WorldWideScience

Sample records for high power broadband

  1. Broadband and High power Reactive Jamming Resilient Wireless Communication

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  2. An 8–18 GHz broadband high power amplifier

    Wang Lifa; Yang Ruixia; Li Yanlei; Wu Jingfeng

    2011-01-01

    An 8–18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8–13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm 3 . (semiconductor integrated circuits)

  3. High Power Combiner/Divider with Coupled Lines for Broadband Applications

    2017-03-20

    novel isolation structure will also be presented. I. INTRODUCTION Power divider/combiners are traditionally used in the development of high power ...a novel Gysel divider/combiner structure have been demonstrated. The divider/combiner are applicable to various high- power , broadband radar, EW...Gysel Power Divider With Arbitrary Power Ratios and Filtering Responses Using Coupling Structure ,” IEEE Transactions on Microwave Theory and Tech., vol

  4. Design Methodology of High Power Distributed Amplifier Employing Broadband Impedance Transformer

    Narendra, Kumar; Zhurbenko, Vitaliy; Collantes, Juan Mari

    2009-01-01

    A novel topology of a high power distributed amplifier (DA) in combination with a broadband impedance transformer is presented. The advantages of the proposed topology are explored analytically and verified by a full-wave 3D simulations. Stability of the high power DA is verified with the pole...

  5. A broadband high-efficiency Doherty power amplifier using symmetrical devices

    Cheng, Zhiqun; Zhang, Ming; Li, Jiangzhou; Liu, Guohua

    2018-04-01

    This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz. Project supported by the National Natural Science Foundation of China (No. 60123456), the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001), and the Zhejiang Provincial Public Technology Research Project (No. 2016C31070).

  6. Understanding broadband over power line

    Held, Gilbert

    2006-01-01

    Understanding Broadband over Power Line explores all aspects of the emerging technology that enables electric utilities to provide support for high-speed data communications via their power infrastructure. This book examines the two methods used to connect consumers and businesses to the Internet through the utility infrastructure: the existing electrical wiring of a home or office; and a wireless local area network (WLAN) access point.Written in a practical style that can be understood by network engineers and non-technologists alike, this volume offers tutorials on electric utility infrastru

  7. A compact broadband high efficient X-band 9-watt PHEMT MMIC high-power amplifier for phased array radar applications

    Hek, A.P. de; Hunneman, P.A.H.; Demmler, M.; Hulsmann, A.

    1999-01-01

    ln this paper the development and measurement results of a compact broadband 9-Watt high efficient X-band high-power amplifier are discussed. The described amplifier has the following state-of-the art performance: an average ouput power of 9 Watt, a gain of 20 dB and an average Power Added

  8. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    Jain, Deepak; Sidharthan, R.; Moselund, Peter M.

    2016-01-01

    the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source...... based on silica and germania fiber ever demonstrated to the date. (C) 2016 Optical Society of America......We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped...

  9. High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    Jain, Deepak; Sidharthan, Raghuraman; Moselund, Peter M.

    2017-01-01

    We demonstrate a 74 mol % GeO2 doped fiber for mid-infrared supercontinuum generation. Experiments ensure a highest output power for a broadest spectrum from 700nm to 3200nm from this fiber, while being pumped by a broadband 4 stage Erbium fiber based MOPA. The effect of repetition rate of pump...

  10. High-power broad-band tunable microwave oscillator, driven by REB in plasma

    Kuzelev, M V; Loza, O T; Ponomarev, A V; Rukhadze, A A; Strel` kov, P S; Shkvarunets, A G; Ulyanov, D K [General Physics Inst. of Russian Academy of Sciences, Moscow (Russian Federation)

    1997-12-31

    The radiation spectra of a plasma relativistic broad-band microwave oscillator were measured. A hollow relativistic electron beam (REB) was injected into the plasma waveguide, consisting of annular plasma in a circular metal waveguide. The radiation spectra were measured by means of a calorimeter-spectrometer with a large cross section in the band of 3-39 GHz. The mean frequency was tunable in the band of 20-27 GHz, the spectrum width was 5-25 GHz with a power level of 40-85 MW. Calculations were carried out based on non-linear theory, taking into account electromagnetic noise amplification due to REB injection into the plasma waveguide. According to the theory the radiation regime should change from the single-particle regime to the collective regime when the plasma density and the gap between the annular plasma and REB are increased. Comparison of the experimental results with the non-linear theory explains some peculiarities of the measured spectrum. (author). 4 figs., 2 refs.

  11. Design of high-power, broadband 180o pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

    Herbst, Christian; Herbst, Jirada; Kirschstein, Anika; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2009-01-01

    An approach for the design of high-power, broadband 180 o pulses and mixing sequences for generating dipolar and scalar coupling mediated 13 C- 13 C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1 H decoupling during mixing is presented. Considering RF field strengths in the range of 100-120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here

  12. Small-signal analysis and particle-in-cell simulations of planar dielectric Cherenkov masers for use as high-frequency, moderate-power broadband amplifiers

    Carlsten, Bruce E.

    2002-01-01

    A small-signal gain analysis of the planar dielectric Cherenkov maser is presented. The analysis results in a Pierce gain solution, with three traveling-wave modes. The analysis shows that the dielectric Cherenkov maser has a remarkable broadband tuning ability near cutoff, while maintaining reasonable gain rates. Numerical simulations verifying the small-signal gain results are presented, using a particle-in-cell code adapted specifically for planar traveling-wave tubes. An instantaneous bandwidth is numerically shown to be very large, and saturated efficiency for a nominal high-power design is shown to be in the range of standard untapered traveling-wave tubes

  13. Demonstration of Multi-Gbps Data Rates at Ka-Band Using Software-Defined Modem and Broadband High Power Amplifier for Space Communications

    Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.

  14. An improved phase-locked loop method for automatic resonance frequency tracing based on static capacitance broadband compensation for a high-power ultrasonic transducer.

    Dong, Hui-juan; Wu, Jian; Zhang, Guang-yu; Wu, Han-fu

    2012-02-01

    The phase-locked loop (PLL) method is widely used for automatic resonance frequency tracing (ARFT) of high-power ultrasonic transducers, which are usually vibrating systems with high mechanical quality factor (Qm). However, a heavily-loaded transducer usually has a low Qm because the load has a large mechanical loss. In this paper, a series of theoretical analyses is carried out to detail why the traditional PLL method could cause serious frequency tracing problems, including loss of lock, antiresonance frequency tracing, and large tracing errors. The authors propose an improved ARFT method based on static capacitance broadband compensation (SCBC), which is able to address these problems. Experiments using a generator based on the novel method were carried out using crude oil as the transducer load. The results obtained have demonstrated the effectiveness of the novel method, compared with the conventional PLL method, in terms of improved tracing accuracy (±9 Hz) and immunity to antiresonance frequency tracing and loss of lock.

  15. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  16. Broadband 0.25-um Gallium Nitride (GaN) Power Amplifier Designs

    2017-08-14

    networking, and sensor systems of interest to Department of Defense applications, particularly for next-generation radar systems. Broadband, efficient, high...simulations of MMIC (3–6 GHz, 28 V/180 mA) 1.75-mm HEMT power amplifier ............................................... 13 Fig. 20 Simple schematic...design simple , a single 1.75-mm high-electron-mobility transistor (HEMT) was used for a preliminary ideal design of the broadband power amplifier

  17. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  18. Detailed spectra of high-power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists

  19. BROADBAND OBSERVATIONS OF HIGH REDSHIFT BLAZARS

    Paliya, Vaidehi S. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Stalin, C. S., E-mail: vpaliya@g.clemson.edu [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India)

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 ( z = 3.37), CGRaBS J0225+1846 ( z = 2.69), BZQ J1430+4205 ( z = 4.72), and 3FGL J1656.2−3303 ( z = 2.40) using quasi-simultaneous data from the Swift , Nuclear Spectroscopic Telescope Array ( NuSTAR ) and the Fermi -Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2−3303, none of the sources were known as γ -ray emitters, and our analysis of ∼7.5 yr of LAT data reveals the first time detection of statistically significant γ -ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical−UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ -ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  20. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W

    Midilli, Yakup; Efunbajo, Oyewole Benjamin; Şimşek, Bartu

    2017-01-01

    laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped...

  1. Computational and experimental progress on laser-activated gas avalanche switches for broadband, high-power electromagnetic pulse generation

    Mayhall, D.J.; Yee, J.H.; Villa, F.

    1991-01-01

    This paper discusses the gas avalanche switch, a high-voltage, picosecond-speed switch, which has been proposed. The basic switch consists of pulse-charged electrodes, immersed in a high-pressure gas. An avalanche discharge is induced in the gas between the electrodes by ionization from a picosecond-scale laser pulse. The avalanching electrons move toward the anode, causing the applied voltage to collapse in picoseconds. This voltage collapse, if rapid enough, generates electromagnetic waves. A two-dimensional (2D), finite difference computer code solves Maxwell's equations for transverse magnetic modes for rectilinear electrodes between parallel plate conductors, along with electron conservation equations for continuity, momentum, and energy. Collision frequencies for ionization and momentum and energy transfer to neutral molecules are assumed to scale linearly with neutral pressure. Electrode charging and laser-driven electron deposition are assumed to be instantaneous. Code calculations are done for a pulse generator geometry, consisting of an 0.7 mm wide by 0.8 mm high, beveled, rectangular center electrode between grounded parallel plates at 2 mm spacing in air

  2. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  3. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    Kim, Hae Jin; Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu; Hillairet, Julien; Choi, Jin Joo

    2015-01-01

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  4. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    Kim, Hae Jin, E-mail: haejin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu [National Fusion Research Institute, Daejeon (Korea, Republic of); Hillairet, Julien [CEA/IRFM, Saint-lez-Durance (France); Choi, Jin Joo [Kwangwoon University, Seoul (Korea, Republic of)

    2015-10-15

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  5. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    Narendra, K.; Limiti, E.; Paoloni, C.

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  6. High efficiency and broadband acoustic diodes

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  7. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  8. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  9. Broadband Microwave Wireless Power Transfer for Weak-Signal and Multipath Environments

    Barton, Richard J.

    2014-01-01

    In this paper, we study the potential benefits of using relatively broadband wireless power transmission WPT strategies in both weak-signal and multipath environments where traditional narrowband strategies can be very inefficient. The paper is primarily a theoretical and analytical treatment of the problem that attempts to derive results that are widely applicable to many different WPT applications, including space solar power SSP.

  10. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  11. Volterra series based predistortion for broadband RF power amplifiers with memory effects

    Jin Zhe; Song Zhihuan; He Jiaming

    2008-01-01

    RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.

  12. Broadband infrared photoluminescence in silicon nanowires with high density stacking faults.

    Li, Yang; Liu, Zhihong; Lu, Xiaoxiang; Su, Zhihua; Wang, Yanan; Liu, Rui; Wang, Dunwei; Jian, Jie; Lee, Joon Hwan; Wang, Haiyan; Yu, Qingkai; Bao, Jiming

    2015-02-07

    Making silicon an efficient light-emitting material is an important goal of silicon photonics. Here we report the observation of broadband sub-bandgap photoluminescence in silicon nanowires with a high density of stacking faults. The photoluminescence becomes stronger and exhibits a blue shift under higher laser powers. The super-linear dependence on excitation intensity indicates a strong competition between radiative and defect-related non-radiative channels, and the spectral blue shift is ascribed to the band filling effect in the heterostructures of wurtzite silicon and cubic silicon created by stacking faults.

  13. Broadband from the socket and privatization of power distribution networks

    Aalbers, R.; Baarsma, B.; Poort, J.

    2005-01-01

    Attention is paid to the consequences for the Dutch market of the recommendation of the European Commission to introduce Power Line Communication (PLC) in the EU member states. PLC makes it possible to access the internet via sockets [nl

  14. Broadband internet connection utilizing electric power cables, v. 16(61)

    Plastinovski, Jovche

    2008-01-01

    Considering the introduction of wide spread communication, once again, pay our attention to the oldest network in Macedonia(and world wide)- the electrical network. Being widespread, it can make the broadband communication available from any place that has an electrical connection. This includes the rural areas, which the commercial companies are not interested in. Since the early 80-ties the big power companies have realized the potential of the use electric network for communication. its beginning had faced with difficulties, since in order to send data via the noisy interferes with other units such as the radio and military equipment. But nowadays these obstacles are more or lass overcame. Some of the companies are using BPL (broadband power lines) communication for their daily operations, while in the same time this relatively new technology for data transfer over power lines is under heavy developing. (Author)

  15. Broadband internet connection utilizing electric power cables, v. 16(62)

    Plastinovski, Jovche

    2008-01-01

    Considering the introduction of wide spread communication, once again, pay our attention to the oldest network in Macedonia(and world wide)- the electrical network. Being widespread, it can make the broadband communication available from any place that has an electrical connection. This includes the rural areas, which the commercial companies are not interested in. Since the early 80-ties the big power companies have realized the potential of the use electric network for communication. its beginning had faced with difficulties, since in order to send data via the noisy interferes with other units such as the radio and military equipment. But nowadays these obstacles are more or lass overcame. Some of the companies are using BPL (broadband power lines) communication for their daily operations, while in the same time this relatively new technology for data transfer over power lines is under heavy developing. (Author)

  16. Highly Reflecting, Broadband Deformable Membrane Mirror for Wavefront Control Applications, Phase I

    National Aeronautics and Space Administration — This Phase I STTR project will develop a highly reflecting, broadband, radiation resistant, low-stress and lightweight, membrane integrated into an electrostatically...

  17. The Impact of Noise Models on Capacity Performance of Distribution Broadband over Power Lines Networks

    Athanasios G. Lazaropoulos

    2016-01-01

    Full Text Available This paper considers broadband potential of distribution Broadband over Power Lines (BPL networks when different well-known noise models of the BPL literature are applied. The contribution of this paper is twofold. First, the seven most representative and used noise models of the BPL literature are synopsized in this paper. With reference to this set, the broadband performance of a great number of distribution BPL topologies either Overhead (OV or Underground (UN, either Medium-Voltage (MV or Low-Voltage (LV, is investigated in terms of suitable capacity metrics. Second, based on the proposed capacity metrics, a comparative capacity analysis is performed among various well-validated noise models. Through the careful study of its results, it is demonstrated that during capacity computations of distribution BPL networks, the flat Additive White Gaussian Noise (FL noise model can be comfortably assumed as an efficient noise model either in 3–30 MHz or in 3–88 MHz frequency range since its capacity differences with the other well-proven noise models are negligible.

  18. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    Ding, Fei; Dai, Jin; Chen, Yiting

    2016-01-01

    Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally...... demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor...

  19. Experimental study of a high-current FEM with a broadband microwave system

    Denisov, G.G.; Bratman, V.L.; Ginzburg, N.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    One of the main features of FELs and FEMs is the possibility of fast and wideband tuning of the resonant frequency of active media, which can be provided by changing the particle energy. For a frequency adjustable FEM-oscillator, a broadband microwave system, which is simply combined with an electron-optical FEM system and consists of an oversized waveguide and reflectors based on the microwave beams multiplication effect has been proposed and studied successfully in {open_quotes}cold{close_quotes} measurements. Here, the operating ability of a cavity, that includes some key elements of the broadband microwave system, was tested in the presence of an electron beam. To provide large particle oscillation velocities in a moderate undulator field and the presence of a guide magnetic field, the FEM operating regime of double resonance was chosen. In this regime the cyclotron as well as undulator resonance conditions were satisfied. The FEM-oscillator was investigated experimentally on a high-current accelerator {open_quotes}Sinus-6{close_quotes} that forms an electron beam with particle energy 500keV and pulse duration 25ns. The aperture with a diameter 2.5mm at the center of the anode allows to pass through only the central fraction of the electron beam with a current about 100A and a small spread of longitudinal velocities of the particles. Operating transverse velocity was pumped into the electron beam in the pulse plane undulator of a 2.4cm period. The cavity with a frequency near 45GHz consists of a square waveguide and two reflectors. The broadband up-stream reflector based on the multiplication effect had the power reflectivity coefficient more than 90% in the frequency band 10% for the H{sup 10} wave of the square waveguide with the maximum about 100% at a frequency 45GHz. The down-stream narrow-band Bragg reflector had the power reflection coefficient approximately 80% in the frequency band of 4% near 45GHz for the operating mode.

  20. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  1. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  2. Broadband Access

    First page Back Continue Last page Overview Graphics. Broadband Access. Worldwide market for broadband access $30 Billion! Over 200 million broadband subscribers worldwide! Various Competing Broadband access. Digital Subscriber line; Wireless; Optical Fiber.

  3. Proposition Analysis of Fixed Broadband Services Based on Product Segmentation And Purchasing Power of Urban Society

    Triyono Budi Santoso

    2016-03-01

    Full Text Available Tight competition in the broadband industry has forced the provider to have a good product propotition and strategy in the market, including market segmentation and type of services delivered based on customer’s expextation and intention to buy. This research aims to make a product proposition based on two major criteries in fixed broadband service, which are speed and price of the product, by looking into the competition in existing market (competitor’s product. As many players in Indonesia have created very tight situation, the will be launched product should have an attractive matter or differentiation in order to compete and get a “buy in” of the customer. In the research, some analysis was conducted across all the propositions by spreading questionnaires to respondents in urban area especially in Jakarta and Bandung, thus the provider can create product with an appropriate specifications to answer the needs of customers on their affordable price to buy. Some close-ended questions in the questionairres were scaled and performed by basic statistical approach methods. The result shows that product with affordable price is still become the choice of respondents in each segment (low, medium and high income. Price list per speed which is fitted to any segments is also suggested in this research. The result of the research can also be used to develop the product as a differentiation to be the choices and preferencesof customers.

  4. Power line communications theory and applications for narrowband and broadband communications over power lines

    Ferreira, Hendrik C; Newbury, John; Swart, Theo G

    2010-01-01

    Power Line Communications (PLC) is a promising emerging technology, which has attracted much attention due to the wide availability of power distribution lines. This book provides a thorough introduction to the use of power lines for communication purposes, ranging from channel characterization, communications on the physical layer and electromagnetic interference, through to protocols, networks, standards and up to systems and implementations. With contributions from many of the most prominent international PLC experts from academia and industry, Power Line Communications brings togeth

  5. Broadband and high efficiency all-dielectric metasurfaces for wavefront steering with easily obtained phase shift

    Yang, Hui; Deng, Yan

    2017-12-01

    All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.

  6. Study on high gain broadband optical parametric chirped pulse amplification

    Zhang, S.K.; Fujita, M.; Yamanaka, C.; Yoshida, H.; Kodama, R.; Fujita, H.; Nakatsuka, M.; Izawa, Y.

    2000-01-01

    Optical parametric chirped pulse amplification has apparent advantages over the current schemes for high energy ultrashort pulse amplification. High gain in a single pass amplification, small B-integral, low heat deposition, high contrast ratio and, especially the extremely broad gain bandwidth with large-size crystals available bring people new hope for over multi-PW level at which the existing Nd:glass systems suffered difficulties. In this paper we present simulation and experimental studies for a high gain optical parametric chirped pulse amplification system which may be used as a preamplifier to replace the current complicated regenerative system or multi-pass Ti:sapphire amplifiers. Investigations on the amplification bandwidth and gain with BBO are performed. Analysis and discussions are also given. (author)

  7. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  8. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  9. Broadband Millimeter-Wave In-Phase and Out-of-Phase Waveguide Dividers with High Isolation

    Dong, Jun; Liu, Yu; Yang, Ziqiang; Peng, Hao; Yang, Tao

    2015-11-01

    In this paper, two novel broadband in-phase and out-of-phase waveguide power dividers with high isolation are presented. Based on the substrate-integrated waveguide (SIW) divider and SIW-to-waveguide transition circuit, two kinds of E-plane waveguide dividers have been implemented. Due to the features of in-phase and out-of-phase performances, the proposed waveguide dividers can provide much more flexibilities than that of conventional E-plane waveguide T-junction. A broadband phase and amplitude performances are achieved across the whole Ka-band owing to the wideband characteristic of the SIW divider and transition circuits. To minimize the size and loss of the divider, a compact and low-loss SIW-to-waveguide transition circuit has been developed using the antisymmetric tapered probes. Two prototypes of the Ka-band waveguide dividers, including the in-phase and out-of-phase types, have been fabricated and measured. Measured results show that the isolation, input return loss, output return loss, amplitude imbalance, and phase imbalance of the in-phase divider are better than 15.5, 13.1, 10.8, 0.4 dB, and 3.50, while those of the out-of-phase divider are better than 15.0, 13.4, 10.4, 0.5 dB, and 3.60, respectively, over the frequency range from 26.5 to 40 GHz. The measured results agree well with the simulated ones. Considering their wide bandwidth, high isolation, good port matching performance, and compact configuration, the two types of waveguide dividers can be good candidates for broadband applications in millimeter-wave waveguide systems.

  10. Advanced Output Coupling for High Power Gyrotrons

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  11. Estimation of chromatic errors from broadband images for high contrast imaging

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  12. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads

    Seaho Jeon

    2016-05-01

    Full Text Available We synthesized four C60-(light-harvesting antenna dyads C60 (>CPAF-Cn (n = 4, 9, 12, or 18 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ2 and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18 and C60(>CPAF-C9, as better 2PA and excited-state absorbers.

  13. CSTI High Capacity Power

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  14. Design of broadband multilayer dichroic coating for a high-efficiency solar energy harvesting system.

    Jiachen, Wang; Lee, Sang Bae; Lee, Kwanil

    2015-05-20

    We report on the design and performance of a broadband dichroic coating for a solar energy conversion system. As a spectral beam splitter, the coating facilitates a hybrid system that combines a photovoltaic cell with a thermal collector. When positioned at a 45° angle with respect to incident light, the coating provides high reflectance in the 40-1100 nm and high transmission in the 1200-2000 nm ranges for a photovoltaic cell and a thermal collector, respectively. Numerical simulations show that our design leads to a sharp transition between the reflection and transmission bands, low ripples in both bands, and slight polarization dependence.

  15. Determining of the electric field strength using high frequency broadband measurements

    Vulević Branislav D.

    2017-01-01

    Full Text Available Exposure of humans to electromagnetic fields of high frequency (above 100 kHz, i.e. radiofrequency radiation from the modern wireless systems, today inevitable is. The purpose of this paper is to highlight the importance of broadband measurements of the electric field of high frequency in order to fast and reliable assessment of human exposure. A practical method of ‘in situ’ measurement the electric field intensity which is related to the frequency range of 3 MHz to 18 GHz, is provided.

  16. High Power Broadband Multispectral Source on a Hybrid Silicon Chip

    2017-03-14

    optical bandwidth of the erbium-doped- fiber -amplifier with densely-spaced frequency channels. To extend the spectral capacity of the Si-on-insulator...associated with non-uniform undercut at the taper tip across the chip after wet etching the active region. Figure 14. Normalized optical emission...Hutchinson, J., Shin, J.-H., Fish, G., and Fang, A., “Integrated silicon photonic laser sources for telecom and datacom,” in [National Fiber Optic

  17. High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions

    Alwadai, Norah Mohammed Mosfer

    2017-10-17

    A high-performance vertically injected broadband UV-to-IR photodetector based on Gd-doped ZnO nanorods (NRs)/CH3NH3PbI3 perovskite heterojunction was fabricated on metal substrates. Our perovskite-based photodetector is sensitive to a broad spectral range, from ultraviolet to infrared light region (λ = 250–1357 nm). Such structure leads to a high photoresponsivity of 28 and 0.22 A/W, for white light and IR illumination, respectively, with high detectivity values of 1.1 × 1012 and 9.3 × 109 Jones. Optical characterizations demonstrate that the IR detection is due to intraband transition in the perovskite material. Metal substrate boosts carrier injection, resulting in higher responsivity compared to the conventional devices grown on glass, whereas the presence of Gd increases the ZnO NRs performance. For the first time, the perovskite-based photodetector is demonstrated to extend its detection capability to IR (>1000 nm) with high room temperature responsivity across the detected spectrum, leading to a high-performance ingenious cost-effective UV-to-IR broadband photodetector design for large-scale applications.

  18. High frequency electric field levels: An example of determination of measurement uncertainty for broadband measurements

    Vulević Branislav

    2016-01-01

    Full Text Available Determining high frequency electromagnetic field levels in urban areas represents a very complex task, having in mind the exponential growth of the number of sources embodied in public cellular telephony systems in the past twenty years. The main goal of this paper is a representation of a practical solution in the evaluation of measurement uncertainty for in-situ measurements in the case of spatial averaging. An example of the estimation of the uncertainty for electric field strength broadband measurements in the frequency range from 3 MHz to 18 GHz is presented.

  19. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays.

    Yifat, Yuval; Eitan, Michal; Iluz, Zeev; Hanein, Yael; Boag, Amir; Scheuer, Jacob

    2014-05-14

    We demonstrate wide-angle, broadband, and efficient reflection holography by utilizing coupled dipole-patch nanoantenna cells to impose an arbitrary phase profile on the reflected light. High-fidelity images were projected at angles of 45 and 20° with respect to the impinging light with efficiencies ranging between 40-50% over an optical bandwidth exceeding 180 nm. Excellent agreement with the theoretical predictions was found at a wide spectral range. The demonstration of such reflectarrays opens new avenues toward expanding the limits of large-angle holography.

  20. Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region

    Chang Qing

    2017-05-01

    Full Text Available Multicolor random lasing has broad potential applications in the fields of imaging, sensing, and optoelectronics. Here, silver nanoflowers (Ag NF with abundant nanogaps are fabricated by a rapid one-step solution-phase synthesis method and are first proposed as effective broadband plasmonic scatterers to achieve different color random lasing. With abundant nanogaps and spiky tips near the surface and the interparticle coupling effect, Ag NFs greatly enhance the local electromagnetic field and induce broadband plasmonic scattering spectra over the whole visible range. The extremely low working threshold and the high-quality factor for Ag NF-based random lasers are thus demonstrated as 0.24 MW cm−2 and 11,851, respectively. Further, coherent colorful random lasing covering the visible range is realized using the dye molecules oxazine (red, Coumarin 440 (blue, and Coumarin 153 (green, showing high-quality factor of more than 10,000. All these features show that Ag NF are highly efficient scatterers for high-performance coherent random lasing and colorful random lasers.

  1. Resonant High Power Combiners

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  2. High-power klystrons

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  3. High Performance Protein Sequence Database Scanning on the Cell Broadband Engine

    Adrianto Wirawan

    2009-01-01

    Full Text Available The enormous growth of biological sequence databases has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing rapidly as well. The recent emergence of low cost parallel multicore accelerator technologies has made it possible to reduce execution times of many bioinformatics applications. In this paper, we demonstrate how the Cell Broadband Engine can be used as a computational platform to accelerate two approaches for protein sequence database scanning: exhaustive and heuristic. We present efficient parallelization techniques for two representative algorithms: the dynamic programming based Smith–Waterman algorithm and the popular BLASTP heuristic. Their implementation on a Playstation®3 leads to significant runtime savings compared to corresponding sequential implementations.

  4. High power microwaves

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  5. Layer-by-Layer-Assembled High-Performance Broadband Antireflection Coatings

    Shimomura, Hiroomi

    2010-03-24

    Nanoparticles are indispensable ingredients of solution-processed optical, dielectric, and catalytic thin films. Although solution-based methods are promising low-cost alternatives to vacuum methods, they can have significant limitations. Coating uniformity, thickness control, roughness control, mechanical durability, and incorporation of a diverse set of functional organic molecules into nanoparticle thin films are major challenges. We have used the electrostatic layer-by-layer assembly technique to make uniform, conformal multistack nanoparticle thin films for optical applications with precise thickness control over each stack. Two particularly sought-after optical applications are broadband antireflection and structural color. The effects of interstack and surface roughness on optical properties of these constructs (e.g., haze and spectral response) have been studied quantitatively using a combination of Fourier-transform methods and atomic force microscopy measurements. Deconvoluting root-mean-square roughness into its large-, intermediate-, and small-scale components enables enhanced optical simulations. A 4-stack broadband antireflection coating (<0.5% average reflectance in the visible range, and 0.2% haze) composed of alternating high-index (n ≈ 1.96) and low-index (n ≈ 1.28) stacks has been made on glass substrate. Films calcinated at 550 °C endure a one-hour-long cloth cleaning test under 100 kPa normal stress. © 2010 American Chemical Society.

  6. High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy.

    Werblinski, Thomas; Fendt, Peter; Zigan, Lars; Will, Stefan

    2017-05-20

    The first results under fired internal combustion engine conditions based on a supercontinuum absorption spectrometer are presented and discussed. Temperature, pressure, and water mole fraction are inferred simultaneously from broadband H 2 O absorbance spectra ranging from 1340 nm to 1440 nm. The auto-ignition combustion process is monitored for two premixed n-heptane/air mixtures with 10 kHz in a rapid compression machine. Pressure and temperature levels during combustion exceed 65 bar and 1900 K, respectively. To allow for combustion measurements, the robustness of the spectrometer against beam steering has been improved compared to its previous version. Additionally, the detectable wavelength range has been extended further into the infrared region to allow for the acquisition of distinct high-temperature water transitions located in the P-branch above 1410 nm. Based on a theoretical study, line-of-sight (LOS) effects introduced by temperature stratification on the broadband fitting algorithm in the complete range from 1340 nm to 1440 nm are discussed. In this context, the recorded spectra during combustion were evaluated only within a narrower spectral region exhibiting almost no interference from low-temperature molecules (here, P-branch from 1410 nm to 1440 nm). It is shown that this strategy mitigates almost all of the LOS effects introduced by cold molecules and the evaluation of the spectrum in the entirely recorded wavelength range at engine combustion conditions.

  7. Switching power converters medium and high power

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  8. Broadband measurements of high-frequency electric field levels and exposure ratios determination

    Vulević Branislav

    2017-01-01

    Full Text Available The exposure of people to high-frequency electromagnetic fields (over 100 kHz that emanate from modern wireless information transmission systems is inevitable in modern times. Due to the rapid development of new technologies, measuring devices and their connection to measuring systems, the first fifteen years of the 21st century are characterized by the appearance of different approaches to measurements. This prompts the need for the assessment of the exposure of people to these fields. The main purpose of this paper is to show how to determine the exposure ratios based on the results of broadband measurements of the high-frequency electric field in the range of 3 MHz to 18 GHz in the environment.

  9. Nanosecond high-power dense microplasma switch for visible light

    Bataller, A., E-mail: bataller@physics.ucla.edu; Koulakis, J.; Pree, S.; Putterman, S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  10. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    Li, Guijun, E-mail: gliad@connect.ust.hk; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing [State Key Laboratory on Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-09

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  11. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-01-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  12. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    Dong Guo-Xiang; Xia Song; Li Wei; Zhang An-Xue; Xu Zhuo; Wei Xiao-Yong; Shi Hong-Yu

    2016-01-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. (paper)

  13. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.

    Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari

    2017-08-31

    Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.

  14. Broadband Internet and Income Inequality

    HOUNGBONON , Georges Vivien; Liang , Julienne

    2017-01-01

    Policy makers are aiming for a large coverage of high-speed broadband Internet. However , there is still a lack of evidence about its effects on income distribution. In this paper, we investigate the effects of fixed broadband Internet on mean income and income inequality using a unique town-level data on broadband adoption and quality in France. We find that broadband adoption and quality raise mean income and lower income inequality. These results are robust to initial conditions, and yield...

  15. High Power Density Motors

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  16. High-power electronics

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  17. High Power Vanadate lasers

    Strauss

    2006-07-01

    Full Text Available stream_source_info Strauss1_2006.pdf.txt stream_content_type text/plain stream_size 3151 Content-Encoding UTF-8 stream_name Strauss1_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Laser Research Institute... University of Stellenbosch www.laser-research.co.za High Power Vanadate lasers H.J.Strauss, Dr. C. Bollig, R.C. Botha, Prof. H.M. von Bergmann, Dr. J.P. Burger Aims 1) To develop new techniques to mount laser crystals, 2) compare the lasing properties...

  18. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  19. Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions

    Cheng, Ching-Cheng; Liao, Yu-Ming; Chen, Yang-Fang, E-mail: yfchen@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Zhan, Jun-Yu; Lin, Tai-Yuan [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Hsieh, Ya-Ping [Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 621, Taiwan (China)

    2016-08-01

    A self-powered photodetector with ultrahigh sensitivity, fast photoresponse, and wide spectral detectivity covering from 1000 nm to 400 nm based on graphene/ZnO/Si triple junctions has been designed, fabricated, and demonstrated. In this device, graphene serves as a transparent electrode as well as an efficient collection layer for photogenerated carriers due to its excellent tunability of Fermi energy. The ZnO layer acts as an antireflection layer to trap the incident light and enhance the light absorption. Furthermore, the insertion of the ZnO layer in between graphene and Si layers can create build-in electric field at both graphene/ZnO and ZnO/Si interfaces, which can greatly enhance the charge separation of photogenerated electron and hole pairs. As a result, the sensitivity and response time can be significantly improved. It is believed that our methodology for achieving a high-performance self-powered photodetector based on an appropriate design of band alignment and optical parameters can be implemented to many other material systems, which can be used to generate unique optoelectronic devices for practical applications.

  20. High power coaxial ubitron

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  1. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  2. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-01-01

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  3. The JLab high power ERL light source

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered (superconducting) Linac (ERL). The machine has a 160MeV electron beam and an average current of 10mA in 75MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100fs pulses with >200W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10kW of average power in the IR from 1 to 14μm in 400fs pulses at up to 74.85MHz repetition rates and soon will produce similar pulses of 300-1000nm light at up to 3kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and

  4. The JLab high power ERL light source

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  5. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN

    Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz

    2018-06-01

    We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources

  6. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  7. Broadband S-band class E HPA

    Wanum, M.; van Dijk, R.; de Hek, A.P.; van Vliet, Frank Edward

    2009-01-01

    A broadband class E High Power Amplifier (HPA) is presented. This HPA is designed to operate at S-band (2.75 to 3.75 GHz). A power added efficiency of 50% is obtained for the two stage amplifier with an output power of 35.5 dBm on a chip area of 5.25 times 2.8 mm2.

  8. High power communication satellites power systems study

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  9. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  10. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  11. A nonuniform-polarization high-energy ultra-broadband laser with a long erbium-doped fiber

    Mao, Dong

    2013-01-01

    We have experimentally investigated nonuniformly polarized broadband high-energy pulses delivered from a mode-locked laser with an ultra-long erbium-doped fiber (EDF). The pulses exhibit a broadband spectrum of ∼73 nm and can avoid optical wave breaking at high-pump regimes. The polarization states of the pulses evolve from uniform to nonuniform at each round trip in the oscillator, which is distinct from other pulses. Remarkably, the output pulses broaden in anomalous- or normal-dispersion regimes while they can be shortened with an EDF amplifier external to the cavity. Our results suggest that the long EDF results in a nonuniform-polarization state and plays a decisive role in the formation of high-energy pulses. (paper)

  12. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  13. Nuclear power flies high

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  14. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  15. High Efficiency Power Converter for Low Voltage High Power Applications

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  16. Trend on High-speed Power Line Communication Technology

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  17. High power communication satellites power systems study

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  18. High-performance broadband photodetector using solution-processible PbSe-TiO(2)-graphene hybrids.

    Manga, Kiran Kumar; Wang, Junzhong; Lin, Ming; Zhang, Jie; Nesladek, Milos; Nalla, Venkatram; Ji, Wei; Loh, Kian Ping

    2012-04-03

    Highly sensitive, multicomponent broadband photodetector devices are made from PbSe/graphene/TiO(2). TiO(2) and PbSe nanoparticles act as light harvesting photoactive materials from the UV to IR regions of the electromagnetic spectrum, while the graphene acts as a charge collector for both photogenerated holes and electrons under an applied electric field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters

    Liu, P.; Archuleta, R.J.; Hartzell, S.H.

    2006-01-01

    We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by

  20. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    Tian, Zhen

    2013-09-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  1. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    Tian, Zhen; Zhang, Xueqian; Yue, Weisheng; Gu, Jianqiang; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2013-01-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  2. BROADBAND CONCEPT OF ENERGY HARVESTING IN BEAM VIBRATING SYSTEMS FOR POWERING SENSORS

    Andrzej Rysak

    2014-09-01

    Full Text Available Recent demand for powering small sensors for wireless health monitoring triggered activities in the field of small size efficient energy harvesting devices. We examine energy harvesting in an aluminium beam with a piezoceramic patch subjected to kinematic harmonic excitation and impacts. Due to a mechanical stopper applied, inducing a hardening effect in the spring characteristic of the beam resonator, we observed a broader frequency range for the fairly large power output. Impact nonlinearities caused sensitivity to initial conditions and appearance of multiple solutions. The occurrence of resonant solution associated with impacts increased efficiency of the energy harvesting process.

  3. High Power Orbit Transfer Vehicle

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  4. High Efficiency Power Converter for Low Voltage High Power Applications

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  5. Bit and Power Loading Approach for Broadband Multi-Antenna OFDM System

    Rahman, Muhammad Imadur; Das, Suvra S.; Wang, Yuanye

    2007-01-01

    cannot find the exact Signal to Noise Ratio (SNR) thresholds due to different reasons, such as reduced Link Adaptation (LA) rate, Channel State Information (CSI) error, feedback delay etc., it is better to fix the transmit power across all sub-channels to guarantee the target Frame Error Rate (FER...

  6. Dispersion-Flattened Composite Highly Nonlinear Fibre Optimised for Broadband Pulsed Four-Wave Mixing

    Lillieholm, Mads; Galili, Michael; Oxenløwe, Leif Katsuo

    2016-01-01

    We present a segmented composite HNLF optimised for mitigation of dispersion-fluctuation impairments for broadband pulsed four-wave mixing. The HNLF-segmentation allows for pulsed FWMprocessing of a 13-nm wide input WDM-signal with -4.6-dB conversion efficiency...

  7. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

    Chirumamilla, Manohar; Roberts, Alexander Sylvester; Ding, Fei

    2016-01-01

    Efficient broadband absorption of visible and near-infrared light by low quality-factor metal-insulator-metal (MIM) resonators using refractory materials is reported. Omnidirectional absorption of incident light for broad angles of incidence and polarization insensitivity are observed for the fab...

  8. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity

    Fan, Xu-Dong; Zhu, Yi-Fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-Chun

    2017-09-01

    Schroeder diffusers, as a classical design of acoustic diffusers proposed over 40 years ago, play key roles in many practical scenarios ranging from architectural acoustics to noise control to particle manipulation. Despite the great success of conventional acoustic diffusers, it is still worth pursuing ideal acoustic diffusers that are essentially expected to produce perfect sound diffuse reflection within the unlimited bandwidth. Here, we propose a different mechanism for designing acoustic diffusers to overcome the basic limits in intensity uniformity and working bandwidth in the previous designs and demonstrate a practical implementation by acoustic metamaterials with dispersionless phase-steering capability. In stark contrast to the existing production of diffuse fields relying on random scattering of sound energy by using a specific mathematical number sequence of periodically distributed unit cells, we directly mold the reflected wavefront into the desired shape by precisely manipulating the local phases of individual subwavelength metastructures. We also benchmark our design via numerical simulation with a commercially available Schroeder diffuser, and the results verify that our proposed diffuser scatters incident acoustic energy into all directions more uniformly within an ultra-broad band regardless of the incident angle. Furthermore, our design enables further improvement of the working bandwidth just by simply downscaling each individual element. With ultra-broadband functionality and high uniformity of reflected intensity, our metamaterial-based production of the diffusive field opens a route to the design and application of acoustic diffusers and may have a significant impact on various fields such as architectural acoustics and medical ultrasound imaging/treatment.

  9. Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler.

    Ong, Jun Rong; Ang, Thomas Y L; Sahin, Ezgi; Pawlina, Bryan; Chen, G F R; Tan, D T H; Lim, Soon Thor; Png, Ching Eng

    2017-11-01

    We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30  dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30  dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30  dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42  dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.

  10. High power excimer laser

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  11. High power gyrotrons: a close perspective

    Kartikeyan, M.V.

    2012-01-01

    Gyrotrons and their variants, popularly known as gyrodevices are millimetric wave sources provide very high powers ranging from long pulse to continuous wave (CW) for various technological, scientific and industrial applications. From their conception (monotron-version) in the late fifties until their successful development for various applications, these devices have come a long way technologically and made an irreversible impact on both users and developers. The possible applications of high power millimeter and sub-millimeter waves from gyrotrons and their variants (gyro-devices) span a wide range of technologies. The plasma physics community has already taken advantage of the recent advances of gyrotrons in the areas of RF plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (LHCD) (8 GHz), electron cyclotron resonance heating (ECRH) (28-170-220 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering (CTS), heat-wave propagation experiments, and space-power grid (SPG) applications. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for the generation of multi- charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high frequency, broadband electron paramagnetic resonance (EPR) spectroscopy. Additional future applications await the development of novel high power gyro-amplifiers and devices for high resolution radar ranging and imaging in atmospheric and planetary science as well as deep space and specialized satellite communications, RF drivers for next generation high gradient linear accelerators (supercolliders), high resolution Doppler radar, radar ranging and imaging in atmospheric and planetary science, drivers for next-generation high-gradient linear accelerators

  12. High average power supercontinuum sources

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  13. A Broadband Waveguide Transfer Standard for Dissemination of UK National Microwave Power Standards,

    1982-01-01

    la )PT " RT a where RT is the resistance of the thermistor when the bridge is balanced. Although the thermistor mount is temperature controlled, some...voltage difference V1 - V and Vb - V2 - V then equation la 4 ... . .. mmm mmm mmmmmmmm m m mm mm mmmm m mm A becomes 2V(V - Vb) + V 2 - 2 P a b a b (lb...Weidman, "An international intercomparison of power standards in WR-28 waveguide". Metrologia , 17, June 1981. 4 G F Engen. "A refined X-band microwave

  14. Broadband radiometric LED measurements

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  15. Study of the general plasma characteristics of a high power multifilament ion source

    Schoenberg, K.F.

    1979-09-01

    A general assessment of the steady state and time dependent plasma properties which characterize a high power multifilament ion source is presented. Steady state measurements, obtained via a pulsed electrostatic probe data acquisition system, are described. Fluctuation measurements, obtained via a broadband digital spectral analysis system, are also given

  16. Very high power THz radiation at Jefferson Lab

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-01-01

    We report the production of high power (20 watts average, ∼;1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement

  17. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we

  18. High-powered manoeuvres

    Anaïs Schaeffer

    2013-01-01

    This week, CERN received the latest new transformers for the SPS. Stored in pairs in 24-tonne steel containers, these transformers will replace the old models, which have been in place since 1981.     The transformers arrive at SPS's access point 4 (BA 4). During LS1, the TE-EPC Group will be replacing all of the transformers for the main converters of the SPS. This renewal campaign is being carried out as part of the accelerator consolidation programme, which began at the start of April and will come to an end in November. It involves 80 transformers: 64 with a power of 2.6 megavolt-amperes (MVA) for the dipole magnets, and 16 with 1.9 MVA for the quadrupoles. These new transformers were manufactured by an Italian company and are being installed outside the six access points of the SPS by the EN-HE Group, using CERN's 220-tonne crane. They will contribute to the upgrade of the SPS, which should thus continue to operate as the injector for the LHC until 2040....

  19. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  20. Autonomously managed high power systems

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  1. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  2. Recovering the Properties of High-redshift Galaxies with Different JWST Broadband Filters

    Bisigello, L.; Caputi, K. I.; Colina, L.

    2017-01-01

    Imaging with the James Webb Space Telescope (JWST) will allow observations of the bulk of distant galaxies at the epoch of reionization. The recovery of their properties, such as age, color excess , specific star formation rate (sSFR), and stellar mass, will mostly rely on spectral energy...... of these galaxy properties. We performed our tests on a sample of 1542 simulated galaxies, with known input properties, at z = 7–10. We found that, with only eight NIRCam broadbands, we can recover the galaxy age within 0.1 Gyr and the color excess within 0.06 mag for 70% of the galaxies. Additionally...

  3. EURISOL High Power Targets

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  4. Applications of high power microwaves

    Benford, J.; Swegle, J.

    1993-01-01

    The authors address a number of applications for HPM technology. There is a strong symbiotic relationship between a developing technology and its emerging applications. New technologies can generate new applications. Conversely, applications can demand development of new technological capability. High-power microwave generating systems come with size and weight penalties and problems associated with the x-radiation and collection of the electron beam. Acceptance of these difficulties requires the identification of a set of applications for which high-power operation is either demanded or results in significant improvements in peRFormance. The authors identify the following applications, and discuss their requirements and operational issues: (1) High-energy RF acceleration; (2) Atmospheric modification (both to produce artificial ionospheric mirrors for radio waves and to save the ozone layer); (3) Radar; (4) Electronic warfare; and (5) Laser pumping. In addition, they discuss several applications requiring high average power than border on HPM, power beaming and plasma heating

  5. Modular High Voltage Power Supply

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  6. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-01

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  7. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Thierry Bore

    2016-04-01

    Full Text Available Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  8. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  9. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  10. Electrostatic probes driven by broad band high power and propagation of the turbulent perturbation

    Wang Zhijiang; Sun Xuan; Wan Shude; Wen Yizhi; Yu Changxuan; Liu Wandong; Wang Cheng; Pan Gesheng

    2003-01-01

    A high dynamic output, broad-band power source for driving electrostatic probes in the investigation on propagation of turbulent perturbation has been built and used successfully in experiments on the KT-5C tokamak. The details of the experiment setup as well as some preliminary results are presented. Detections both from the small size magnetic probes and electrostatic probes indicate that the modified perturbation excited by the power source may propagate electrostatically, and electromagnetically as well

  11. High power klystrons for efficient reliable high power amplifiers

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  12. Pulsed high-power beams

    Reginato, L.L.; Birx, D.L.

    1988-01-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. This paper reports on a 70-MeV, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory that incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive of the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability

  13. High power laser exciter accelerators

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  14. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz.

    Kang, Bong Joo; Baek, In Hyung; Lee, Seung-Heon; Kim, Won Tae; Lee, Seung-Jun; Jeong, Young Uk; Kwon, O-Pil; Rotermund, Fabian

    2016-05-16

    We report on efficient generation of ultra-broadband terahertz (THz) waves via optical rectification in a novel nonlinear organic crystal with acentric core structure, i.e. 2-(4-hydroxystyryl)-1-methylquinolinium 4-methylbenzenesulfonate (OHQ-T), which possesses an ideal molecular structure leading to a maximized nonlinear optical response for near-infrared-pumped THz wave generation. By systematic studies on wavelength-dependent phase-matching conditions in OHQ-T crystals of different thicknesses we are able to generate coherent THz waves with a high peak-to-peak electric field amplitude of up to 650 kV/cm and an upper cut-off frequency beyond 10 THz. High optical-to-THz conversion efficiency of 0.31% is achieved by efficient index matching with a selective pumping at 1300 nm.

  15. High power fast ramping power supplies

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  16. High-power, high-efficiency FELs

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  17. High voltage power network construction

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  18. High Temperature, High Power Piezoelectric Composite Transducers

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  19. High Power Electron Accelerator Prototype

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  20. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  1. Quantitative x-ray absorption imaging with a broadband source: application to high-intensity discharge lamps

    Curry, J J [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)], E-mail: jjcurry@nist.gov

    2008-07-21

    The case of x-ray absorption imaging in which the x-ray source is broadband and the detector does not provide spectral resolution is analysed. The specific motivation is observation of the Hg vapour distribution in high-intensity discharge (HID) lamps. When absorption by the vapour is small, the problem can be couched accurately in terms of a mean absorption cross section averaged over the x-ray spectral distribution, weighted by the energy-dependent response of the detector. The method is tested against a Au foil standard and then applied to Hg. The mean absorption cross section for Hg is calculated for a Ag-anode x-ray tube at accelerating voltages of 25, 30 and 35 kV, and for HIDs in fused silica or polycrystalline alumina arc tubes.

  2. Broadband Light-Harvesting Molecular Triads with High FRET Efficiency Based on the Coumarin-Rhodamine-BODIPY Platform.

    He, Longwei; Zhu, Sasa; Liu, Yong; Xie, Yinan; Xu, Qiuyan; Wei, Haipeng; Lin, Weiying

    2015-08-17

    Broadband capturing and FRET-based light-harvesting molecular triads, CRBs, based on the coumarin-rhodamine-BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue-green to yellow-orange regions (330-610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one-step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two-step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-speed broadband elastic actuator in water using induced-charge electro-osmosis with a skew structure

    Sugioka, Hideyuki; Nakano, Naoki

    2018-01-01

    An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (˜10 Hz) and a wide frequency range (˜0.1 to ˜10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.

  4. High-speed broadband elastic actuator in water using induced-charge electro-osmosis with a skew structure.

    Sugioka, Hideyuki; Nakano, Naoki

    2018-01-01

    An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (∼10 Hz) and a wide frequency range (∼0.1 to ∼10 kHz). Moreover, we propose a simple self-consistent model that explains the broadband characteristic due to the skew structure with other characteristics. By comparing the theoretical results with the experimental results, we find that they agree fairly well. We believe that our ACEO elastic actuator will play an important role in microfluidics in the future.

  5. Adoption of Broadband Services

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most suc....... Many countries have provided active support for stimulating diffusion of broadband and national variants of this type of policies in different countries are important for an explanation of national differences in adoption of broadband....

  6. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P; Stark, Daniel P

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy

  7. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next

  8. Fast elliptic-curve cryptography on the Cell Broadband Engine

    Costigan, N.; Schwabe, P.; Preneel, B.

    2009-01-01

    This paper is the first to investigate the power of the Cell Broadband Engine for state-of-the-art public-key cryptography. We present a high-speed implementation of elliptic-curve Diffie-Hellman (ECDH) key exchange for this processor, which needs 697080 cycles on one Synergistic Processor Unit for

  9. THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY

    Lee, Seong-Kook; Ferguson, Henry C.; Somerville, Rachel S.; Wiklind, Tommy; Giavalisco, Mauro

    2010-01-01

    We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high-redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates, and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies (LBGs). For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially declining model overpredicts the age by 100% and 120% for B- and V-dropouts, on average, while for a linearly increasing model, the age is overpredicted by 9% and 16%, respectively. Similarly, the exponential model underpredicts star formation rates by 56% and 60%, while the linearly increasing model underpredicts by 15% and 22%, respectively. For U-dropouts, the models where the star formation rate has a peak (near z ∼ 3) provide the best match for age-overprediction is reduced from 110% to 26%-and star formation rate-underprediction is reduced from 58% to 22%. We classify different types of star formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.

  10. Broadband Rotational Spectroscopy

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  11. High average power solid state laser power conditioning system

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  12. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-19

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  13. High power microwave source development

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  14. High-power pulsed lasers

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  15. Hybrid Broadband Ground-Motion Simulations: Combining Long-Period Deterministic Synthetics with High-Frequency Multiple S-to-S Backscattering

    Mai, Paul Martin; Imperatori, W.; Olsen, K. B.

    2010-01-01

    We present a new approach for computing broadband (0-10 Hz) synthetic seismograms by combining high-frequency (HF) scattering with low-frequency (LF) deterministic seismograms, considering finite-fault earthquake rupture models embedded in 3D earth structure. Site-specific HF-scattering Green's functions for a heterogeneous medium with uniformly distributed random isotropic scatterers are convolved with a source-time function that characterizes the temporal evolution of the rupture process. These scatterograms are then reconciled with the LF-deterministic waveforms using a frequency-domain optimization to match both amplitude and phase spectra around the target intersection frequency. The scattering parameters of the medium, scattering attenuation ηs, intrinsic attenuation ηi, and site-kappa, as well as frequency-dependent attenuation, determine waveform and spectral character of the HF-synthetics and thus affect the hybrid broadband seismograms. Applying our methodology to the 1994 Northridge earthquake and validating against near-field recordings at 24 sites, we find that our technique provides realistic broadband waveforms and consistently reproduces LF ground-motion intensities for two independent source descriptions. The least biased results, compared to recorded strong-motion data, are obtained after applying a frequency-dependent site-amplification factor to the broadband simulations. This innovative hybrid ground-motion simulation approach, applicable to any arbitrarily complex earthquake source model, is well suited for seismic hazard analysis and ground-motion estimation.

  16. Hybrid Broadband Ground-Motion Simulations: Combining Long-Period Deterministic Synthetics with High-Frequency Multiple S-to-S Backscattering

    Mai, Paul Martin

    2010-09-20

    We present a new approach for computing broadband (0-10 Hz) synthetic seismograms by combining high-frequency (HF) scattering with low-frequency (LF) deterministic seismograms, considering finite-fault earthquake rupture models embedded in 3D earth structure. Site-specific HF-scattering Green\\'s functions for a heterogeneous medium with uniformly distributed random isotropic scatterers are convolved with a source-time function that characterizes the temporal evolution of the rupture process. These scatterograms are then reconciled with the LF-deterministic waveforms using a frequency-domain optimization to match both amplitude and phase spectra around the target intersection frequency. The scattering parameters of the medium, scattering attenuation ηs, intrinsic attenuation ηi, and site-kappa, as well as frequency-dependent attenuation, determine waveform and spectral character of the HF-synthetics and thus affect the hybrid broadband seismograms. Applying our methodology to the 1994 Northridge earthquake and validating against near-field recordings at 24 sites, we find that our technique provides realistic broadband waveforms and consistently reproduces LF ground-motion intensities for two independent source descriptions. The least biased results, compared to recorded strong-motion data, are obtained after applying a frequency-dependent site-amplification factor to the broadband simulations. This innovative hybrid ground-motion simulation approach, applicable to any arbitrarily complex earthquake source model, is well suited for seismic hazard analysis and ground-motion estimation.

  17. Switchable semiconductor optical fiber laser incorporating AWG and broadband FBG with high SMSR

    Ahmad, H; Zulkifli, M Z; Thambiratnam, K; Latiff, A A; Harun, S W

    2009-01-01

    In this paper we propose and demonstrate a switchable wavelength fiber laser (SWFL) using a semiconductor optical amplifier (SOA) together with an arrayed waveguide grating (AWG). The proposed SOA-based SWFL is capable of generating up to 14 lasing channels from 1530.1 nm to 1534.9 nm at a channel spacing of 0.8 nm (100 GHz) and a bandwidth of 11.8 and 10.2 nm respectively. The EDFA-based SWFL has a higher peak power at –5 dBm, while to SOA-based SWFL has a peak power of only –10 dBm. However, the SOA-based SWFL exhibits a much better SMSR of between 10 to 20 dB as compared to the SMSR of the EDFA-based SWFL due to the inhomogeneous broadening properties of the SOA

  18. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  19. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  20. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking.

    Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui

    2015-02-23

    A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

  1. High-Speed Computation of the Kleene Star in Max-Plus Algebraic System Using a Cell Broadband Engine

    Goto, Hiroyuki

    This research addresses a high-speed computation method for the Kleene star of the weighted adjacency matrix in a max-plus algebraic system. We focus on systems whose precedence constraints are represented by a directed acyclic graph and implement it on a Cell Broadband Engine™ (CBE) processor. Since the resulting matrix gives the longest travel times between two adjacent nodes, it is often utilized in scheduling problem solvers for a class of discrete event systems. This research, in particular, attempts to achieve a speedup by using two approaches: parallelization and SIMDization (Single Instruction, Multiple Data), both of which can be accomplished by a CBE processor. The former refers to a parallel computation using multiple cores, while the latter is a method whereby multiple elements are computed by a single instruction. Using the implementation on a Sony PlayStation 3™ equipped with a CBE processor, we found that the SIMDization is effective regardless of the system's size and the number of processor cores used. We also found that the scalability of using multiple cores is remarkable especially for systems with a large number of nodes. In a numerical experiment where the number of nodes is 2000, we achieved a speedup of 20 times compared with the method without the above techniques.

  2. High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions

    Alwadai, Norah Mohammed Mosfer; Haque, Mohammed; Mitra, Somak; Flemban, Tahani H.; Pak, Yusin; Wu, Tao; Roqan, Iman S.

    2017-01-01

    range, from ultraviolet to infrared light region (λ = 250–1357 nm). Such structure leads to a high photoresponsivity of 28 and 0.22 A/W, for white light and IR illumination, respectively, with high detectivity values of 1.1 × 1012 and 9.3 × 109 Jones

  3. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. \\tRecent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. \\tIn this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis

  4. Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers.

    Nechayev, Sergey; Rotschild, Carmel

    2017-09-13

    Broadband light sources are a wide class of pumping schemes for lasers including LEDs, sunlight and flash lamps. Recently, efficient coupling of broadband light to high-quality micro-cavities has been demonstrated for on-chip applications and low-threshold solar-pumped lasers via cascade energy transfer. However, the conversion of incoherent to coherent light comes with an inherent price of reduced efficiency, which has yet to be assessed. In this paper, we derive the detailed balance limit of efficiency of broadband-pumped lasers and discuss how it is affected by the need to maintain a threshold population inversion and thermodynamically dictated minimal Stokes' shift. We show that lasers' slope efficiency is analogous to the nominal efficiency of solar cells, limited by thermalisation losses and additional unavoidable Stokes' shift. The lasers' power efficiency is analogous to the detailed balance limit of efficiency of solar cells, affected by the cavity mirrors and impedance matching factor, respectively. As an example we analyze the specific case of solar-pumped sensitized Nd 3+ :YAG-like lasers and define the conditions to reach their thermodynamic limit of efficiency. Our work establishes an upper theoretical limit for the efficiency of broadband-pumped lasers. Our general, yet flexible model also provides a way to incorporate other optical and thermodynamic losses and, hence, to estimate the efficiency of non-ideal broadband-pumped lasers.

  5. Optics assembly for high power laser tools

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  6. Mobile relays for enhanced broadband connectivity in high speed train systems

    Yaacoub, Elias E.; Atat, Rachad; Alsharoa, Ahmad M.; Alouini, Mohamed-Slim

    2014-01-01

    With the introduction of wireless modems and smart phones, the passenger transport industry is witnessing a high demand to ensure not only the safety of the trains, but also to provide users with Internet access all the time inside the train. When

  7. Contamination of Broad-Band Photometry by Nebular Emission in High Redshift Galaxies: Investigations with Keck's MOSFIRE Near-Infrared Spectrograph

    Schenker, Matthew A.; Ellis, Richard S.; Konidaris, Nick P.; Stark, Daniel P.

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≃ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground...

  8. Ultra-broadband ptychography with self-consistent coherence estimation from a high harmonic source

    Odstrčil, M.; Baksh, P.; Kim, H.; Boden, S. A.; Brocklesby, W. S.; Frey, J. G.

    2015-09-01

    With the aim of improving imaging using table-top extreme ultraviolet sources, we demonstrate coherent diffraction imaging (CDI) with relative bandwidth of 20%. The coherence properties of the illumination probe are identified using the same imaging setup. The presented methods allows for the use of fewer monochromating optics, obtaining higher flux at the sample and thus reach higher resolution or shorter exposure time. This is important in the case of ptychography when a large number of diffraction patterns need to be collected. Our microscopy setup was tested on a reconstruction of an extended sample to show the quality of the reconstruction. We show that high harmonic generation based EUV tabletop microscope can provide reconstruction of samples with a large field of view and high resolution without additional prior knowledge about the sample or illumination.

  9. Comment on "Design of a broadband highly dispersive pure silica photonic crystal fiber"

    Mortensen, Niels Asger

    2008-01-01

    In a recent paper, Subbaraman et al. [Appl. Opt. 46, 3263–3268 (2007)] reported a theoretical and numerical study of highly dispersive pure silica photonic crystal fiber supporting group-velocity dispersion exceeding −2 × 104 ps=nm=km. This Comment argues that the authors consider only one of two...... sides of the same coin by not taking the corresponding beating length into account....

  10. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  11. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  12. high power facto high power factor high power factor hybrid rectifier

    eobe

    increase in the number of electrical loads that some kind of ... components in the AC power system. Thus, suppl ... al output power; assuring reliability in ... distribution systems. This can be ...... Thesis- Califonia Institute of Technology, Capitulo.

  13. Signal enhancement by spectral equalization of high frequency broadband signals transmitted through optical fibers

    Lyons, P.B.; Ogle, J.W.; Holzman, M.A.

    1980-01-01

    A new technique is discussed for enhancing the bandwidth and intensity of high frequency (> 1 GHz) analog, spectrally broad (40 nm) signals transmitted through one kilometer of optical fiber. The existing method for bandwidth enhancement of such a signal uses a very narrow (approx. 1 nm) filter between the fiber and detector to limit bandwidth degradation due to material dispersion. Using this method, most of the available optical intensity is rejected and lost. This new technique replaces the narrow-band filter with a spectral equalizer device which uses a reflection grating to disperse the input signal spectrum and direct it onto a linear array of fibers

  14. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB.

    Liu, S; Cai, H; DeRose, C T; Davids, P; Pomerene, A; Starbuck, A L; Trotter, D C; Camacho, R; Urayama, J; Lentine, A

    2017-05-15

    We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 - 1640 nm and 95 nm from 1280 - 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

  15. High-performance broad-band spectroscopy for breast cancer risk assessment

    Pawluczyk, Olga; Blackmore, Kristina; Dick, Samantha; Lilge, Lothar

    2005-09-01

    Medical diagnostics and screening are becoming increasingly demanding applications for spectroscopy. Although for many years the demand was satisfied with traditional spectrometers, analysis of complex biological samples has created a need for instruments capable of detecting small differences between samples. One such application is the measurement of absorbance of broad spectrum illumination by breast tissue, in order to quantify the breast tissue density. Studies have shown that breast cancer risk is closely associated with the measurement of radiographic breast density measurement. Using signal attenuation in transillumination spectroscopy in the 550-1100nm spectral range to measure breast density, has the potential to reduce the frequency of ionizing radiation, or making the test accessible to younger women; lower the cost and make the procedure more comfortable for the patient. In order to determine breast density, small spectral variances over a total attenuation of up to 8 OD have to be detected with the spectrophotometer. For this, a high performance system has been developed. The system uses Volume Phase Holographic (VPH) transmission grating, a 2D detector array for simultaneous registration of the whole spectrum with high signal to noise ratio, dedicated optical system specifically optimized for spectroscopic applications and many other improvements. The signal to noise ratio exceeding 50,000 for a single data acquisition eliminates the need for nitrogen cooled detectors and provides sufficient information to predict breast tissue density. Current studies employing transillumination breast spectroscopy (TIBS) relating to breast cancer risk assessment and monitoring are described.

  16. High power ubitron-klystron

    Balkcum, A.J.; McDermott, D.B.; Luhmann, N.C. Jr.

    1997-01-01

    A coaxial ubitron is being considered as the rf driver for the Next Linear Collider (NLC). Prior simulation of a traveling-wave ubitron using a self-consistent code found that 200 MW of power and 53 dB of gain could be achieved with 37% efficiency. In a ubiron-klystron, a series of cavities are used to obtain an even tighter electron bunch for higher efficiency. A small-signal theory of the ubitron-klystron shows that gain scales with the square of the cavity separation distance. A linear stability theory has also been developed. Verification of the stability theory has been achieved using the 2-12-D PIC code, MAGIC, and the particle-tracing code. Saturation characteristics of the amplifier will be presented using both MAGIC and a simpler self-consistent slow-timescale code currently under development. The ubitron can also operate as a compact, highly efficient oscillator. Cavities only two wiggler periods in length have yielded up to 40% rf conversion efficiency in simulation. An initial oscillator design for directed energy applications will also be presented

  17. Simplified High-Power Inverter

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  18. Demonstration of high-responsivity epitaxial β-Ga2O3/GaN metal–heterojunction-metal broadband UV-A/UV-C detector

    Kalra, Anisha; Vura, Sandeep; Rathkanthiwar, Shashwat; Muralidharan, Rangarajan; Raghavan, Srinivasan; Nath, Digbijoy N.

    2018-06-01

    We demonstrate epitaxial β-Ga2O3/GaN-based vertical metal–heterojunction-metal (MHM) broadband UV-A/UV-C photodetectors with high responsivity (3.7 A/W) at 256 and 365 nm, UV-to-visible rejection >103, and a photo-to-dark current ratio of ∼100. A small (large) conduction (valence) band offset at the heterojunction of pulsed laser deposition (PLD)-grown β-Ga2O3 on metal organic chemical vapor deposition (MOCVD)-grown GaN-on-silicon with epitaxial registry, as confirmed by X-ray diffraction (XRD) azimuthal scanning, is exploited to realize detectors with an asymmetric photoresponse and is explained with one-dimensional (1D) band diagram simulations. The demonstrated novel vertical MHM detectors on silicon are fully scalable and promising for enabling focal plane arrays for broadband ultraviolet sensing.

  19. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  20. Optimization of Broadband Wavefront Correction at the Princeton High Contrast Imaging Laboratory

    Groff, Tyler Dean; Kasdin, N.; Carlotti, A.

    2011-01-01

    Wavefront control for imaging of terrestrial planets using coronagraphic techniques requires improving the performance of the wavefront control techniques to expand the correction bandwidth and the size of the dark hole over which it is effective. At the Princeton High Contrast Imaging Laboratory we have focused on increasing the search area using two deformable mirrors (DMs) in series to achieve symmetric correction by correcting both amplitude and phase aberrations. Here we are concerned with increasing the bandwidth of light over which this correction is effective so we include a finite bandwidth into the optimization problem to generate a new stroke minimization algorithm. This allows us to minimize the actuator stroke on the DMs given contrast constraints at multiple wavelengths which define a window over which the dark hole will persist. This windowed stroke minimization algorithm is written in such a way that a weight may be applied to dictate the relative importance of the outer wavelengths to the central wavelength. In order to supply the estimates at multiple wavelengths a functional relationship to a central estimation wavelength is formed. Computational overhead and new experimental results of this windowed stroke minimization algorithm are discussed. The tradeoff between symmetric correction and achievable bandwidth is compared to the observed contrast degradation with wavelength in the experimental results. This work is supported by NASA APRA Grant #NNX09AB96G. The author is also supported under an NESSF Fellowship.

  1. Mobile relays for enhanced broadband connectivity in high speed train systems

    Yaacoub, Elias E.

    2014-09-01

    With the introduction of wireless modems and smart phones, the passenger transport industry is witnessing a high demand to ensure not only the safety of the trains, but also to provide users with Internet access all the time inside the train. When the Mobile Terminal (MT) communicates directly with the Base Station (BS), it will experience a severe degradation in the Quality of Service due to the path loss and shadowing effects as the wireless signal is traveling through the train. In this paper, we study the performance in the case of relays placed on top of each train car. In the proposed approach, these relays communicate with the cellular BS on one hand, and with the MTs inside the train cars on the other hand, using the Long Term Evolution (LTE) cellular technology. A low complexity heuristic LTE radio resource management approach is proposed and compared to the Hungarian algorithm, both in the presence and absence of the relays. The presence of the relays is shown to lead to significant enhancements in the effective data rates of the MTs. In addition, the proposed resource management approach is shown to reach a performance close to the optimal Hungarian algorithm. © 2014 Elsevier B.V.

  2. High-efficiency broadband polarization converter based on Ω-shaped metasurface

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian

    2017-11-01

    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  3. Review of Power System Stability with High Wind Power Penetration

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  4. Three-Dimensional Reconstruction of Cloud-to-Ground Lightning Using High-Speed Video and VHF Broadband Interferometer

    Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao

    2017-12-01

    The time resolved three-dimensional (3-D) spatial reconstruction of lightning channels using high-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of lightning. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered lightning reported by Idone. Since BITF can detect lightning radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the lightning process.

  5. Electronic DC transformer with high power density

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  6. High power CW linac in PNC

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  7. High Power Density Power Electronic Converters for Large Wind Turbines

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  8. High Power Fiber Laser Test Bed

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  9. Femtosecond Broadband Stimulated Raman Spectroscopy

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  10. High Power Wireless Transfer : For Charging High Power Batteries

    Gill, Himmat

    2017-01-01

    Wireless power transfer (WPT) is developing with emerging of new technologies that has made it possible to transfer electricity over certain distances without any physical contact, offering significant benefits to modern automation systems, medical applications, consumer electronic, and especially in electric vehicle systems. The goal of this study is to provide a brief review of existing compensation topologies for the loosely coupled transformer. The technique used to simulate a co...

  11. High Power laser power conditioning system new discharge circuit research

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  12. Broadband illumination of superconducting pair breaking photon detectors

    Guruswamy, T; Goldie, D J; Withington, S

    2016-01-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)

  13. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  14. Superconducting high frequency high power resonators

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  15. Observations involving broadband impedance modelling

    Berg, J S [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  16. Observations involving broadband impedance modelling

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances

  17. Broadband rectangular TEn0 mode exciter with H-plane power dividers for 100 GHz confocal gyro-devices.

    Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong

    2017-07-01

    A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.

  18. High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.

    Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali

    2016-03-15

    We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.

  19. A non-invasive, quantitative study of broadband spectral responses in human visual cortex.

    Eline R Kupers

    Full Text Available Currently, non-invasive methods for studying the human brain do not routinely and reliably measure spike-rate-dependent signals, independent of responses such as hemodynamic coupling (fMRI and subthreshold neuronal synchrony (oscillations and event-related potentials. In contrast, invasive methods-microelectrode recordings and electrocorticography (ECoG-have recently measured broadband power elevation in field potentials (~50-200 Hz as a proxy for locally averaged spike rates. Here, we sought to detect and quantify stimulus-related broadband responses using magnetoencephalography (MEG. Extracranial measurements like MEG and EEG have multiple global noise sources and relatively low signal-to-noise ratios; moreover high frequency artifacts from eye movements can be confounded with stimulus design and mistaken for signals originating from brain activity. For these reasons, we developed an automated denoising technique that helps reveal the broadband signal of interest. Subjects viewed 12-Hz contrast-reversing patterns in the left, right, or bilateral visual field. Sensor time series were separated into evoked (12-Hz amplitude and broadband components (60-150 Hz. In all subjects, denoised broadband responses were reliably measured in sensors over occipital cortex, even in trials without microsaccades. The broadband pattern was stimulus-dependent, with greater power contralateral to the stimulus. Because we obtain reliable broadband estimates with short experiments (~20 minutes, and with sufficient signal-to-noise to distinguish responses to different stimuli, we conclude that MEG broadband signals, denoised with our method, offer a practical, non-invasive means for characterizing spike-rate-dependent neural activity for addressing scientific questions about human brain function.

  20. Broadband unidirectional ultrasound propagation

    Sinha, Dipen N.; Pantea, Cristian

    2017-12-12

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.

  1. Automated System Tests High-Power MOSFET's

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  2. Broadband Radiometric LED Measurements

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  3. A hybrid, broadband, low noise charge preamplifier for simultaneous high resolution energy and time information with large capacitance semiconductor detector

    Goyot, M.

    1975-05-01

    A broadband and low noise charge preamplifier was developed in hybrid form, for a recoil spectrometer requiring large capacitance semiconductor detectors. This new hybrid and low cost preamplifier permits good timing information without compromising energy resolution. With a 500 pF external input capacity, it provides two simultaneous outputs: (i) the faster, current sensitive, with a rise time of 9 nsec and 2 mV/MeV on 50 ohms load, (ii) the lower, charge sensitive, with an energy resolution of 14 keV (FWHM Si) using a RC-CR ungated filter of 2 μsec and a FET input protection [fr

  4. Powering the High-Luminosity Triplets

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  5. Impact of cyclostationarity on fan broadband noise prediction

    Wohlbrandt, A.; Kissner, C.; Guérin, S.

    2018-04-01

    One of the dominant noise sources of modern Ultra High Bypass Ratio (UHBR) engines is the interaction of the rotor wakes with the leading edges of the stator vanes in the fan stage. While the tonal components of this noise generation mechanism are fairly well understood by now, the broadband components are not. This calls to further the understanding of the broadband noise generation in the fan stage. This article introduces a new extension to the Random Particle Mesh (RPM) method, which accommodates in-depth studies of the impact of cyclostationary wake characteristics on the broadband noise in the fan stage. The RPM method is used to synthesize a turbulence field in the stator domain using a URANS simulation characterized by time-periodic turbulence and mean flow. The rotor-stator interaction noise is predicted by a two-dimensional CAA computation of the stator cascade. The impact of cyclostationarity is decomposed into various effects, which are separately investigated. This leads to the finding that the periodic turbulent kinetic energy (TKE) and periodic flow have only a negligible effect on the radiated sound power. The impact of the periodic integral length scale (TLS) is, however, substantial. The limits of a stationary representation of the TLS are demonstrated making this new extension to the RPM method indispensable when background and wake TKE are of comparable level. Good agreement of the predictions with measurements obtained from the 2015 AIAA Fan Broadband Noise Prediction Workshop are also shown.

  6. High current and high power superconducting rectifiers

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  7. High power ultrashort pulse lasers

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  8. Evolution of Very High Frequency Power Supplies

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  9. Service Class Resource Management For Green Wireless-Optical Broadband Access NetworksWOBAN

    SRUTHY.S

    2015-08-01

    Full Text Available Abstract-Broadband access networks have become an essential part of worldwide communication systems because of the exponential growth of broadband services such as video on demand high definition TV internet protocol TV and video conferencing. Exponential growth in the volume of wireless data boosted by the growing popularity of mobile devices such as smartphone and tablets has forced the telecommunication industries to rethink the way networks are currently designed and to focus on the development of high-capacity mobile broadband networks. In response to this challenge researchers have been working toward the development of an integrated wireless optical broadband access network. Two major candidate technologies which are currently known for their high capacity as well as quality of service QoS for multimedia traffic are passive optical networks PON and fourth generation 4G wireless networks. PON is a wired access technology well known for its cost efficiency and high capacity whereas 4G is a wireless broadband access technology which has achieved broad market acceptance because of its ease of deployment ability to offer mobility and its cost efficiency. Integration of PON and 4G technologies in the form of wireless-optical broadband access networks offers advantages such as extension of networks in rural areas support for mobile broadband services and quick deployment of broadband networks. These two technologies however have different design architectures for handling broadband services that require quality of service. For example 4G networks use traffic classification for supporting different QoS demands whereas the PON architecture has no such mechanism to differentiate between types of traffic. These two technologies also differ in their power saving mechanisms. Propose a service class mapping for the integrated PON-4G network which is based on the MG1 queuing model and class-based power saving mechanism which significantly improves the

  10. The NASA CSTI High Capacity Power Project

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    This paper describes the elements of NASA's CSTI High Capacity Power Project which include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timeliness recently developed

  11. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  12. ACIGA's high optical power test facility

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  13. High frequency P(VDF-TrFE) copolymer broadband annular array ultrasound transducers using high density flexible circuit interconnect

    Gottlieb, Emanuel J.; Cannata, Jonathan M.; Hu, Chang Hong; Shung, K. K.

    2005-04-01

    A kerfless eight element high frequency ultrasound annular array transducer using 9 μm P(VDF-TrFE) bonded to a high density flexible interconnect was fabricated. The flexible circuit composed of Kapton polyimide film with gold electrode pattern of equal area annuli apertures on the top side of a 50 μm thick Kapton polyimide film. Each element had several 30 μm diameter electroplated vias that connected to electrode traces on the bottom side of the Kapton polyimide film. There was a 30 μm spacing between elements. The total aperture of the array was 3.12 mm. The transducer's performance has been modeled by implementing the Redwood version of the Mason model into PSpice and using the Krimholtz, Leedom and Matthaei (KLM) model utilized in the commercial software PiezoCAD. The transducer"s performance was evaluated by measuring the electrical impedance with a HP 4194 impedance analyzer, pulse echo response using a Panametrics 5900 pulser/receiver and crosstalk measurement for each element in the array. The measured electrical impedance for each element was 540 Ω and -84° phase. In order to improve device sensitivity an inductor was attached in series with each element to reduce the insertion loss to 33 dB. The measured average center frequency and bandwidth of each element was 55 MHz and 50% respectively. The measured crosstalk at the center frequency was -45 dB in water.

  14. Broadband Faraday isolator.

    Berent, Michał; Rangelov, Andon A; Vitanov, Nikolay V

    2013-01-01

    Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

  15. High average-power induction linacs

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  16. High average-power induction linacs

    Prono, D.S.; Barrett, D.; Bowles, E.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  17. Driver Circuit For High-Power MOSFET's

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  18. ICAN: High power neutral beam generation

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  19. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  20. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  1. High power density carbonate fuel cell

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  2. High Voltage Power Transmission for Wind Energy

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  3. Gingin High Optical Power Test Facility

    Zhao, C; Blair, D G; Barrigo, P

    2006-01-01

    The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments

  4. Feature Extraction Method for High Impedance Ground Fault Localization in Radial Power Distribution Networks

    Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted

    1998-01-01

    A new approach to the localization of high impedance ground faults in compensated radial power distribution networks is presented. The total size of such networks is often very large and a major part of the monitoring of these is carried out manually. The increasing complexity of industrial...... of three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...... processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement...

  5. Inverter design for high frequency power distribution

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  6. Advent of broadband public-switched communications

    Casey, John J.

    1992-02-01

    Advances in data communications infrastructure, display technology, and man-machine interfaces have changed business applications and the requirements of public network data transport. These changes have created opportunities for a new generation of public broadband services to more efficiently extend high speed communications capabilities beyond the customer premises. This paper provides a view of the technology and market evolution of these public broadband data communications services, and suggests early customer networked applications that justify the deployment of a public switched broadband network infrastructure.

  7. CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window

    Čermák, P., E-mail: cermak@fmph.uniba.sk [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava (Slovakia); Chomet, B. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France); Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Ferrieres, L.; Denet, S.; Lecocq, V. [Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Vasilchenko, S. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Laboratory of Molecular Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Science, 1 Academician Zuev Square, 634021 Tomsk (Russian Federation); Mondelain, D.; Kassi, S.; Campargue, A. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Myara, M.; Cerutti, L.; Garnache, A. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France)

    2016-08-15

    The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10{sup −11} cm{sup −1}) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm{sup −1} around 4300 cm{sup −1} together with a powerful (∼5 mW) TEM{sub 00} diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.

  8. CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window.

    Čermák, P; Chomet, B; Ferrieres, L; Vasilchenko, S; Mondelain, D; Kassi, S; Campargue, A; Denet, S; Lecocq, V; Myara, M; Cerutti, L; Garnache, A

    2016-08-01

    The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10(-11) cm(-1)) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm(-1) around 4300 cm(-1) together with a powerful (∼5 mW) TEM00 diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.

  9. Small high cooling power space cooler

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  10. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  11. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition

    Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W.

    2015-09-01

    The progress in the field of graphene has aroused a renaissance of keen research interest in layered transition metal dichalcogenides (TMDs). Tungsten disulfide (WS2), a typical TMD with favorable semiconducting band gap and strong light-matter interaction, exhibits great potential for highly-responsive photodetection. However, WS2-based photodetection is currently unsatisfactory due to the low optical absorption (2%-10%) and poor carrier mobility (0.01-0.91 cm2 V-1 s-1) of the thin WS2 layers grown by chemical vapor deposition (CVD). Here, we introduce pulsed-laser deposition (PLD) to prepare multilayered WS2 films. Large-area WS2 films of the magnitude of cm2 are achieved. Comparative measurements of a WS2-based photoresistor demonstrate its stable broadband photoresponse from 370 to 1064 nm, the broadest range demonstrated in WS2 photodetectors. Benefiting from the large optical absorbance (40%-85%) and high carrier mobility (31 cm2 V-1 s-1), the responsivity of the device approaches a high value of 0.51 A W-1 in an ambient environment. Such a performance far surpasses the CVD-grown WS2-based photodetectors (μA W-1). In a vacuum environment, the responsivity is further enhanced to 0.70 A W-1 along with an external quantum efficiency of 137% and a photodetectivity of 2.7 × 109 cm Hz1/2 W-1. These findings stress that the PLD-grown WS2 film may constitute a new paradigm for the next-generation stable, broadband and highly-responsive photodetectors.The progress in the field of graphene has aroused a renaissance of keen research interest in layered transition metal dichalcogenides (TMDs). Tungsten disulfide (WS2), a typical TMD with favorable semiconducting band gap and strong light-matter interaction, exhibits great potential for highly-responsive photodetection. However, WS2-based photodetection is currently unsatisfactory due to the low optical absorption (2%-10%) and poor carrier mobility (0.01-0.91 cm2 V-1 s-1) of the thin WS2 layers grown by chemical vapor

  12. High power neutral beam injection in LHD

    Tsumori, K.; Takeiri, Y.; Nagaoka, K.

    2005-01-01

    The results of high power injection with a neutral beam injection (NBI) system for the large helical device (LHD) are reported. The system consists of three beam-lines, and two hydrogen negative ion (H - ion) sources are installed in each beam-line. In order to improve the injection power, the new beam accelerator with multi-slot grounded grid (MSGG) has been developed and applied to one of the beam-lines. Using the accelerator, the maximum powers of 5.7 MW were achieved in 2003 and 2004, and the energy of 189 keV reached at maximum. The power and energy exceeded the design values of the individual beam-line for LHD. The other beam-lines also increased their injection power up to about 4 MW, and the total injection power of 13.1 MW was achieved with three beam-lines in 2003. Although the accelerator had an advantage in high power beam injection, it involved a demerit in the beam focal condition. The disadvantage was resolved by modifying the aperture shapes of the steering grid. (author)

  13. High Flux Isotope Reactor power upgrade status

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  14. Advanced High Voltage Power Device Concepts

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  15. Optimizing the design of very high power, high performance converters

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  16. Broadband Electromagnetic Technology

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  17. The Jefferson Lab High Power Light Source

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  18. High power infrared QCLs: advances and applications

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  19. The NASA CSTI High Capacity Power Program

    Winter, J.M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed

  20. High-power VCSELs for smart munitions

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  1. High power all solid state VUV lasers

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  2. High Power High Efficiency Diode Laser Stack for Processing

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  3. High to ultra-high power electrical energy storage.

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  4. Analyzing Broadband Divide in the Farming Sector

    Jensen, Michael; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2013-01-01

    , upstream and downstream connection. The main constraint is that farms are naturally located in rural areas where the required access broadband data rates are not available. This paper studies the broadband divide in relation to the Danish agricultural sector. Results show how there is an important......Agriculture industry has been evolving for centuries. Currently, the technological development of Internet oriented farming tools allows to increase the productivity and efficiency of this sector. Many of the already available tools and applications require high bandwidth in both directions...... difference between the broadband availability for farms and the rest of the households/buildings the country. This divide may be slowing down the potential technological development of the farming industry, in order to keep their competitiveness in the market. Therefore, broadband development in rural areas...

  5. Powersail High Power Propulsion System Design Study

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  6. Reactor G1: high power experiments

    Laage, F. de; Teste du Baillet, A.; Veyssiere, A.; Wanner, G.

    1957-01-01

    The experiments carried out in the starting-up programme of the reactor G1 comprised a series of tests at high power, which allowed the following points to be studied: 1- Effect of poisoning by Xenon (absolute value, evolution). 2- Temperature coefficients of the uranium and graphite for a temperature distribution corresponding to heating by fission. 3- Effect of the pressure (due to the coiling system) on the reactivity. 4- Calibration of the security rods as a function of their position in the pile (1). 5- Temperature distribution of the graphite, the sheathing, the uranium and the air leaving the canals, in a pile running normally at high power. 6- Neutron flux distribution in a pile running normally at high power. 7- Determination of the power by nuclear and thermodynamic methods. These experiments have been carried out under two very different pile conditions. From the 1. to the 15. of August 1956, a series of power increases, followed by periods of stabilisation, were induced in a pile containing uranium only, in 457 canals, amounting to about 34 tons of fuel. A knowledge of the efficiency of the control rods in such a pile has made it possible to measure with good accuracy the principal effects at high temperatures, that is, to deal with points 1, 2, 3, 5. Flux charts giving information on the variations of the material Laplacian and extrapolation lengths in the reflector have been drawn up. Finally the thermodynamic power has been measured under good conditions, in spite of some installation difficulties. On September 16, the pile had its final charge of 100 tons. All the canals were loaded, 1,234 with uranium and 53 (i.e. exactly 4 per cent of the total number) with thorium uniformly distributed in a square lattice of 100 cm side. Since technical difficulties prevented the calibration of the control rods, the measurements were limited to the determination of the thermodynamic power and the temperature distributions (points 5 and 7). This report will

  7. Compact high-power terahertz radiation source

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  8. High power RF transmission line component development

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  9. High power RF transmission line component development

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  10. High voltage superconducting switch for power application

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  11. Advances in Very High Frequency Power Conversion

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  12. High Average Power, High Energy Short Pulse Fiber Laser System

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  13. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Stark, Daniel P, E-mail: schenker@astro.caltech.edu [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  14. High power switches for ion induction linacs

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  15. High power switches for ion induction linacs

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  16. High power RF oscillator with Marx generators

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  17. Operation of Power Grids with High Penetration of Wind Power

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  18. Optical engineering for high power laser applications

    Novaro, M.

    1993-01-01

    Laser facilities for Inertial Confinement Fusion (I.C.F.) experiments require laser and X ray optics able to withstand short pulse conditions. After a brief recall of high power laser system arrangements and of the characteristics of their optics, the authors will present some X ray optical developments

  19. Development of a high power femtosecond laser

    Neethling, PH

    2010-10-01

    Full Text Available The Laser Research Institute and the CSIR National Laser Centre are developing a high power femtosecond laser system in a joint project with a phased approach. The laser system consists of an fs oscillator and a regenerative amplifier. An OPCPA...

  20. Targets for high power neutral beams

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  1. Reduced filamentation in high power semiconductor lasers

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  2. High Efficiency Reversible Fuel Cell Power Converter

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  3. Design and development of high voltage high power operational ...

    address this challenge, a) Designing a discrete power opamp with high .... the use of high-impedance feedback networks, thus minimizing their output loading ... Spice simulation is done for the circuit and results are given in figures 4a–c.

  4. Voltage generators of high voltage high power accelerators

    Svinin, M.P.

    1981-01-01

    High voltage electron accelerators are widely used in modern radiation installations for industrial purposes. In the near future further increasing of their power may be effected, which enables to raise the efficiency of the radiation processes known and to master new power-consuming production in industry. Improvement of HV generators by increasing their power and efficiency is one of many scientific and engineering aspects the successful solution of which provides further development of these accelerators and their technical parameters. The subject is discussed in detail. (author)

  5. High impact data visualization with Power View, Power Map, and Power BI

    Aspin, Adam

    2014-01-01

    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  6. A High Power Linear Solid State Pulser

    Boris Yen; Brent Davis; Rex Booth

    1999-01-01

    Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities

  7. High prices on electric power now again?

    Doorman, Gerard

    2003-01-01

    Deregulation of the electric power market has yielded low prices for the consumers throughout the 1990s. Consumption has now increased considerably, but little new production has been added. This results in high prices in dry years, but to understand this one must understand price formation in the Nordic spot market. The high prices are a powerful signal to the consumers to reduce consumption, but they are also a signal to the producers to seize any opportunity to increase production. However, the construction of new dams etc. stirs up the environmentalists. Ordinary consumers may protect themselves against high prices by signing fixed-price contracts. For those who can tolerate price fluctuations, spot prices are a better alternative than the standard contract with variable price

  8. High average power linear induction accelerator development

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  9. Visible high power fiber coupled diode lasers

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  10. High power VCSELs for miniature optical sensors

    Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason

    2010-02-01

    Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.

  11. 8. High power laser and ignition facilities

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  12. High Power UV LED Industrial Curing Systems

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  13. Direct UV-written broadband directional broadband planar waveguide couplers

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation.......We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  14. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption.

    Ginter, S

    2000-07-01

    Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.

  15. High speed micromachining with high power UV laser

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  16. New high power linacs and beam physics

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-01-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design

  17. The high-power iodine laser

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  18. Industrial Applications of High Power Ultrasonics

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  19. High power, repetitive stacked Blumlein pulse generators

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  20. Power Supplies for High Energy Particle Accelerators

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  1. High stability, high current DC-power supplies

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  2. Low Cost, Low Power, High Sensitivity Magnetometer

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  3. Feasibility Study for High Power RF – Energy Recovery in Particle Accelerators

    Betz, Michael

    2010-01-01

    When dealing with particle accelerators, especially in systems with travelling wave structures and low beam loading, a substantial amount of RF power is dissipated in 50Ω termination loads. For the Super Proton Synchrotron (SPS) at Cern this is 69 % of the incident RF power or about 1 MW. Different ideas, making use of that otherwise dissipated power, are presented and their feasibility is reviewed. The most feasible one, utilizing an array of semiconductor based RF/DC modules, is used to create a design concept for energy recovery in the SPS. The modules are required to operate at high power, high efficiency and with low harmonic radiation. Besides the actual RF rectifier, they contain additional components to ensure a graceful degradation of the overall system. Different rectifier architectures and semiconductor devices are compared and the most suitable ones are chosen. Two prototype devices were built and operated with up to 400 W of pulsed RF power. Broadband measurements – capturing all harmonics up ...

  4. Gate Drive For High Speed, High Power IGBTs

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; /SLAC

    2007-06-18

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3{micro}S with a rate of current rise of more than 10000A/{micro}S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt.

  5. Gate Drive For High Speed, High Power IGBTs

    Nguyen, M.N.; Cassel, R.L.; de Lamare, J.E.; Pappas, G.C.; SLAC

    2007-01-01

    A new gate drive for high-voltage, high-power IGBTs has been developed for the SLAC NLC (Next Linear Collider) Solid State Induction Modulator. This paper describes the design and implementation of a driver that allows an IGBT module rated at 800A/3300V to switch up to 3000A at 2200V in 3(micro)S with a rate of current rise of more than 10000A/(micro)S, while still being short circuit protected. Issues regarding fast turn on, high de-saturation voltage detection, and low short circuit peak current will be presented. A novel approach is also used to counter the effect of unequal current sharing between parallel chips inside most high-power IGBT modules. It effectively reduces the collector-emitter peak current, and thus protects the IGBT from being destroyed during soft short circuit conditions at high di/dt

  6. The promise of downlink MU-MIMO for high-capacity next generation mobile broadband networks based on IEEE 802.16 m

    Papathanassiou Apostolos; Davydov Alexei

    2011-01-01

    Abstract The dramatic increase of the demand for mobile broadband services poses stringent requirements on the performance evolution of currently deployed mobile broadband networks, such as Mobile WiMAX Release 1 and 3GPP LTE Release 8. Although the combination of single-user multiple-input multiple-output (SU-MIMO) and orthogonal frequency division multiple access (OFDMA) provide the appropriate technologies for improving the downlink performance of third generation (3G) code division multip...

  7. Optical broadband in-home networks for converged service delivery

    Shi, Y.

    2013-01-01

    Broadband access networks, and in particular fibre-to-the-home (FTTH) networks, are offering abundantly available bandwidth in the local loop with high quality of services. Under such broadband connectivity conditions, in-home networks should not represent the bottleneck for high capacity service

  8. High-power planar dielectric waveguide lasers

    Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.

    2001-01-01

    The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)

  9. High Energy Density Sciences with High Power Lasers at SACLA

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  10. High-power LEDs for plant cultivation

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  11. Industrial Applications of High Average Power FELS

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  12. Broadband waveguided light sources

    Pollnau, Markus

    In recent years, broadband fiber interferometers have become very popular as basic instruments used in optical low-coherence reflectometry for diagnostics of fiber and integrated optics devices or in optical coherence tomography (OCT) for imaging applications in the biomedical field. The

  13. Industrial application of high power disk lasers

    Brockmann, Rüdiger; Havrilla, David

    2008-02-01

    Laser welding has become one of the fastest growing areas for industrial laser applications. The increasing cost effectiveness of the laser process is enabled by the development of new highly efficient laser sources, such as the Disk laser, coupled with decreasing cost per Watt. TRUMPF introduced the Disk laser several years ago, and today it has become the most reliable laser tool on the market. The excellent beam quality and output powers of up to 10 kW enable its application in the automotive industry as well as in the range of thick plate welding, such as heavy construction and ship building. This serves as an overview of the most recent developments on the TRUMPF Disk laser and its industrial applications like cutting, welding, remote welding and hybrid welding, too. The future prospects regarding increased power and even further improved productivity and economics are presented.

  14. High-field, high-density tokamak power reactor

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  15. Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide

    Yang, Liu; Kou, Pengfei; Shen, Jianqi; Lee, El Hang; He, Sailing

    2015-01-01

    We propose a broadband, polarization-insensitive and high-efficiency plasmonic Schottky diode for detection of sub-bandgap photons in the optical communication wavelength range through internal photoemission (IPE). The distinctive features of this design are that it has a gold film covering both the top and the sidewalls of a dielectric silicon ridge waveguide with the Schottky contact formed at the gold–silicon interface and the sidewall coverage of gold can be easily tuned by an insulating layer. An extensive physical model on IPE of hot carriers is presented in detail and is applied to calculate and examine the performance of this detector. In comparison with a diode having only the top gold contact, the polarization sensitivity of the responsivity is greatly minimized in our photodetector with gold film covering both the top and the sidewall. Much higher responsivities for both polarizations are also achieved over a broad wavelength range of 1.2–1.6 μm. Moreover, the Schottky contact is only 4 μm long, leading to a very small dark current. Our design is very promising for practical applications in high-density silicon photonic integration. (paper)

  16. Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth.

    Ghobadi, Amir; Hajian, Hodjat; Dereshgi, Sina Abedini; Bozok, Berkay; Butun, Bayram; Ozbay, Ekmel

    2017-11-08

    In this paper, we demonstrate a facile, lithography free, and large scale compatible fabrication route to synthesize an ultra-broadband wide angle perfect absorber based on metal-insulator-metal-insulator (MIMI) stack design. We first conduct a simulation and theoretical modeling approach to study the impact of different geometries in overall stack absorption. Then, a Pt-Al 2 O 3 multilayer is fabricated using a single atomic layer deposition (ALD) step that offers high repeatability and simplicity in the fabrication step. In the best case, we get an absorption bandwidth (BW) of 600 nm covering a range of 400 nm-1000 nm. A substantial improvement in the absorption BW is attained by incorporating a plasmonic design into the middle Pt layer. Our characterization results demonstrate that the best configuration can have absorption over 0.9 covering a wavelength span of 400 nm-1490 nm with a BW that is 1.8 times broader compared to that of planar design. On the other side, the proposed structure retains its absorption high at angles as wide as 70°. The results presented here can serve as a beacon for future performance enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.

  17. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been...

  18. Application of high power microwave vacuum electron devices

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  19. Magnetically levitated autoparametric broadband vibration energy harvesting

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-01-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation. (paper)

  20. Novel miniature high power ring filter

    Huang Huifen; Mao Junfa; Luo Zhihua

    2005-01-01

    The power handling capability of high temperature superconducting (HTS) filters is limited due to current concentration at the edges of the superconducting films. This problem can be overcome by using ring resonator, which employs the edge current free and reduces the current concentration. However, this kind of filter has large size. In order to reduce the cost and size and increase the power handling capability, in this paper a HTS photonic bandgap (PBG) structure filter is developed. The proposed pass band filter with PBG structure exhibits center frequency 12.23 GHz, steepness (about 35 dB/GHz), bandwidth (-3 dB bandwidth is 0.045 GHz), and low insertion loss (about -0.5 dB), and can handle input power up to 1 W (this value was limited by the measurement instrument used in the experiment). The size is reduced by 25%, insertion loss reduced by 37.5%, and steeper roll-off of the filter is also obtained compared with that in published literature

  1. High-power converters and AC drives

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  2. Compulsator, a high power compensated pulsed alternator

    Weldon, W.F.; Bird, W.L.; Driga, M.D.; Rylander, H.G.; Tolk, K.M.; Woodson, H.H.

    1983-01-01

    This chapter describes a pulsed power supply utilizing inertial energy storage as a possible replacement for large capacitor banks. The compulsator overcomes many of the limitations of the pulsed homopolar generators previously developed by the Center for Electromechanics and elsewhere in that it offers high voltage (10's of kV) and consequently higher pulse rise times, is self commutating, and offers the possibility of generating repetitive pulses. The compulsator converts rotational inertial energy directly into electrical energy utilizing the principles of both magnetic induction and flux compression. The theory of operation, a prototype compulsator design, and advanced compulsator designs are discussed

  3. Cost optimisation studies of high power accelerators

    McAdams, R.; Nightingale, M.P.S.; Godden, D. [AEA Technology, Oxon (United Kingdom)] [and others

    1995-10-01

    Cost optimisation studies are carried out for an accelerator based neutron source consisting of a series of linear accelerators. The characteristics of the lowest cost design for a given beam current and energy machine such as power and length are found to depend on the lifetime envisaged for it. For a fixed neutron yield it is preferable to have a low current, high energy machine. The benefits of superconducting technology are also investigated. A Separated Orbit Cyclotron (SOC) has the potential to reduce capital and operating costs and intial estimates for the transverse and longitudinal current limits of such machines are made.

  4. A new automatic design method to develop multilayer thin film devices for high power laser applications

    Sahoo, N.K.; Apparao, K.V.S.R.

    1992-01-01

    Optical thin film devices play a major role in many areas of frontier technology like development of various laser systems to the designing of complex and precision optical systems. Design and development of these devices are really challenging when they are meant for high power laser applications. In these cases besides desired optical characteristics, the devices are expected to satisfy a whole range of different needs like high damage threshold, durability etc. In the present work a novel completely automatic design method based on Modified Complex Method has been developed for designing of high power thin film devices. Unlike most of the other methods it does not need any suitable starting design. A quarterwave design is sufficient to start with. If required, it is capable of generating its own starting design. The computer code of the method is very simple to implement. This report discusses this novel automatic design method and presents various practicable output designs generated by it. The relative efficiency of the method along with other powerful methods has been presented while designing a broadband IR antireflection coating. The method is also incorporated with 2D and 3D electric field analysis programmes to produce high damage threshold designs. Some experimental devices developed using such designs are also presented in the report. (author). 36 refs., 41 figs

  5. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-Power Ion Thruster Technology

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  7. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  8. Fault analysis and strategy of high pulsed power supply for high power laser

    Liu Kefu; Qin Shihong; Li Jin; Pan Yuan; Yao Zonggan; Zheng Wanguo; Guo Liangfu; Zhou Peizhang; Li Yizheng; Chen Dehuai

    2001-01-01

    according to the requirements of driving flash-lamp, a high pulsed power supply (PPS) based on capacitors as energy storage elements is designed. The author analyzes in detail the faults of high pulsed power supply for high power laser. Such as capacitor internal short-circuit, main bus breakdown to ground, flashlamp sudden short or break. The fault current and voltage waveforms were given by circuit simulations. Based on the analysis and computation, the protection strategy with the fast fuse and ZnO was put forward, which can reduce the damage of PPS to the lower extent and provide the personnel safe and collateral property from the all threats. The preliminary experiments demonstrated that the design of the PPS can satisfy the project requirements

  9. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  10. A Broadband Ultrathin Nonlinear Switching Metamaterial

    E. Zarnousheh Farahani

    2017-05-01

    Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.

  11. Advanced broadband baffle materials

    Seals, R.D.

    1991-01-01

    In this paper broadband performance characteristics of robust, light-weight, diffuse-absorptive baffle surfaces fabricated from sputter-deposited beryllium on cross-rolled Be ingot sheet material and on Be foam, plasma sprayed beryllium, plasma sprayed boron-on-beryllium, and chemical vapor deposited boron carbide on graphite are described and compared to Martin Black. An overview of the Optics Manufacturing Operations Development and Integration Laboratory (MODIL) Advanced Optical Baffle Program will be discussed

  12. The promise of downlink MU-MIMO for high-capacity next generation mobile broadband networks based on IEEE 802.16 m

    Papathanassiou Apostolos

    2011-01-01

    Full Text Available Abstract The dramatic increase of the demand for mobile broadband services poses stringent requirements on the performance evolution of currently deployed mobile broadband networks, such as Mobile WiMAX Release 1 and 3GPP LTE Release 8. Although the combination of single-user multiple-input multiple-output (SU-MIMO and orthogonal frequency division multiple access (OFDMA provide the appropriate technologies for improving the downlink performance of third generation (3G code division multiple access (CDMA-based mobile radio systems and, thus, address the current mobile internet requirements, a fundamental paradigm shift is required to cope with the constantly increasing mobile broadband data rate and spectral efficiency requirements. Among the different technologies available for making the paradigm shift from current to next-generation mobile broadband networks, multiuser MIMO (MU-MIMO constitutes the most promising technology because of its significant performance improvement advantages. In this article, we analyze the performance of MU-MIMO under a multitude of deployment scenarios and system parameters through extensive system-level simulations which are based on widely used system-level evaluation methodologies. The target mobile broadband system used in the simulations is IEEE 802.16 m which was recently adopted by ITU-R as an IMT-Advanced technology along with 3GPP LTE-Advanced. The results provide insights into different aspects of MU-MIMO with respect to system-level performance, parameter sensitivity, and deployment scenarios, and they can be used by the mobile broadband network designer for maximizing the benefits of MU-MIMO in a scenario with specific deployment requirements and goals.

  13. Optical Design of Porous ZnO/TiO2 Films for Highly Transparent Glasses with Broadband Ultraviolet Protection

    Han Sung Song

    2017-01-01

    Full Text Available We present a design of a bilayer porous film structure on a glass substrate for the highly efficient ultraviolet (UV protection with high visible-light transparency. To effectively block UVB (280–315 nm and UVA (315–400 nm, titanium dioxide (TiO2 and zinc oxide (ZnO are used as absorbing layers having the appropriate coverages in different UV ranges with extinction coefficients, respectively. We show the process of refractive index (RI matching by controlling porosity (Pr. Effective RIs of porous media with TiO2 and ZnO were calculated based on volume averaging theory. Transmittances of the designed films with different effective RIs were calculated using rigorous coupled-wave analysis method. Using admittance loci method, the film thickness was optimized in center wavelengths from 450 to 550 nm. The results show that the optimal design provides high UV shielding performance at both UVA and UVB with high transparency in the visible range. We also analyze electrical field distributions in each layer and angle dependency with 3D HSV color map.

  14. 75 FR 26906 - Connect America Fund, A National Broadband Plan for Our Future, High-Cost Universal Service Support

    2010-05-13

    ... Wireless to reduce the High-Cost funding they receive as competitive ETCs to zero over a five-year period... there be any impact on existing subscribers of competitive ETCs if the Commission were to reduce... for all competitive ETCs be coordinated with implementation of Verizon Wireless's and Sprint's...

  15. Initial high-power testing of the ATF [Advanced Toroidal Facility] ECH [electron cyclotron heating] system

    White, T.L.; Bigelow, T.S.; Kimrey, H.D. Jr.

    1987-01-01

    The Advanced Toroidal Facility (ATF) is a moderate aspect ratio torsatron that will utilize 53.2 GHz 200 kW Electron Cyclotron Heating (ECH) to produce nearly current-free target plasmas suitable for subsequent heating by strong neutral beam injection. The initial configuration of the ECH system from the gyrotron to ATF consists of an optical arc detector, three bellows, a waveguide mode analyzer, two TiO 2 mode absorbers, two 90 0 miter bends, two waveguide pumpouts, an insulating break, a gate valve, and miscellaneous straight waveguide sections feeding a launcher radiating in the TE 02 mode. Later, a focusing Vlasov launcher will be added to beam the ECH power to the saddle point in ATF magnetic geometry for optimum power deposition. The ECH system has several unique features; namely, the entire ECH system is evacuated, the ECH system is broadband, forward power is monitored by a newly developed waveguide mode analyzer, phase correcting miter bends will be employed, and the ECH system will be capable of operating short pulse to cw. Initial high-power tests show that the overall system efficiency is 87%. The waveguide mode analyzer shows that the gyrotron mode output consists of 13% TE 01 , 82.6% TE 02 , 2.5% TE 03 , and 1.9% TE 04 . 4 refs

  16. High power diode laser remelting of metals

    Chmelickova, H; Tomastik, J; Ctvrtlik, R; Supik, J; Nemecek, S; Misek, M

    2014-01-01

    This article is focused on the laser surface remelting of the steel samples with predefined overlapping of the laser spots. The goal of our experimental work was to evaluate microstructure and hardness both in overlapped zone and single pass ones for three kinds of ferrous metals with different content of carbon, cast iron, non-alloy structural steel and tool steel. High power fibre coupled diode laser Laserline LDF 3600-100 was used with robotic guided processing head equipped by the laser beam homogenizer that creates rectangular beam shape with uniform intensity distribution. Each sample was treated with identical process parameters - laser power, beam diameter, focus position, speed of motion and 40% spot overlap. Dimensions and structures of the remelted zone, zone of the partial melting, heat affected zone and base material were detected and measured by means of laser scanning and optical microscopes. Hardness progress in the vertical axis of the overlapped zone from remelted surface layer to base material was measured and compared with the hardness of the single spots. The most hardness growth was found for cast iron, the least for structural steel. Experiment results will be used to processing parameters optimization for each tested material separately.

  17. High resolving power spectrometer for beam analysis

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs

  18. Improved Collectors for High Power Gyrotrons

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Philipp; Neilson, Jeff

    2009-01-01

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  19. Series-Tuned High Efficiency RF-Power Amplifiers

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  20. High Power Flex-Propellant Arcjet Performance

    Litchford, Ron J.

    2011-01-01

    implied nearly frozen flow in the nozzle and yielded performance ranges of 800-1100 sec for hydrogen and 400-600 sec for ammonia. Inferred thrust-to-power ratios were in the range of 30-10 lbf/MWe for hydrogen and 60-20 lbf/MWe for ammonia. Successful completion of this test series represents a fundamental milestone in the progression of high power arcjet technology, and it is hoped that the results may serve as a reliable touchstone for the future development of MW-class regeneratively-cooled flex-propellant plasma rockets.

  1. Splitting of high power, cw proton beams

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  2. Survey on modern pulsed high power lasers

    Witte, K.J.

    1985-01-01

    The requirements to be met by lasers for particle acceleration are partially similar to those already known for fusion lasers. The power level wanted in both caes is up to 100 TW or even more. The pulse durations favourable for laser accelerators are in the range from 1 ps to 1000 ps whereas fusion lasers require several ns. The energy range for laser accelerators is thus correspondingly smaller than that for fusion lasers: 1-100 kJ versus several 100 kJ. The design criteria of lasers meeting the requirements are discussed in the following. The CO 2 , iodine, Nd:glass and excimer lasers are treated in detail. The high repetition rate aspect will not be particularly addressed since for the present generation of lasers the wanted rates of far above 1 Hz are completely out of scope. Moreover, for the demonstration of principle these rates are not needed. (orig./HSI)

  3. QED studies using high-power lasers

    Mattias Marklund

    2010-01-01

    Complete text of publication follows. The event of extreme lasers, which intensities above 10 22 W/cm 2 will be reached on a routine basis, will give us opportunities to probe new aspects of quantum electrodynamics. In particular, the non-trivial properties of the quantum vacuum can be investigated as we reach previously unattainable laser intensities. Effects such as vacuum birefringence and pair production in strong fields could thus be probed. The prospects of obtaining new insights regarding the non-perturbative structure of quantum field theories shows that the next generation laser facilities can be important tool for fundamental physical studies. Here we aim at giving a brief overview of such aspects of high-power laser physics.

  4. High-power laser diodes with high polarization purity

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  5. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  6. High technology supporting nuclear power industry in CRIEPI

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  7. Performance Evaluation of WiMAX Broadband from High Altitude Platform Cellular System and Terrestrial Coexistence Capability

    Yang Z

    2008-01-01

    Full Text Available The performance obtained from providing worldwide interoperability for microwave access (WiMAX from high altitude platforms (HAPs with multiple antenna payloads is investigated, and the coexistence capability with multiple-operator terrestrial WiMAX deployments is examined. A scenario composed of a single HAP and coexisting multiple terrestrial WiMAX base stations deployed inside the HAP coverage area (with radius of 30 km to provide services to fixed users with the antenna mounted on the roof with a directive antenna to receive signals from HAPs is proposed. A HAP cellular configuration with different possible reuse patterns is established. The coexistence performance is assessed in terms of HAP downlink and uplink performance, interfered by terrestrial WiMAX deployment. Simulation results show that it is effective to deliver WiMAX via HAPs and share the spectrum with terrestrial systems.

  8. Performance Evaluation of WiMAX Broadband from High Altitude Platform Cellular System and Terrestrial Coexistence Capability

    T. Hult

    2008-12-01

    Full Text Available The performance obtained from providing worldwide interoperability for microwave access (WiMAX from high altitude platforms (HAPs with multiple antenna payloads is investigated, and the coexistence capability with multiple-operator terrestrial WiMAX deployments is examined. A scenario composed of a single HAP and coexisting multiple terrestrial WiMAX base stations deployed inside the HAP coverage area (with radius of 30 km to provide services to fixed users with the antenna mounted on the roof with a directive antenna to receive signals from HAPs is proposed. A HAP cellular configuration with different possible reuse patterns is established. The coexistence performance is assessed in terms of HAP downlink and uplink performance, interfered by terrestrial WiMAX deployment. Simulation results show that it is effective to deliver WiMAX via HAPs and share the spectrum with terrestrial systems.

  9. Broadband and high absorption in Fibonacci photonic crystal including MoS2 monolayer in the visible range

    Ansari, Narges; Mohebbi, Ensiyeh

    2018-03-01

    2D molybdenum disulfide MoS2, has represented potential applications in optoelectronic devices based on their promising optical absorption responses. However, for practical applications, absorption should increase furthermore in a wide wavelength window. In this paper, we design Fibonacci photonic crystals (PCs) based on Si, SiO2 and MoS2 monolayer and we calculate their absorption responses based on the transfer matrix method. The optical refractive index of the MoS2 monolayer was determined based on the Lorentz-Drude-Gauss model. Effects of Fibonacci order, periodicity, incident light angle and polarization are included in our calculations. Finally, an absorption as large as 90% in a wide optical wavelength range is achieved for both polarizations and incident angle down to 60°. Our results are useful for designing photonic devices with high absorption efficiency.

  10. Switching transients in high-frequency high-power converters using power MOSFET's

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  11. Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator

    Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-12-01

    A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.

  12. Chaos in high-power high-frequency gyrotrons

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D

  13. Power transistor module for high current applications

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  14. High power accelerator for environmental application

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.

    2011-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  15. High-average-power solid state lasers

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  16. High power accelerator for environmental application

    Han, B.; Kim, J. K.; Kim, Y. R.; Kim, S. M. [EB-TECH Co., Ltd., Yuseong-gu Daejeon (Korea, Republic of)

    2011-07-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  17. High power accelerators and wastewater treatment

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  18. High power diode lasers converted to the visible

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  19. Analisis Perkembangan Internet Broadband di Daerah Perbatasan Sulawesi Utara

    Riva'atul Adaniah Wahab

    2016-12-01

    infrastructure is still insufficient, the availability of high-quality internet broadband services with low rates are still difficult to realize. From the aspect of demand, stigma or the community perception that the internet is not important makes the people don't have internet access. The barriers is predominantly lack of knowledge in internet usage. This factor also causes community internet broadband literacy at level 0. As solutions, the preparation and establishment of policies and regulations such as the QoS service, interconnection, infrastructure sharing can provide high-quality internet broadband internet at a cheaper price. Besides the distribution of valuable mobile device (smartphone should also be encouraged by the application of local content level for the production of the device. No less important is the increase of community lietracy in internet broadband through socialization or training, both formal and informal.

  20. Handheld Broadband Electromagnetic UXO Sensor

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  1. High RF Power Production for CLIC

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  2. Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications.

    Hu, Liang; Yuan, Jun; Ren, Yi; Wang, Yan; Yang, Jia-Qin; Zhou, Ye; Zeng, Yu-Jia; Han, Su-Ting; Ruan, Shuangchen

    2018-06-10

    High-performance photonic nonvolatile memory combining photosensing and data storage with low power consumption ensures the energy efficiency of computer systems. This study first reports in situ derived phosphorene/ZnO hybrid heterojunction nanoparticles and their application in broadband-response photonic nonvolatile memory. The photonic nonvolatile memory consistently exhibits broadband response from ultraviolet (380 nm) to near infrared (785 nm), with controllable shifts of the SET voltage. The broadband resistive switching is attributed to the enhanced photon harvesting, a fast exciton separation, as well as the formation of an oxygen vacancy filament in the nano-heterojunction. In addition, the device exhibits an excellent stability under air exposure compared with reported pristine phosphorene-based nonvolatile memory. The superior antioxidation capacity is believed to originate from the fast transfer of lone-pair electrons of phosphorene. The unique assembly of phosphorene/ZnO nano-heterojunctions paves the way toward multifunctional broadband-response data-storage techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly-stabilized power supply for synchrotron accelerators. High speed, low ripple power supply

    Sato, Kenji [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Kumada, Masayuki; Fukami, Kenji; Koseki, Shoichiro; Kubo, Hiroshi; Kanazawa, Toru

    1997-02-01

    In synchrotron accelerators, in order to utilize high energy beam effectively, those are operated by repeating acceleration and taking-out at short period. In order to accelerate by maintaining beam track stable, the tracking performance with the error less than 10{sup -3} in the follow-up of current is required for the power supply. Further, in order to maintain the intensity and uniformity of beam when it is taken out, very low ripple is required for output current. The power supply having such characteristics has been developed, and applied to the HIMAC and the SPring-8. As the examples of the application of synchrotrons, the accelerators for medical treatment and the generation of synchrotron radiation are described. As to the power supply for the deflection magnets and quadrupole magnets of synchrotron accelerators, the specifications of the main power supply, the method of reducing ripple, the method of improving tracking, and active filter control are reported. As to the test results, the measurement of current ripple and tracking error is shown. The lowering of ripple was enabled by common mode filter and the symmetrical connection of electromagnets, and high speed response was realized by the compensation for delay with active filter. (K.I.)

  4. Test of a High Power Target Design

    2002-01-01

    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  5. The SPES High Power ISOL production target

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  6. High-power pure blue laser diodes

    Ohta, M.; Ohizumi, Y.; Hoshina, Y.; Tanaka, T.; Yabuki, Y.; Goto, S.; Ikeda, M. [Development Center, Sony Shiroishi Semiconductor Inc., Miyagi (Japan); Funato, K. [Materials Laboratories, Sony Corporation, Kanagawa (Japan); Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, Kanagawa (Japan)

    2007-06-15

    We successfully developed high-power and long-lived pure blue laser diodes (LDs) having an emission wavelength of 440-450 nm. The pure-blue LDs were grown by metalorganic chemical vapor deposition (MOCVD) on GaN substrates. The dislocation density was successfully reduced to {proportional_to}10{sup 6} cm{sup -2} by optimizing the MOCVD growth conditions and the active layer structure. The vertical layer structure was designed to have an absorption loss of 4.9 cm{sup -1} and an internal quantum efficiency of 91%. We also reduced the operating current density to 6 kA/cm{sup 2} under 750 mW continuous-wave operation at 35 C by optimizing the stripe width to 12 {mu}m and the cavity length to 2000 {mu}m. The half lifetimes in constant current mode are estimated to be longer than 10000 h. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Complete low power controller for high voltage power systems

    Sumner, R.; Blanar, G.

    1997-01-01

    The MHV100 is a custom CMOS integrated circuit, developed for the AMS experiment. It provides complete control for a single channel high voltage (HV) generator and integrates all the required digital communications, D to A and A to D converters, the analog feedback loop and output drivers. This chip has been designed for use in both distributed high voltage systems or for low cost single channel high voltage systems. The output voltage and current range is determined by the external components

  8. High-Altitude Wind Power Generation

    Fagiano, L.; Milanese, M.; Piga, D.

    2010-01-01

    Abstract—The paper presents the innovative technology of highaltitude wind power generation, indicated as Kitenergy, which exploits the automatic flight of tethered airfoils (e.g., power kites) to extract energy from wind blowing between 200 and 800 m above the ground. The key points of this

  9. 30 GHz High Power Production for CLIC

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  10. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  11. Measurement of high-power microwave pulse under intense ...

    Abstract. KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator. (VIRCATOR) device. HPM power measurements were carried out using a transmitting– receiving system in the presence of intense high frequency (a few ...

  12. High quality, high efficiency welding technology for nuclear power plants

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  13. High performance magnet power supply optimization

    Jackson, L.T.

    1975-01-01

    Three types of magnet power supply systems for the joint LBL-SLAC proposed accelerator PEP are discussed. The systems considered include a firing circuit and six-pulse controlled rectifier, transistor systems, and a chopper system. (U.S.)

  14. Controlled Compact High Voltage Power Lines

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  15. A highly linear power amplifier for WLAN

    Jin Jie; Shi Jia; Ai Baoli; Zhang Xuguang

    2016-01-01

    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P 1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. (paper)

  16. An Assessment of Emerging Wireless Broadband Technologies

    Fountanas, Leonidas

    2001-01-01

    ... technologies in providing broadband services today, emerging wireless broadband technologies are expected to significantly increase their market share over the next years, Deploying a wireless network...

  17. Advanced Capacitors for High-Power Applications, Phase I

    National Aeronautics and Space Administration — As the consumer and industrial requirements for compact, high-power-density, electrical power systems grow substantially over the next decade; there will be a...

  18. Advances in high-power rf amplifiers

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  19. Design and development of high voltage high power operational ...

    Applications of power operational amplifiers (opamps) are increasing day by day in the industry as they are used in audio amplifiers, Piezo transducer systems and the electron deflection systems. Power operational amplifiers have all the features of a general purpose opamp except the additional power handling capability.

  20. Atmospheric Propagation and Combining of High-Power Lasers

    2015-09-08

    Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when

  1. Welding with high power fiber lasers - A preliminary study

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  2. AIRTV: Broadband Direct to Aircraft

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  3. High power diode pumped solid state lasers

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  4. Broadband image sensor array based on graphene-CMOS integration

    Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank

    2017-06-01

    Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.

  5. Metropolitan area networks: a corner stone in the broadband era

    Ghanem, Adel

    1991-02-01

    Deployment of Broadband ISDN is being influenced by both a market pull and a technology push. New broadband service opportunities exist in the business and residential sectors of the market place. It is envisioned that some customers will need connections directly to broadband switches because of the high bandwidth needed for their applications. At the same time Metropolitan Area Network (MAN) systems will serve those customers with bandwidth requirements less than or equal to 150 Mbps. A given MAN will have a geographical domain to serve where it will carry out the switching tasks within this domain. While MANs couldbe designed using differentarchitecturalconcepts the setofservices expected tobeprovidedby MANs could be equivalent to thelist ofservices thatwillbe supported by the targetbroadband network. This paperpositions MANs as a major building block for Broadband networks. It also examines the evolution process ofMANs as a needed step to assure the successful deployment of these new broadband services. 2. BISDN - OVERVIEW Broadband ISDN (BISDN) is being driven into existence by both a market pull as well as a technology push. Opportunities for new valueadded services are the prime market pull for future broadband networks. These services opportunities extend beyond simple voice and low speed data applications and cover both the residential and the business sectors of the market. It is noted for instance that business customers have growing needs for sophisticated telecommunication vehicles to support their

  6. New high power CW klystrons at TED

    Beunas, A; Marchesin, R

    2003-01-01

    Thales Electron Devices (TED) has been awarded a contract by CERN to develop and produce 20 units of the klystrons needed to feed the Large Hadrons Collider (LHC). Each of these delivers 300 kW of CW RF power at 400 MHz. Three klystrons have been delivered to CERN up to now.

  7. A highly linear power amplifier for WLAN

    Jie, Jin; Jia, Shi; Baoli, Ai; Xuguang, Zhang

    2016-02-01

    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. Project supported by the National Natural Science Foundation of China (No. 61201244) and the Natural Science Fund of SUES (No. E1-0501-14-0168).

  8. High-voltage, high-power architecture considerations

    Moser, R.L.

    1985-01-01

    Three basic EPS architectures, direct energy transfer, peak-power tracking, and a potential EPS architecture for a nuclear reactor are described and compared. Considerations for the power source and energy storage are discussed. Factors to be considered in selecting the operating voltage are pointed out. Other EPS architecture considerations are autonomy, solar array degrees of freedom, and EPS modularity. It was concluded that selection of the power source and energy storage has major impacts on the spacecraft architecture and mass

  9. Efficient Implementation of a Symbol Timing Estimator for Broadband PLC.

    Nombela, Francisco; García, Enrique; Mateos, Raúl; Hernández, Álvaro

    2015-08-21

    Broadband Power Line Communications (PLC) have taken advantage of the research advances in multi-carrier modulations to mitigate frequency selective fading, and their adoption opens up a myriad of applications in the field of sensory and automation systems, multimedia connectivity or smart spaces. Nonetheless, the use of these multi-carrier modulations, such as Wavelet-OFDM, requires a highly accurate symbol timing estimation for reliably recovering of transmitted data. Furthermore, the PLC channel presents some particularities that prevent the direct use of previous synchronization algorithms proposed in wireless communication systems. Therefore more research effort should be involved in the design and implementation of novel and robust synchronization algorithms for PLC, thus enabling real-time synchronization. This paper proposes a symbol timing estimator for broadband PLC based on cross-correlation with multilevel complementary sequences or Zadoff-Chu sequences and its efficient implementation in a FPGA; the obtained results show a 90% of success rate in symbol timing estimation for a certain PLC channel model and a reduced resource consumption for its implementation in a Xilinx Kyntex FPGA.

  10. Efficient Implementation of a Symbol Timing Estimator for Broadband PLC

    Francisco Nombela

    2015-08-01

    Full Text Available Broadband Power Line Communications (PLC have taken advantage of the research advances in multi-carrier modulations to mitigate frequency selective fading, and their adoption opens up a myriad of applications in the field of sensory and automation systems, multimedia connectivity or smart spaces. Nonetheless, the use of these multi-carrier modulations, such as Wavelet-OFDM, requires a highly accurate symbol timing estimation for reliably recovering of transmitted data. Furthermore, the PLC channel presents some particularities that prevent the direct use of previous synchronization algorithms proposed in wireless communication systems. Therefore more research effort should be involved in the design and implementation of novel and robust synchronization algorithms for PLC, thus enabling real-time synchronization. This paper proposes a symbol timing estimator for broadband PLC based on cross-correlation with multilevel complementary sequences or Zadoff-Chu sequences and its efficient implementation in a FPGA; the obtained results show a 90% of success rate in symbol timing estimation for a certain PLC channel model and a reduced resource consumption for its implementation in a Xilinx Kyntex FPGA.

  11. Broadband Spectral Investigations of Magnetar Bursts

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  12. Broadband Spectral Investigations of Magnetar Bursts

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  13. Modelling aluminium wire bond reliability in high power OMP devices

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is

  14. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  15. Los Alamos high-power proton linac designs

    Lawrence, G.P. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  16. Performance of a high efficiency high power UHF klystron

    Konrad, G.T.

    1977-03-01

    A 500 kW c-w klystron was designed for the PEP storage ring at SLAC. The tube operates at 353.2 MHz, 62 kV, a microperveance of 0.75, and a gain of approximately 50 dB. Stable operation is required for a VSWR as high as 2 : 1 at any phase angle. The design efficiency is 70%. To obtain this value of efficiency, a second harmonic cavity is used in order to produce a very tightly bunched beam in the output gap. At the present time it is planned to install 12 such klystrons in PEP. A tube with a reduced size collector was operated at 4% duty at 500 kW. An efficiency of 63% was observed. The same tube was operated up to 200 kW c-w for PEP accelerator cavity tests. A full-scale c-w tube reached 500 kW at 65 kV with an efficiency of 55%. In addition to power and phase measurements into a matched load, some data at various load mismatches are presented

  17. Temperature Stabilized Characterization of High Voltage Power Supplies

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  18. Ultra-broadband photonic internet

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  19. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  20. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  1. Fusion blankets for high efficiency power cycles

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  2. Power affects performance when the pressure is on: evidence for low-power threat and high-power lift.

    Kang, Sonia K; Galinsky, Adam D; Kray, Laura J; Shirako, Aiwa

    2015-05-01

    The current research examines how power affects performance in pressure-filled contexts. We present low-power-threat and high-power-lift effects, whereby performance in high-stakes situations suffers or is enhanced depending on one's power; that is, the power inherent to a situational role can produce effects similar to stereotype threat and lift. Three negotiations experiments demonstrate that role-based power affects outcomes but only when the negotiation is diagnostic of ability and, therefore, pressure-filled. We link these outcomes conceptually to threat and lift effects by showing that (a) role power affects performance more strongly when the negotiation is diagnostic of ability and (b) underperformance disappears when the low-power negotiator has an opportunity to self-affirm. These results suggest that stereotype threat and lift effects may represent a more general phenomenon: When the stakes are raised high, relative power can act as either a toxic brew (stereotype/low-power threat) or a beneficial elixir (stereotype/high-power lift) for performance. © 2015 by the Society for Personality and Social Psychology, Inc.

  3. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    Hu, Rui; Hu, Weihao; Li, Pengfei

    2016-01-01

    and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration....... In this paper, the possibility to exploit the stochastic wind power during restoration was discussed, and a Dynamic Programming (DP) method was proposed to make wind power contribute in the restoration rationally as far as possible. In this paper, the method is tested and verified by a modified IEEE 30 Buses...

  4. High-frequency high-voltage high-power DC-to-DC converters

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  5. Piezoelectric energy harvesting from broadband random vibrations

    Adhikari, S; Friswell, M I; Inman, D J

    2009-01-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples

  6. Piezoelectric energy harvesting from broadband random vibrations

    Adhikari, S.; Friswell, M. I.; Inman, D. J.

    2009-11-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  7. Sexual aggression when power is new: Effects of acute high power on chronically low-power individuals.

    Williams, Melissa J; Gruenfeld, Deborah H; Guillory, Lucia E

    2017-02-01

    Previous theorists have characterized sexually aggressive behavior as an expression of power, yet evidence that power causes sexual aggression is mixed. We hypothesize that power can indeed create opportunities for sexual aggression-but that it is those who chronically experience low power who will choose to exploit such opportunities. Here, low-power men placed in a high-power role showed the most hostility in response to a denied opportunity with an attractive woman (Studies 1 and 2). Chronically low-power men and women given acute power were the most likely to say they would inappropriately pursue an unrequited workplace attraction (Studies 3 and 4). Finally, having power over an attractive woman increased harassment behavior among men with chronic low, but not high, power (Study 5). People who see themselves as chronically denied power appear to have a stronger desire to feel powerful and are more likely to use sexual aggression toward that end. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. High performance magnet power supply optimization

    Jackson, L.T.

    1988-01-01

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems

  9. Low reflectance high power RF load

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  10. In-volume heating using high-power laser diodes

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  11. High-power sputtering employed for film deposition

    Shapovalov, V I

    2017-01-01

    The features of high-power magnetron sputtering employed for the films’ deposition are reviewed. The main physical phenomena accompanying high-power sputtering including ion-electron emission, gas rarefaction, ionization of sputtered atoms, self-sputtering, ion sound waves and the impact of the target heating are described. (paper)

  12. Active Snubber Circuit for High Power Inverter Leg

    Rasmussen, Tonny Wederberg; Johansen, Morten Holst

    2009-01-01

    Abstract— High power converters in the conventional 6 pulse configuration with 6 switching elements IGBTs (Insulated Gate Bipolar Transistor) are pushed to the limit of power. Especially the switching loss is high. This reduces the switching frequency due to cooling problems. Passive snubber circ...

  13. Improved cutting performance in high power laser cutting

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  14. High-power microwave diplexers for advanced ECRH systems

    Kasparek, W.; Petelin, M.; Erckmann, V.; Bruschi, A.; Noke, F.; Purps, F.; Hollmann, F.; Koshurinov, Y.; Lubyako, L.; Plaum, B.; Wubie, W.

    2009-01-01

    In electron cyclotron resonance heating systems, high-power multiplexers can be employed as power combiners, adjustable power dividers, fast switches to toggle the power between two launchers, as well as frequency sensitive directional couplers to combine heating and diagnostic applications on one launcher. In the paper, various diplexer designs for quasi-optical and corrugated waveguide transmission systems are discussed. Numerical calculations, low-power tests and especially high-power experiments performed at the ECRH system of W7-X are shown, which demonstrate the capability of these devices. Near term plans for applications on ASDEX Upgrade and FTU are presented. Based on the present results, options for implementation of power combiners and fast switches in the ECRH system of ITER is discussed.

  15. High Average Power Fiber Laser for Satellite Communications, Phase I

    National Aeronautics and Space Administration — Very high average power lasers with high electrical-top-optical (E-O) efficiency, which also support pulse position modulation (PPM) formats in the MHz-data rate...

  16. Broadband accelerator control network

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  17. High Performance Auxiliary Power Unit Technology Demonstrator.

    1980-12-01

    aft bearings 1.13 P3 - Power producer CDP 1.14 DPHE - Lube pressure drop at heat exchanger 1.15 POFP - Load airflow orifice pressure 1.16 DPOFP - Load...P𔃽I -PSI G PEBL -PSIG P2 -PS.IG DPHE -PID POFP -F Iu 0. 022±_ 77. 3478 6o5. 6 4±4 ±8L-. 4852 19. 51-17.4 DPOFP -PSID Ni -,. N2-i -RPM NSATM -FPM...28. 0250 83. 3505 29. 861 1:9. 7680 PGi -PSIG PEBL -PSIG P3 -PSIG DPHE -PSID POFP -PSIG 0. 0100 77. 9199 72.4862 17. 25 ±19. 4122 1= DPOFP -PSID NI

  18. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  19. Design and development of power supplies for high power IOT based RF amplifier

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  20. Design of The High Efficiency Power Factor Correction Circuit for Power Supply

    Atiye Hülya OBDAN

    2017-12-01

    Full Text Available Designing power factor correction circuits for switched power supplies has become important in recent years in terms of efficient use of energy. Power factor correction techniques play a significant role in high power density and energy efficiency. For these purposes, bridgeless PFC topologies and control strategies have been developed alongside basic boost PFC circuits. The power density can be increased using bridgeless structures by means of reducing losses in the circuit. This article examines bridgeless PFC structures and compares their performances in terms of losses and power factor. A semi-bridgeless PFC, which is widely used at high power levels, was analyzed and simulated. The designed circuit simulation using the current mode control method was performed in the PSIM program. A prototype of a 900 W semi-bridgeless PFC circuit was implemented and the results obtained from the circuit are presented

  1. Cascade: a high-efficiency ICF power reactor

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  2. On the Ongoing Evolution of Very High Frequency Power Supplies

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes...

  3. Eighth CW and High Average Power RF Workshop

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  4. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  5. Overview on the high power excimer laser technology

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  6. The research on high power transducer

    Zhao Wuling; Li Yubin; Peng Shuwen

    2014-01-01

    This paper introduces the transducer structure used double PWM mode, the control system design of hardware and software. The transducer has been applied in factory. From the real experiment, it shows that the system has a high reliability. (authors)

  7. A high-power target experiment

    Kirk, H G; Ludewig, H; Palmer, Robert; Samulyak, V; Simos, N; Tsang, Thomas; Bradshaw, T W; Drumm, Paul V; Edgecock, T R; Ivanyushenkov, Yury; Bennett, Roger; Efthymiopoulos, Ilias; Fabich, Adrian; Haseroth, H; Haug, F; Lettry, Jacques; Hayato, Y; Yoshimura, Koji; Gabriel, Tony A; Graves, Van; Spampinato, P; Haines, John; McDonald, Kirk T

    2005-01-01

    We describe an experiment designed as a proof-of-principle test for a target system capable of converting a 4 MW proton beam into a high-intensity muon beam suitable for incorporation into either a neutrino factory complex or a muon collider. The target system is based on exposing a free mercury jet to an intense proton beam in the presence of a high strength solenoidal field.

  8. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  9. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  10. Experiments on high power EB evaporation of niobium

    Kandaswamy, E.; Bhardwaj, R.L.; Ram Gopal; Ray, A.K.; Kulgod, S.V.

    2002-01-01

    Full text: The versatility of electron beam evaporation makes the deposition of many new and unusual materials possible. This technique offers freedom from contamination and precise control. High power electron guns are especially used for obtaining high evaporation rates for large area coatings. This paper deals with the coating experiments carried out on an indigenously developed high power strip electron gun with niobium as evaporant at 40 kW on S.S. substrate. The practical problems of conditioning the gun and venting the vacuum system after the high power operation are also discussed. The coating rate was calculated by weight difference method

  11. High power industrial picosecond laser from IR to UV

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  12. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  13. Simulation of Oscillations in High Power Klystrons

    Ko, K

    2003-01-01

    Spurious oscillations can seriously limit a klystron's performance from reaching its design specifications. These are modes with frequencies different from the drive frequency, and have been found to be localized in various regions of the tube. If left unsuppressed, such oscillations can be driven to large amplitudes by the beam. As a result, the main output signal may suffer from amplitude and phase instabilities which lead to pulse shortening or reduction in power generation efficiency, as observed during the testing of the first 150MW S-band klystron, which was designed and built at SLAC as a part of an international collaboration with DESY. We present efficient methods to identify suspicious modes and then test their possibility of oscillation. In difference to [3], where each beam-loaded quality-factor Qbl was calculated by time-consuming PIC simulations, now only tracking-simulations with much reduced cpu-time and less sensitivity against noise are applied. This enables the determination of Qbl for larg...

  14. High cost of nuclear power plants

    Bassett, C.

    1978-01-01

    Retroactive safety standards were found to account for over half the costs of a nuclear power plant and point up the need for an effective cost-benefit analysis of changes made by the Nuclear Regulatory Commission after construction has started. The author compared the Davis-Besse Unit No. 1 construction-cost estimates with the final-cost increases during a rate-case investigation in Ohio. He presents data furnished for ten of the largest construction contracts to illustrate the cost increases involving fixed hardware and intensive labor. The situation was found to repeat with other utilities across the country even though safeguards against irresponsible low bidding were introduced. Low bidding was found to continue, encouraged by the need for retrofitting to meet regulation changes. The average cost per kilowatt of major light-water reactors is shown to have increased from $171 in 1970 to $555 in 1977, while construction duration increased from 43.4 to 95.6 months during the same period

  15. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  16. High power and high energy electrodes using carbon nanotubes

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  17. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region

    He, W.; Donaldson, C. R.; Zhang, L.; Ronald, K.; Phelps, A. D. R.; Cross, A. W.

    2017-11-01

    Experimental results are presented of a broadband, high power, gyrotron traveling wave amplifier (gyro-TWA) operating in the (75-110)-GHz frequency band and based on a helically corrugated interaction region. The second harmonic cyclotron mode of a 55-keV, 1.5-A, axis-encircling electron beam is used to resonantly interact with a traveling TE21 -like eigenwave achieving broadband amplification. The gyro-TWA demonstrates a 3-dB gain bandwidth of at least 5.5 GHz in the experimental measurement with 9 GHz predicted for a wideband drive source with a measured unsaturated output power of 3.4 kW and gain of 36-38 dB. The approach may allow a gyro-TWA to operate at 1 THz.

  18. Surface processing by high power excimer laser

    Stehle, M [SOPRA, 92 - Bois-Colombes (France)

    1995-03-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at {lambda} = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : (a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. (b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. (c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. (d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.).

  19. Surface processing by high power excimer laser

    Stehle, M.

    1995-01-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at λ = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.)

  20. Analysis of chaos in high-dimensional wind power system.

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  1. Design of measurement equipment for high power laser beam shapes

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten

    2013-01-01

    To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD-chip impleme...... by a commercial product has been done. The realised system might suffer from some thermal drift at high power; future work is to clarify this....

  2. Modular high voltage power supply for chemical analysis

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  3. Driving demand for broadband networks and services

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  4. Prospects of the high power iodine laser

    Hohla, K.; Brederlow, G.; Fill, E.; Volk, R.; Witte, K.J.

    1976-09-01

    The characteristic properties of the iodine laser (gaseous laser substance, photolytic pump mechanism, variable stimulated emission cross-section) made it possible in a relatively short time to generate ns pulses in the kJ range. The Asterix II and III iodine laser systems at IPP are working successfully, and the question arises what prospects are afforded for further iodine laser development. What are the problems that have to be clarified in order to build 10 or 100 kJ systems for laser fusion experiments. According to our experience these can be classified as follows: 1) Short pulse generation and contrast ratio, 2) pulse shaping in a high-gain laser and amplification in the coherent time range, 3) non-linear properties at high intensities, 4) scalable pumping schemes and chemical processes. (orig./WL) [de

  5. Cryogenic cooling for high power laser amplifiers

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  6. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  7. High-gradient electron accelerator powered by a relativisitic klystron

    Allen, M.A.; Boyd, J.K.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Haimson, J.; Hoag, H.A.; Hopkins, D.B.; Houck, T.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Mecklenburg, B.; Miller, R.H.; Ruth, R.D.; Ryne, R.D.; Sessler, A.M.; Vlieks, A.E.; Wang, J.W.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power

  8. Pulsed Power Applications in High Intensity Proton Rings

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  9. ACIGA's high optical power test facility

    Ju, L [School of Physics, University of Western Australia, Perth (Australia); Aoun, M [Computer and Information Science, Edith Cowan University, Perth (Australia); Barriga, P [School of Physics, University of Western Australia, Perth (Australia)] [and others

    2004-03-07

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with {approx}10{sup 6} W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties.

  10. Technical and economic considerations of extra high voltage power transmission

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. This is followed by treatment of the technical and economic problems arising in three phase-extra high voltage transmission. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating, and reactive power and stability problems.

  11. Technical and economic considerations of extra high voltage power transmission

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. The technical and economic problems arising in three phase extra high voltage transmission are discussed. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating and reactive power and stability problems.

  12. High-power generator of singlet oxygen

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila

    2013-01-01

    Roč. 36, č. 10 (2013), s. 1755-1763 ISSN 0930-7516 Grant - others:Laser Science and Technology Centre(IN) LASTEC/FE/RKT/54/10-11 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-pressure singlet oxygen generator * spray generator * centrifugal separation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.175, year: 2013

  13. Broadband electromagnetic analysis of compacted kaolin

    Bore, Thierry; Scheuermann, Alexander; Wagner, Norman; Cai, Caifang

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz–3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification. (paper)

  14. Mechanical properties of concrete for power reactor at high temperatures

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  15. Topologically protected loop flows in high voltage AC power grids

    Coletta, T; Delabays, R; Jacquod, Ph; Adagideli, I

    2016-01-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids. (paper)

  16. A battery-powered high-current power supply for superconductors

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  17. High-Power Electron Accelerators for Space (and other) Applications

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  18. Design methods for high temperature power plant structures

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  19. High performance protection circuit for power electronics applications

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  20. High power density reactors based on direct cooled particle beds

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  1. New window materials for high power gyrotron

    Afsar, M.N.; Hua Chi

    1993-01-01

    A single free standing synthetic diamond window seems to have higher absorption coefficient value at millimeter wavelength region at this time although it is claimed that it possesses good mechanical strength and higher thermal conductivity characteristics. It certainly does not rule out the use of diamond film on single crystal high resistivity silicon to improve its mechanical strength and thermal conductivity. One may have to use an appropriate film thickness for a particular wavelength in gyrotron window application. It is also necessary to use an appropriate thickness for the silicon perhaps equivalent to a quaterwavelength in order to avoid the reflection mismatch

  2. Design of a 300 GHZ broadband coupler and RF-structure

    Krawczyk, F.L.; Carlsten, B.E.; Earley, L.M.; Sigler, F.E.; Potter, J.M.; Schulze, M.E.

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 95 and 300 GHz structures. They aim at power generation from low power (100W-2kW) with a round electron beam (120kV, 0.1-1.0 A) to high power (2-100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design of a 300 GHz RF-structure with a broadband (> 6% bandwidth) power coupler is presented. The choice of two input/output waveguides, a special coupling region and the structure parameters are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented. We are investigating planar micro-fabricated traveling-wave tube amplifiers as sources for the generation of millimeter waves from 95 to 300 GHz. While for low energy applications narrow structures with pencil beams are proposed, for high energy operation flat, thin sheet beams are required. For the latter vane-loaded rectangular waveguides that operate in a slow-wave mode matched to the velocity of the electron beam are especially well suited. The 300 GHz effort initially is limited to narrow structures for pencil beams. The main emphasis for this work are the study of fabrication issues and the understanding of features that allow a broadband operation (5-10% bandwidth).

  3. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible e...

  4. Measurement of soft X-ray power from high-power Z-pinch plasma

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  5. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  6. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.

  7. Intense neutron source: high-voltage power supply specifications

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  8. High Power RF Transmitters for ICRF Applications on EAST

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  9. Efficient and high-power green beam generation by frequency ...

    Rz; 42.60.Gd. 1. Introduction. High-average-power green lasers are required for various applications in industry, ... mode size, however, vary dynamically with the pump power due to thermal lensing in the Nd:YAG rod. ... fundamental mode size at the Nd:YAG rod as well as at the KTP crystal is plotted as a function of the ...

  10. Predicting High-Power Performance in Professional Cyclists.

    Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K

    2017-03-01

    To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.

  11. HIGH RESOLUTION ANALOG / DIGITAL POWER SUPPLY CONTROLLER

    Medvedko, Evgeny A

    2003-01-01

    Corrector magnets for the SPEAR-3 synchrotron radiation source require precision, high-speed control for use with beam-based orbit feedback. A new Controller Analog/Digital Interface card (CANDI) has been developed for these purposes. The CANDI has a 24-bit DAC for current control and three 24-bit Δ-Σ ADCs to monitor current and voltages. The ADCs can be read and the DAC updated at the 4 kHz rate needed for feedback control. A precision 16-bit DAC provides on-board calibration. Programmable multiplexers control internal signal routing for calibration, testing, and measurement. Feedback can be closed internally on current setpoint, externally on supply current, or beam position. Prototype and production tests are reported in this paper. Noise is better than 17 effective bits in a 10 mHz to 2 kHz bandwidth. Linearity and temperature stability are excellent

  12. Design of high power feedthrough for High Power Industrial Accelerator (HPIA)

    Soni, Rakesh Kumar; Kumar, Abhay; Dwivedi, Jishnu; Kumar, Pankaj; Goswami, S.G.

    2011-01-01

    This paper reports the design, assembly and dismantling and maintenance of a feedthrough for High Power Industrial Accelerator (HPIA). It has been designed to serve three purposes. It provides electrical insulation between primary windings (at ∼ 2.5 kV) and cover flange (at ground potential) with the help of Nylon bushes. It also ensures leak tightness for SF 6 gas filled inside the vessel at 10 bar. It also provides sealing for water connectors between the primary winding and secondary winding. The key function of this feedthrough is to supply ∼ 800 A of current to the primary circuit. Technical requirement/constraint is leak tightness and electrical isolation of feedthrough. This feedthrough will be connected to the primary windings inside the vessel. Current will flow through a copper tube conductor which is at a potential of ∼ 800 V. Inside the tube water is flowing. Inlet water temperature is ∼ 30℃. Flow rate of water is 35 litres/minute at 6 kg/cm 2 pressure to remove the heat losses. (author)

  13. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  14. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen

    2002-01-01

    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... to calibrate such systems are proposed and different applications of the system are given. Two practical examples end the description of the research. It is concluded that such systems have a relative long time-constant but they are accurate and useful for precise power loss measurement....

  15. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  16. High power laser-matter interaction

    Mulser, Peter

    2010-01-01

    This book intended as a guide for scientists and students who have just discovered the field as a new and attractive area of research, and for scientists who have worked in another field and want to join now the subject of laser plasmas. In the first chapter the plasma dynamics is described phenomenologically by a two fluid model and similarity relations from dimensional analysis. Chapter 2 is devoted to plasma optics and collisional absorption in the dielectric and ballistic model. Linear resonance absorption at the plasma frequency and its mild nonlinearities as well as the self-quenching of high amplitude electron plasma waves by wave breaking are discussed in Chapter 3. With increasing laser intensity the plasma dynamics is dominated by radiation pressure, at resonance producing all kinds of parametric instabilities and out of resonance leading to density steps, self-focusing and filamentation, described in Chapters 4 and 5. A self-contained treatment of field ionization of atoms and related phenomena ar...

  17. Transmission of power at high voltages

    Lane, F J

    1963-01-01

    High voltage transmission is considered to be concerned with circuits and systems operating at or above 132 kV. While the general examination is concerned with ac transmission, dc systems are also included. The choice of voltage for a system will usually involve hazardous assessments of the future requirements of industry, commerce and a changing population. Experience suggests that, if the estimated economic difference between two voltages is not significant, there is good reason to choose the higher voltage, as this will make the better provision for unexpected future expansion. Two principal functions served by transmission circuits in a supply system are: (a) the transportation of energy in bulk from the generator to the reception point in the distribution system; and (b) the interconnection and integration of the generating plant and associated loads. These functions are considered and various types of system are discussed in terms of practicability, viability, quality and continuity of supply. Future developments requiring transmission voltages up to 750 kV will raise many problems which are in the main empirical. Examples are given of the type of problem envisaged and it is suggested that these can only be partially solved by theory and model operation.

  18. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently. (c) 2016 APA, all rights reserved).

  19. High Power Room Temperature Terahertz Local Oscillator, Phase I

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  20. High Power Uplink Amplifier for Deep Space Communications, Phase II

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  1. High Power Uplink Amplifier for Deep Space Communications, Phase I

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  2. High power density reactors based on direct cooled particle beds

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  3. High power green lasers for gamma source

    Durand, Magali; Sevillano, Pierre; Alexaline, Olivier; Sangla, Damien; Casanova, Alexis; Aubourg, Adrien; Saci, Abdelhak; Courjaud, Antoine

    2018-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750 x 500 x 150 mm), which allows a pulse-pulse stability of 0.1 % rms, and a long-term stability of 1,9 % over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 4.4 ps. As for the regenerative amplifier a long-term stability of 1.9 % over 30 hours was achieved in an environment with +/-1°C temperature fluctuations The compression and Second Harmonics Generation Stages have allowed the conversion of 150 mJ of uncompressed infrared beam into 60 mJ at 515 nm.

  4. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  5. Very High Frequency Galvanic Isolated Offline Power Supply

    Pedersen, Jeppe Arnsdorf

    During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...... inverters with a single combined rectifier. The converter designed to deliver 9 W to a 60 V LED load and is achieving an efficiency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that offline VHF converter can be implemented with high efficiencies even for low power applications...... are described together with the possibility of using capacitors as the power galvanic isolation, both methods of creating galvanic isolation are implemented in converters. Regarding EMC a series of converters with different filter implementations are examined. The results from the conducted mea-surement from 150...

  6. High power rf component testing for the NLC

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  7. Design and Characterization of High Power Targets for RIB Generation

    Zhang, Y.

    2001-01-01

    In this article, thermal modeling techniques are used to simulate ISOL targets irradiated with high power proton beams. Beam scattering effects, nuclear reactions and beam power deposition distributions in the target were computed with the Monte Carlo simulation code, GEANT4. The power density information was subsequently used as input to the finite element thermal analysis code, ANSYS, for extracting temperature distribution information for a variety of target materials. The principal objective of the studies was to evaluate techniques for more uniformly distributing beam deposited heat over the volumes of targets to levels compatible with their irradiation with the highest practical primary-beam power, and to use the preferred technique to design high power ISOL targets. The results suggest that radiation cooling, in combination, with primary beam manipulation, can be used to control temperatures in practically sized targets, to levels commensurate with irradiation with 1 GeV, 100 kW proton beams

  8. High power laser downhole cutting tools and systems

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  9. 78 FR 32165 - Broadband Over Power Lines

    2013-05-29

    ... decision to retain the existing 40-dB-per-decade value for the standard distance extrapolation factor for...) systems. The Commission concludes that its previous decisions in this proceeding strike an appropriate...., [[Page 32166

  10. 76 FR 71892 - Broadband Over Power Lines

    2011-11-21

    ... interference distance to fixed stations would be 62 meters at 2-8 MHz and 400 meters at 8-30 MHz in areas where... line 230 meters from the coupler. ii. The proper distance extrapolation factor for assumed signal decay... median values of man-made noise at 30-meters distance. Extrapolating this to a mobile antenna closer to...

  11. Optical cavity-assisted broadband optical transparency of a plasmonic metal film

    Liu, Zhengqi; Nie, Yiyou; Yuan, Wen; Liu, Xiaoshan; Huang, Shan; Gao, Huogui; Gu, Gang; Liu, Guiqiang; Chen, Jing

    2015-01-01

    We theoretically present a powerful method to achieve a continuous metal film structure with broadband optical transparency via introducing a dielectric Fabry–Pérot (FP) cavity. An incident optical field could be efficiently coupled and confined with the strong localized plasmons by the non-close-packed plasmonic crystal at the input part and could then become re-radiated output via the transmission channel supported by the dielectric cavity. The formed photonic-plasmonic system could therefore make the seamless metal film structure have a superior near-unity transparency (up to 97%) response and a broadband transparent spectrum with bandwidth >245 nm (with transmittance >90%) in the optical regime. The observed optical properties of the proposed structure can be highly tuned via varying the structural parameters. Based on the colloidal assembly method, the proposed plasmonic crystal can be fabricated in a large area. In addition, the achieved optical transparency can be retained in the extremely roughed metal film structure. Thereby, the findings could offer a feasible way to achieve a broadband transparent metal film structure and hold potential applications in transparent electrodes, touch screens and interactive electronics. (paper)

  12. Design of a 300 GHz Broadband TWT Coupler and RF-Structure

    Krawczyk, F L

    2004-01-01

    Recent LANL activities in millimeter wave structures focus on 94 and 300 GHz structures. They aim at power generation from low power (100–2000 W) with a round electron beam (120 kV, 0.1–1.0 A) to high power (2–100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design and cold-test measurements of a 300 GHz RF-structure with a broadband (>6% bandwidth) power coupler are presented. The design choice of two input/output waveguides, a special coupling region and the structure parameters themselves are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented.

  13. Design of 1 MHz solid state high frequency power supply

    Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip

    2015-01-01

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  14. Design of 1 MHz Solid State High Frequency Power Supply

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  15. Power efficient and high performance VLSI architecture for AES algorithm

    K. Kalaiselvi

    2015-09-01

    Full Text Available Advanced encryption standard (AES algorithm has been widely deployed in cryptographic applications. This work proposes a low power and high throughput implementation of AES algorithm using key expansion approach. We minimize the power consumption and critical path delay using the proposed high performance architecture. It supports both encryption and decryption using 256-bit keys with a throughput of 0.06 Gbps. The VHDL language is utilized for simulating the design and an FPGA chip has been used for the hardware implementations. Experimental results reveal that the proposed AES architectures offer superior performance than the existing VLSI architectures in terms of power, throughput and critical path delay.

  16. High current proton linear accelerators and nuclear power

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  17. Supporting Control Room Operators in Highly Automated Future Power Networks

    Chen, Minjiang; Catterson, Victoria; Syed, Mazheruddin

    2017-01-01

    Operating power systems is an extremely challenging task, not least because power systems have become highly interconnected, as well as the range of network issues that can occur. It is therefore a necessity to develop decision support systems and visualisation that can effectively support the hu...... the human operators for decisionmaking in the complex and dynamic environment of future highly automated power system. This paper aims to investigate the decision support functions associated with frequency deviation events for the proposed Web of Cells concept....

  18. High Power Radiation Tolerant CubeSat Power System, Phase I

    National Aeronautics and Space Administration — No vendor has yet to provide a radiation tolerant, high efficiency, small Power Management and Distribution module for the SmallSat and CubeSat market yet. Let alone...

  19. A high-power versatile wireless power transfer for biomedical implants.

    Jiang, Hao; Zhang, Jun Min; Liou, Shy Shenq; Fechter, Richard; Hirose, Shinjiro; Harrison, Michael; Roy, Shuvo

    2010-01-01

    Implantable biomedical actuators are highly desired in modern medicine. However, how to power up these biomedical implants remains a challenge since most of them need more than several hundreds mW of power. The air-core based radio-frequency transformer (two face-to-face inductive coils) has been the only non-toxic and non-invasive power source for implants for the last three decades [1]. For various technical constraints, the maximum delivered power is limited by this approach. The highest delivered power reported is 275 mW over 1 cm distance [2]. Also, the delivered power is highly vulnerable to the coils' geometrical arrangement and the electrical property of the medium around them. In this paper, a novel rotating-magnets based wireless power transfer that can deliver ∼10 W over 1 cm is demonstrated. The delivered power is significantly higher than the existing start-of-art. Further, the new method is versatile since there is no need to have the impedance matching networks that are highly susceptible to the operating frequency, the coil arrangement and the environment.

  20. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  1. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  2. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  3. Experimental approach to high power long duration neutral beams

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  4. Pulsed power drivers for ICF and high energy density physics

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  5. Design of 120 MW beam power electron gun for high power klystron

    Zhou Zusheng; Dong Dong

    2005-01-01

    An electron gun was designed and the beam optics for a China-made 50 MW klystron was simulated. The electron gun ceramic cylinder was designed and optimized. The China-made cathode was replaced with an imported one to lessen evaporation and arcing. The high voltage (320 kV) of the cathode was increased to meet the klystron output power demand and a low electric field strength (22.1 kV/mm) electron gun was designed to avoid the high power operation which damaged the ceramic cylinder. The klystron output power was increased and life span extended. (authors)

  6. High power pulsed sources based on fiber amplifiers

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  7. Very-High Efficiency, High Power Laser Diodes, Phase I

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this proposal entitled ?Very-High...

  8. High voltage power supplies for INDUS-2 RF system

    Badapanda, M.K.; Hannurkar, P.R.

    2003-01-01

    The RF system of Indus-2 employs klystron amplifiers operating at 505.812 MHz. A precession controlled high voltage DC supply of appropriate rating is needed for each klystron amplifier, as its bias supply. Since internal flashover and arcing are common with the operation of these klystrons and stored energies beyond particular limit inside its bias power supply is detrimental to this device, a properly designed crowbar is incorporated between each klystron and its power supply. This crowbar bypass these stored energies and helps protecting klystron under any of these unfavorable conditions. In either case, power supply sees a near short circuit across its load. So, its power circuit is designed to reduce the fault current level and its various components are also designed to withstand these fault currents, as and when it appears. Finally, operation of these high voltage power supplies (HVPS) generates lot of harmonics on the source side, which distort the input waveform substantially and reduces the input power factor also. Source multiplication between two power supplies are planned to improve upon above parameters and suitable detuned line filters are incorporated to keep the input voltage total harmonics distortion (THD) below 5 % and input power factor (IFF) near unity. (author)

  9. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  10. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  11. E-beam high voltage switching power supply

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  12. E-beam high voltage switching power supply

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  13. High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots

    Tsubaki, Ippei; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2012-12-15

    Recently, there has been an increasing interest in broadband light sources to develop a biomolecular imaging technique called optical coherence tomography (OCT). We fabricated superluminescent diodes (SLDs) using three kinds of quantum dot (QD) layers with different emission wavelength in the active region. The emission wavelength was controlled by reducing the strain in QDs by using In{sub 0.1}Ga{sub 0.9}As strain-reducing layer. The SLD device showed a broad electroluminescence spectrum with the center wavelength of 1104 nm and the spectral linewidth of 122 nm at the injection of 40 mA, which corresponds to the theoretical axial resolution of 4.4 {mu}m. To estimate the actual resolution of the OCT system using fabricated SLD, we measured the interference signal in the Michelson interferometer. An axial resolution of 5.4 {mu}m, which is close to the theoretical limit, was obtained (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  15. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  16. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  17. Development and advances in conventional high power RF systems

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  18. Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications

    Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.

    2004-01-01

    Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Grating (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10 19 cm -2 fast neutron (E > 1 MeV) fluence and 8.7 x 10 8 Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research

  19. Achieving universal access to broadband

    Falch, Morten; Henten, Anders

    2009-01-01

    The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures...

  20. Advancements of ultra-high peak power laser diode arrays

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.