfide reduction reaction. This capacity is significantly higher than similar studies. Based on the understanding of the electrocathalytic effect of Ni and capacity fading mechanism, transition metal nitrides has been investigated as a new class of cathode materials. Titanium nitride (TiN) nanoparticle was studied as a novel cathode material for Li/dissolved polysulfide batteries. In addition, X-ray photoelectron spectroscopy (XPS) analysis was used to obtain a deeper understanding of the mechanism underlying polysulfide conversion reactions with TiN cathode, and during charge and discharge processes. TiN exhibited a superior performance in a Li/dissolved polysulfide battery configuration. Knowing the superior performance of TiN, the study was expanded to different transition metal nitrides to investigate the role of surface composition and morphology in enhancing the electrochemical performance of Li-S batteries. WN, Mo2N, and VN were synthesized and the electrochemical performance, surface composition, and oxidation/reduction mechanism of these cathodes electrodes were studied for lithium sulfur batteries. Understanding the fading mechanisms of dissolved polysulfide system for metal nitride cathodes, It was tried to enhance Li-S battery

  1. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yanyi; Liu Dawei; Zhang Qifeng [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); Yu Danmei [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Liu Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA 99352 (United States); Cao Guozhong, E-mail: gzcao@u.washington.ed [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States)

    2011-02-01

    This paper reports sol-gel derived nanostructured LiFePO{sub 4}/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO{sub 4}/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO{sub 4}/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO{sub 4} electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions.

  2. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanyi; Liu, Dawei; Zhang, Qifeng; Yu, Danmei; Liu, Jun; Cao, Guozhong

    2011-02-01

    This paper reports sol-gel derived nanostructured LiFePO4/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO4/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO4/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO4 electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions.

  3. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.

    Science.gov (United States)

    Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin

    2017-05-03

    The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g(-1) and good capacity retention of 802 mAh g(-1) after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g(-1) at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.

  4. Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries

    Science.gov (United States)

    Roscher, Michael A.; Vetter, Jens; Sauer, Dirk Uwe

    Lithium-ion cells (Li-ion) comprising lithium iron phosphate (LiFePO 4) based cathode active material are a promising battery technology for future automotive applications and consumer electronics in terms of safety, cycle and calendar lifetime and cost. Those cells comprise flat open circuit voltage (OCV) characteristics and long-term load history dependent cell impedance. In this work the special electric characteristics of LiFePO 4 based cells are elucidated, quantified and compared to Li-ion cells containing a competing cathode technology. Through pulse tests and partial cycle tests, performed with various olivine based cells, the cycling history dependency of the internal resistance and therefore on the power capability is shown. Hence, methods are illustrated to quantify this load history impact on the cells performance. Subsequently, methods to achieve a safe battery operation are elucidated. Furthermore strategies are given to obtain reliable information about the cells power capability, taking the mentioned properties into consideration.

  5. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ghosh, Arnab; Manjunatha, Revanasiddappa; Kumar, Rajat; Mitra, Sagar

    2016-12-14

    Lithium-sulfur batteries mostly suffer from the low utilization of sulfur, poor cycle life, and low rate performances. The prime factors that affect the performance are enormous volume change of the electrode, soluble intermediate product formation, poor electronic and ionic conductivity of S, and end discharge products (i.e., Li2S2 and Li2S). The attractive way to mitigate these challenges underlying in the fabrication of a sulfur nanocomposite electrode consisting of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic as well as electronic conductivity leading to a mechanically robust and mixed conductive (ionic and electronic conductive) sulfur electrode. Herein, we report a novel bottom-up approach to synthesize a unique freestanding, flexible cathode scaffold made of porous reduced graphene oxide, nanosized sulfur, and Mn3O4 nanoparticles, and all are three-dimensionally interconnected to each other by hybrid polyaniline/sodium alginate (PANI-SA) matrix to serve individual purposes. A capacity of 1098 mAh g(-1) is achieved against lithium after 200 cycles at a current rate of 2 A g(-1) with 97.6% of initial capacity at a same current rate, suggesting the extreme stability and cycling performance of such electrode. Interestingly, with the higher current density of 5 A g(-1), the composite electrode exhibited an initial capacity of 1015 mA h g(-1) and retained 71% of the original capacity after 500 cycles. The in situ Raman study confirms the polysulfide absorption capability of Mn3O4. This work provides a new strategy to design a mechanically robust, mixed conductive nanocomposite electrode for high-performance lithium-sulfur batteries and a strategy that can be used to develop flexible large power storage devices.

  6. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  7. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries

    Science.gov (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-01

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g-1 and 380 mA h g-1 are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  8. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries.

  9. New family of lithium salts for highly conductive nonaqueous electrolytes.

    Science.gov (United States)

    Barbarich, Thomas J; Driscoll, Peter F; Izquierdo, Suzette; Zakharov, Lev N; Incarvito, Christopher D; Rheingold, Arnold L

    2004-11-29

    New lithium salts of weakly coordinating anions were prepared by treating lithium imidazolates or LiN(CH3)2 with 2 equiv of BF(3). They are LiIm(BF3)2, Li 2-MeIm(BF3)2, Li 4-MeIm(BF3)2, LiBenzIm(BF3)2, Li 2-iPrIm(BF3)2, and LiN(CH3)2(BF3)2 (Im=imidazolate, Me=methyl, iPr=isopropyl, BenzIm=benzoimidazolate). The salts were characterized by NMR spectroscopy and mass spectrometry. The structure of LiBenzIm(BF3)2 consists of a dimeric centrosymmetric unit with each lithium atom forming a bridge between the two anions through one fluorine contact to each anion. The structure of a hydrate of LiN(CH3)2(BF3)2 consists of an infinite chain in which each anion chelates two different lithium atoms through Li-F bonds. The conductivities of electrolyte solutions of these salts were measured and are discussed in terms of different ion-pairing modes determined from the solid-state structures, the anion's ability to distribute charge, and solution viscosity. Organic carbonate solutions of LiIm(BF3)2 partially disproportionate at 85 degrees C forming LiBF4, LiBF2[Im(BF3)]2, and Li[(BF3)ImBF2ImBF2Im(BF3)], reaching equilibrium by 3 months at 85 degrees C but not disproportionating at room temperature after 9 months. A mechanism for the formation of these disproportionation products is proposed. The lower conductivity of the 1 M LiIm(BF3)2 solution that has undergone disproportionation is attributed to the formation LiBF4, which is less conductive, and LiBF2[Im(BF3)]2 and Li[(BF3)ImBF2ImBF2Im(BF3)], which increase solution viscosity.

  10. High voltage cathode compositions for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhonghua; Eberman, Kevin W

    2017-03-21

    A lithium transition metal oxide composition. The composition has the formula Li.sub.a[Li.sub.bNi.sub.cMn.sub.dCo.sub.e]O.sub.2, where a.gtoreq.0.9, b.gtoreq.0, c>0, d>0, e>0, b+c+d+e=1, 1.05.ltoreq.c/d.ltoreq.1.4, 0.05.ltoreq.e.ltoreq.0.30, 0.9.ltoreq.(a+b)/M.ltoreq.1.06, and M=c+d+e. The composition has an O3 type structure.

  11. Peapod-like Li3 VO4 /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors.

    Science.gov (United States)

    Shen, Laifa; Lv, Haifeng; Chen, Shuangqiang; Kopold, Peter; van Aken, Peter A; Wu, Xiaojun; Maier, Joachim; Yu, Yan

    2017-07-01

    Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li3 VO4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li3 VO4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g(-1) at 0.1 A g(-1) , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li3 VO4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li3 VO4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg(-1) at a power density of 532 W kg(-1) , revealing the potential for application in high-performance and long life energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  13. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  14. Energy evaluation of low-level control in UAVs powered by lithium polymer battery.

    Science.gov (United States)

    Gandolfo, Daniel C; Salinas, Lucio R; Serrano, Mario E; Toibero, Juan M

    2017-08-31

    Nowadays, the energetic cost of flying in electric-powered UAVs is one of the key challenges. The continuous evolution of electrical energy storage sources is overcome by the great amount of energy required by the propulsion system. Therefore, the on-board energy is a crucial factor that needs to be further analyzed. In this work, different control strategies applied to a generic UAV propulsion system are considered and a lithium polymer battery dynamic model is included as the propulsion system energy source. Several simulations are carried out for each control strategy, and a quantitative evaluation of the influence of each control law over the actual energy consumed by the propulsion system is reported. This energy, which is delivery by the battery, is next compared against a well-known control-effort-based index. The results and analysis suggest that conclusions regarding energy savings based on control effort signals should be drawn carefully, because they do not directly represent the actual consumed energy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. High performance nickel-metal hydride and lithium-ion batteries

    Science.gov (United States)

    Köhler, U.; Kümpers, J.; Ullrich, M.

    In comparison to pure electric vehicles (EV) the opportunities for hybrid electric vehicles (HEV) are much better, since range restrictions no longer apply and the interaction of the internal combustion engine and electrical drive bring increased energy efficiency and environmental friendliness. The batteries used in such applications must meet very high standards in terms of performance and service life. Although the battery capacity is smaller than for a purely EV, it needs to be able to generate far higher levels of power. The technical challenges of hybrid applications have led to the development of high-performance batteries. At the forefront of these is the nickel-metal hydride system (NiMH). With specific power and energy data in the range from 300 to 900 W/kg, 55 to 37 Wh/kg, respectively (based on cell weight), excellent charge efficiency and energy throughput levels of more than 10,000 times the nominal energy, the NiMH system comes very close to satisfying the needs of the HEV. Parallel developments with the lithium-ion system based on manganese spinel as cathode material show that, with specific power and energy levels above 1000 W/kg, 50 Wh/kg, respectively, this technology will also be able to play an important role in the future. Service life figures in terms of calendar life have been improved tremendously to about three years, but there is still a need for further improvement in order to meet the specifications of car manufacturers. For this reason, an increase of life span is the subject of intensive development work.

  16. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Science.gov (United States)

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2015-04-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features.

  17. In-operando high-speed tomography of lithium-ion batteries during thermal runaway.

    Science.gov (United States)

    Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R

    2015-04-28

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features.

  18. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  19. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Science.gov (United States)

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J.L.; Shearing, Paul R.

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  20. Nuclear quantum and electronic exchange-correlation effects on the high pressure phase diagram of lithium

    Science.gov (United States)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron character. However, increased core/valence electron overlap under compression leads to surprisingly complex behavior. Dense lithium is known to posses a maximum in the melting line, a metal to semiconductor phase transition around 80GPa, reemergent metallicity around 120GPa, and low coordination solid and liquid phases. In addition to its complex electronic structure at high pressure, the atomic mass of lithium is low enough that nuclear quantum effects could have a nontrivial impact on its phase diagram. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. Additionally, we have determined the robustness of previously predicted tetrahedral clustering in the dense liquid to the inclusion of nuclear quantum effects and approximate treatment of electronic exchange-correlation effects.

  1. Frequency control in power systems with high wind power penetration

    Energy Technology Data Exchange (ETDEWEB)

    Tarnowski, German Claudio [Technical Univ. of Denmark (Denmark). Centre for Electric Technology; Vestas Wind Systems A/S, Alsve (Denmark); Kjaer, Philip Carne [Vestas Wind Systems A/S, Alsve (Denmark); Oestergaard, Jacob [Technical Univ. of Denmark (Denmark). Centre for Electric Technology; Soerensen, Poul E. [Risoe National Laboratory for Sustainable Energy, Roskilde (Denmark). Wind Energy Dept.

    2010-07-01

    The fluctuating nature of wind power introduces several challenges to reliable operation of power system. With high wind power penetration, conventional power plants are displaced and wind speed fluctuations introduce large power imbalances which lead to power system frequency control and operational problems. This paper analysis the impact of wind power in the frequency control of power systems for different amount of controllable variable speed wind turbines. Real measurements from short term wind power penetration tests in a power system are shown and used to study the amount of total regulating power needed from conventional power plants. Dynamic simulations with validated model of the power system support the studies. The paper also presents control concepts for wind power plants necessary to achieve characteristic of frequency response and active power balancing similarly to conventional power plants, therefore allowing higher wind power penetration. As the power system dependency on wind power increases, wind power generation has to contribute with dynamic response and control actions similarly to conventional power plants. (orig.)

  2. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  3. High performance lithium insertion negative electrode materials for electrochemical devices

    Science.gov (United States)

    Channu, V. S. Reddy; Rambabu, B.; Kumari, Kusum; Kalluru, Rajmohan R.; Holze, Rudolf

    2016-11-01

    Spinel LiCrTiO4 oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50-10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO4 electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO4 shows higher specific capacity.This LiCrTiO4 is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm2. The specific capacity decreases with increasing current densities.

  4. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    Science.gov (United States)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  5. Carbon-Coated Fe3O4/VOx Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Zhi-Wei; Wen, Tao; Liang, Kuang; Jiang, Yi-Fan; Zhou, Xiao; Shen, Cong-Cong; Xu, An-Wu

    2017-02-01

    As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe3O4/VOx hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li(+). With the assistance of carbon coating, the obtained Fe3O4/VOx@C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe3O4/VOx@C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g(-1) after 400 cycles at a current density of 0.5 A g(-1). Moreover, a remarkable reversible capacity of 556 mAh g(-1) could be retained even at a current density of 2 A g(-1). This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.

  6. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ryou, Myung-Hyun; Park, Jung-Ki [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Lee, Yong Min [Department of Applied Chemistry, Hanbat National University, Daejeon, 305-719 (Korea, Republic of); Choi, Jang Wook [Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of)

    2011-07-19

    Polydopamine-treated polyethylene (PE) separators for high-power lithium ion batteries are developed. A simple dipping process makes the PE surfaces hydrophilic and thus enhances the power capabilities remarkably compared to those of the control cases with bare PE separators. The original mechanical and thermal properties of the PE separators are preserved. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Gunawardhana, Nanda; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Nakashima, Kenichi

    2012-03-28

    An efficient and simple protocol for synthesis of novel La(2)O(3) hollow nanospheres of size about 30 ± 2 nm using polymeric micelles is reported. The La(2)O(3) hollow nanospheres exhibit high charge capacity and cycling performance in lithium-ion rechargeable batteries (LIBs), which was scrutinized for the first time among the rare-earth oxides.

  8. Lithium batteries: Status, prospects and future

    Science.gov (United States)

    Scrosati, Bruno; Garche, Jürgen

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content.

  9. The Impact of Nanocomposite Materials on Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    Z.P.Guo; S.H.Ng; Z.W.Zhao; K.Konstantinov; H.K.Liu

    2007-01-01

    1 Results Lithiumion batteries have become the power source of choice for consumer electronic devices such as cell phones and laptop computers due to their high energy density and long cycle life. In addition,lithium-ion batteries are expected to be a major breakthrough in the hybrid vehicle field.Despite their successful commercial application,further performance improvement of the lithium ion battery is still required.Nanomaterials and nanotechnologies can lead to a new generation of lithium secondary...

  10. Sandwich-Structured Graphene-Fe3O4@Carbon Nanocomposites for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Li; Gao, Miaomiao; Yue, Wenbo; Jiang, Yang; Wang, Yuan; Ren, Yu; Hu, Fengqin

    2015-05-13

    Advanced anode materials for high power and high energy lithium-ion batteries have attracted great interest due to the increasing demand for energy conversion and storage devices. Metal oxides (e.g., Fe3O4) usually possess high theoretical capacities, but poor electrochemical performances owing to their severe volume change and poor electronic conductivity during cycles. In this work, we develop a self-assembly approach for the synthesis of sandwich-structured graphene-Fe3O4@carbon composite, in which Fe3O4 nanoparticles with carbon layers are immobilized between the layers of graphene nanosheets. Compared to Fe3O4@carbon and bulk Fe3O4, graphene-Fe3O4@carbon composite shows superior electrochemical performance, including higher reversible capacity, better cycle and rate performances, which may be attributed to the sandwich structure of the composite, the nanosized Fe3O4, and the carbon layers on the surface of Fe3O4. Moreover, compared to the reported graphene-Fe3O4 composite, the particle size of Fe3O4 is controllable and the content of Fe3O4 in this composite can be arbitrarily adjusted for optimal performance. This novel synthesis strategy may be employed in other sandwich-structured nanocomposites design for high-performance lithium-ion batteries and other electrochemical devices.

  11. Reviving the lithium metal anode for high-energy batteries

    Science.gov (United States)

    Lin, Dingchang; Liu, Yayuan; Cui, Yi

    2017-03-01

    Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

  12. Hollow-Cuboid Li3VO4/C as High-Performance Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Changkun; Liu, Chaofeng; Nan, Xihui; Song, Huanqiao; Liu, Yaguang; Zhang, Cuiping; Cao, Guozhong

    2016-01-13

    Li3VO4 has been demonstrated to be a promising anode material for lithium-ion batteries with a low, safe voltage and large capacity. However, its poor electronic conductivity hinders its practical application particularly at a high rate. This work reports that Li3VO4 coated with carbon was synthesized by a one-pot, two-step method with F127 ((PEO)100-(PPO)65-(PEO)100) as both template and carbon source, yielding a microcuboid structure. The resulting Li3VO4/C cuboid shows a stable capacity of 415 mAh g(-1) at 0.5 C and excellent capacity stability at high rates (e.g., 92% capacity retention after 1000 cycles at 10 C = 4 A g(-1)). The lithiation/delithiation process of Li3VO4/C was studied by ex situ X-ray diffraction and Raman spectroscopy, which confirmed that Li3VO4/C underwent a reversible intercalation reaction during discharge/charge processes. The excellent electrochemical performance is attributed largely to the unique microhollow structure. The voids inside hollow structure can not only provide more space to accommodate volume change during discharge/charge processes but also allow the lithium ions insertion and extraction from both outside and inside the hollow structure with a much larger surface area or more reaction sites and shorten the lithium ions diffusion distance, which leads to smaller overpotential and faster reaction kinetics. Carbon derived from F127 through pyrolysis coats Li3VO4 conformably and thus offers good electrical conduction. The results in this work provide convincing evidence that the significant potential of hollow-cuboid Li3VO4/C for high-power batteries.

  13. High power, high beam quality regenerative amplifier

    Science.gov (United States)

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  14. Lithium iron phosphate battery electrode integrity following high speed pulsed laser cutting

    Science.gov (United States)

    Lutey, Adrian H. A.; Fiorini, Maurizio; Fortunato, Alessandro; Carmignato, Simone

    2015-05-01

    Laser exposures are performed on lithium iron phosphate battery electrodes at with process parameters based on those leading to the smallest heat affected zone for low power laser exposure at . Scanning electron microscopy and Raman analysis are performed along the resulting cut edges to characterize macroscopic, chemical and microstructural changes resulting from laser exposure. The increase in velocity with respect to previous studies is found to limit macroscopic changes to areas directly exposed to the laser beam and greatly suppress or completely eliminate microstructural and chemical changes resulting from thermal conduction effects in the metallic conductor layers. These results confirm laser technology as a viable, more flexible solution to mechanical blanking devices for the cutting of lithium iron phosphate battery electrode films.

  15. High-power pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  16. Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries.

    Science.gov (United States)

    Gu, Xingxing; Tong, Chuan-Jia; Rehman, Sarish; Liu, Li-Min; Hou, Yanglong; Zhang, Shanqing

    2016-06-29

    Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.

  17. Debugging on High-voltage Power Supply,Focusing Power Supply and Magnetic Field Power Supply

    Institute of Scientific and Technical Information of China (English)

    TU; Rui

    2015-01-01

    High-voltage power supply,focusing power supply and magnetic field power supply are the main parts of the power supply system of the EMIS(Electro-Magnetic Isotope Separator)supplying the ion source.In 2015,a high-voltage power supply,power supply for focusing and

  18. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Shuru; Dai, Fang; Gordin, Mikhail L; Yu, Zhaoxin; Gao, Yue; Song, Jiangxuan; Wang, Donghai

    2016-03-18

    Lithium-sulfur (Li-S) batteries have recently received great attention because they promise to provide energy density far beyond current lithium ion batteries. Typically, Li-S batteries operate by conversion of sulfur to reversibly form different soluble lithium polysulfide intermediates and insoluble lithium sulfides through multistep redox reactions. Herein, we report a functional electrolyte system incorporating dimethyl disulfide as a co-solvent that enables a new electrochemical reduction pathway for sulfur cathodes. This pathway uses soluble dimethyl polysulfides and lithium organosulfides as intermediates and products, which can boost cell capacity and lead to improved discharge-charge reversibility and cycling performance of sulfur cathodes. This electrolyte system can potentially enable Li-S batteries to achieve high energy density.

  19. The responses of rainbow trout gills to high lithium and potassium concentrations in water.

    Science.gov (United States)

    Tkatcheva, Victoria; Holopainen, Ismo J; Hyvärinen, Heikki; Kukkonen, Jussi V K

    2007-11-01

    The objective of this study is to discern the effects of increased waterborne lithium and potassium on rainbow trout gill histology, lipid composition, and enzyme activity. The study aims to elucidate the effects of these ions in the laboratory in concentrations similar to those prevailing in a forest lake Poppalijärvi in a contaminated mining area in NW Russia. Under the lithium and potassium exposure, the fish were further stressed by high pH (8.2 as in Lake Poppalijärvi) and lack of food. These multiple stress conditions altered the gill membrane fluidity by increasing sphingomyelin (5.5+/-0.6 compared to 2.9+/-0.3% in the control) and reducing cholesterol (4+/-1 compared to 17+/-3 mg g(-1) in the control). The total ATPase activity tended to be higher in the lithium-potassium-exposed group (46+/-6 compared to 34+/-2 micromol Pi h(-1) mg(-1)protein in the control). Lithium toxicity was lowered here by the protective role of higher potassium contents.

  20. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator.

    Science.gov (United States)

    Kienle, Florian; Teh, Peh Siong; Lin, Dejiao; Alam, Shaif-Ul; Price, Jonathan H V; Hanna, D C; Richardson, David J; Shepherd, David P

    2012-03-26

    We report on a picosecond, green-pumped, lithium triborate optical parametric oscillator with record-high output power. It was synchronously pumped by a frequency-doubled (530 nm), pulse-compressed (4.4 ps), high-repetition-rate (230 MHz), fiber-amplified gain-switched laser diode. For a pump power of 17 W, a maximum signal and idler power of 3.7 W and 1.8 W was obtained from the optical parametric oscillator. A signal pulse duration of ~3.2 ps was measured and wide tunability from 651 nm to 1040 nm for the signal and from 1081 nm to 2851 nm for the idler was achieved.

  1. Fabrication of highly ordered porous nickel oxide anode materials and their electrochemical characteristics in lithium storage

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fengjuan [College of Communications and Electronics Engineering, Qiqihar University, 42 Wenhua Street, Qiqihar, Heilongjiang 161006 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Li, Qianqian [College of Communications and Electronics Engineering, Qiqihar University, 42 Wenhua Street, Qiqihar, Heilongjiang 161006 (China); Tao, Bairui, E-mail: tbr_sir@163.com [Computer Center, Qiqihar University, 42 Wenhua Street, Qiqihar, Heilongjiang 161006 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chu, Paul K. [Department of Physics and Material Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-05-01

    Highlights: • NiO/Si-MCP nanocomposites electrocatalysts as anodes in lithium ion batteries. • Si MCP itself is an excellent support for electrocatalyst. • The structure with high surface to volume ratio endows higher mass NiO nanopatricles. • The ordered channel and mesoporous structure permits liquid electrolyte flow easily. • This research may provide a meaning way in integratable lithium-ion batteries. - Abstract: The structure and electrochemical properties of silicon microchannel plates (MCP)-supported NiO nanocomposites (NiO/Si-MCP) synthesized by silicon micromachining, electroless plating, and thermal annealing are investigated as anodes in lithium ion batteries. Galvanostatic charge and discharge results indicate that the NiO/Si-MCP is capable of delivering a higher capacity than the bare nickel-oxide film. At a 1 C current, the NiO/Si-MCP nanocomposite film shows an enormous first discharge capacity of about 3190 mA g{sup −1} and charge capacity of 1977 mA g{sup −1}. After 15 cycles, the NiO/Si-MCP nanocomposite retains a reversible capacity of 1531 mA g{sup −1} with 63.7% of the capacity maintained in the 2nd cycle. The lithium storage capacity is maintained at ∼880 mA h g{sup −1} after 50 discharge/charge cycles and it is much larger than that of NiO and its composites. The enhanced electrochemical performance of the highly ordered three-dimensional materials is attributed to the synergistic effects offered by the silicon microchannel plates in the nickel oxide film subsequently facilitating electrolyte penetration, diffusion, and migration. The structure is promising anode materials in lithium-ion batteries.

  2. Lithium Germanate (Li2 GeO3 ): A High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Rahman, Md Mokhlesur; Sultana, Irin; Yang, Tianyu; Chen, Zhiqiang; Sharma, Neeraj; Glushenkov, Alexey M; Chen, Ying

    2016-12-23

    A simple, cost-effective, and easily scalable molten salt method for the preparation of Li2 GeO3 as a new type of high-performance anode for lithium-ion batteries is reported. The Li2 GeO3 exhibits a unique porous architecture consisting of micrometer-sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g(-1) after 300 cycles at 50 mA g(-1) . The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g(-1) (94 % retention) after 35 cycles of ascending steps of current in the range of 25-800 mA g(-1) and finally back to 25 mA g(-1) . This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon-coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jiangxuan [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Gordin, Mikhail L. [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Xu, Terrence [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Chen, Shuru [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Yu, Zhaoxin [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Sohn, Hiesang [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Lu, Jun [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Div.; Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Div.; Duan, Yuhua [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Wang, Donghai [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering

    2015-03-27

    Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAhg-1after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca.6 mAhcm-2) with a high sulfur loading of approximately 5 mgcm-2, which is ideal for practical applications of the lithium–sulfur batteries.

  4. Ultra High Energy Solid-State Batteries for Next Generation Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of lithium (Li) metal as an anode material has emerged as one highly attractive option for achieving high specific energy due to lithium having the highest...

  5. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    Science.gov (United States)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  6. Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate.

    Science.gov (United States)

    Qiu, Wentao; Ndao, Abdoulaye; Vila, Venancio Calero; Salut, Roland; Courjal, Nadège; Baida, Fadi Issam; Bernal, Maria-Pilar

    2016-03-15

    In this Letter, we report a Fano resonance-based highly sensitive and compact temperature sensor fabricated on thin film lithium niobate (TFLN) Suzuki phase lattice (SPL) photonic crystal. The experimental sensitivity is estimated to be 0.77 nm/°C with a photonic crystal size of only 25  μm × 24  μm. This sensitivity is 38 times larger than the intrinsic one of lithium niobate which is 0.02 nm/°C. The demonstrated sharp and high extinction ratio characteristics of the Fano lineshape resonance could be an excellent candidate in developing a high sensitivity temperature sensor, electric field sensor, etc.

  7. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  8. Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators

    CERN Document Server

    Wang, Renyuan

    2014-01-01

    Lithium Niobate (LN or just niobate) thin-film micro-photonic resonators have promising prospects in many applications including high efficiency electro-optic modulators, optomechanics and nonlinear optics. This paper presents free-standing thin-film lithium niobate photonic resonators on a silicon platform using MEMS fabrication technology. We fabricated a 35um radius niobate disk resonator that exhibits high intrinsic optical quality factor (Q) of 484,000. Exploiting the optomechanical interaction from the released free-standing structure and high optical Q, we were able to demonstrate acousto-optic modulation from these devices by exciting a 56MHz radial breathing mechanical mode (mechanical Q of 2700) using a probe.

  9. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance.

    Science.gov (United States)

    Ren, Jing; Zhang, Ye; Bai, Wenyu; Chen, Xuli; Zhang, Zhitao; Fang, Xin; Weng, Wei; Wang, Yonggang; Peng, Huisheng

    2014-07-21

    A stretchable wire-shaped lithium-ion battery is produced from two aligned multi-walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg(-1) or 17.7 mWh cm(-3) and power densities of 880 W kg(-1) or 0.56 W cm(-3), which are an order of magnitude higher than the densities reported for lithium thin-film batteries. These wire-shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire-shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large-scale applications.

  10. Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes

    Science.gov (United States)

    Yang, Cheng-Kai; Qi, Li-Ya; Zuo, Zicheng; Wang, Ru-Na; Ye, Meng; Lu, Jing; Zhou, Heng-Hui

    2016-11-01

    In this paper, the intrinsic impact of inner structure features on the electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathodes is for the first time systematically investigated. Three different spherical Ni0.6Co0.2Mn0.2(OH)2 precursors are successfully synthesized by controlling pH values and ammonia concentrations. Interestingly, via a further lithiation process, the final cathodes can gradually inherit the structural features, showing distinct particle arrangement and genetic orientation characteristics in the inner structures. Such a hereditary property can be well reined for customizing the grain-orientation, helping the growth of the inert crystal direction, reducing cation mixing and exposing the high active (100) or (010) lattice planes for lithiation/delithiation processes via an intrinsical way. The degree of grain-orientation of the primary particles turns out to be a critical factor in determining the long-term stability and power performances. Due to the reduced cation mixing degree and favorable lithium diffusion pathways, the ordered agglomerates with the grain growth along with [003] direction exhibit superior rate capability and good cycle stability.

  11. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Xiang, Pan; Wang, Daxiong; Zhou, Zhenwen; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-09-22

    Novel cellulose derivative CMC-Li was synthesized by cotton as raw material. The mechanism of the CMC-Li modified electrode materials by electrospinning was reported. CMC-Li/lithium iron phosphate (LiFePO4, LFP) composite fiber coated with LFP and CMC-Li nanofibers was successfully obtained by electrospinning. Then, CMC-Li/LFP nano-composite fiber was carbonized under nitrogen at a high temperature formed CNF/LFP/Li (CLL) composite nanofibers as cathode material. It can increase the contents of Li+, and improving the diffusion efficiency and specific capacity. The battery with CLL as cathode material retained close to 100% of initial reversible capacity after 200 cycles at 168 mAh g(-1), which was nearly the theoretical specific capacity of LFP. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscope (SEM) were characterizing material performance. The batteries have good electrochemical property, outstanding pollution-free, excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 4-(Trifluoromethyl)-benzonitrile: A novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery

    Science.gov (United States)

    Huang, Wenna; Xing, Lidan; Wang, Yating; Xu, Mengqing; Li, Weishan; Xie, Fengchao; Xia, Shengan

    2014-12-01

    In this work, 4-(Trifluoromethyl)-benzonitrile (4-TB) is used as a novel electrolyte additive for LiNi0.5Mn1.5O4 cathode of high voltage lithium ion battery. Charge-discharge tests show that the cyclic stability of LiNi0.5Mn1.5O4 is significantly improved by using 0.5 wt.% 4-TB. With using 4-TB, LiNi0.5Mn1.5O4 delivers an initial capacity of 133 mAh g-1 and maintains 121 mAh g-1 after 300 cycles with a capacity retention of 91%, compared to the 75% of that using base electrolyte (1 M LiPF6 in ethylene carbonate(EC)/dimethyl carbonate(DMC)). The results from linear sweep voltammetry, density functional theory calculations, electrochemical impedance spectroscopy, scanning electron microscope, energy dispersive spectroscopy, Fourier transform infrared, and inductively coupled plasma, indicate that 4-TB has lower oxidative stability than EC and DMC, and is preferentially oxidized on LiNi0.5Mn1.5O4 forming a low-impedance protective film, which prevents the subsequent oxidation decomposition of the electrolyte and suppresses the manganese dissolution from LiNi0.5Mn1.5O4.

  13. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.

    Science.gov (United States)

    Ye, Jianchao; Baumgaertel, Andreas C; Wang, Y Morris; Biener, Juergen; Biener, Monika M

    2015-02-24

    Much progress has recently been made in the development of active materials, electrode morphologies and electrolytes for lithium ion batteries. Well-defined studies on size effects of the three-dimensional (3D) electrode architecture, however, remain to be rare due to the lack of suitable material platforms where the critical length scales (such as pore size and thickness of the active material) can be freely and deterministically adjusted over a wide range without affecting the overall 3D morphology of the electrode. Here, we report on a systematic study on length scale effects on the electrochemical performance of model 3D np-Au/TiO2 core/shell electrodes. Bulk nanoporous gold provides deterministic control over the pore size and is used as a monolithic metallic scaffold and current collector. Extremely uniform and conformal TiO2 films of controlled thickness were deposited on the current collector by employing atomic layer deposition (ALD). Our experiments demonstrate profound performance improvements by matching the Li(+) diffusivity in the electrolyte and the solid state through adjusting pore size and thickness of the active coating which, for 200 μm thick porous electrodes, requires the presence of 100 nm pores. Decreasing the thickness of the TiO2 coating generally improves the power performance of the electrode by reducing the Li(+) diffusion pathway, enhancing the Li(+) solid solubility, and minimizing the voltage drop across the electrode/electrolyte interface. With the use of the optimized electrode morphology, supercapacitor-like power performance with lithium-ion-battery energy densities was realized. Our results provide the much-needed fundamental insight for the rational design of the 3D architecture of lithium ion battery electrodes with improved power performance.

  14. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg‑1 and 84.6 Wh kg‑1 at power densities of 731.25 W kg‑1 and 24375 W kg‑1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  15. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-01-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg−1 and 84.6 Wh kg−1 at power densities of 731.25 W kg−1 and 24375 W kg−1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode. PMID:28155853

  16. Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries.

    Science.gov (United States)

    Wang, Shih-Hong; Kuo, Ping-Lin; Hsieh, Chien-Te; Teng, Hsisheng

    2014-11-12

    The use of polyacrylonitrile (PAN) as a host for gel polymer electrolytes (GPEs) commonly produces a strong dipole-dipole interaction with the polymer. This study presents a strategy for the application of PAN in GPEs for the production of high performance lithium ion batteries. The resulting gel electrolyte GPE-AVM comprises a poly(acrylonitrile-co-vinyl acetate) copolymer blending poly(methyl methacrylate) as a host, which is swelled using a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvent. Vinyl acetate and methacrylate groups segregate the PAN chains in the GPE, which produces high ionic conductivity (3.5 × 10 (-3) S cm(-1) at 30 °C) and a wide electrochemical voltage range (>6.5 V) as well as an excellent Li(+) transference number of 0.6. This study includes GPE-AVM in a full-cell battery comprising a LiFePO4 cathode and graphite anode to promote ion motion, which reduced resistance in the battery by 39% and increased the specific power by 110%, relative to the performance of batteries based on LE. The proposed GPE-based battery has a capacity of 140 mAh g(-1) at a discharge rate of 0.1 C and is able to deliver 67 mAh g(-1) of electricity at 17 C. The proposed GPE-AVM provides a robust interface with the electrodes in full-cell batteries, resulting in 93% capacity retention after 100 charge-discharge cycles at 17 C and 63% retention after 1000 cycles.

  17. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  18. Optics assembly for high power laser tools

    Energy Technology Data Exchange (ETDEWEB)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  19. Novel Electrolytes for -1000C Lithium Battery Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires advanced high power primary lithium batteries for ultra low temperature applications. The key component that limits the performance at low temperature...

  20. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries

    Science.gov (United States)

    Abe, Hidetoshi; Kubota, Masaaki; Nemoto, Miyu; Masuda, Yosuke; Tanaka, Yuichi; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-12-01

    A high-capacity thick cathode has been studied as one of ways to improve the energy density of lithium secondary batteries. In this study, the LiFePO4 cathode with a capacity per unit area of 8.4 m Ah cm-2 corresponding to four times the capacity of conventional cathodes has been developed using a three-dimensional porous aluminum current collector called "FUSPOROUS". This unique current collector enables the smooth transfer of electrons and Li+-ions through the thick cathode, resulting in a good rate capability (discharge capacity ratio of 1.0 C/0.2 C = 0.980) and a high charge-discharge cycle performance (80% of the initial capacity at 2000th cycle) even though the electrode thickness is 400 μm. To take practical advantage of the developed thick cathode, conceptual designs for a 10-Ah class cell were also carried out using graphite and lithium-metal anodes.

  1. In situ neutron depth profiling: A powerful method to probe lithium transport in micro-batteries

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Labohm, F.; Mulder, M.; Niessen, R.A.H.; Mulder, F.M.; Notten, P.H.L.

    2011-01-01

    In situ neutron depth profiling (NDP) offers the possibility to observe lithium transport inside micro-batteries during battery operation. It is demonstrated that NDP results are consistent with the results of electrochemical measurements, and that the use of an enriched6LiCoO2 cathode offers more i

  2. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    SYSTEM DESIGN USING LITHIUM-ION BATTERIES AND ONE CHARGER PER BATTERY by Frank E. Filler December 2009 Thesis Advisor: Alexander L. Julian...Author: Frank E. Filler Approved by: Alexander L. Julian Thesis Advisor Roberto Crisiti Second Reader Jeffrey B. Knorr Chairman...Battery Management System BNC Bayonet Neill -Concelman CC Constant Current CCCV Constant Current Constant Voltage CV Constant Voltage D

  3. Aerospace Power Scholarly Research Program. Delivery Order 0011: Single Lithium Ion Conducting Polymer Electrolyte

    Science.gov (United States)

    2005-12-01

    thicknesses range in value from 400 to 700 m. To complete formation of the galvanic cell , lithium foil approximately 150 m thick and with an area of...0.785 cm2 was placed on top of the pressed electrolyte/cathode pellet. The entire galvanic cell fabricated in this configuration was hermetically

  4. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  5. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-06-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety.

  6. Interconnected Nanoflake Network Derived from a Natural Resource for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Cheng, Fei; Li, Wen-Cui; Lu, An-Hui

    2016-10-06

    Numerous natural resources have a highly interconnected network with developed porous structure, so enabling directional and fast matrix transport. Such structures are appealing for the design of efficient anode materials for lithium-ion batteries, although they can be challenging to prepare. Inspired by nature, a novel synthesis route from biomass is proposed by using readily available auricularia as retractable support and carbon coating precursor to soak up metal salt solution. Using the swelling properties of the auricularia with the complexation of metal ions, a nitrogen-containing MnO@C nanoflake network has been easily synthesized with fast electrochemical reaction dynamics and a superior lithium storage performance. A subsequent carbonization results in the in situ synthesis of MnO nanoparticles throughout the porous carbon flake network. When evaluated as an anode material for lithium-ion batteries, an excellent reversible capacity is achieved of 868 mA h g(-1) at 0.2 A g(-1) over 300 cycles and 668 mA h g(-1) at 1 A g(-1) over 500 cycles, indicating a high tolerance to the volume expansion. The approach investigated opens up new avenues for the design of high performance electrodes with highly cross-linked nanoflake structures, which may have great application prospects.

  7. Reserve lithium-thionyl chloride battery for high rate extended mission applications

    Science.gov (United States)

    Peabody, Mark; Brown, Robert A.

    An effort has been made to develop technology for lithium-thionyl chloride batteries whose emission times will extend beyond 20 min and whose power levels will be in excess of 1800 W, using the requirements for an existing silver-zinc battery's electrical requirements as a baseline. The target design encompasses separate 31- and 76-V sections; the design goal was the reduction of battery weight to 50 percent that of the present silver/zinc cell. A cell has been achieved whose mission can be conducted without container heat losses.

  8. Development of Nanoporous Carbide-Derived Carbon Electrodes for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    2011-09-01

    Advanced Energy Materials, vol. 22, pp. E28-E62, 2010. [2] D. Linden and T. B. Reddy, Handbook of Batteries , 3rd. New York: McGraw-Hill, 2002...Electrodes for High-Performance Lithium-Ion Batteries 5. FUNDING NUMBERS 6. AUTHOR( S ) Kamryn M. Sakamoto 7. PERFORMING ORGANIZATION NAME( S ) AND...5 accumulations, each at ~30 s ). 36 C. MACCOR BATTERY TESTER The button-type coin cells that were constructed were tested and cycled. The

  9. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Hui; Fu, Yanbao; Ling, Min; Jia, Zhe; Song, Xiangyun; Chen, Zonghai; Lu, Jun; Amine, Khalil; Liu, Gao

    2016-06-01

    A SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm(2) is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. By achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.

  10. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-01

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  11. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  12. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  13. Application of Stabilized Lithium Metal Powder (SLMP®) in graphite anode - A high efficient prelithiation method for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhihui; Fu, Yanbao; Zhang, Zhengcheng; Yuan, Shengwen; Amine, Khalil; Battaglia, Vincent; Liu, Gao

    2014-08-01

    Stabilized Lithium Metal Powder (SLMP®) was applied in graphite anode and the effects of this prelithiation method to cell performance were investigated. Performance of prelithiated cells was compared with that of regular graphite based cells. The first cycle capacity loss of SLMP prelithiated cell was largely reduced and the corresponding first cycle Coulombic efficiency was significantly improved. The graphite/NMC cell with SLMP prelithiation but without any standard cell formation process showed better cycle performance than that of none SLMP containing cell with standard formation process. Prelithiation of graphite electrode with SLMP promote stable solid electrolyte interface (SEI) formation on the surface of graphite anode. Application of SLMP in lithium-ion battery thus provides an effective method to enhance capacity, and promises a low cost SEI formation process. This also implies the potential use of other promising anode materials, such as Si and Sn that have large first cycle capacity loss, in commercial lithium-ion batteries.

  14. Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries

    Science.gov (United States)

    An, Yongling; Zhang, Zhen; Fei, Huifang; Xu, Xiaoyan; Xiong, Shenglin; Feng, Jinkui; Ci, Lijie

    2017-09-01

    Lithium metal is considered to be the optimal choice of next-generation anode materials due to its ultrahigh theoretical capacity and the lowest redox potential. However, the growth of dendritic and mossy lithium for rechargeable Li metal batteries lead to the possible short circuiting and subsequently serious safety issues during charge/discharge cycles. For the further practical applications of Li anode, here we report a facile method for fabricating robust interfacial layer via in-situ olefin polymerization. The resulting polymer layer effectively suppresses the formation of Li dendrites and enables the long-term operation of Li metal batteries. Using Li-S cells as a test system, we also demonstrate an improved capacity retention with the protection of tetramethylethylene-polymer. Our results indicate that this method could be a promising strategy to tackle the intrinsic problems of lithium metal anodes and promote the development of Li metal batteries.

  15. Lithium-Ion Performance and Abuse Evaluation Using Lithium Technologies 9Ah cell

    Science.gov (United States)

    Hall, Albert Daniel; Jeevarajan, Judith A.

    2006-01-01

    Lithium-ion batteries in a pouch form offer high energy density and safety in their designs and more recently they are offering performance at higher rates. Lithium Technologies 9Ah high-power pouch cells were studied at different rates, thermal environments, under vacuum and several different conditions of abuse including overcharge, over-discharge and external short circuit. Results of this study will be presented.

  16. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries

    Science.gov (United States)

    Mosavati, Negar; Chitturi, Venkateswara Rao; Salley, Steven O.; Ng, K. Y. Simon

    2016-07-01

    Lithium-sulfur (Lisbnd S) batteries could potentially revolutionize the rechargeable battery market due to their high energy density and low cost. However, low active material utilization, electrode volumetric expansion and a high rate of capacity fade due to the dissolution of lithium polysulfide intermediates in the liquid electrolyte are the main challenges facing further Lisbnd S battery development. Here, we enhanced Lisbnd S batteries active material utilization and decreased the volumetric expansion by using the lithium/dissolved polysulfide configuration. Moreover, a novel class of cathode materials, Titanium Nitride (TiN), was developed for polysulfide conversion reactions. The surface chemical environment of the TiN has been investigated by X-ray photoelectron spectroscopy (XPS) analysis. The existence of Ssbnd Tisbnd N bonding at the cathode electrode surface was observed, which indicates the strong interactions between TiN and polysulfides. Therefore, the TiN electrode retains the sulfur species on the cathode surface, minimizing the active material and surface area loss and consequently, improves the capacity retention. The resultant cells demonstrated a high initial capacity of 1524 mAh g-1 and a good capacity retention for 100 cycles at a C/10 current rate.

  17. Development of a 300 Amp-hr high rate lithium thionyl chloride cell

    Science.gov (United States)

    Boyle, Gerard H.

    1991-01-01

    The development of a high-rate lithium thionyl chloride cylindrical cell with parallel plate electrodes is discussed. The development was divided into three phases: phase 1, a 150 Amp/hour low rate (1 mA/sq cm) design; phase 2, a 25 Amp/hour high rate (5 mA/sq cm) design; and phase 3, a 300 Amp/hour high rate (5 mA/sq cm) design. The basic design is the same for all three cells. The electrodes are perpendicular to the axis of the cylinder. Multiple electrodes are bussed up the side of the cylinder, 180 deg apart allowing excellent anode and cathode utilization. It is a lithium limited design with excess electrolyte. The cathode is Shawinigan or Gulf Acetylene black with no catalyst. The electrolyte is 1.8 Molar lithium tetrachloroaluminate (LiAlCl4) in thionyl chloride. All cell cases are 304L Stainless Steel with a BS&B burst disc.

  18. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  19. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  20. ULTRA HIGH POWER TRANSMISSION LINE TECHNIQUES

    Science.gov (United States)

    The ultra-high power transmission line techniques including both failure mechanisms and component design are discussed. Failures resulting from...a waveguide. In view of the many advantages of the low loss mode in circular waveguide for ultra-high power levels, a mode transducer and a two...percent of the peak power of a standard rectangular wave guide. Water cooling is provided for high average power operation. Analysis of mode sup pression

  1. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shubin; Feng, Xinliang; Muellen, Klaus [Max Planck Institute for Polymer Research, Mainz (Germany)

    2011-08-16

    Sandwich-like, graphene-based mesoporous titania (G-TiO{sub 2}) nanosheets possess thin thickness, large aspect ratio, and mesoporous structure and show enhanced electrical conductivity. Such unique features provide numerous open channels for the access of electrolyte and facilitate the fast diffusion of lithium ions during the cycling processes. The graphene layer within each nanosheet can act as a mini-current collector, which is favorable for the fast electron transport in the electrode. As a consequence, G-TiO{sub 2} nanosheets exhibit a ultrahigh rate capability and excellent cycle performance, holding great potential as a high-rate anode material for lithium storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  3. Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries.

    Science.gov (United States)

    Zhao, Yan; Ren, Jun; Tan, Taizhe; Babaa, Moulay-Rachid; Bakenov, Zhumabay; Liu, Ning; Zhang, Yongguang

    2017-09-06

    The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm³∙g (−1) ) and large specific surface area (1261.7 m²∙g (−1) ). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g (−1) as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes.

  4. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  5. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  6. High power RF solid state power amplifier system

    Science.gov (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  7. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  8. High Power Performance of Rod Fiber Amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben

    2015-01-01

    An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....

  9. High rate lithium batteries safety testing for U.L. component recognition

    Science.gov (United States)

    Snuggerud, D. K.

    1985-12-01

    An evaluation is made of the safety-related aspects of high energy density lithium thionyl chloride batteries by subjecting them to extensive testing in that system configuration that has the highest hazard potential in virtue of its high voltage. The molten Li (at above 180 C) is violently reactive with the battery cathode material. Attention is given to designs which fuse current collectors to the Li at high heat values, and especially to a design that limits the movement of molten Li and thereby prevents internal short circuits. Results of safety tests concerned with battery operation in military applications are also noted.

  10. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    Science.gov (United States)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  11. Mixed Electronic and Ionic Conductor-Coated Cathode Material for High-Voltage Lithium Ion Battery.

    Science.gov (United States)

    Shim, Jae-Hyun; Han, Jung-Min; Lee, Joon-Hyung; Lee, Sanghun

    2016-05-18

    A lithium ionic conductor, Li1.3Al0.3Ti1.7(PO4)3 (LATP), is introduced as a coating material on the surface of Mg-doped LiCoO2 to improve electrochemical performances for high-voltage (4.5 V) lithium ion batteries. Structure, morphology, elemental distribution, and electrical properties of the materials are thoroughly characterized by SEM, TEM, EELS, EDS, and C-AFM. The coating layer is electrically conductive with the aid of Mg ions which are used as a dopant for the active materials; therefore, this mixed electronic ionic conductor strongly enhances the electrochemical performances of initial capacity, cycling property, and rate capability. The LATP coating layer also demonstrates very promising applicability for 4.4 V prismatic full cells with graphite anode, which correspond to the 4.5 V half-cells with lithium anode. The 2900 mA h full cells show 85% of capacity retention after 500 cycles and more than 60% after 700 cycles.

  12. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  13. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries.

    Science.gov (United States)

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-09-03

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10(-4) S cm(-1)) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety.

  14. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  15. Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery

    Science.gov (United States)

    Xu, XiaoLong; Deng, SiXu; Wang, Hao; Liu, JingBing; Yan, Hui

    2017-04-01

    High-voltage lithium-ion batteries (HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi0.5Mn1.5O4 (LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating, electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods.

  16. Band structure and phonon properties of lithium fluoride at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar 382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  17. Toward the design of high voltage magnesium–lithium hybrid batteries using dual-salt electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yingwen; Choi, Daiwon; Han, Kee Sung; Mueller, Karl T.; Zhang, Ji-Guang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2016-02-26

    We report a design of high voltage magnesium-lithium (Mg-Li) hybrid batteries through rational controls of the electrolyte chemistry, electrode materials and cell architectures. Prototype devices with LiFePO4 and LiMn2O4 cathodes exhibit voltages higher than 2.5 V (vs. Mg) and a high specific energy density of 246 Wh/kg under conditions that are amenable for practical applications. The successful demonstrations reported here could be a significant step forward for practical hybrid batteries.

  18. A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries

    Science.gov (United States)

    Si, Q.; Hanai, K.; Ichikawa, T.; Hirano, A.; Imanishi, N.; Takeda, Y.; Yamamoto, O.

    The electrochemical performance of a composite of nano-Si powder and a pyrolytic carbon of polyvinyl chloride (PVC) with carbon nanofiber (CNF) was examined as an anode for lithium-ion batteries. CNF was incorporated into the composite by two methods; direct mixing of CNF with the nano-Si powder coated with carbon produced by pyrolysis of PVC (referred to as Si/C/CNF-1) and mixing of CNF, nano-Si powder, and PVC with subsequent firing (referred to as Si/C/CNF-2). The external Brunauer-Emmett-Teller (BET) surface area of Si/C/CNF-1 was comparable to that of Si/C/CNF-2. The micropore BET surface area of Si/C/CNF-2 (73.86 m 2 g -1) was extremely higher than that of Si/C/CNF-1 (0.74 m 2 g -1). The composites prepared by both methods exhibited high capacity and excellent cycling stability for lithium insertion and extraction. A capacity of more than 900 mA h g -1 was maintained after 30 cycles. The coulombic efficiency of the first cycle for Si/C/CNF-1 was as low as 53%, compared with 73% for Si/C/CNF-2. Impedance analysis of cells containing these anode materials suggested that the charge transfer resistance for Si/C/CNF-1 was not changed by cycling, but that Si/C/CNF-2 had high charge transfer resistance after cycling. A composite electrode prepared by mixing Si/C/CNF-2 and CNF exhibited a high reversible capacity at high rate, excellent cycling performance, and a high coulombic efficiency during the first lithium insertion and extraction cycles.

  19. Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong, E-mail: apcdwang@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Ren, Jianguo [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Chen, Hao [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Yi [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073 (China); Ostrikov, Kostya [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Manufacturing Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhang, Wenjun [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China)

    2016-04-15

    Silicon has been considered as one of the most promising anode materials for high-capacity lithium-ion batteries (LIBs) due to its ultrahigh theoretical capacity, abundance, and environmentally benign nature. Nonetheless, the severe break during the prolonged cycling results in poor electrochemical performance, which hinders its practical application. Herein, we report the synthesis of novel mesoporous silicon particles with a facile template method by using a magnesiothermic reduction for LIBs. The obtained silicon nanoparticles are highly porous with densely porous cavities (20–40 nm) on the wall, of which it presents good crystallization. Electrochemical measurements showed that the mesoporous silicon nanoparticles delivered a high reversible specific capacity of 910 mA h g{sup −1} at a high current density of 1200 mA g{sup −1} over 50 cycles. The specific capacity at such high current density is still over twofold than that of commercial graphite anode, suggesting that the nanoporous Si architectures is suitable for high-performance Si-based anodes for lithium ion batteries in terms of capacity, cycle life, and rate capacity. - Highlights: • Silica nanotubes were prepared with a facile template method. • Novel mesoporous silicon particles were obtained by magnesiothermic reduction. • High-Performance LIBs were achieved by using mesoporous Si particle Electrodes.

  20. High-speed Power Line Communications

    Directory of Open Access Journals (Sweden)

    Matthew N. O. Sadiku,

    2015-11-01

    Full Text Available This is the idea of using existing power lines for communication purposes. Power line communications (PLC enables network communication of voice, data, and video over direct power lines. High-speed PLC involves data rates in excess of 10 Mbps. PLC has attracted a lot of attention and has become an interesting subject of research lately.

  1. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT.

  2. High Capacity Nano-Composite Cathodes for Human-Rated Lithium-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-incremental improvements are necessary in lithium-ion batteries order to meet future space applications demands such as NASA's call for lithium-ion battery...

  3. Primary lithium cell life studies

    Science.gov (United States)

    Capulli, John; Donley, Sam; Deligiannis, Frank; Shen, David

    1990-01-01

    One solution for providing a truly independent power source is to package, within the critical subsystem element, a primary battery that can remain dormant for time periods as long as the mission life, which can be 10-15 years, maximum. When primary power from the spacecraft solar array/battery system is interrupted, the backup battery system, which is connected through a diode to the power input line, would automatically support the load to avoid a power interruption to the critical load for a time period long enough to ensure that ground control could access the satellite and correct the anomaly by sending appropriate commands to the spacecraft. Critical subsystems identified for the application are telemetry and command circuits, volatile computer memory, attitude control circuits, and some critical payloads. Due to volume packaging and weight restrictions that exist on most spacecraft, coupled with the long storage periods required, lithium cell technology was selected for the backup power source. Because of the high energy density (200-400 Wh/kg), long shelf life, and load capability, soluble cathode primary lithium technology was chosen. The most important lithium cell properties that require detail characterization for this application are capacity loss, shelf life, and the voltage delay mechanism. These are functions of storage time and temperature. During storage, a passive film builds up on the lithium electrode. The film protects the lithium electrode from progressive capacity decay but requires time to break down when a load is applied. This phenomenon results in a depressed voltage during the period of film breakdown which can last from fractions of a second to minutes.

  4. Laser beam welding of high strength aluminium-lithium alloys; Laserstrahlschweissen von hochfesten Aluminium-Lithium Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Enz, Josephin

    2012-07-01

    The present development in aircraft industry determined by the demand for a higher cost-effectiveness. Laser beam welding is one of the most promising joining technologies for the application in the aircraft industry through the considerable reduction of the production costs. Furthermore the weight of an aircraft structure can be reduced by the use of light and high strength aluminium alloys. This paper deals with the development of a process for the laser beam welding of a skin-stringer-joint where the Al-Li-alloy AA2196 is used as stringer material and the Al-Li-alloy AA2198 is used as skin and stringer material. By the use of design of experiments the optimal welding process parameters for different material combinations were determined which will be used for the welding of a 5-stringer panel. Therefore the weld seams of the joints were tested for irregularities and microstructural characteristics. In addition several mechanical tests were performed, which define the quality of the welded joint. Furthermore the influence of the oxide layer and the welding preparation on the welding performance was investigated. (orig.) [German] Die derzeitigen Entwicklungen im Flugzeugbau werden durch die allgemeine Forderung nach einer Steigerung der Wirtschaftlichkeit bestimmt. Das Laserstrahlschweissen ist dabei eines der vielversprechendsten Fuegeverfahren fuer die Anwendung im Flugzeugbau durch das die Herstellungskosten deutlich reduziert werden koennen. Zudem kann durch die Verwendung von leichten und hochfesten Aluminium-Legierungen das Gewicht einer Flugzeugstruktur zusaetzlich reduziert werden. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Prozesses zum Laserstrahlschweissen einer Skin-Stringer-Verbindung aus den Aluminium-Lithium-Legierungen AA2196 (als Stringer-Werkstoff) und AA2198 (als Skin- und Stringer-Werkstoff). Unter Verwendung der statistischen Versuchsplanung wurden die optimalen Einstellungen der Schweissprozessparameter fuer die

  5. A high conductivity oxide–sulfide composite lithium superionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Rangasamy, Ezhiylmurugan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science; Sahu, Gayatri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science; Keum, Jong Kahk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science; Rondinone, Adam J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science; Dudney, Nancy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Liang, Chengdu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science

    2014-01-14

    We fabricated a hybrid superionic conductor using the space charge effect between the LLZO and LPS interfaces. This space-charge effect resulted in an improvement over the individual bulk conductivities of the two systems. Sample with higher weight fractions of LLZO are limited by the porosity and grain boundary resistance arising from non-sintered membranes. Furthermore, by combining the properties of LLZO and LPS, the high temperature sintering step has been avoided thus facilitating easier materials processing. The interfacial resistances were also measured to be minimal at ambient conditions. Our procedure thus opens a new avenue for improving the ionic conductivity and electrochemical properties of existing solid state electrolytes. High frequency impedance analyses could aid in resolving the ionic conductivity contributions from the space charge layer in the higher conducting composites while mechanical property investigations could illustrate an improvement in the composite electrolyte in comparison with the crystalline LPS membranes.

  6. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.

    Science.gov (United States)

    Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming

    2013-06-25

    Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.

  7. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  8. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics.

    Science.gov (United States)

    Pu, Xiong; Li, Linxuan; Song, Huanqiao; Du, Chunhua; Zhao, Zhengfu; Jiang, Chunyan; Cao, Guozhong; Hu, Weiguo; Wang, Zhong Lin

    2015-04-17

    A novel integrated power unit realizes both energy harvesting and energy storage by a textile triboelectric nanogenerator (TENG)-cloth and a flexible lithium-ion battery (LIB) belt, respectively. The mechanical energy of daily human motion is converted into electricity by the TENG-cloth, sustaining the energy of the LIB belt to power wearable smart electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. High Average Power Yb:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, L E; Beach, R J; Payne, S A

    2001-05-23

    We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.

  11. High temperature flow behaviour of SiC reinforced lithium aluminosilicate composites

    Indian Academy of Sciences (India)

    Santanu Das; V S R Murthy; G S Murty

    2001-04-01

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline phase. Further, with the addition of 40 vol.% SiC additions, the strain rate sensitivity of flow stress decreased. While the activation energy for flow in LAS was 300 kJ/mole, it increased to 995 kJ/mole with the addition of 40 vol.% SiC reinforcements.

  12. High resolution x-ray investigation of periodically poled lithium tantalate crystals with short periodicity

    CERN Document Server

    Bazzan, Marco; Argiolas, Nicola; Busacca, Alessandro C; Oliveri, Roberto L; Stivala, Salvatore; Curcio, Luciano; Sanseverino, Stefano Riva; 10.1063/1.3264620

    2012-01-01

    Domain engineering technology in lithium tantalate is a well studied approach for nonlinear optical applications. However, for several cases of interest, the realization of short period structures (< 2 \\mu m) is required, which make their characterization difficult with standard techniques. In this work, we show that high resolution x-ray diffraction is a convenient approach for the characterization of such structures, allowing us to obtain in a nondestructive fashion information such as the average domain period, the domain wall inclination, and the overall structure quality.

  13. High-temperature electrical conductivity and electromechanical properties of stoichiometric lithium niobate

    OpenAIRE

    Ohlendorf, Gerd; Richter, Denny; Sauerwald, Jan; Fritze, Holger

    2016-01-01

    High temperature properties such as electrical conductivity (σ) and resonance behaviour of stoichiometric lithium niobate (LiNbO3) are determined in the temperature range from 20 to 950 °C. The activation energy of the conductivity is found to be 0.9 and 1.7 eV in the temperature range from 500 to 750 °C and from 800 to 950 °C, respectively. During thermal treatments in ambient air up to 950 °C and back, the conductivity remains unchanged at a given temperature, i.e., the crystal is st...

  14. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    Science.gov (United States)

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  15. Trimethylsilylcyclopentadiene as a novel electrolyte additive for high temperature application of lithium nickel manganese oxide cathode

    Science.gov (United States)

    Tu, Wenqiang; Ye, Changchun; Yang, Xuerui; Xing, Lidan; Liao, Youhao; Liu, Xiang; Li, Weishan

    2017-10-01

    Electrolyte additives are necessary for the application of high potential cathode in high energy density lithium ion batteries, especially at elevated temperature. However, the electrolyte additives that can effectively suppress the dissolution of transition metal ions from cathode have seldom been developed up to date. In this work, we propose a novel electrolyte additive, trimethylsilylcyclopentadiene (SE), for high temperature application of a representative high potential cathode, lithium nickel manganese oxide (LiNi0.5Mn1.5O4). It is found that the dissolution of Mn and Ni from LiNi0.5Mn1.5O4 can be effectively suppressed by applying SE. With applying 0.25% SE, the dissolved amount of Mn and Ni is decreased by 97.4% and 98%, respectively, after 100 cycles at 55 °C. Correspondingly, the cyclic performance of LiNi0.5Mn1.5O4 is significantly improved. Physical characterizations and electrochemical measurements show that SE can be preferentially oxidized and generate a protective film on LiNi0.5Mn1.5O4. The resulting film inhibits the electrolyte decomposition and the transition metal ion dissolution.

  16. Very High Power THz Radiation Sources

    OpenAIRE

    Carr, G.L.; Martin, M. C.; McKinney, W.R.; Jordan, K.; Neil, G. R.; Williams, G. P.

    2003-01-01

    We report the production of high power (20watts average, ∼ 1 Megawatt peak) broadbandTHz light based on coherent emission fromrelativistic electrons. Such sources areideal for imaging, for high power damagestudies and for studies of non-linearphenomena in this spectral range. Wedescribe the source, presenting theoreticalcalculations and their experimentalverification. For clarity we compare thissource with one based on ultrafast lasertechniques.

  17. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui

    2014-01-01

    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  18. High power laser perforating tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  19. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering.

    Science.gov (United States)

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-08-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.

  20. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  1. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile.

    Science.gov (United States)

    Shibata, Y; Manabe, T; Kajita, S; Ohno, N; Takagi, M; Tsuchiya, H; Morisaki, T

    2014-09-01

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ~4 × 10(19) m(-2) s(-1) when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  2. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results......The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...

  3. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V

    2015-01-01

    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  4. High temperature power electronics for space

    Science.gov (United States)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  5. Toxicity of materials used in the manufacture of lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  6. Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Essehli, R., E-mail: essehli.rachid@yahoo.fr [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); ESECO SYSTEMS 270 rue Thomas Edison, Atelier Relais No 6, 34400 Lunel (France); El Bali, B. [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); Faik, A. [CIC energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava (Spain); Naji, M. [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Benmokhtar, S. [LCPGM, Laboratoire de Chimie-Physique Générale des Matériaux, Département de Chimie, Université Hassan II-Mohammedia, Faculté des Sciences Ben M’Sik, Casablanca (Morocco); Zhong, Y.R.; Su, L.W.; Zhou, Z. [Institute of New Energy Material Chemistry, Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China); Kim, J.; Kang, K. [Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Dusek, M. [Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8 (Czech Republic)

    2014-02-05

    Highlights: • Iron Titanium Phosphates as High-Specific-Capacity. • Electrode Materials for Lithium ion Batteries. • During the following cycles, good reversible capacity retention and better cyclabilit. • Ex-situ XRD analysis during the first discharge shows an amorphization of this anode material. -- Abstract: Two iron titanium phosphates, Fe{sub 0.5}TiOPO{sub 4} and Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3}, were prepared, and their crystal structures and electrochemical performances were compared. The electrochemical measurements of Fe{sub 0.5}TiOPO{sub 4} as an anode of a lithium ion cell showed that upon the first discharge down to 0.5 V, the cell delivered a capacity of 560 mA h/g, corresponding to the insertion of 5 Li’s per formula unit Fe{sub 0.5}TiOPO{sub 4}. Ex-situ XRD reveals a gradual evolution of the structure during cycling of the material, with lower crystallinity after the first discharge cycle. By correlating the electrochemical performances with the structural studies, new insights are achieved into the electrochemical behaviour of the Fe{sub 0.5}TiOPO{sub 4} anode material, suggesting a combination of intercalation and conversion reactions. The Nasicon-type Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} consists of a three-dimensional network made of corners and edges sharing [TiO{sub 6}] and [FeO{sub 6}] octahedra and [PO{sub 4}] tetrahedra leading to the formation of trimmers [FeTi{sub 2}O{sub 12}]. The first discharge of lithium ion cells based on Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} materials showed electrochemical activity of Ti{sup 4+}/Ti{sup 3+} and Fe{sup 2+}/Fe{sup 0} couples in the 2.5–1 V region. Below this voltage, the discharge profiles are typical of phosphate systems where Li{sub 3}PO{sub 4} is a product of the electrochemical reaction with lithium; moreover, the electrolyte solvent is reduced. An initial capacities as high as 1100 mA h g{sup −1} can be obtained at deep discharge. However, there is an irreversible capacity

  7. Powering the High-Luminosity Triplets

    CERN Document Server

    Ballarino, A

    2015-01-01

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  8. High power solid state switches

    Science.gov (United States)

    Gundersen, Martin

    1991-11-01

    We have successfully produced an optically triggered thyristor based in Gallium Arsenide, developed a model for breakdown, and are developing two related devices, including a Gallium Arsenide based static inductor thyristor. We are getting at the basic limitations of Gallium Arsenide for these applications, and are developing models for the physical processes that will determine device limitations. The previously supported gas phase work - resulting in the back-lighted thyratron (BLT) - has actually resulted in a very changed view of how switching can be accomplished, and this is impacting the design of important machines. The BLT is being studied internationally: in Japan for laser fusion and laser isotope separation. ITT has built a BLT that has switched 30 kA at 60 kV in testing at NSWC Dahlgren and the device is being commercialized by another American company. Versions of the switch are now being tested for excimer laser and other applications. Basically, the switch, which arose from pulse power physics studies at USC, can switch more current faster (higher di/dt), with less housekeeping, and with other advantageous properties. There are a large number of other new applications, include kinetic energy weapons, pulsed microwave sources and R.F. accelerators.

  9. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

    Science.gov (United States)

    Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-02-01

    A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery.

  10. High-Temperature Passive Power Electronics

    Science.gov (United States)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  11. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures  ⩽800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. These results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.

  12. CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Zhao, Jun; Shan, Wanfei; Xia, Xinbei; Xing, Lili; Xue, Xinyu, E-mail: xuexinyu@mail.neu.edu.cn

    2014-03-25

    Highlights: • CuO/GNS nanocomposites are synthesized by a hydrothermal method. • CuO/GNSs as LIB anodes exhibit much higher cyclability and capacity than CuO nanostructures. • Such excellent performances can be attributed to the synergistic effect between CuO and GNSs. -- Abstract: CuO/graphene nanocomposites are synthesized by a hydrothermal method, and their application as anodes of lithium-ion batteries has been investigated. CuO nanorods are uniformly coating on the surface of graphene nanosheets. CuO/graphene nanocomposites exhibit high cyclability and capacity. After 50 cycles, the capacity can maintain at 692.5 mA h g{sup −1} at 0.1 C rate (10 h per half cycle). Such a high performance can be attributed to the synergistic effect between graphene nanosheets and CuO nanorods. The present results indicate that CuO/graphene nanocomposites have potential applications in the anodes of lithium-ion battery.

  13. Synthesis of High-Quality α-MnSe Nanostructures with Superior Lithium Storage Properties.

    Science.gov (United States)

    Li, Na; Zhang, Yi; Zhao, Hongyang; Liu, Zhengqing; Zhang, Xinyu; Du, Yaping

    2016-03-21

    High-quality α-MnSe nanocubes were successfully prepared for the first time by an effective hot injection synthesis strategy. This approach was simple but robust and had been applied to the controllable synthesis of different sizes and diverse morphologies of α-MnSe nanostructures. The crystal phases, compositions, and microstructures of these nanostructures had been systematically characterized with a series of techniques. As a proof-of-concept application, the as-prepared α-MnSe nanocubes were used as an anode material for a lithium ion battery, which exhibited superior rate ability and ultralong cycle stability in half-cell and full-cell tests. Importantly, the phase transition from α-MnSe to β-MnSe during the electrochemical process was proved by ex situ X-ray diffraction and selected area electron diffraction. The excellent electrochemical performance of α-MnSe endowed its potential as an anode material candidate for high performance lithium storage.

  14. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  15. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  16. A trilayer separator with dual function for high performance lithium-sulfur batteries

    Science.gov (United States)

    Song, Rensheng; Fang, Ruopian; Wen, Lei; Shi, Ying; Wang, Shaogang; Li, Feng

    2016-01-01

    In this article, we propose a trilayer graphene/polypropylene/Al2O3 (GPA) separator with dual function for high performance lithium-sulfur (Li-S) batteries. Graphene is coated on one side of polypropylene (PP) separator, which functions as a conductive layer and an electrolyte reservoir that allows for rapid electron and ion transport. Then Al2O3 particles are coated on the other side to further enhance thermal stability and safety of the graphene coated polypropylene (GCP) separator, which are touched with lithium metal anode in the Li-S battery. The GPA separator shows good thermal stability after heating at 157 °C for 10 min while both GCP and PP separators showing an obvious shrinkage about 10%. The initial discharge specific capacity of Li-S coin cell with a GPA separator could reach 1067.7 mAh g-1 at 0.2C. After 100 discharge/charge cycles, it can still deliver a reversible capacity of as high as 804.4 mAh g-1 with 75% capacity retention. The pouch cells further confirm that the trilayer design has great promise towards practical applications.

  17. Preparation of lithium ferrite nanoparticles by high energy ball milling and characterizations

    Directory of Open Access Journals (Sweden)

    J. Touthang

    2016-11-01

    Full Text Available Ferrites are ferrimagnetic ceramic materials with inherent useful electromagnetic properties. Of them, spinelstructured ferrites are promising materials for microwave device applications; stress/torsion sensors and energy storage applications like anode materials in lithium batteries, fuel cells, solar cells etc. Nanostructured spinels further have high and wide scope of potential applications. In the present study, two different types of varied sized ferrimagnetic lithium ferrite spinel nanoparticles prepared using chemical sol-gel auto-combustion method were chosen. The prepared spinel particles were heated at 300°C for 1h. After heating the powders were milled using a High Energy Ball Mill for 30 minutes to further grind the particles and then subjected to various characterizations. Structural characterization was done using X-Ray Diffraction Method (XRD. The study revealed the spinel structure of these samples. Structural parameter such as lattice constant was determined using XRD data and found that the lattice parameter agrees with the standard data. DLS study found the agglomerations of the nanoparticles. The synthesized nanospinel particles were also characterized by the UVVis Spectroscopy, the Fourier Transform Infrared Spectroscopy (FTIR. Finally the magnetic hysteresis properties were studied using a Vibrating Sample Magnetometer (VSM.

  18. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  19. Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes

    Science.gov (United States)

    Yi, Zheng; Han, Qigang; Zan, Ping; Wu, Yaoming; Cheng, Yong; Wang, Limin

    2016-11-01

    A novel Sb/C polyhedra composite is successfully fabricated by a galvanic replacement reaction technique using metal organic frameworks as templates. In this composite, the ultrasmall Sb nanoparticles with an average size of 15 nm are homogeneously encapsulated into the carbon matrixes, forming a hierarchical porous structure with nanosized building blocks. Used as an anode material for lithium ion batteries, this composite exhibits high lithium storage capacities, excellent rate capability and superior cycle stability, higher than many reported results. Notably, a discharge capacity of 565 mAh g-1 at a current density of 0.2 A g-1 is delivered after 100 repeated cycles. Even at a high current density of 1 A g-1, a discharge capacity of 400.5 mAh g-1 is also maintained after 500 cycles. Such superior cycling stability and rate discharge performance of the designed Sb/C composite can be attributed to the synergistic effect between Sb nanoparticles and the porous carbon matrixes.

  20. A lithium superionic conductor.

    Science.gov (United States)

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-07-31

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  1. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)]. E-mail: ramesh@mail.utar.edu.my; Chai, M.F. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2007-05-15

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt in the polymer electrolyte complexes.

  2. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  3. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  4. High-power picosecond laser pulse recirculation.

    Science.gov (United States)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  5. Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety

    Science.gov (United States)

    Jung, Yun-Chae; Kim, Seul-Ki; Kim, Moon-Sung; Lee, Jeong-Hye; Han, Man-Seok; Kim, Duck-Hyun; Shin, Woo-Cheol; Ue, Makoto; Kim, Dong-Won

    2015-10-01

    Flexible ceramic separators based on Li+-conducting lithium lanthanum zirconium oxide are prepared as thin films and directly applied onto negative electrode to produce a separator-electrode assembly with good interfacial adhesion and low interfacial resistances. The ceramic separators show an excellent thermal stability and high ionic conductivity as compared to conventional polypropylene separator. The lithium-ion batteries assembled with graphite negative electrode, Li+-conducting ceramic separator and LiCoO2 positive electrode exhibit good cycling performance in terms of discharge capacity, capacity retention and rate capability. It is also demonstrated that the use of a ceramic separator can greatly improve safety over cells employing a polypropylene separator, which is highly desirable for lithium-ion batteries with enhanced safety.

  6. High Power Co-Axial Coupler

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, M. [Muons, Inc.; Dudas, A. [Muons, Inc.; Rimmer, Robert A. [JLAB; Guo, Jiquan [JLAB; Williams, R. Scott [JLAB

    2013-12-01

    A very high power Coax RF Coupler (MW-Level) is very desirable for a number of accelerator and commercial applications. For example, the development of such a coupler operating at 1.5 GHz may permit the construction of a higher-luminosity version of the Electron-Ion Collider (EIC) being planned at JLab. Muons, Inc. is currently funded by a DOE STTR grant to develop a 1.5-GHz high-power doublewindowcoax coupler with JLab (about 150 kW). Excellent progress has been made on this R&D project, so we propose an extension of this development to build a very high power coax coupler (MW level peak power and a max duty factor of about 4%). The dimensions of the current coax coupler will be scaled up to provide higher power capability.

  7. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate.

  8. High-power atomic xenon laser

    NARCIS (Netherlands)

    Witteman, W.J.; Peters, P.J.M.; Botma, H.; Botma, H.; Tskhai, S.N.; Udalov, Yu.B.; Mei, Q.C.; Mei, Qi-Chu; Ochkin, V.N.

    1995-01-01

    The high pressure atomic xenon laser is becoming the most promising light source in the wavelength region of a few microns. The merits are high efficiency (so far up to 8 percent), high output energies (15 J/liter at 9 bar), high continuous output power (more than 200 W/liter), no gas dissociation a

  9. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.

    Science.gov (United States)

    Huang, Hui; Feng, Tong; Gan, Yongping; Fang, Mingyu; Xia, Yang; Liang, Chu; Tao, Xinyong; Zhang, Wenkui

    2015-06-10

    The further development of electrode materials with high capacity and excellent rate capability presents a great challenge for advanced lithium-ion batteries. Herein, we demonstrate a battery-capacitive synchronous lithium storage mechanism based on a scrupulous design of TiC/NiO core/shell nanoarchitecture, in which the TiC nanowire core exhibits a typical double-layer capacitive behavior, and the NiO nanosheet shell acts as active materials for Li(+) storage. The as-constructed TiC/NiO (32 wt % NiO) core/shell nanoarchitecture offers high overall capacity and excellent cycling ability, retaining above 507.5 mAh g(-1) throughout 60 cycles at a current density of 200 mA g(-1) (much higher than theoretical value of the TiC/NiO composite). Most importantly, the high rate capability is far superior to that of NiO or other metal oxide electrode materials, owing to its double-layer capacitive characteristics of TiC nanowire and intrinsic high electrical conductivity for facile electron transport during Li(+) storage process. Our work offers a promising approach via a rational hybridization of two electrochemical energy storage materials for harvesting high capacity and good rate performance.

  10. High average-power induction linacs

    Energy Technology Data Exchange (ETDEWEB)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.

    1989-03-15

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs.

  11. Highly efficient flexible piezoelectric nanogenerator and femtosecond two-photon absorption properties of nonlinear lithium niobate nanowires

    Science.gov (United States)

    Gupta, Manoj Kumar; Aneesh, Janardhanakurup; Yadav, Rajesh; Adarsh, K. V.; Kim, Sang-Woo

    2017-05-01

    We present a high performance flexible piezoelectric nanogenerator (NG) device based on the hydrothermally grown lead-free piezoelectric lithium niobate (LiNbO3) nanowires (NWs) for scavenging mechanical energies. The non-linear optical coefficient and optical limiting properties of LiNbO3 were analyzed using femtosecond laser pulse assisted two photon absorption techniques for the first time. Further, a flexible hybrid type NG using a composite structure of the polydimethylsiloxane polymer and LiNbO3 NWs was fabricated, and their piezoelectric output signals were measured. A large output voltage of ˜4.0 V and a recordable large current density of about 1.5 μA cm-2 were obtained under the cyclic compressive force of 1 kgf. A subsequent UV-Vis analysis of the as-prepared sample provides a remarkable increase in the optical band gap (UV absorption cut-off, ˜251 nm) due to the nanoscale size effect. The high piezoelectric output voltage and current are discussed in terms of large band gap, significant nonlinear optical response, and electric dipole alignments under poling effects. Such high performance and unique optical properties of LiNbO3 show its great potential towards various next generation smart electronic applications and self-powered optoelectronic devices.

  12. Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries

    Science.gov (United States)

    Hassan, Fathy M.; Batmaz, Rasim; Li, Jingde; Wang, Xiaolei; Xiao, Xingcheng; Yu, Aiping; Chen, Zhongwei

    2015-01-01

    Silicon has the potential to revolutionize the energy storage capacities of lithium-ion batteries to meet the ever increasing power demands of next generation technologies. To avoid the operational stability problems of silicon-based anodes, we propose synergistic physicochemical alteration of electrode structures during their design. This capitalizes on covalent interaction of Si nanoparticles with sulfur-doped graphene and with cyclized polyacrylonitrile to provide a robust nanoarchitecture. This hierarchical structure stabilized the solid electrolyte interphase leading to superior reversible capacity of over 1,000 mAh g−1 for 2,275 cycles at 2 A g−1. Furthermore, the nanoarchitectured design lowered the contact of the electrolyte to the electrode leading to not only high coulombic efficiency of 99.9% but also maintaining high stability even with high electrode loading associated with 3.4 mAh cm−2. The excellent performance combined with the simplistic, scalable and non-hazardous approach render the process as a very promising candidate for Li-ion battery technology. PMID:26497228

  13. Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries

    Science.gov (United States)

    Hassan, Fathy M.; Batmaz, Rasim; Li, Jingde; Wang, Xiaolei; Xiao, Xingcheng; Yu, Aiping; Chen, Zhongwei

    2015-10-01

    Silicon has the potential to revolutionize the energy storage capacities of lithium-ion batteries to meet the ever increasing power demands of next generation technologies. To avoid the operational stability problems of silicon-based anodes, we propose synergistic physicochemical alteration of electrode structures during their design. This capitalizes on covalent interaction of Si nanoparticles with sulfur-doped graphene and with cyclized polyacrylonitrile to provide a robust nanoarchitecture. This hierarchical structure stabilized the solid electrolyte interphase leading to superior reversible capacity of over 1,000 mAh g-1 for 2,275 cycles at 2 A g-1. Furthermore, the nanoarchitectured design lowered the contact of the electrolyte to the electrode leading to not only high coulombic efficiency of 99.9% but also maintaining high stability even with high electrode loading associated with 3.4 mAh cm-2. The excellent performance combined with the simplistic, scalable and non-hazardous approach render the process as a very promising candidate for Li-ion battery technology.

  14. Laser processes and analytics for high power 3D battery materials

    Science.gov (United States)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.

    2016-03-01

    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  15. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.

    Science.gov (United States)

    Cheng, Lei; Crumlin, Ethan J; Chen, Wei; Qiao, Ruimin; Hou, Huaming; Franz Lux, Simon; Zorba, Vassilia; Russo, Richard; Kostecki, Robert; Liu, Zhi; Persson, Kristin; Yang, Wanli; Cabana, Jordi; Richardson, Thomas; Chen, Guoying; Doeff, Marca

    2014-09-14

    Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.

  16. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... to be applied, especially at low power levels where gating loss becomes a significant percentage of the total loss budget. Various resonant gate drive methods have been proposed to address this design challenge, with varying size, cost, and complexity. This dissertation presents a self-oscillating resonant gate...

  17. High Temperature Stable Separator for Lithium Batteries Based on SiO₂ and Hydroxypropyl Guar Gum.

    Science.gov (United States)

    Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano

    2015-10-23

    A novel membrane based on silicon dioxide (SiO₂) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO₂ and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance.

  18. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  19. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  20. Kredsløbsmonitorering med lithium dilution cardiac output-systemet

    DEFF Research Database (Denmark)

    Christiansen, Christian; Hostrup, Anette; Tønnesen, Else

    2008-01-01

    The lithium dilution cardiac output (LiDCO) system measures cardiac output beat-to-beat with high precision. The system is based on an arterial pulse power analysis which is calibrated every eight hours with a small non-pharmacological dose of lithium. The system is minimally invasive; it requires...

  1. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry.

    Science.gov (United States)

    Meenakshisundaram, Guruguhan; Pandian, Ramasamy P; Eteshola, Edward; Lee, Stephen C; Kuppusamy, Periannan

    2010-03-01

    Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen [R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, Molecular packing and magnetic properties of lithium naphthalocyanine crystal: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen J. Mater. Chem. 19 (2009) 4138-4147]. However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. Mass spectrometric studies of lithium-containing oxides at high temperature

    Science.gov (United States)

    Ikeda, Yasushi; Tamaki, Masayoshi; Matsumoto, Genichi; Amioka, Kenji; Mizuno, Tomoyasu

    The sublimation and vaporization of various lithium containing oxides have been studied by high temperature mass spectrometry. The installed Knudsen cell apparatus gave some useful information about the vapor species, appearance potentials, partial pressures and heats of reactions involved. The investigated oxides are Li 2O, Li 2O-Al 2O 3, Li 2O-MoO 2 and Li 2O-SiO 2 systems. This paper mainly presents the most recent data for the Li 2O-SiO 2 system. A relationship for the decomposition reaction of ortho-Li 4SiO 4 was deduced. The heat of the reaction was determined by the third law method. The activity of the Li 2O component in the double oxides was estimated from the partial pressures of the vapor species. γ-LiAlO 2 and meta-Li 2SiO 3 showed fairly low activities in comparison with Li 2O oxide. The activity coefficients decreased with the Li 2O mole fraction in the lithium compounds. The heats of formation and atomization of LiO and Li 2O gaseous species were determined.

  3. Lithium Thiophosphate Compounds as Stable High Rate Li-Ion Separators

    Energy Technology Data Exchange (ETDEWEB)

    Apblett, Christopher A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Battery separators based upon lithium thiophosphate (LiPS4) have previously been demonstrated at UC Boulder, but the thickness of the separators was too high to be of practical use in a lithium ion battery. The separators are solid phase, which makes them intrinsically less prone to thermal runaway and thereby improves safety. Results of attempting to develop sputtered thin film layers of this material by starting with targets of pure Li, Li2S, and P2S5 are reported. Sputtering rates and film quality and composition are discussed, along with efforts to use Raman spectroscopy to determine quantitative film composition. The latter is a rate limiting step in the investigation of these films, as they are typically thin and require long times to get to sufficient thickness to be analyzed using traditional methods, whereas Raman is particularly well suited to this analysis, if it can be made quantitative. The final results of the film deposition methods are reported, and a path towards new films is discussed. Finally, it should be noted that this program originally began with one graduate student working on the program, but this student ultimately chose to not continue with a PhD. A second student took over in the middle of the effort, and a new program has been proposed with a significantly altered chemistry to take the program in a new direction.

  4. Highly-efficient high-power pumps for fiber lasers

    Science.gov (United States)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.

    2017-02-01

    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  5. Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen-Po; Liu Peng; Wang Li-Fang

    2013-01-01

    The lithium-ion battery has been widely used as an energy source.Charge rate,discharge rate,and operating temperature are very important factors for the capacity degradations of power batteries and battery packs.Firstly,in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data,which are charge rate,discharge rate,and operating temperature,and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters.Secondly,we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate.According to this cycling condition,we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells,and analyze the degradation mechanism with capacity variance and operating temperature difference.The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 ℃,the cycle life can be improved by more than 50%.Therefore,it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells.

  6. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  7. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified......-HB-VSCs). As the switch technology for realizing these 3L-VSCs, press-pack IGBTs are chosen to ensure high power density and reliability. Based on the selected 3L-VSCs and switch technology, the converter electro-thermal models are developed comprehensively, implemented practically, and validated via a full-scale 3L...

  8. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage

    Science.gov (United States)

    Chen, Jizhang; Yang, Li; Rousidan, Saibihai; Fang, Shaohua; Zhang, Zhengxi; Hirano, Shin-Ichi

    2013-10-01

    Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1.Si has the second highest theoretical capacity among all the known anode materials for lithium ion batteries, whereas it is vulnerable to pulverization and crumbling upon lithiation/delithiation. Herein, Si mesoporous nanowires prepared by a scalable and cost-effective procedure are reported for the first time. Such nanowire morphology and mesoporous structure can effectively buffer the huge lithiation-induced volume expansion of Si, therefore contributing to excellent cycling stability and high-rate capability. Reversible capacities of 1826.8 and 737.4 mA h g-1 can be obtained at 500 mA g-1 and a very high current density of 10 A g-1, respectively. After 1000 cycles at 2500 mA g-1, this product still maintains a high capacity of 643.5 mA h g-1. Electronic supplementary information (ESI) available: SEM images; N2 adsorption/desorption isotherm; long-term cycling performance at 500 mA g-1 comparison with other literature. See DOI: 10.1039/c3nr03955b

  9. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  10. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  11. Drivers for High Power Laser Diodes

    Institute of Scientific and Technical Information of China (English)

    Yankov P; Todorov D; Saramov E

    2006-01-01

    During the last year the high power laser diodes jumped over the 1 kW level of CW power for a stack,and the commercial 1 cm bars reached 100 W output optical power at the standard wavelengths around 800 nm and 980 nm. The prices are reaching the industry acceptable levels. All Nd:YAG and fiber industrial lasers manufacturers have developed kW prototypes. Those achievements have set new requirements for the power supplies manufactuers-high and stable output current, and possibilities for fast control of the driving current, keeping safe the expensive laser diode. The fast switching frequencies also allow long range free space communications and optical range finding. The high frequencies allow the design of a 3D laser radar with high resolution and other military applications. The prospects for direct laser diode micro machining are also attractive.

  12. Coupling output of multichannel high power microwaves

    Science.gov (United States)

    Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie

    2010-12-01

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  13. High power regenerative laser amplifier

    Science.gov (United States)

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  14. One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries

    Science.gov (United States)

    Zhou, Xiangyang; Chen, Guanghui; Tang, Jingjing; Ren, Yongpeng; Yang, Juan

    2015-12-01

    With the ever-increasing power and energy needs in application of advanced consumer electronics and related technologies, developing electrode materials with both high energy and power densities holds the key for satisfying the urgent demand of energy storage worldwide. Herein, we report the successful preparation of NiCo2O4 nanowire arrays that are grown on nickel foam via a simple hydrothermal method followed by an annealing process. The electron microscopy images of the obtained NiCo2O4 nanowires reveal that the NiCo2O4 nanowires are uniformly distributed and anchored on the surface of nickel foam. Benefited from the unique structure of NiCo2O4 nanowires on a nickel foam substrate, the as prepared materials exhibit a high reversible capacity of 1048.8 mAh g-1 at 100 mA g-1 and show excellent rate performance for lithium storage.

  15. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  16. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design.

    Science.gov (United States)

    Zhao, Hui; Wang, Zhihui; Lu, Peng; Jiang, Meng; Shi, Feifei; Song, Xiangyun; Zheng, Ziyan; Zhou, Xin; Fu, Yanbao; Abdelbast, Guerfi; Xiao, Xingcheng; Liu, Zhi; Battaglia, Vincent S; Zaghib, Karim; Liu, Gao

    2014-11-12

    Silicon alloys have the highest specific capacity when used as anode material for lithium-ion batteries; however, the drastic volume change inherent in their use causes formidable challenges toward achieving stable cycling performance. Large quantities of binders and conductive additives are typically necessary to maintain good cell performance. In this report, only 2% (by weight) functional conductive polymer binder without any conductive additives was successfully used with a micron-size silicon monoxide (SiO) anode material, demonstrating stable and high gravimetric capacity (>1000 mAh/g) for ∼500 cycles and more than 90% capacity retention. Prelithiation of this anode using stabilized lithium metal powder (SLMP) improves the first cycle Coulombic efficiency of a SiO/NMC full cell from ∼48% to ∼90%. The combination enables good capacity retention of more than 80% after 100 cycles at C/3 in a lithium-ion full cell.

  17. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.

    Science.gov (United States)

    Wang, Bei; Li, Kefei; Su, Dawei; Ahn, Hyojun; Wang, Guoxiu

    2012-06-01

    Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field-emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super-high lithium-storage capacity of 1580 mA h g(-1) and a satisfactory cycling performance in lithium-sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene-based nanocomposites can significantly improve the electrochemical performance of lithium-sulfur batteries.

  18. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  19. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    Science.gov (United States)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  20. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Kim, B S Do-Hoon; Lee, M S Byungju; Park, Kyu-Young; Kang, Kisuk

    2016-04-20

    The lithium-sulfur chemistry is regarded as a promising candidate for next-generation battery systems because of its high specific energy (1675 mA h g(-1) ). Although issues such as low cycle stability and power capability of the system remain to be addressed, extensive research has been performed experimentally to resolve these problems. Attaining a fundamental understanding of the reaction mechanism and its reaction product would further spur the development of lithium-sulfur batteries. Here, we investigated the charge transport mechanism of lithium sulfide (Li2 S), a discharge product of conventional lithium-sulfur batteries using first-principles calculations. Our calculations indicate that the major charge transport is governed by the lithium-ion vacancies among various possible charge carriers. Furthermore, the large bandgap and low concentration of electron polarons indicate that the electronic conduction negligibly contributes to the charge transport mechanism in Li2 S.

  1. International Meeting on Lithium Batteries, 4th, University of British Columbia, Vancouver, Canada, May 24-27, 1988, Proceedings. Parts I & II

    Science.gov (United States)

    Haering, R. R.

    1989-05-01

    The conference presents papers on the properties of thionyl chloride solutions, electrolyte solvation in aprotic solvents, polymer electrolytes, high-temperature high-pulse-power lithium batteries, and materials science principles related to alloys of potential use in rechargeable lithium cells. Consideration is also given to the kinetics of charge-transfer reactions on passive lithium electrodes, the kinetics of porous insertion electrodes, and the kinetics of the reduction of thionyl chloride. Other topics include the behavior of lithium batteries in a fire, safety test results of lithium-thionyl chloride wound-type cells, and low-temperature testing of Li-SOCl2 cells.

  2. High Power Short Wavelength Laser Development

    Science.gov (United States)

    1977-11-01

    Unlimited güä^äsjäsiiiüüü X NRTC-77-43R P I High Power Short Wavelength Laser Development November 1977 D. B. Cohn and W. B. Lacina...NO NRTC-77-43R, «. TITLE fana »uetjjitj BEFORE COMPLETING FORM CIPIENT’S CATALOO NUMBER KIGH.POWER SHORT WAVELENGTH LASER DEVELOPMENT , 7...fWhtn Data Enterte NRTC-77-43R HIGH POWER SHORT WAVELENGTH LASER DEVELOPMENT ARPA Order Number: Program Code Number: Contract Number: Principal

  3. Characteristics of free-surface wave on high-speed liquid lithium jet for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura@stu.nucl.eng.osaka-u.ac.jp [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Yoshihashi-Suzuki, Sachiko [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kondo, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sugiura, Hirokazu; Yamaoka, Nobuo [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ida, Mizuho; Nakamura, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Matsushita, Izuru [Mitsubishi Heavy Industries Mechatronics Systems, Ltd., 1-16 5-chome, Komatsu-dori, Hyogo-ku, Kobe, Hyogo 652-0865 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2011-10-01

    The characteristics of the surface waves on a high-speed liquid lithium wall jet were examined in a Li circulation loop at Osaka University for the International Fusion Materials Irradiation Facility (IFMIF). Surface fluctuations were measured by a contact-type liquid level sensor at 175 mm downstream from the nozzle exit, which corresponds to the deuteron beam's axis in the IFMIF, and observed with a high-speed video (HSV) camera. Both the observation and measurement results indicated that the surface fluctuations were composed of various scale turbulent fluctuations. The measurement results especially showed good agreement with the log-normal distribution which is one of the turbulent intermittency theories. The dominant wavelength was found to be shorter with increase in the flow velocity, and reached approximately 4 mm at the velocity of 15 m/s, which gave close agreement with the visually observed wavelength.

  4. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage.

    Science.gov (United States)

    Gu, Yan; Xu, Yi; Wang, Yong

    2013-02-01

    Graphene-wrapped CoS nanoparticles are synthesized by a solvothermal approach. The product is significantly different from porous CoS microspheres prepared in the absence of graphene under similar preparation conditions. The CoS microspheres and CoS/graphene composite are fabricated as anode materials for lithium-ion batteries. The CoS/graphene composite is found to be better suitable as an anode in terms of higher capacity and better cycling performances. The nanocomposite exhibits an unprecedented high reversible capacity of 1056 mA h/g among all cobalt sulfide-based anode materials. Good cycling performances are also observed at both small and high current rates.

  5. The Effect of Electrolyte Additives upon the Lithium Kinetics of Li-Ion Cells Containing MCMB and LiNi(x)Co(1-x)O2 Electrodes and Exposed to High Temperatures

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Gozdz, A. S.; Mani, S.

    2009-01-01

    With the intent of improving the performance of lithium-ion cells at high temperatures, we have investigated the use of a number of electrolyte additives in experimental MCMB- Li(x)Ni(y)Co(1-y)O2 cells, which were exposed to temperatures as high as 80 C. In the present work, we have evaluated the use of a number of additives, namely vinylene carbonate (VC), dimethyl acetamide (DMAc), and mono-fluoroethylene carbonate (FEC), in an electrolyte solution anticipated to perform well at warm temperature (i.e., 1.0M LiPF6 in EC+EMC (50:50 v/v %). In addition, we have explored the use of novel electrolyte additives, namely lithium oxalate and lithium tetraborate. In addition to determining the capacity and power losses at various temperatures sustained as a result of high temperature cycling (cycling performed at 60 and 80 C), the three-electrode MCMB-Li(x)Ni(y)Co(1-y)O2 cells (lithium reference) enabled us to study the impact of high temperature storage upon the solid electrolyte interphase (SEI) film characteristics on carbon anodes (MCMB-based materials), metal oxide cathodes, and the subsequent impact upon electrode kinetics.

  6. High Cycle Life, Low Temperature Lithium Ion Battery for Earth Orbiting and Planetary Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires development of advanced rechargeable electrochemical battery systems for lithium ion batteries to support orbiting spacecraft and planetary missions....

  7. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries

    Science.gov (United States)

    Breitung, Ben; Baumann, Peter; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2016-07-01

    Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li+ due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries.Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle

  8. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  9. Advances in high power semiconductor diode lasers

    Science.gov (United States)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  10. Improving reversible capacities of high-surface lithium insertion materials – the case of amorphous TiO2

    NARCIS (Netherlands)

    Ganapathy, S.; Basak, S.; Lefering, A.; Rogers, E.; Zandbergen, H.W.; Wagemaker, M.

    2014-01-01

    Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nano-structured electrodes remains a contributing factor toward capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here, we repo

  11. Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Zeng, Liang; Kawahito, Koji; Ikeda, Suguru; Ichikawa, Takayuki; Miyaoka, Hiroki; Kojima, Yoshitsugu

    2015-06-18

    Electrode performances of MgH2-LiBH4 composite materials for lithium-ion batteries have been studied using LiBH4 as the solid-state electrolyte, which shows a high reversible capacity of 1650 mA h g(-1) with an extremely low polarization of 0.05 V, durable cyclability and robust rate capability.

  12. Design and simulation of lithium rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  13. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...

  14. Electrochemical stiffness in lithium-ion batteries

    Science.gov (United States)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  15. Scale-up of lithium rechargeable batteries

    Science.gov (United States)

    Ritchie, A. G.; Giwa, C. O.; Lee, J. C.; Bowles, P.; Gilmour, A.; Allan, J.

    Small-size lithium rechargeable cells in an envelope format were reported at the 20th International Power Sources Symposium [1,2]. This design offers the possibility of making cells using much lighter packing than cells with metal cans. The prismatic format allows good packing in rectangular boxes. Hence they offer the potential for high gravimetric and volumetric energy densities. The cells have now been developed to a size sufficient to form components of a large battery, built to power Army man-portable equipment. Lithium-ion cells have been manufactured using lithium cobalt oxide cathodes and other cathode materials are under investigation. Individual cells up to the 3 A h size have been successfully cycled, with further development possible. A 24 V battery has been constructed and its performance and prospects are described.

  16. Protection Related to High-power Targets

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  17. Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries.

    Science.gov (United States)

    Murmann, Patrick; Streipert, Benjamin; Kloepsch, Richard; Ignatiev, Nikolai; Sartori, Peter; Winter, Martin; Cekic-Laskovic, Isidora

    2015-04-14

    Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide (LiDMSI) was evaluated as an electrolyte additive in lithium-ion batteries for improved high voltage applications. Cycling the cathode at high potentials leads to the electrochemical oxidation of the salt to form a cathode electrolyte interphase (CEI) layer on the cathode surface. With the addition of 2 wt% of LiDMSI to the 1 M LiPF6 in 1 : 1 (by wt) EC : DEC electrolyte, the capacity retention and the Coulombic efficiency in LiNi1/3Co1/3Mn1/3O2/Li-half-cells as well as in LiNi1/3Co1/3Mn1/3O2/graphite-full-cells were improved. The cycling results point out the less over-potential and resistance at the cathode/electrolyte interface. These improvements are studied by SEM, EIS and XPS techniques.

  18. New approaches for high energy density lithium-sulfur battery cathodes.

    Science.gov (United States)

    Evers, Scott; Nazar, Linda F

    2013-05-21

    The goal of replacing combustion engines or reducing their use presents a daunting problem for society. Current lithium-ion technologies provide a stepping stone for this dramatic but inevitable change. However, the theoretical gravimetric capacity (∼300 mA h g(-1)) is too low to overcome the problems of limited range in electric vehicles, and their cost is too high to sustain the commercial viability of electrified transportation. Sulfur is the one of the most promising next generation cathode materials. Since the 1960s, researchers have studied sulfur as a cathode, but only recently have great strides been made in preparing viable composites that can be used commercially. Sulfur batteries implement inexpensive, earth-abundant elements at the cathode while offering up to a five-fold increase in energy density compared with present Li-ion batteries. Over the past few years, researchers have come closer to solving the challenges associated with the sulfur cathode. Using carbon or conducting polymers, researchers have wired up sulfur, an excellent insulator, successfully. These conductive hosts also function to encapsulate the active sulfur mass upon reduction/oxidation when highly soluble lithium polysulfides are formed. These soluble discharge products remain a crux of the Li-S cell and need to be contained in order to increase cycle life and capacity retention. The use of mesoporous carbons and tailored designs featuring porous carbon hollow spheres have led to highly stable discharge capacities greater than 900 mA h g(-1) over 100 cycles. In an attempt to fully limit polysulfide dissolution, methods that rely on coating carbon/sulfur composites with polymers have led to surprisingly stable capacities (∼90% of initial capacity retained). Additives will also play an important role in sulfur electrode design. For example, small fractions (> 3 wt%) of porous silica or titania effectively act as polysulfide reservoirs, decreasing their concentration in the

  19. Lifetime Models for Lithium-ion Batteries used in Virtual Power Plant Applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan

    . Moreover, in this thesis, the use of the electrochemical impedance spectroscopy (EIS) technique was proposed as a method to estimate the pulse power capability decrease, which is caused by ageing, of the tested LFP/C battery cells. The developed lifetime models were used to analyse the degradation......The penetration of wind power into the power system has been increasing in recent years. However, despite its environmental friendliness, the wind power grid integration at a large scale faces several limitations, mainly caused by the characteristics of the wind (i.e. intermittent, variable......-ion batteries are presented in the literature. In this thesis an equivalent-electrical circuit performance-degradation modelling approach was followed to develop the lifetime models for the selected LFP/C battery cells. In order to develop the desired lifetime model, laboratory ageing tests are mandatory...

  20. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.

    2016-03-02

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present integration strategy to rationally design materials and processes to report flexible inorganic lithium-ion microbattery with no restrictions on the materials used. The battery shows an enhanced normalized capacity of 147 μAh/cm2 when bent.

  1. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  2. FeS2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries

    Science.gov (United States)

    Zhang, Feifei; Wang, Chunli; Huang, Gang; Yin, Dongming; Wang, Limin

    2016-10-01

    One-dimensional (1D) porous FeS2@C nanowires as a high cathode material for lithium-ion batteries (LIBs) are synthesized on a large-scale from an organic-inorganic hybrid nanowire precursor. The FeS2@C nanowires not only provide a continuous and fast electron transport pathway, favorable diffusion kinetics, but also provide the protection buffer the volume expansion and effectively prevent the polysulfides from dissolving in the electrolyte during cycling. Attributing to the synergistic advantages of both 1D porous nanostructure and the encapsulation of thin amorphous carbon layers, the FeS2@C nanowires exhibit remarkable lithium storage performance with a high specific capacity of 889 mA h g-1 at 0.1 A g-1 and 521 mA h g-1 at 10 A g-1. Moreover, a discharge energy density of 1225 Wh kg-1 is obtained at 2 A g-1 and remains as high as 637 Wh kg-1 after 1000 cycles, which is even higher than the LiCoO2 cathode. The results demonstrate that the potential for applications in LIBs with high power density and long cycling life.

  3. Flake-by-flake ZnCo{sub 2}O{sub 4} as a high capacity anode material for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiong [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Ru, Qiang, E-mail: rq7702@yeah.net [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Beibei; Hu, Shejun; An, Bonan [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China)

    2014-02-05

    Highlights: • The ZnCo{sub 2}O{sub 4} with porous structure was prepared by co-precipitation method. • Flake-by-flake used in ZnCo{sub 2}O{sub 4} was studied for the first time. • The as-prepared ZCO shows excellent electrochemical performances. • The preparation method has mild experiment conditions and high production rate. -- Abstract: A novel flake-by-flake ZnCo{sub 2}O{sub 4} (ZCO) with porous nanostructure is prepared by a typical and facile co-precipitation method using oxalic acid as complex agent. XRD, SEM, and TEM analyses show the as-prepared ZCO nanoparticles have a high purity and a good crystallinity, and the ZCO nanoflakes with a thickness of 30–80 nm are composed of uniform ZCO nanocrystals with a diameter of 20–40 nm. The novel structure with enough free space is beneficial to improving the electrochemical performance. The as-prepared ZCO used as an anode material for lithium-ion batteries exhibits a high specific capacity of 1275 mA h/g at a current rate of 100 mA/g after 50 cycles, as well as a high power capability at elevated current rates, i.e., 1130 and 730 mA h/g at current rates of 500 and 3000 mA/g, respectively. It has a great prospect for the application of anode materials for lithium-ion batteries.

  4. Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renheng [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Li, Xinhai, E-mail: 703131039@qq.com [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Wang, Zhixing; Guo, Huajun [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Hou, Tao [Jiangxi Youli New Materials Co., Ltd, Pingxiang 337000 (China); Yan, Guochun; Huang, Bin [School of Metallurgy and Environment, Central South University, Changsha 410083 (China)

    2015-01-05

    Highlights: • The addition of Li{sub 2}CO{sub 3} to the electrolyte can suppress the contents of HF in the electrolyte. • The low self-discharge rate of the LiMn{sub 2}O{sub 4} cells with Li{sub 2}CO{sub 3} is lower than that of no additive. • The LiMn{sub 2}O{sub 4} cells with Li{sub 2}CO{sub 3} exhibit better rate capability and excellent cycle stability than that without Li{sub 2}CO{sub 3}. • A stable film can be formed on the LiMn{sub 2}O{sub 4} cathode using containing-Li{sub 2}CO{sub 3} electrolyte. - Abstract: The effect of lithium carbonate (Li{sub 2}CO{sub 3}) as an additive on the stability of the electrolyte and cycling performance of lithium manganese oxide spinel (LiMn{sub 2}O{sub 4}) batteries at elevated temperature was studied. The addition of Li{sub 2}CO{sub 3} to the electrolyte can suppress the capacity fading of LiMn{sub 2}O{sub 4} batteries. The linear sweep voltammetry (LSV) and the cyclic voltammetry (CV) indicate that Li{sub 2}CO{sub 3} has a lower oxidation potential in the mixed solvents of ethylene carbonate (EC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), participating in the formation process of the stable cathode electrolyte interface (CEI) film. In addition, the results of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that the stable CEI film of the cells with Li{sub 2}CO{sub 3} can be formed, which can effectively reduce the dissolution of Mn{sup 2+} from LiMn{sub 2}O{sub 4} into the electrolyte at elevated temperature. It is concluded that the addition of Li{sub 2}CO{sub 3} to a solution of 1 M LiPF{sub 6}–EC/EMC/DEC = 1/1/1 (weight ratio) may decrease solvent decomposition and change the structure of the passivation film on the LiMn{sub 2}O{sub 4} cathode.

  5. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries

    Science.gov (United States)

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-05-01

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm-1 at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface.

  6. High Power Test for Klystron Stability

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. The problems may be from harmonic power stay between the klystron and the circulator. A harmonic filter of waveguide type is designed to eliminate the harmonic power. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF. The unstable RF may be from harmonic power stay between the klystron and the circulator. To eliminate the harmonic power, a harmonic filter of waveguide type is designed.

  7. A Phase I Program to Improve Low Temperature Performance of Lithium-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy ( up to 200 Wh/kg)...

  8. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  9. Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Fang, Shan; Tong, Zhenkun; Nie, Ping; Liu, Gao; Zhang, Xiaogang

    2017-06-07

    Adjusting the particle size and nanostructure or applying carbon materials as the coating layers is a promising method to hold the volume expansion of Si for its practical application in lithium-ion batteries (LIBs). Herein, the mild carbon coating combined with a molten salt reduction is precisely designed to synthesize raspberry-like hollow silicon spheres coated with carbon shells (HSi@C) as the anode materials for LIBs. The HSi@C exhibits a remarkable electrochemical performance; a high reversible specific capacity of 886.2 mAh g(-1) at a current density of 0.5 A g(-1) after 200 cycles is achieved. Moreover, even after 500 cycles at a current density of 2.0 A g(-1), a stable capacity of 516.7 mAh g(-1) still can be obtained.

  10. Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery

    Science.gov (United States)

    Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu

    2015-01-01

    Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.

  11. Diagnostics for High Power Targets and Dumps

    CERN Document Server

    Gschwendtner, E

    2012-01-01

    High power targets are generally used for neutrino, antiproton, neutron and secondary beam production whereas dumps are needed in beam waste management. In order to guarantee an optimized and safe use of these targets and dumps, reliable instrumentation is needed; the diagnostics in high power beams around targets and dumps is reviewed. The suite of beam diagnostics devices used in such extreme environments is discussed, including their role in commissioning and operation. The handling and maintenance of the instrumentation components in high radiation areas is also addressed.

  12. Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery

    Directory of Open Access Journals (Sweden)

    Yunfeng Jiang

    2016-07-01

    Full Text Available A fractional derivative system identification approach for modeling battery dynamics is presented in this paper, where fractional derivatives are applied to approximate non-linear dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF method commonly used in the identification of continuous-time models is extended to allow the estimation of fractional derivative coefficents and parameters of the battery models by monitoring a charge/discharge demand signal and a power storage/delivery signal. In particular, the model is combined by individual fractional differential models (FDMs, where the parameters can be estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the fractional derivative model can be utilized to predict the dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO 4 in real-time. The results indicate that a FDM can accurately capture the dynamics of the energy storage and delivery of the battery over a large operating range of the battery. It is also shown that the fractional derivative model exhibits improvements on prediction performance compared to standard integer derivative model, which in beneficial for a battery management system.

  13. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    Science.gov (United States)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  14. High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride

    Science.gov (United States)

    Song, Seung-Wan; Lee, Ki-Chang; Park, Ho-Young

    2016-10-01

    Rapidly growing interest and demand for wearable electronics require the development of flexible and lightweight all-solid-state batteries as power sources that guarantee high performance and safety with the absence of the risk of fire or explosion that can occur with traditional liquid electrolyte systems. Herein, we successfully fabricate new flexible all-solid-state microbatteries integrating a solid electrolyte film of lithium boron oxynitride (LiBON) on a flexible substrate using sophisticated thin-film fabrication technology. The new microbattery of Li/LiBON/LiCoO2 exhibits excellent mechanical integrity even under severe bending and twisting test conditions, enabling the realization of flexible microbatteries. The microbatteries demonstrate superior electrochemical cycling stability relative to conventional batteries, delivering an outstanding capacity retention of 90% on the 1000th cycle. Furthermore, operation at various temperatures from -10 °C to +60 °C and fast charging within 3-6 min are achieved. With various types of flexible substrates, the microbatteries can provide diverse opportunities for flexible and wearable electronics.

  15. Electrochemical characterization of nano V, Ti doped MnO2 in primary lithium manganese dioxide batteries with high rate

    Science.gov (United States)

    Sun, Yang; Wang, Shengping; Dai, Yu; Lei, Xinrong

    2016-10-01

    The nano-sized γ-MnO2 precursor is synthesized using a room temperature, liquid-phase reaction route with the assistance of ultrasonic waves. The MnO2 precursor as an electrode material in lithium manganese dioxide primary batteries displays a low capacity of 140mAhg-1 (45.5% for the theoretical capacity of MnO2) at 20mAg-1. Therefore, the doped MnO2 with cationic V or/and Ti are prepared at high temperature. After the heat treatment, the γ phase precursor powder gradually converts into the β-MnO2 and exhibits a higher specific surface area with a larger pore volume and pore size, providing significantly more electrochemically active sites for the redox reaction. The doped MnO2 matrix has advantage of the ideal lattice parameters and the higher conductivity, resulting in an enhancement of the Li+ diffusion kinetics in the tunnel structure. Especially for co-doped MnO2 with V and Ti, the modified material shows an outstanding electrochemical capacity of 190mAhg-1 (61.7% for the theoretical capacity) at 20mAg-1 and 169mAhg-1 for a higher power output of 100mAg-1.

  16. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating.

    Science.gov (United States)

    Li, Nianwu; Zheng, Mingbo; Lu, Hongling; Hu, Zibo; Shen, Chenfei; Chang, Xiaofeng; Ji, Guangbin; Cao, Jieming; Shi, Yi

    2012-04-28

    Lithium-sulfur batteries have a poor rate performance and low cycle stability due to the shuttling loss of intermediate lithium polysulfides. To address this issue, a carbon-sulfur nanocomposite coated with reduced graphene oxide was designed to confine the polysulfides.

  17. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  18. Advances in industrial high-power lasers

    Science.gov (United States)

    Schlueter, Holger

    2005-03-01

    Four major types of laser sources are used for material processing. Excluding Excimer lasers, this paper focuses on advances in High Power CO2 lasers, Solid State Lasers and Diode Lasers. Because of their unrivaled cost to brightness relationship the fast axial flow CO2 laser remains unrivaled for flat-sheet laser cutting. Adding approximately a kW of output power ever four years, this laser type has been propelling the entire sheet metal fabrication industry for the last two decades. Very robust, diffusion cooled annular discharge CO2 lasers with 2kW output power have enabled robot mounted lasers for 3D applications. Solid State Lasers are chosen mainly because of the option of fiber delivery. Industrial applications still rely on lamp-pumped Nd:YAG lasers with guaranteed output powers of 4.5 kW at the workpiece. The introduction of the diode pumped Thin Disc Laser 4.5 kW laser enables new applications such as the Programmable Focus Optics. Pumping the Thin Disc Laser requires highly reliable High Power Diode Lasers. The necessary reliability can only be achieved in a modern, automated semiconductor manufacturing facility. For Diode Lasers, electro-optical efficiencies above 65% are as important as the passivation of the facets to avoid Burn-In power degradation.

  19. Lithium Ion Batteries in Electric Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad A.

    2016-05-16

    This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: long calendar life (greater than 10 years); sufficient cycle life; reliable operation under hot and cold temperatures; safe performance under extreme conditions; end-of-life recycling. To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.

  20. High power infrared QCLs: advances and applications

    Science.gov (United States)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  1. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  2. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-27

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m(-1)·K(-1) with a bulk density of 453 kg·m(-3) at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m(-1)·K(-1)) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g(-1) at a current density of 100 mA·g(-1), and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  3. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m-1·K-1 with a bulk density of 453 kg·m-3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m-1·K-1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g-1 at a current density of 100 mA·g-1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  4. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2015-01-01

    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS......) technique for the entire state-of-charge (SOC) interval and considering five temperatures between 5oC and 45oC. By analyzing the measured impedance spectra of the LTO-based battery cell, it was found out that the cell’s impedance is extremely dependent on the operating conditions. By further processing...

  5. Lithium-thionyl chloride battery design concepts for maximized power applications

    Science.gov (United States)

    Kane, P.; Marincic, N.

    The need for primary batteries configured to deliver maximized power has been asserted by many different procuring activities. Battery Engineering Inc. has developed some specific design concepts and mastered some specialized techniques utilized in the production of this type of power source. The batteries have been successfully bench tested during the course of virtually all of these programs, with ultimate success coming in the form of two successful test launches under the USAF Plasma Effects Decoy Program. This paper briefly discusses some of these design concepts and the rationale behind them.

  6. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    Science.gov (United States)

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  7. Review of Reactivity Experiments for Lithium Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Bolind, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  8. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart

    2007-01-01

    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  9. Centurion solar-powered high-altitude aircraft in flight

    Science.gov (United States)

    1998-01-01

    , or about 11.5 inches, with no taper or sweep. Solar arrays that will cover most of the upper wing surface will provide up to 31 kilowatts of power at high noon on a summer day to power the aircraft's 14 electric motors, avionics, communications and other electronic systems. Centurion also has a backup lithium battery system that can provide power for between two and five hours to allow limited-duration flight after dark. Initial low-altitude test flights at Dryden in 1998 were conducted on battery power alone, prior to installation of the solar cell arrays. Centurion flies at an airspeed of only 17 to 21 mph, or about 15 to 18 knots. Although pitch control is maintained by the use of a full-span 60-segment elevator on the trailing edge of the wing, turns and yaw control are accomplished by applying differential power -- slowing down or speeding up the motors -- on the outboard sections of the wing. The video clip depicts the aircraft on the lakebed prior to and during its first low-altitude check flight under battery power on November 10, 1998.

  10. Fabrication of SnO2 Asymmetric Membranes for High Performance Lithium Battery Anode.

    Science.gov (United States)

    Wu, Ji; Chen, Hao; Byrd, Ian; Lovelace, Shavonne; Jin, Congrui

    2016-06-08

    Alloy electrode material like tin dioxide (SnO2) possesses much higher specific capacity as compared to commercial graphite anode in lithium ion battery (783 vs 372 mAh g(-1)). However, the huge volume change (260%) of SnO2-based anode during the alloying and dealloying process can cause significant electrode pulverization and rapid capacity loss. Herein we report the synthesis of SnO2 asymmetric membranes via a unique combination of phase inversion and sol-gel chemistry to overcome this big challenge. The SnO2 asymmetric membrane electrode demonstrates a specific capacity of 500 mAh g(-1) based on the overall electrode mass at a current density of 280 mA g(-1) (∼0.5C) with >96% capacity retention after 400 cycles. When the current density is increased from 28 to 560 mA g(-1), its overall capacity is only reduced by 36%. Such an outstanding rate and cycling performance is attributed to the existence of networking porous structure in the membrane that can provide high electrical conductivity, multiple diffusion channels, and free volumes for electrode expansion. The carbonization temperature has a dramatic impact on the electrode performance. Membranes carbonized at 500 °C show an excellent cycling performance, whereas the capacity of the membrane carbonized at 800 °C decreases by 51% in 100 cycles. Such a drastic difference in cycle life is caused by the reduction of small SnO2 NPs (∼3.9 nm) into large metallic tin spheres (∼40 nm) at 800 °C. This is the first original report on using asymmetric membrane structure to stabilize an SnO2-based lithium ion battery anode with an excellent electrochemical performance.

  11. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ≈ 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ≈ 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  12. E3000 High Power SADM development

    Science.gov (United States)

    Bamford, Steve G.; McMahon, Paul

    2003-09-01

    Astrium UK has been actively involved in the study, design, development, manufacture and test of Solar Array Drive Mechanisms (SADMs) and Bearing and Power Transfer Assemblies (BAPTAs) since the early 1970s having delivered 105 of these mechanisms to 22 spacecraft programs. As a result Astrium UK has accumulated in excess of 700 years of failure free SADM operation in-orbit. During that period power transfer requirements have grown steadily from below 1kW to 9.9kW and beyond. With this increase in power handling capability comes the associated problem of handling and dissipating the heat being generated within the SADM. The Eurostar 2000 family of SADMs were designed to handle up to 5.6kW for the E2000 family of spacecraft but the High Power SADM was conceived to meet the needs of the much bigger Eurostar 3000 family of spacecraft that could potentially grow to 15kW.

  13. Technology development for high power induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  14. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  15. Operation of Power Grids with High Penetration of Wind Power

    Science.gov (United States)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  16. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian DG; Carino, Emily V.; Connell, Justin G.; Han, Kee Sung; Cao, Ruiguo; Chen, Junzheng; Zheng, Jianming; Li, Qiuyan; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Jiguang

    2017-09-08

    Lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, the low coulombic efficiency (CE) during repeated Li plating/stripping of these processes have limited practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on high concentration of LiNO3 in diglyme solvent is developed which enables high CE of Li metal plating/stripping and high stability of Li anode in the sulfur containing electrolyte. Tailoring of electrolyte properties for the Li negative electrode has proven to be a successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE for Li plating/stripping of greater than 99% for over 200 cycles. In contrast, Li metal cycles for only less than 35 cycles at high CE in the standard 1 M LiTFSI + 2wt% LiNO3 in DOL:DME electrolyte under the same conditions. The stable Li metal anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.

  17. High-performance ball-milled SiOx anodes for lithium ion batteries

    Science.gov (United States)

    Zhang, Junying; Zhang, Chunqian; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2017-01-01

    High-performance SiOx was scalable synthesized by means of simple high-energy ball-milling method, and used as anode materials for lithium ion batteries. The electrochemical performance of SiOx electrode after high-energy ball-milling is improved effectively compared to raw SiOx. That is benefit for the reduced size of SiOx powder. By changing the species of conductive agents, improved cyclic performance and excellent rate capability were achieved. Under galvanostatic mode with current density of 0.3 A/g, SiOx electrode after high-energy ball-milling with optimized conductive agents delivers a reversible capacity of 1416.8 mAh/g with coulombic efficiency as high as 99.8% and capacity retention of 83.6% (1184.8 mAh/g) even after 100 cycles. The approach is simple and can be adopted for large scale production of high performance SiOx anode materials.

  18. Electric batteries. Lithium batteries; Piles electrique. Piles au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sarrazin, Ch. [Delegation Generale pour l' Armement, DGA/DRET, 75 - Paris (France)

    2002-05-01

    Lithium has the most negative potential and the highest mass capacity of all solid anode materials. It is the metal that allows to reach the highest mass energies in batteries when associated to a high potential cathode. The search for high performance cathodes has led to many different types of lithium batteries (transition metal oxides or sulfides, halogenides, oxi-halogenides, carbon, organic compounds etc..). These batteries can have a solid cathode (Li/CuO, Li/MnO{sub 2}, Li/CF{sub x}, etc..), or a liquid cathode (Li/SOCl{sub 2}, Li/SO{sub 2}, etc..) and in some cases they can have also a solid electrolyte, but not all types of lithium battery led to important industrial fabrication. The increasing use of lithium batteries is linked with the development of portable equipments for which, the compactness of the energy source is a key point. This article examines only the lithium batteries that have been the object of a significant industrial fabrication: lithium-sulfur dioxide, lithium-thionyl chloride, lithium-manganese dioxide, lithium-copper oxide, lithium-carbon fluoride, lithium-iron disulfide, other types of lithium batteries. (J.S.)

  19. Use of the anion gap and intermittent hemodialysis following continuous hemodiafiltration in extremely high dose acute-on-chronic lithium poisoning: A case report.

    Science.gov (United States)

    Komaru, Yohei; Inokuchi, Ryota; Ueda, Yoshihiro; Nangaku, Masaomi; Doi, Kent

    2017-08-10

    A 35-year-old woman intentionally took 40,000 mg of lithium carbonate, and she was transferred to our hospital with nausea, vomiting, and diarrhea. She was diagnosed as having bipolar disorder 10 years ago and was receiving oral lithium therapy. Blood test results on arrival were remarkable for a negative anion gap of -2.1 and later, the serum lithium level turned out to be as high as 15.4 mEq/L. Intubation was required because of disrupted consciousness, and continuous hemodiafiltration (CHDF) was immediately started in the intensive care unit to obtain constant removal of lithium. After adding intermittent hemodialysis (IHD) twice during the daytime to accelerate the lithium clearance, CHDF became unnecessary on day 4, and she was extubated on day 6 with complete recovery of consciousness. Close monitoring of the patient data showed recovery of the decreased anion gap as indicator of the serum lithium level reduction. On day 36, she was discharged without any complication and sequela. The current case highlighted the effective use of CHDF between IHD sessions to prevent the rebound elevation of lithium and the role of the anion gap as a surrogate marker of serum lithium concentration during the treatment. © 2017 International Society for Hemodialysis.

  20. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.