WorldWideScience

Sample records for high porosities high

  1. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  2. Determining the mechanical properties of high porosity nickel

    International Nuclear Information System (INIS)

    Frappier, J.C.; Poirier, J.

    1975-01-01

    The following tests were carried out on high porosity (40 to 70%) sintered nickel: tensile tests, compression tests, diametral crushing tests, using strain gauges and extensometers. Results were obtained on the relationship elastic properties - porosity, Poisson coefficient in relation to deformation, variations of yield strength, and breaking stress. these various properties were also studied in relation to the sintering methods and the properties of the powders used [fr

  3. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbine s * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  4. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption.

    Science.gov (United States)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei; Zhou, Bingjie; Lv, Liping; Ren, Jingzheng; Dong, Lichun; Li, Jing; Liu, Zhenfa

    2017-07-05

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn 2 O 3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced via a template-free route. The attained dual-porosity Mn 2 O 3 materials have 24nm of large-pore mesopores and 700nm of macropores. Besides, the achieved materials own cubic morphologies with particle sizes as large as 6.0μm, making them separable in the solution by a facile natural sedimentation. Dye adsorption measurements reveal that the dual-porosity materials possess a very high maximum adsorption capacity of 125.6mg/g, much larger than many reported materials. Particularly, the adsorbents can be recycled and the dye removal efficiency can be well maintained at 98% after four cycles. Adsorption isotherm and kinetics show that the Langmuir model and the pseudo-second-order kinetics model can well describe the adsorption process of Congo Red on the dual-porosity Mn 2 O 3 cube materials. In brief, the reported dual-porosity Mn 2 O 3 demonstrates a good example for controlled preparation of dual-porosity materials with large-pore mesopores, and the macropore-mesopore dual-porosity distribution is good for mass transfer in dye adsorption application. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    International Nuclear Information System (INIS)

    Gömze, L A; Egész, Á; Gömze, L N; Ojima, F

    2013-01-01

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2–3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation

  7. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  8. Models for Strength Prediction of High-Porosity Cast-In-Situ Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Wenhui Zhao

    2018-01-01

    Full Text Available A study was undertaken to develop a prediction model of compressive strength for three types of high-porosity cast-in-situ foamed concrete (cement mix, cement-fly ash mix, and cement-sand mix with dry densities of less than 700 kg/m3. The model is an extension of Balshin’s model and takes into account the hydration ratio of the raw materials, in which the water/cement ratio was a constant for the entire construction period for a certain casting density. The results show that the measured porosity is slightly lower than the theoretical porosity due to few inaccessible pores. The compressive strength increases exponentially with the increase in the ratio of the dry density to the solid density and increases with the curing time following the composite function A2ln⁡tB2 for all three types of foamed concrete. Based on the results that the compressive strength changes with the porosity and the curing time, a prediction model taking into account the mix constitution, curing time, and porosity is developed. A simple prediction model is put forward when no experimental data are available.

  9. Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice

    Science.gov (United States)

    Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.

    2013-12-01

    At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact

  10. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  11. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    Science.gov (United States)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  12. High-resolution mapping of yield curve shape and evolution for high porosity sandstones

    Science.gov (United States)

    Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.

    2017-12-01

    The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.

  13. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  14. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption

    DEFF Research Database (Denmark)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei

    2017-01-01

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn2O3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced...

  15. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  16. Influence of refining process on the porosity of high pressure die casting alloy Al-Si

    Directory of Open Access Journals (Sweden)

    A.W. Orlowicz

    2009-04-01

    Full Text Available This study presents research results of the influence that refining and transfer of AlSi12S alloy on the porosity of high pressure diecastings.Tests were conducted under production conditions of Die-casting Foundry META-ZEL Sp z o.o. The operation of refining was conducted in a melting furnace, with the use of an FDU Mini Degasser. Decay of the refining effect was assessed by evaluating the porosity content and metallographic examination.

  17. Solvent purification with high-porosity (macroreticular) ion-exchange resin

    International Nuclear Information System (INIS)

    McKibben, J.M.

    Numerous solvent degradation products exist in all of our process solvents that are not efficiently removed in the routine solvent washing operation. Tests indicate that a relatively new type of resin - variously called high-porosity, macroreticular, or macroporous resin - removes at least some of these persistent chemicals and substantially improves the quality of any TBP process solvent. A plant test is proposed for the purification of the first cycle solvent of the HM process, in which a loop will be installed to draw a small side stream of solvent from the washed solvent hold tank (904), pass it through a 2.7 ft 3 resin column, and return it to the same tank

  18. Constitutive Modelling and Deformation Band Angle Predictions for High Porosity Sandstones

    Science.gov (United States)

    Richards, M. C.; Issen, K. A.; Ingraham, M. D.

    2017-12-01

    The development of a field-scale deformation model requires a constitutive framework that is capable of representing known material behavior and able to be calibrated using available mechanical response data. This work employs the principle of hyperplasticity (e.g., Houlsby and Puzrin, 2006) to develop such a constitutive framework for high porosity sandstone. Adapting the works of Zimmerman et al. (1986) and Collins and Houlsby (1997), the mechanical data set of Ingraham et al. (2013 a, b) was used to develop a specific constitutive framework for Castlegate sandstone, a high porosity fluvial-deposited reservoir analog rock. Using the mechanical data set of Ingraham et al. (2013 a, b), explicit expressions and material parameters of the elastic moduli and strain tensors were obtained. With these expressions, analytical and numerical techniques were then employed to partition the total mechanical strain into elastic, coupled, and plastic strain components. With the partitioned strain data, yield surfaces in true-stress space, coefficients of internal friction, dilatancy factors, along with the theorectical predictions of the deformation band angles were obtained. These results were also evaluated against band angle values obtained from a) measurements on specimen jackets (Ingraham et al., 2013a), b) plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b), and c) X-ray micro-computed tomography (micro-CT) calculations.

  19. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T

    2013-01-01

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  20. Reservoir core porosity in the Resende formation using 3D high-resolution X-ray computed microtomography

    International Nuclear Information System (INIS)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo T.; Rocha, Paula Lucia F. da

    2009-01-01

    The storage capacity and production of oil are influenced, among other things, by rocks and fluids characteristics. Porosity is one of the most important characteristics to be analyzed in oil industry, mainly in oil prospection because it represents the direct capacity of storage fluids in the rocks. By definition, porosity is the ratio of pore volume to the total bulk volume of the formation, expressed in percentage, being able to be absolute or effective. The aim of this study was to calculate porosity by 3D High-Resolution X-ray Computed Microtomography using core plugs from Resende Formation which were collected in Porto Real, Rio de Janeiro State. This formation is characterized by sandstones and fine conglomerates with associated fine siliciclastic sediments, and the paleoenviroment is interpreted as a braided fluvial system. For acquisitions data, it was used a 3D high resolution microtomography system which has a microfocus X-ray tube (spot size < 5μm) and a 12-bit cooled X-ray camera (CCD fiber-optically coupled to a scintillator) operated at 100 kV and 100 μA. Twenty-two samples taken at different depths from two boreholes were analyzed. A total of 961 slices were performed with a resolution of 14.9 μm. The results demonstrated that μ-CT is a reliable and effective technique. Through the images and data it was possible to quantify the porosity and to view the size and shape of porous. (author)

  1. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  2. High porosity harzburgite and dunite channels for the transport of compositionally heterogeneous melts in the mantle: II. Geochemical consequences

    Science.gov (United States)

    Liang, Y.; Schiemenz, A.; Xia, Y.; Parmentier, E.

    2009-12-01

    In a companion numerical study [1], we explored the spatial distribution of high porosity harzburgite and dunite channels produced by reactive dissolution of orthopyroxene (opx) in an upwelling mantle column and identified a number of new features. In this study, we examine the geochemical consequences of channelized melt flow under the settings outlined in [1] with special attention to the transport of compositionally heterogeneous melts and their interactions with the surrounding peridotite matrix during melt migration in the mantle. Time-dependent transport equations for a trace element in the interstitial melt and solids that include advection, dispersion, and melt-rock reaction were solved in a 2-D upwelling column using the high-order numerical methods outlined in [1]. The melt and solid velocities were taken from the steady state or quasi-steady state solutions of [1]. In terms of trace element fractionation, the simulation domain can be divided into 4 distinct regions: (a) high porosity harzburgite channel, overlain by; (b) high porosity dunite channel; (c) low porosity compacting boundary layer surrounding the melt channels; and (d) inter-channel regions outside (c). In the limit of local chemical equilibrium, melting in region (d) is equivalent to batch melting, whereas melting and melt extraction in (c) is more close to fractional melting with the melt suction rate first increase from the bottom of the melting column to a maximum near the bottom of the dunite channel and then decrease upward in the compacting boundary layer. The melt composition in the high porosity harzburgite channel is similar to that produced by high-degree batch melting (up to opx exhaustion), whereas the melt composition in the dunite is a weighted average of the ultra-depleted melt from the harzburgite channel below, the expelled melt from the compacting boundary layer, and melt produced by opx dissolution along the sidewalls of the dunite channel. Compaction within the dunite

  3. Strength and Biot's coefficient for high-porosity oil- or water-saturated chalk

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling

    . The Biot coefficient states the degree of cementation or how the pore pressure contributes to the strain resulting from an external load for a porous material. It is here calculated from dynamic measurements and correlated with the strength of outcrop chalk characterized by the onset of pore collapse...... during hydrostatic loading. The hypothesis is that the Biot coefficient and the theory of poroelasticity may cover the fluid effect by including the increased fluid bulk modulus from oil to water. A high number of test results for both oil- and water-saturated high-porosity outcrop chalk show correlation......In the petroleum industry it is relevant to know the Biot coefficient for establishing the effective stresses present in both the overburden and for the reservoir interval. When depleting a reservoir it is important to estimate the settlement through the strain imposed by the effective stress. Also...

  4. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    Science.gov (United States)

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  5. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors

    Science.gov (United States)

    Qiu, Zhipeng; Wang, Yesheng; Bi, Xu; Zhou, Tong; Zhou, Jin; Zhao, Jinping; Miao, Zhichao; Yi, Weiming; Fu, Peng; Zhuo, Shuping

    2018-02-01

    The development of supercapacitors with high energy density and power density is an important research topic despite many challenging issues exist. In this work, porous carbon material was prepared from corn straw biochar and used as the active electrode material for electric double-layer capacitors (EDLCs). During the KOH activation process, the ratio of KOH/biochar significantly affects the microstructure of the resultant carbon, which further influences the capacitive performance. The optimized carbon material possesses typical hierarchical porosity composed of multi-leveled pores with high surface area and pore volume up to 2790.4 m2 g-1 and 2.04 cm3 g-1, respectively. Such hierarchical micro-meso-macro porosity significantly improved the rate performance of the biochar-based carbons. The achieved maximum specific capacitance was 327 F g-1 and maintained a high value of 205 F g-1 at a ultrahigh current density of 100 A g-1. Meanwhile, the prepared EDLCs present excellent cycle stability in alkaline electrolytes for 120 000 cycles at 5 A g-1. Moreover, the biochar-based carbon could work at a high voltage of 1.6 V in neutral Na2SO4, and exhibit a high specific capacitance of 227 F g-1, thus giving an outstanding energy density of 20.2 Wh kg-1.

  6. Investigation of the influence on residual stresses of porosity in high temperature ZrO2 coatings on Ag tape for magnet technologies

    International Nuclear Information System (INIS)

    Arman, Yusuf; Aktas, Mehmet; Celik, Erdal; Mutlu, Ibrahim H.; Sayman, Onur

    2007-01-01

    The present paper reports on the effect on residual stresses of porosity in high temperature ZrO 2 coatings on Ag tape for magnet technologies. ZrO 2 coatings were fabricated on Ag tape substrate using a reel-to-reel sol-gel system. The microstructural evolution of high temperature ZrO 2 coatings was investigated by a scanning electron microscope (SEM). SEM observations revealed that ZrO 2 coatings with crack had some porosity and mosaic structure. Stress analysis was carried out on ZrO 2 coatings with porosity on Ag tape substrates under cryogenic conditions by using classical lamination theory (CLT) for elastic solution and finite element method (FEM) for elasto-plastic solution in the temperature range of 0 o C to -223 o C in liquid helium media. Because of the static equilibrium, tensile force is applied to the Ag substrate, by ZrO 2 coating. The stress component (σ x ) values change rapidly at coating-substrate interface owing to the different moduli of elasticity and thermal expansion coefficient. In spite of the thickness of Ag substrate, the stress components vary from tensile to compressive. In addition, along the thickness of ZrO 2 coating and Ag substrate system, the stress distribution changes linearly. FEM results demonstrate that the failure does not occur in ZrO 2 coating for all porosities due to its high yield strength

  7. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  8. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  9. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  10. Thermal conductivity of high-porosity biocarbon preforms of beech wood

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Kartenko, N. F.; Sharenkova, N. V.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Wilkes, T. E.; Faber, K. T.

    2010-06-01

    This paper reports on measurements performed in the temperature range 5-300 K for the thermal conductivity κ and electrical resistivity ρ of high-porosity (cellular pores) biocarbon preforms prepared by pyrolysis (carbonization) of beech wood in an argon flow at carbonization temperatures of 1000 and 2400°C. X-ray structure analysis of the samples has been performed at 300 K. The samples have revealed the presence of nanocrystallites making up the carbon matrices of these biocarbon preforms. Their size has been determined. For samples prepared at T carb = 1000 and 2400°C, the nanocrystallite sizes are found to be in the ranges 12-25 and 28-60 κ( T) are determined for the samples cut along and across the tree growth direction. The thermal conductivity κ increases with increasing carbonization temperature and nanocrystallite size in the carbon matrix of the sample. Thermal conductivity measurements conducted on samples of both types have revealed an unusual temperature dependence of the phonon thermal conductivity for amorphous materials. As the temperature increases from 5 to 300 K, it first increases in proportion to T, to transfer subsequently to ˜ T 1.5 scaling. The results obtained are analyzed.

  11. Thermal conductivity of high-porosity heavily doped biomorphic silicon carbide prepared from sapele wood biocarbon

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Mucha, J.; Jezowski, A.; Cabezas-Rodriguez, R.; Ramirez-Rico, J.

    2012-08-01

    The electrical resistivity and thermal conductivity of high-porosity (˜52 vol %, channel-type pores) bio-SiC samples prepared from sapele wood biocarbon templates have been measured in the temperature range 5-300 K. An analysis has been made of the obtained results in comparison with the data for bio-SiC samples based on beech and eucalyptus, as well as for polycrystalline β-SiC. The conclusion has been drawn that the electrical resistivity and thermal conductivity of bio-SiC samples based on natural wood are typical of heavily doped polycrystalline β-SiC.

  12. Thermal conductivity of high-porosity cellular-pore biocarbon prepared from sapele wood

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Kartenko, N. F.; Sharenkova, N. V.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Mucha, J.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.

    2009-10-01

    This paper reports on measurements (in the temperature range T = 5-300 K) of the thermal conductivity κ( T) and electrical conductivity σ( T) of the high-porosity (˜63 vol %) amorphous biocarbon preform with cellular pores, prepared by pyrolysis of sapele wood at the carbonization temperature 1000°C. The preform at 300 K was characterized using X-ray diffraction analysis. Nanocrystallites 11-30 Å in ize were shown to participate in the formation of the carbon network of sapele wood preforms. The dependences κ( T) and σ( T) were measured for the samples cut across and along empty cellular pore channels, which are aligned with the tree growth direction. Thermal conductivity measurements performed on the biocarbon sapele wood preform revealed a temperature dependence of the phonon thermal conductivity that is not typical of amorphous (and X-ray amorphous) materials. The electrical conductivity σ was found to increase with the temperature increasing from 5 to 300 K. The results obtained were analyzed.

  13. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    Science.gov (United States)

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-05-01

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer

  14. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground penetrating radar (GPR) measurements at the laboratory scale

    Science.gov (United States)

    Mount, Gregory J.; Comas, Xavier

    2014-10-01

    Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.

  15. Thermal conductivity of high-porosity biocarbon precursors of white pine wood

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Kartenko, N. F.; Sharenkova, N. V.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Wilkes, T. E.; Faber, K. T.

    2008-12-01

    This paper reports on measurements of the thermal conductivity κ and the electrical conductivity σ of high-porosity (cellular pores) biocarbon precursors of white pine tree wood in the temperature range 5-300 K, which were prepared by pyrolysis of the wood at carbonization temperatures ( T carb) of 1000 and 2400°C. The x-ray structural analysis has permitted the determination of the sizes of the nanocrystallites contained in the carbon framework of the biocarbon precursors. The sizes of the nanocrystallites revealed in the samples prepared at T carb = 1000 and 2400°C are within the ranges 12-35 and 25-70 Å, respectively. The dependences κ( T) and σ( T) are obtained for samples cut along the tree growth direction. As follows from σ( T) measurements, the biocarbon precursors studied are semiconducting. The values of κ and σ increase with increasing carbonization temperature of the samples. Thermal conductivity measurements have revealed that samples of both types exhibit a temperature dependence of the phonon thermal conductivity κph, which is not typical of amorphous (and amorphous to x-rays) materials. As the temperature increases, κph first varies proportional to T, to scale subsequently as ˜ T 1.7. The results obtained are analyzed.

  16. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  17. Robust automatic high resolution segmentation of SOFC anode porosity in 3D

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Bowen, Jacob R.

    2008-01-01

    Routine use of 3D characterization of SOFCs by focused ion beam (FIB) serial sectioning is generally restricted by the time consuming task of manually delineating structures within each image slice. We apply advanced image analysis algorithms to automatically segment the porosity phase of an SOFC...... anode in 3D. The technique is based on numerical approximations to partial differential equations to evolve a 3D surface to the desired phase boundary. Vector fields derived from the experimentally acquired data are used as the driving force. The automatic segmentation compared to manual delineation...... reveals and good correspondence and the two approaches are quantitatively compared. It is concluded that the. automatic approach is more robust, more reproduceable and orders of magnitude quicker than manual segmentation of SOFC anode porosity for subsequent quantitative 3D analysis. Lastly...

  18. SEM-analysis of grain boundary porosity in three S-176 specimens

    International Nuclear Information System (INIS)

    Malen, K.; Birath, S.; Mattsson, O.

    1980-10-01

    Porosity in UO 2 -fuel has been studied in scanning electron microscope (SEM). The aim was to obtain a basis for evaluation of porosity in high burnup power reactor fuel. Three specimens have been analyzed. In the high temperature zones porosity can be seen both on grain boundaries and at grain edges. In the low temperature regions very little changes seem to have occurred during irradiation. (author)

  19. A new powder morphology for making high-porosity nickel structures

    International Nuclear Information System (INIS)

    Cormier, Elena; Yang, Quan Min; Charles, Doug; Wasmund, Eric Bain; Renny, Les V.

    2007-01-01

    Nickel powders with a special branched chain microstructure such as CVRD Inco Limited's Type 255 trademark have been used for more than 50 years as the basis for making porous metal monoliths for applications such as the electrical backbone of nickel electrode batteries by the sinter/slurry process. The classic trade-off when making these structures is that the strength and porosity are inversely correlated. A number of adaptations to the sinter/slurry making process have been proposed to address this problem. The current approach proposes another solution, optimization of the particle microstructure. The strength and porosity relationship of battery plaques made from Type 255 trademark is compared with plaques made with the new powder and it is statistically verified that plaques made from the new powder have an improved combination of structural properties. A comparison of the rheological characteristics of metal powder slurries suggests ways that the new powder can be incorporated into existing processes. Finally, it is shown that properties such as the slurry apparent viscosity can be used as the basis for measuring and predicting the characteristics of particle microstructure that impute these benefits to the sinter/slurry process. An analysis of battery plaques made with the new powder on an industrial battery sinter/slurry production line confirms that the laboratory results are valid. (author)

  20. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si

    Directory of Open Access Journals (Sweden)

    Edwin Soh

    2015-03-01

    Full Text Available Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF, foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  1. Effect of High Porosity Screen on the Near Wake of a Circular Cylinder

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available The change in flow characteristics downstream of a circular cylinder (inner cylinder surrounded by a permeable cylinder (outer cylinder made of a high porosity screen was investigated in shallow water using Particle Image Velocimetry (PIV technique. The diameter of the inner cylinder, outer cylinder and the water height were kept constant during the experiments as d = 50 mm, D = 100 mm and hw = 50 mm, respectively. The depth-averaged free stream velocity was also kept constant as U = 180 mm/s which corresponded to a Reynolds number of Red = 9000 based on the inner cylinder diameter. It was shown that the outer permeable cylinder had a substantialeffect on the vortex formation and consequent vortex shedding downstream of the circular cylinder, especially in the near wake. The time averaged vorticity layers, streamlines and velocity vector field depict that the location of the interaction of vortices considerably changed by the presence of the outer cylinder. Turbulent statistics clearly demonstrated that in comparison to the natural cylinder, turbulent kinetic energy and Reynolds stresses decreased remarkably downstream of the inner cylinder. Moreover, spectra of streamwise velocity fluctuations showed that the vortex shedding frequency significantly reduced compared to the natural cylinder case.

  2. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  3. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  4. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  5. Ultrasonic maps of porosity in aluminum castings

    International Nuclear Information System (INIS)

    Ghaffari, Bita; Potter, Timothy J.; Mozurkewich, George

    2002-01-01

    The use of cast aluminum in the automotive industry has grown dramatically in recent years, leading to increased need for quantitative characterization of microporosity. As previously reported in the literature, the attenuation of ultrasound can be used to measure the porosity volume fraction and the mean pore size. An immersion ultrasound system has been built utilizing this technique to scan castings with high spatial resolution. Maps of attenuation are shown to locate areas of varying porosity readily and reliably

  6. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    Science.gov (United States)

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-12-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1-5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10-50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (˜1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields.

  7. Estimation and measurement of porosity change in cement paste

    International Nuclear Information System (INIS)

    Lee, Eunyong; Jung, Haeryong; Kwon, Ki-jung; Kim, Do-Gyeum

    2011-01-01

    Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c ratio and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals. (author)

  8. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  9. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  10. Porosity determination from 2-D resistivity method in studying the slope failures

    Science.gov (United States)

    Maslinda, Umi; Nordiana, M. M.; Bery, A. A.

    2017-07-01

    Slope failures have become the main focus for infrastructures development on hilly areas in Malaysia especially the development of tourism and residential. Lack of understanding and information of the subsoil conditions and geotechnical issues are the main cause of the slope failures. The failures happened are due to a combination of few factors such as topography, climate, geology and land use. 2-D resistivity method was conducted at the collapsed area in Selangor. The 2-D resistivity was done to study the instability of the area. The collapsed occurred because of the subsurface materials was unstable. Pole-dipole array was used with 5 m minimum electrode spacing for the 2-D resistivity method. The data was processed using Res2Dinv software and the porosity was calculated using Archie's law equation. The results show that the saturated zone (1-100 Ωm), alluvium or highly weathered rock (100-1000 Ωm), boulders (1600-7000 Ωm) and granitic bedrock (>7000 Ωm). Generally, the slope failures or landslides occur during the wet season or after rainfall. It is because of the water infiltrate to the slope and cause the saturation of the slope which can lead to landslides. Then, the porosity of saturated zone is usually high because of the water content. The area of alluvium or highly weathered rock and saturated zone have high porosity (>20%) and the high porosity also dominated at almost all the collapsed area which means that the materials with porosity >20% is potential to be saturated, unstable and might trigger slope failures.

  11. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  12. High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain

    Directory of Open Access Journals (Sweden)

    Uwe Klinge

    2015-01-01

    Full Text Available Reinforcement of tissues by use of textiles is encouraged by the reduced rate of recurrent tissue dehiscence but for the price of an inflammatory and fibrotic tissue reaction to the implant. The latter mainly is affected by the size of the pores, whereas only sufficiently large pores are effective in preventing a complete scar entrapment. Comparing two different sling implants (TVT and SIS, which are used for the treatment of urinary incontinence, we can demonstrate that the measurement of the effective porosity reveals considerable differences in the textile construction. Furthermore the changes of porosity after application of a tensile load can indicate a structural instability, favouring pore collapse at stress and questioning the use for purposes that are not “tension-free.”

  13. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  14. Effect of shrinkage porosity on mechanical properties of ferritic ductile iron

    Directory of Open Access Journals (Sweden)

    Wang Zehua

    2013-05-01

    Full Text Available Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.

  15. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    to be the case for high plasticity clays that are uncemented, and with a high content of clay minerals, especially smectite. Oedometer tests on samples from the Paleogene period show that 80% or more of the compaction will recover when unloaded, and if unloaded to a stress lower than in situ stress level...

  16. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  17. Pressure-assisted sintering of high purity barium titanate

    NARCIS (Netherlands)

    van den Cruijsem, S.; Varst, van der P.G.T.; With, de G.; Bortzmeyer, D.; Boussuge, M.; Chartier, Th.; Hausonne, J.M.; Mocellin, A.; Rousset, A.; Thevenot, F.

    1997-01-01

    The dielectric behaviour of High Purity Barium titanate (HPB) ceramics is strongly dependent on the grain size and porosity. For applications, control of grain size and porosity is required. Pressure-assisted sintering techniques at relatively low temperatures meet these requirements. In this study,

  18. Microstructure and Porosity of Laser-welded Dissimilar Material Joints of HR-2 and J75

    Science.gov (United States)

    Shen, Xianfeng; Teng, Wenhua; Zhao, Shuming; He, Wenpei

    Dissimilar laser welding of HR-2 and J75 has a wide range of applications in high-and low-temperature hydrogen storage. The porosity distributions of the welded joints were investigated at different line energies, penetration status, and welding positions (1G, 2G, and 3G). The effect of the welding position on the welding appearance was evident only at high line energies because of the essential effect of gravity of the larger and longer dwelling molten pool. The porosity of the welded joints between the solutionised and aged J75 and HR-2 at the 3G position and partial penetration was located at the weld centre line, while the porosity at the 2G position with full penetration was distributed at the weld edges, which is consistent with the distribution of floating slag. Full keyhole penetration resulted in minimum porosity, partial penetration resulted in moderate porosity, and periodic molten pool penetration resulted in maximum porosity.

  19. Adsorption of the Inflammatory Mediator High-Mobility Group Box 1 by Polymers with Different Charge and Porosity

    Directory of Open Access Journals (Sweden)

    Carla Tripisciano

    2014-01-01

    Full Text Available High-mobility group box 1 protein (HMGB1 is a conserved protein with a variety of biological functions inside as well as outside the cell. When released by activated immune cells, it acts as a proinflammatory cytokine. Its delayed release has sparked the interest in HMGB1 as a potential therapeutic target. Here, we studied the adsorption of HMGB1 to anionic methacrylate-based polymers as well as to neutral polystyrene-divinylbenzene copolymers. Both groups of adsorbents exhibited efficient binding of recombinant HMGB1 and of HMGB1 derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The adsorption characteristics depended on particle size, porosity, accessibility of the pores, and charge of the polymers. In addition to these physicochemical parameters of the adsorbents, modifications of the molecule itself (e.g., acetylation, phosphorylation, and oxidation, interaction with other plasma proteins or anticoagulants (e.g., heparin, or association with extracellular microvesicles may influence the binding of HMGB1 to adsorbents and lead to preferential depletion of HMGB1 subsets with different biological activity.

  20. Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir

    Science.gov (United States)

    Handoyo; Fatkhan; Del, Fourier

    2018-03-01

    Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.

  1. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Science.gov (United States)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  2. The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric field

    International Nuclear Information System (INIS)

    Weaver, P M; Cain, M G; Stewart, M; Anson, A; Franks, J; Lipscomb, I P; McBride, J W; Zheng, D; Swingler, J

    2012-01-01

    Prolonged operation of piezoelectric ceramic devices under high dc electric fields promotes leakage currents between the electrodes. This paper investigates the effects of ceramic porosity, edge conduction and electrode materials and geometry in the development of low resistance conduction paths through the ceramic. Localized changes in the ceramic structure and corresponding microscopic breakdown sites are shown to be associated with leakage currents and breakdown processes resulting from prolonged operation in harsh environments. The role of barrier coatings in mitigating the effects of humidity is studied, and results are presented on improved performance using composite diamond-like carbon/polymer coatings. In contrast to the changes in the electrical properties of the ceramic, the measurements of the piezoelectric properties showed no significant effect of humidity. (paper)

  3. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  4. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  5. Influence of porosity on cavitation instability predictions for elastic-plastic solids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Vadillo, G.

    2007-01-01

    , while the high stress levels are reached at some distance from the void, and the interaction of these stress and strain fields determines the porosity evolution. In some cases analysed, the porosity is present initially in the metal matrix, while in other cases voids nucleate gradually during...... the deformation process. It is found that interaction with the neighbouring voids reduces the critical stress for unstable cavity growth....

  6. Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta.

    Science.gov (United States)

    Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald

    2014-09-01

    Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (Posteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Spark plasma sintering and porosity studies of uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle D., E-mail: kylej@kth.se; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine

    2016-05-15

    In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD – corresponding to an absolute density of 14.25 g/cm{sup 3} out of a theoretical density of 14.28 g/cm{sup 3} – have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density. - Highlights: • UN pellets are fabricated over a wide array of densities using the SPS method. • The sintereing parameters necessary to produce pellets over a wide array of density space are charted. • Pellets of extremely high density (99.9% of TD, absolute density of 14.25 g/cm{sup 3}) are fabricated. • Full-closure of the porosity in this material is obtained at around 2.5% of total porosity.

  8. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  9. Investigating porosity of anthracites during thermoprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.S.; Gilyazov, U.Sh.; Samoilov, V.S.; Mel' nichenko, V.M.; Kovalevskii, N.N.

    1983-07-01

    Changes in the porous structure of anthracite during thermoprocessing up to 3000 C, and the effect of mineral impurities on the materials were studied. A mercury porometer and an electron scanning microscope were used to study Donbass anthracites. A wider spectrum of pore volume distribution was observed for high rank anthracites than for lower rank anthracites. It was established that the specific pore volume in thermographite with an apparent density of more than one unit is three times less than in thermographite with an apparent density of less than one unit. The porosity of thermoanthracite increases sharply in comparison with the starting anthracite. Anthracites are suitable for graphitization after thermoprocessing at 2800-3000 C. The porosity of thermoanthracites depends on the presence and distribution of mineral impurities in the starting anthracite. 4 references.

  10. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  11. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in many countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. One of the key questions about radionuclide diffusion and retention is to know the chemistry and chemical reactions and sorption processes that will occur in the rock and their effects on radionuclide mobility. In this context, the knowledge of the pore water chemistry is essential for performance assessment purposes. This information allows to establish a reliable model for the main water-rock interactions, which control the physico-chemical parameters and the chemistry of the major elements of the system. An important issue in order to model the pore water chemistry in clayey media is to determine the respective volume accessible to cations and anions, i.e, the amount of water actually available for chemical reactions/solute transport. This amount is usually referred as accessible porosity or geochemical porosity. By using the anion inventories, i.e. the anion content obtained from aqueous leaching, and assuming that all Cl - , Br - and SO4 2- leached in the aqueous extracts originates from pore water, the concentration of a conservative ion can be converted into the real pore water concentration if the accessible porosity is known. In this work, the accessible porosity or geochemical porosity has been determined in core samples belonging to four different formations: Boom Clay from Hades URL (Belgium, BE), Opalinus Clay from Mont Terri (Switzerland, CH), and Callovo-Oxfordian argillite from Bure URL (France, FR). The geochemical or chloride porosity was defined as the ratio between the pore water volume containing Cl-bearing pore water and the total volume of a sample

  12. Porosity model for simultaneous radionuclide transfer in compact clay

    International Nuclear Information System (INIS)

    Grambow, B.; Ribet, S.; Landesman, C.; Altman, S.

    2010-01-01

    Document available in extended abstract form only. Both, a mono and a dual porosity model have been developed to describe diffusion in bentonite as function of compaction, which give similar results for the diffusion coefficients. There are little advantages but more computation time for the dual porosity model compared to the mono-porosity model. A significant change in paradigm has been proposed to describe diffusion accessible porosity in bentonite: Only a single micro-porosity value is considered for anions, cations and neutral species. Hydration water in the interlayers is considered as part of the solid phase and is not considered as a constitutive part of overall porosity. Since hydration water takes part of the solid phase, it is now possible to explicitly account for retention of HTO by formulating exchange between HTO and water in the interlayers. In the adaptation of the model to experimental data, a single fit constant, the geometric factor G = 7 was used, common to all ions and neutral species and for densities between 0.2 and 1.8 kg.dm -3 . The only input parameters to describe the effect of dry density on diffusion coefficients are the micro porosity (total porosity minus interlayer porosity) and the hydration numbers of exchanging cations in the interlayers, both of which can be measured by independent means (DRX, water sorption isotherms). The modelling of simultaneous mass transfer of HTO, Cs, Br and Ni has been undertaken. From the results apparent diffusion coefficients were obtained. Effective diffusion coefficients can of course only be compared to literature data if the the same porosity hypothesis is used for Da-De conversion as used in literature (total porosity for anions and HTO, micro-porosity for anions). Then, the calculated apparent diffusion coefficients for HTO match closely the measured values in the mentioned density range. Considering large experimental data uncertainty the agreement between anion diffusion data and calculations

  13. Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications

    Directory of Open Access Journals (Sweden)

    Madhav Singh

    2016-11-01

    Full Text Available A series of 250–350 μ m-thick single-sided lithium ion cell graphite anodes and lithium nickel manganese cobalt oxide (NMC cathodes with constant area weight, but varying porosity were prepared. Over this wide thickness range, micron-sized carbon fibers were used to stabilize the electrode structure and to improve electrode kinetics. By choosing the proper porosities for the anode and cathode, kinetic limitations and aging losses during cell cycling could be minimized and energy density improved. The cell (C38%-A48% exhibits the highest energy density, 441 Wh/L at the C/10 rate, upon cycling at elevated temperature and different C-rates. The cell (C38%-A48% showed 9% higher gravimetric energy density at C/10 in comparison to the cell with as-coated electrodes.

  14. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Energy Technology Data Exchange (ETDEWEB)

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail: spadini@petrobras.com.br; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-05-01

    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  15. On the role of melt flow into the surface structure and porosity development during selective laser melting

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Panwisawas, Chinnapat; Ward, Mark; Basoalto, Hector C.; Brooks, Jeffery W.; Attallah, Moataz M.

    2015-01-01

    In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material

  16. Quantifying multiscale porosity and fracture aperture distribution in granite cores using computed tomography

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Joss, Lisa; Pini, Ronny

    2017-04-01

    Knowledge of porosity and fracture (aperture) distribution is key towards a sound description of fluid transport in low-permeability rocks. In the context of geothermal energy development, the ability to quantify the transport properties of fractures is needed to in turn quantify the rate of heat transfer, and, accordingly, to optimize the engineering design of the operation. In this context, core-flooding experiments coupled with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) represent a powerful tool for making direct observations of these properties under representative geologic conditions. This study focuses on quantifying porosity and fracture aperture distribution in a fractured westerly granite core by using two recently developed experimental protocols. The latter include the use of a highly attenuating gas [Vega et al., 2014] and the application of the so-called missing CT attenuation method [Huo et al., 2016] to produce multidimensional maps of the pore space and of the fractures. Prior to the imaging experiments, the westerly granite core (diameter: 5 cm, length: 10 cm) was thermally shocked to induce micro-fractured pore space; this was followed by the application of the so-called Brazilian method to induce a macroscopic fracture along the length of the core. The sample was then mounted in a high-pressure aluminum core-holder, exposed to a confining pressure and placed inside a medical CT scanner for imaging. An initial compressive pressure cycle was performed to remove weak asperities and reduce the hysteretic behavior of the fracture with respect to effective pressure. The CT scans were acquired at room temperature and 0.5, 5, 7, and 10 MPa effective pressure under loading and unloading conditions. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated at the desired pressure with a high precision pump. Highly transmissible krypton and helium gases were used as

  17. A 2D double-porosity model for melting and melt migration beneath mid-oceanic ridges

    Science.gov (United States)

    Liu, B.; Liang, Y.; Parmentier, E.

    2017-12-01

    Several lines of evidence suggest that the melting and melt extraction region of the MORB mantle is heterogeneous consisting of an interconnected network of high permeability dunite channels in a low porosity harzburgite or lherzolite matrix. In principle, one can include channel formation into the tectonic-scale geodynamic models by solving conservation equations for a chemically reactive and viscously deformable porous medium. Such an approach eventually runs into computational limitations such as resolving fractal-like channels that have a spectrum of width. To better understand first order features of melting and melt-rock interaction beneath MOR, we have formulated a 2D double porosity model in which we treat the triangular melting region as two overlapping continua occupied by the low-porosity matrix and interconnected high-porosity channels. We use melt productivity derived from a thermodynamic model and melt suction rate to close our problem. We use a high-order accurate numerical method to solve the conservation equations in 2D for porosity, solid and melt velocities and concentrations of chemical tracers in the melting region. We carry out numerical simulations to systematically study effects of matrix-to-channel melt suction and spatially distributed channels on the distributions of porosity and trace element and isotopic ratios in the melting region. For near fractional melting with 10 vol% channel in the melting region, the flow field of the matrix melt follows closely to that of the solid because the small porosity (exchange between the melt and the solid. The smearing effect can be approximated by dispersion coefficient. For slowly diffusing trace elements (e.g., LREE and HFSE), the melt migration induced dispersion can be as effective as thermal diffusion. Therefore, sub-kilometer scale heterogeneities of Nd and Hf isotopes are significantly damped or homogenized in the melting region.

  18. Can porosity affect the hyperspectral signature of sandy landscapes?

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Kimmel, Bradley W.

    2017-10-01

    Porosity is a fundamental property of sand deposits found in a wide range of landscapes, from beaches to dune fields. As a primary determinant of the density and permeability of sediments, it represents a central element in geophysical studies involving basin modeling and coastal erosion as well as geoaccoustics and geochemical investigations aiming at the understanding of sediment transport and water diffusion properties of sandy landscapes. These applications highlight the importance of obtaining reliable porosity estimations, which remains an elusive task, notably through remote sensing. In this work, we aim to contribute to the strengthening of the knowledge basis required for the development of new technologies for the remote monitoring of environmentally-triggered changes in sandy landscapes. Accordingly, we employ an in silico investigation approach to assess the effects of porosity variations on the reflectance of sandy landscapes in the visible and near-infrared spectral domains. More specifically, we perform predictive computer simulations using SPLITS, a hyperspectral light transport model for particulate materials that takes into account actual sand characterization data. To the best of our knowledge, this work represents the first comprehensive investigation relating porosity to the reflectance responses of sandy landscapes. Our findings indicate that the putative dependence of these responses on porosity may be considerably less pronounced than its dependence on other properties such as grain size and shape. Hence, future initiatives for the remote quantification of porosity will likely require reflectance sensors with a high degree of sensitivity.

  19. Investigation of the porosity of rocks

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Siitari-Kauppi, M.

    1990-06-01

    Methods for characterizing the nature of rock porosity in conjunction with diffusion experiments, are amongst the primary tools used in repository-site selection investigations. At this time no experimental method, alone, is capable of giving an unambiguous picture of the narrow-aperture pore space in crystalline rock. Methods giving information on overall properties must be complemented by those having high spatial resolution; then the lateral distribution of porosity within the matrix and its association with particular mineral phases or features, such as microfissures, fissure fillings, weathered or altered mineral phases etc, and the identification of diffusion pathways in inhomogeneous rock matrices can be determined. Nonsorbing, nonelectrolytic tracers should be used when one wants to determine rock-typical properties of the internal porosity without interference of interactions with surfaces. Preliminary information on a new method fulfilling these criteria is given. Impregnating rock samples with methylmethacrylate labeled with carbon-14 which, after impregnation, was polymerized by gamma radiation, gave specimens that made preparation of sections suitable for quantification by autoradiographic methods easy. Diffusion experiments can be conducted so that labeled MMA diffuses out of rock specimens into inactive free, MMA. Additional information may be gained by leaching PMMA fractions of lower molecular weight from the matrix

  20. Preparation and microstructure of ZrO2- and LaGaO3-based high-porosity ceramics

    International Nuclear Information System (INIS)

    Kaleva, G.M.; Golubko, N.V.; Suvorkin, S.V.; Kosarev, G.V.; Sukhareva, I.P.; Avetisov, A.K.; Politova, E.D.

    2006-01-01

    The morphology and concentration of pore formers are studied for their effect on the microstructure and gas permeability of porous zirconia- and lanthanum-gallate-based oxygen-ion-conducting ceramics. The results have been used to optimize the preparation conditions and composition of the ceramics. The resultant dense, fine-grained materials have porosities of up to ∼56% [ru

  1. Effect of drying on the porosity of the hydroxyapatite and cellulose nata de coco compositeas bone graft candidate

    Science.gov (United States)

    Anitasari, S.; Mu’ti, A.; Hutahaean, YO

    2018-04-01

    Bone graft is used to replace bone parts damaged by illness and accident. As a bone replacement material, the bone graft should be able to stimulate the process of the osteogenesis. The process of osteogenesis is influenced by the osteoconductive properties of a biomaterial, that porosity affects this process. The shells of blood scallop (Anadaragranosa) are producing hydroxyapatite (HAp),having high compressive strength, biocompatibility and osteoconductive properties, but low porosity while cellulose nata de coco (Cnc) have low compressive strength but high porosity. Therefore, the combination of two biomaterials are expected to produce composite that have high osteoconductive properties. The purpose of this research wasknowing the porosity of HAp/Cnc composite which wasbeingprecipitated for 5 hours, 15 hours, 25 hours and wasdried for 24 hours, 48 hours and 72 hours. This research usedwise drop technique to synthesis HAp powder and cellulose immersion technique for synthesis of HAp/Cnc. Results of this research, there was difference in porosity between HAp/Cnc that was precipitated for 5 hours, 15 hours and 25 hours, as well as was dried for 1 day, 2 days and 3 days. The conclusion, the synthesis of HAp/Cncwasuseful as bone graft candidate.

  2. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  3. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    Science.gov (United States)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  4. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  5. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  6. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  7. The neutron porosity tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1988-01-01

    The report contains a review of available information on neutron porosity tools with the emphasis on dual thermal-neutron-detector porosity tools and epithermal-neutron-detector porosity tools. The general principle of such tools is discussed and theoretical models are very briefly reviewed. Available data on tool designs are summarized with special regard to the source-detector distance. Tool operational data, porosity determination and correction of measurements are briefly discussed. (author) 15 refs

  8. High-density oxidized porous silicon

    International Nuclear Information System (INIS)

    Gharbi, Ahmed; Souifi, Abdelkader; Remaki, Boudjemaa; Halimaoui, Aomar; Bensahel, Daniel

    2012-01-01

    We have studied oxidized porous silicon (OPS) properties using Fourier transform infraRed (FTIR) spectroscopy and capacitance–voltage C–V measurements. We report the first experimental determination of the optimum porosity allowing the elaboration of high-density OPS insulators. This is an important contribution to the research of thick integrated electrical insulators on porous silicon based on an optimized process ensuring dielectric quality (complete oxidation) and mechanical and chemical reliability (no residual pores or silicon crystallites). Through the measurement of the refractive indexes of the porous silicon (PS) layer before and after oxidation, one can determine the structural composition of the OPS material in silicon, air and silica. We have experimentally demonstrated that a porosity approaching 56% of the as-prepared PS layer is required to ensure a complete oxidation of PS without residual silicon crystallites and with minimum porosity. The effective dielectric constant values of OPS materials determined from capacitance–voltage C–V measurements are discussed and compared to FTIR results predictions. (paper)

  9. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1993-01-01

    The general applicability of laboratory data for engineering purposes is a prime concern for the design and licensing of a potential repository of high level nuclear waste at Yucca Mountain. In order for the results of experiments to be applicable to the repository scale, the data must be scaled to in situ size and conditions. Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sampled test. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  10. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  11. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    Science.gov (United States)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Monte Carlo simulation of determining porosity by using dual gamma detectors

    International Nuclear Information System (INIS)

    Zhang Feng; Liu Juntao; Yu Huawei; Yuan Chao; Jia Yan

    2013-01-01

    Current formation elements spectroscopy logging technology utilize 241 Am-Be neutron source and single BGO detector to determine elements contents. It plays an important role in mineral analysis and lithology identification of unconventional oil and gas exploration, but information measured is relatively ld. Measured system based on 241 Am-Be neutron and dual detectors can be developed to realize the measurement of elements content as well as determine neutron gamma porosity by using ratio of gamma count between near and far detectors. Calculation model is built by Monte Carlo method to study neutron gamma porosity logging response with different spacing and shields. And it is concluded that measuring neutron gamma have high counts and good statistical property contrasted with measuring thermal neutron, but the sensitivity of porosity decrease. Sensitivity of porosity will increase as the spacing of dual detector increases. Spacing of far and near detectors should be around 62 cm and 35 cm respectively. Gamma counts decrease and neutron gamma porosity sensitivity increase when shield is fixed between neutron and detector. The length of main shield should be greater than 10 cm and associated shielding is about 5 cm. By Monte Carlo Simulation study, the result provides technical support for determining porosity in formation elements spectroscopy logging using 241 Am-Be neutron and gamma detectors. (authors)

  13. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  14. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  15. Double porosity model to describe both permeability change and dissolution processes

    International Nuclear Information System (INIS)

    Niibori, Yuichi; Usui, Hideo; Chida, Taiji

    2015-01-01

    Cement is a practical material for constructing the geological disposal system of radioactive wastes. The dynamic behavior of both permeability change and dissolution process caused by a high pH groundwater was explained using a double porosity model assuming that each packed particle consists of the sphere-shaped aggregation of smaller particles. This model assumes two kinds of porosities between the particle clusters and between the particles, where the former porosity change mainly controls the permeability change of the bed, and the latter porosity change controls the diffusion of OH"- ions inducing the dissolution of silica. The fundamental equations consist of a diffusion equation of spherical coordinates of OH"- ions including the first-order reaction term and some equations describing the size changes of both the particles and the particle clusters with time. The change of over-all permeability of the packed bed is evaluated by Kozeny-Carman equation and the calculated radii of particle clusters. The calculated result well describes the experimental result of both permeability change and dissolution processes. (author)

  16. Highly stretchable carbon aerogels.

    Science.gov (United States)

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  17. Study of ice formation in the porosity of hydraulic binder based materials

    International Nuclear Information System (INIS)

    Bejaoui, Syriac

    2001-01-01

    This work concerns the nuclear waste management problematic, and aims at contributing to a better prediction of concrete freeze / thaw behaviour. Ice formation in the porosity of cement pastes and concrete was studied using differential scanning calorimetry and a thermodynamic model. It is shown that ice formation low temperatures in the pores can't be explained considering only interstitial solution under-cooling induced by crystal size restrictions, dissolved chemical elements, and containment pressures. On the other hand, taking into account the nucleation theory and the porosity division degree, three ice formation mechanisms can be defined, near -10, -25 et -40 deg. C. These results allow to explain freeze / thaw behaviour differences between blended and portland cement based materials, as well as, probably, between some high performance concrete, and allow to consider using differential scanning calorimetry as a tool for testing concrete freeze / thaw behaviour. In addition, this study highlights an irreversible shrinkage for cement pastes and concrete induced by freeze / thaw cycles without provision of water, and, on the basis of small angle neutrons scattering measures, the presence of a fractal surface type porosity in high performance cement pastes. (author) [fr

  18. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Science.gov (United States)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  19. In situ detection of porosity initiation during aluminum thin film anodizing

    Science.gov (United States)

    Van Overmeere, Quentin; Nysten, Bernard; Proost, Joris

    2009-02-01

    High-resolution curvature measurements have been performed in situ during aluminum thin film anodizing in sulfuric acid. A well-defined transition in the rate of internal stress-induced curvature change is shown to allow for the accurate, real-time detection of porosity initiation. The validity of this in situ diagnostic tool was confirmed by a quantitative analysis of the spectral density distributions of the anodized surfaces. These were obtained by analyzing ex situ atomic force microscopy images of surfaces anodized for different times, and allowed to correlate the in situ detected transition in the rate of curvature change with the appearance of porosity.

  20. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  1. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams

    International Nuclear Information System (INIS)

    Sundarram, Sriharsha S.; Li, Wei

    2014-01-01

    The effect of pore size and porosity on the performance of phase change material (PCM) infiltrated metal foams, especially when the pore size reduces to less than 100 μm, is investigated in this study. A three dimensional finite element model was developed to consider both the metal and PCM domains, with heat exchange between them. The pore size and porosity effects were studied along with other system variables including heat generation and dissipation of the PCM-based thermal management system. It is shown that both porosity and pore size have strong effects on the heating of PCM. At a fixed porosity, a smaller pore size results in a lower temperature at the heat source for a longer period of time. The effects of pore size and porosity were more pronounced at high heat generation and low convective cooling conditions, representing the situation of portable electronics. There is an optimal porosity for the PCM-metal foam system; however, the optimal value only occurs at high cooling conditions. The net effective thermal conductivity of a PCM-microcellular metal foam system could be doubled by reducing the pore size from 100 μm to 25 μm. - Highlights: •Pore size and porosity of phase change material-microcellular metal foam were investigated. •A smaller pore size results in a lower temperature at the heat source for a longer period of time. •The effects were more pronounced at high heating and low cooling conditions. •Net thermal conductivity doubled by reducing the pore size from 100 μm to 25 μm

  2. Reflectance analysis of porosity gradient in nanostructured silicon layers

    Science.gov (United States)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  3. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    Directory of Open Access Journals (Sweden)

    Stephen Gray

    2010-12-01

    Full Text Available Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT Bucky-Paper (BP composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90% and specific surface area (>400 m2/g. Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

  4. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    Science.gov (United States)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  5. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    Science.gov (United States)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  6. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin

    Science.gov (United States)

    Smosna, R.; Bruner, K.R.; Riley, R.A.

    2005-01-01

    A karst-unconformity play at the top of the Ordovician Beekmantown Dolomite is judged to have great petroleum potential in Ohio and adjacent states; wells have high ultimate reserves and large areas remain untested. To better understand the origin, development, and distribution of Beekmantown porosity, we conducted a petrologic-stratigraphic study of cores and thin sections from 15 oil and gas wells. The massive dolomite, characterized by a hypidiotopic-idiotopic texture, formed by the replacement of stacked peritidal carbonate cycles. Secondary porosity occurs at two scales: (1) mesoscopic - breccia porosity, solution-enlarged fractures, large vugs, and caverns, and (2) microscopic - intercrystalline, intracrystalline, molds, small vugs, and microfractures. Mesoscopic pores (providing the major storage capacity in this reservoir) were produced by intrastratal solution and collapse of carbonate layers, whereas microscopic pores (connecting the larger pores) generally formed by the leaching of individual carbonate grains and crystals. Most pore types developed during periods of subaerial exposure across the carbonate bank, tied to either the numerous, though brief falls of relative sea level during Beekmantown deposition or more importantly the prolonged Knox unconformity at the close of sedimentation. The distribution of reservoir-quality porosity is quite heterogeneous, being confined vertically to a zone immediately below the unconformity and best developed laterally beneath buried hills and noses of this erosion surface. The inferred, shallow flow of ground water in the Beekmantown karst, primarily below topographic highs and above a diagenetic base level close to the water table, led to this irregular distribution of porosity.

  7. Dual detector pulsed neutron logging for providing indication of formation porosity

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1980-01-01

    A new improved apparatus for determining rock formation porosity was developed which is substantially independent of the formation salinity. The improvements achieved by using differing gating intervals for the two detectors. The rock formations surrounding the earth borehole are first pulse-irradiated with discrete bursts from a high-energy neutron source. The radiations at two different points in the formation are detected and electrical signals are generated. The electrical signals from the first point are gated for a shorter time interval than those from the second point. The gated first and second electrical signals are combined to determine the porosity of the formations. (DN)

  8. Density, porosity, mineralogy, and internal structure of cosmic dust and alteration of its properties during high-velocity atmospheric entry

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Kallonen, A.; Suuronen, J.-P.; Rochette, P.; Hutzler, A.; Gattacceca, J.; Badjukov, D. D.; Skála, Roman; Böhmová, Vlasta; Čuda, J.

    2014-01-01

    Roč. 49, č. 7 (2014), s. 1157-1170 ISSN 1086-9379 R&D Projects: GA MŠk LH12079 Institutional support: RVO:67985831 Keywords : micrometeorite * tomography * density * porosity * meteoroid Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.104, year: 2014

  9. Integration of crosswell seismic data for simulating porosity in a heterogeneous carbonate aquifer

    Science.gov (United States)

    Emery, Xavier; Parra, Jorge

    2013-11-01

    A challenge for the geostatistical simulation of subsurface properties in mining, petroleum and groundwater applications is the integration of well logs and seismic measurements, which can provide information on geological heterogeneities at a wide range of scales. This paper presents a case study conducted at the Port Mayaca aquifer, located in western Martin County, Florida, in which it is of interest to simulate porosity, based on porosity logs at two wells and high-resolution crosswell seismic measurements of P-wave impedance. To this end, porosity and impedance are transformed into cross-correlated Gaussian random fields, using local transformations. The model parameters (transformation functions, mean values and correlation structure of the transformed fields) are inferred and checked against the data. Multiple realizations of porosity can then be constructed conditionally to the impedance information in the interwell region, which allow identifying one low-porosity structure and two to three flow units that connect the two wells, mapping heterogeneities within these units and visually assessing fluid paths in the aquifer. In particular, the results suggest that the paths in the lower flow units, formed by a network of heterogeneous conduits, are not as smooth as in the upper flow unit.

  10. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao; Zhang, Dou; Bowen, Chris R

    2017-04-14

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm -3 , which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm -3 . The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications.

  11. Application of a novel cellular automaton porosity prediction model to aluminium castings

    International Nuclear Information System (INIS)

    Atwood, R.C.; Chirazi, A.; Lee, P.D.

    2002-01-01

    A multiscale model was developed to predict the formation of porosity within a solidifying aluminium-silicon alloy. The diffusion of silicon and dissolved gas was simulated on a microscopic scale combined with cellular automaton models of gas porosity formation within the growing three-dimensional solidification microstructure. However, due to high computational cost, the modelled volume is limited to the millimetre range. This renders the application of direct modelling of complex shape castings unfeasible. Combining the microstructural modelling with a statistical response-surface prediction method allows application of the microstructural model results to industrial scale casts by incorporating them in commercial solidification software. (author)

  12. Computer Based Porosity Design by Multi Phase Topology Optimization

    Science.gov (United States)

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  13. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  14. Numerical modeling of porosity waves in the Nankai accretionary wedge décollement, Japan: implications for aseismic slip

    Science.gov (United States)

    Joshi, Ajit; Appold, Martin S.

    2017-01-01

    Seismic and hydrologic observations of the Nankai accretionary wedge décollement, Japan, show that overpressures at depths greater than ˜2 km beneath the seafloor could have increased to near lithostatic values due to sediment compaction and diagenesis, clay dehydration, and shearing. The resultant high overpressures are hypothesized then to have migrated in rapid surges or pulses called `porosity waves' up the dip of the décollement. Such high velocities—much higher than expected Darcy fluxes—are possible for porosity waves if the porous media through which the waves travel are deformable enough for porosity and permeability to increase strongly with increasing fluid pressure. The present study aimed to test the hypothesis that porosity waves can travel at rates (kilometers per day) fast enough to cause aseismic slip in the Nankai décollement. The hypothesis was tested using a one-dimensional numerical solution to the fluid mass conservation equation for elastic porous media. Results show that porosity waves generated at depths of ˜2 km from overpressures in excess of lithostatic pressure can propagate at rates sufficient to account for aseismic slip along the décollement over a wide range of hydrogeological conditions. Sensitivity analysis showed porosity wave velocity to be strongly dependent on specific storage, fluid viscosity, and the permeability-depth gradient. Overpressure slightly less than lithostatic pressure could also produce porosity waves capable of traveling at velocities sufficient to cause aseismic slip, provided that hydrogeologic properties of the décollement are near the limits of their geologically reasonable ranges.

  15. Stochastic modelling of porosity using seismic impedances on a volume of chalk in the Dan Field

    Energy Technology Data Exchange (ETDEWEB)

    Vejbaek, O.V.

    1995-12-31

    Seismic impedances calculated from logs show very good correlation to log porosities in wells penetrating the chalk reservoir in the Dan Field, Danish North Sea. This is the basis for an attempt to use seismic impedances derived from inversion as soft data for geostatistical reservoir characterization. The study focusses on porosity description of the Maastrichtian chalk reservoir unit, laterally restricted to an area covered by a subset of a 3D seismic survey. This seismic volume was inverted using the ISIS software producing a volume of seismic impedances. Spatial porosity realizations are produced using a gaussian collocated co-simulation algorithm, where well log porosities constitute the hard data input and seismic impedances are the soft data input. The simulated volume measures 1400 m x 1525 m x 102 m and is oriented parallel to lines and cross lines in the seismic dataset. Simulated blocks measures 25 m x 25 m x 6 m equivalent to twice the line and trace spacing, and approximately equivalent to the seismic sample rate. The correlation coefficient between log porosities and impedances calculated from logs alone are shown to be misleading since they suggest unrealistic high coefficients. However, the actual data used, namely inversion derived impedances and log porosities, still show correlation coefficients in the order of -0,45, which is quite sufficient to make the inversion results very useful. It is remarkable that the calculated correlation coefficient is based on 15 wells, and the inversion is based on only one well. The negative correlation coefficient indicate that high impedances correspond to low porosities and vice-versa. The impedance data indicate the level of average porosities at locations between wells. The fine structure is produced by the geostatistic process, with averages constrained by seismic impedances. The seismic impedances derived from the inversion process are thus shown to constitute useful primary data to constrain reservoir

  16. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage

    Energy Technology Data Exchange (ETDEWEB)

    Graverend, Jean-Briac le, E-mail: jblgpublications@gmail.com [Texas A& M University, Department of Aerospace Engineering and Materials Science Engineering, TAMU 3141, College Station, TX 77843 (United States); Adrien, Jérome [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Cormier, Jonathan [Institut Pprime, CNRS-ENSMA-Université de Poitiers, UPR CNRS 3346, Département Physique et Mécanique des Matériaux, ISAE-ENSMA, 1 avenue Clément Ader, BP 40109, F86961 Futuroscope Chasseneuil cedex (France)

    2017-05-17

    Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000 °C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100 °C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.

  17. Threshold burnup for recrystallization and model for rim porosity in the high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Lee, Byung Ho; Koo, Yang Hyun; Sohn, Dong Seong

    1998-01-01

    Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75μm and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup

  18. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    Science.gov (United States)

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada

    Science.gov (United States)

    Maurya, S. P.; Singh, K. H.; Singh, N. P.

    2018-05-01

    In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.

  20. Self-supported ceramic substrates with directional porosity by mold freeze casting

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.

    2016-01-01

    in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...... to be highly dependent on colloidal behaviour and freeze casting conditions. Manufactured green films were joined by lamination at room temperature and sintered to obtain symmetrical cells consisting of two porous self-supported substrate electrodes (∼420 μm) and dense yttria stabilized zirconia electrolyte...

  1. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  2. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  3. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  4. Brazilian urban porosity : Treat or threat?

    NARCIS (Netherlands)

    Moreno Pessoa, I.; Tasan-Kok, M.T.; Korthals Altes, W.K.

    2016-01-01

    Urban areas have spatial discontinuities, such as disconnected neighbourhoods, brownfield areas and leftover places. They can be captured by the metaphor of urban porosity. This paper aims to highlight the potential social consequences of urban porosity by creating a ‘porosity index’. The authors

  5. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  6. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  7. Zeolites with Continuously Tuneable Porosity**

    Science.gov (United States)

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  8. The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy

    Science.gov (United States)

    Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-10-01

    The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.

  9. Density, porosity, mineralogy, and internal structure of cosmic dust and alteration of its properties during high velocity atmospheric entry

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Kallonen, A.; Suuronen, J.-P.; Rochette, P.; Hutzler, A.; Gattacceca, J.; Badjukov, D. D.; Skála, Roman; Böhmová, Vlasta; Čuda, J.

    2014-01-01

    Roč. 49, Special issue 1 (2014), A211-A211 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /77./. 08.09.2014-13.09.2014, Casablanca] Institutional support: RVO:67985831 Keywords : micrometeorite * tomography * density * porosity * meteoroid Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.hou.usra.edu/meetings/metsoc2014/pdf/5162.pdf

  10. Theory and application of a measurement-while-drilling neutron porosity sensor

    International Nuclear Information System (INIS)

    Roesler, R.F.; Barnett, W.C.; Paske, W.C.

    1987-01-01

    The authors describe the first MWD compensated neutron porosity measurement service (CNO) which employs a dual-spaced, borehole-compensated detector system to measure neutron-capture gamma rays. CNO service, when combined with existing MWD gamma ray and resistivity services, provides the basic data necessary for calculation of water saturation from MWD logs, making it possible to replace wireline logs in many situations with resulting savings in both logging costs and associated rig time. This is particularly cost effective when drilling high angle offshore development wells and in other high cost development drilling

  11. Thermodesorption studies of ammonium nitrate prills by high-resolution thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Q.S.M.; Jones, D.E.G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2003-07-01

    Ammonium nitrate prills with fuel oil (ANFO) are commonly used in commercial explosives. The wettability of AN is influenced by porosity and surface area. To date, scanning electron microscopy (SEM), mercury porosimetry, and nuclear magnetic resonance (NMR) microscopy have been used to characterize prill porosities. This study used high-resolution thermogravimetry (TG) to investigate the thermodesorption of octane from ammonium nitrate (AN) prills of different porosities. Samples were immersed in octane. Samples of AN prills were monitored over a temperature range between 25 to 120 degrees C. Mass-loss curves were measured to determine the evaporation of excess liquids as well as the rate of octane thermodesorption from the pores and surfaces of the AN prills. An analysis of the curves suggested that the initial mass loss was caused by evaporation of the bulk liquid. The following step represented the thermodesorption of adsorbed octane on the surface of the AN remote from the monolayer. Properties of the surface liquid differed significantly from the bulk liquid as the adsorbate materials interacted with the solid surface. The study demonstrated that the quantity of octane desorbed in the steps correlated with the volume observed in the pores and the amount adsorbed on the surface. Results of the study were then compared with data obtained using SEM. It was concluded that high resolution TG can be used to characterize AN porosity and adsorption capacity. 16 refs., 1 tab., 5 figs.

  12. Porosity-induced relaxation of strains in GaN layers studied by means of micro-indentation and optical spectroscopy

    KAUST Repository

    Najar, Adel

    2012-05-04

    We report the fabrication of porous GaNnanostructures using UV-assisted electroless etching of bulk GaN layer grown on c-plane sapphire substrate in a solution consisting of HF:CH3OH:H2O2. The morphology of the porous GaNnanostructures was characterized for different etching intervals using high resolution scanning electron microscopy. The geometry and size of resultant pores do not appear to be affected by the etching time; however, the pore density was augmented for longer etching time. Micro-indentation tests were carried out to quantify the indentation modulus for different porous GaNnanostructures. Our results reveal a relationship between the elastic properties and the porosity kinetics, i.e., a decrease of the elastic modulus was observed with increasing porosity. The photoluminescence(PL) and Raman measurements carried out at room temperature for the etched samples having a high degree of porosity revealed a strong enhancement in intensity. Also, the peak of the PL wavelength was shifted towards a lower energy. The high intensity of PL was correlated to an increase of scattered photons within the porous media and to the reduction of the dislocation density.

  13. Towards the inclusion of open fabrication porosity in a fission gas release model

    Energy Technology Data Exchange (ETDEWEB)

    Claisse, Antoine, E-mail: claisse@kth.se [KTH Royal Institute of Technology, Reactor Physics, AlbaNova University Centre, 106 91, Stockholm (Sweden); Van Uffelen, Paul [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125, Karlsruhe (Germany)

    2015-11-15

    A model is proposed for fission product release in oxide fuels that takes into account the open porosity in a mechanistic manner. Its mathematical framework, assumptions and limitations are presented. It is based on the model for open porosity in the sintering process of crystalline solids. More precisely, a grain is represented by a tetrakaidecahedron and the open porosity is represented by a continuous cylinder along the grain edges. It has been integrated in the TRANSURANUS fuel performance code and applied to the first case of the first FUMEX project as well as to neptunium and americium containing pins irradiated during the SUPERFACT experiment and in the JOYO reactor. The results for LWR and FBR fuels are consistent with the experimental data and the predictions of previous empirical models when the thermal mechanisms are the main drivers of the release, even without using a fitting parameter. They also show a different but somewhat expected behaviour when very high porosity fuels are irradiated at a very low burn-up and at low temperature. - Highlights: • We developed a new athermal FGR model based on the porosity. • We present the model, its framework, assumptions and limitations. • We test it out on several irradiation experiments. • Results are comparable to previous models but without using an empirical parameter.

  14. SEPARATION OF THE INTER- AND INTRA-PARTICLE POROSITY IN IMAGES OF POWDER COMPACTS

    Directory of Open Access Journals (Sweden)

    Jacques Lacaze

    2011-05-01

    Full Text Available Powder metallurgy is a highly developed and cheap method of manufacturing reliable materials, either metallic, ceramic or composite. This process was used to make green compacts of iron powders with a high porosity level. This study is part of a project aimed at describing the relationships between mechanical properties and morphological features of such compacts, with particular attention paid to the shape of the grains and the compaction pressure. In this report, a method is proposed to separate the intra grain porosity from the cavities located between particles. The approach is based on the covariogram of images obtained from the surface of the compacts by means of a laser roughometer. To achieve this separation, a model of the structure is proposed which assumes that the distributions of the grains and of the intra-particle cavities are random and independent. Each distribution is characterized by two parameters. A satisfactory agreement is obtained between experimental and calculated covariograms after identification of these parameters.

  15. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  16. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  17. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  18. Soil monitoring in agro-ecosystems of high mountain zone in Quindio

    International Nuclear Information System (INIS)

    Sadeghian, Siavosh; Orozco, O l; Murgueitio, E

    2001-01-01

    Were evaluated soil characteristics in 4 common agro-ecosystems of high mountain zone of Quindio department, soil forest exhibit better indicators that others systems. Low macro porosity and hydraulic conductivity were consequences more important of cattle ranching systems. In pinus plantations were registered lower value of organic matter, pH, interchanging bases, gravimetric moisture and microbial activity CO 2 . As a result of pinus establishment on pasture ground increase drainable porosity and hydraulic conductivity. In granadilla cultivation were lower organism diversity and structural stability

  19. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    Science.gov (United States)

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  20. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  1. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  2. Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors

    Science.gov (United States)

    Peng, Lin; Liang, Yeru; Dong, Hanwu; Hu, Hang; Zhao, Xiao; Cai, Yijing; Xiao, Yong; Liu, Yingliang; Zheng, Mingtao

    2018-02-01

    The synthesis and energy storage application of hierarchical porous carbons with size ranging from nano-to micrometres has attracted considerable attention all over the world. Exploring eco-friendly and reliable synthesis of hierarchical porous carbons for supercapacitors with high energy density and high power is still of ongoing challenge. In this work, we report the design and synthesis of super-hierarchical porous carbons with highly developed porosity by a stepwise removal strategy for high-rate supercapacitors. The mixed biomass wastes of coconut shell and sewage sludge are employed as raw material. The as-prepared super-hierarchical porous carbons present high surface areas (3003 m2 g-1), large pore volume (2.04 cm3 g-1), appropriate porosity, and outstanding electrochemical performance. The dependence of electrochemical performance on structural, textural, and functional properties of carbons engineered by various synthesis strategies is investigated in detail. Moreover, the as-assembled symmetrical supercapacitor exhibits high energy density of 25.4 Wh kg-1 at a power density of 225 W kg-1 and retains 20.7 Wh kg-1 even at a very high power of 9000 W kg-1. This work provides an environmentally benign strategy and new insights to efficiently regulate the porosity of hierarchical porous carbons derived from biomass wastes for energy storage applications.

  3. Porosity Gradient at the Surface of Comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Christou, C.; Dadzie, S. K.; Thomas, N.; Hartogh, P.; Jorda, L.; Kuhrt, E.; Wright, I.; Zarnecki, J.

    2017-12-01

    The Rosetta mission has provided invaluable and unexpected information about our knowledge and understanding of comets until now. The on-board instruments, ROSINA and VIRTIS showed the non-uniformly outgassing of H2O over the surface of the nucleus. After Philae landing in a small lobe and the attempt to intrude MUPUS into the surface led to estimate the minimum compressive strength of material > 4MPa. This high strength of material (at least locally) along with different porosity ranges that have been presented for the 67P/Churyumov-Gerasimenko (67P) challenge our understanding of the surface and outgassing processes. Here we used the micro computed tomography (micro-CT) technology to represent 3D Earth rock samples with different porosity to investigate outgassing in the near surface boundary layer. The Direct Simulation of Monte Carlo (DSMC) method is used to simulate the rarefied cometary atmosphere. We presented results with H2O outgassing at a maximum production rate near perihelion. We show that an existence of a possible porosity gradient at the surface of the comet may explain some of the structures observed on 67P.

  4. Stylolites, porosity, depositional texture, and silicates in chalk facies sediments

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Borre, Mai K.

    2007-01-01

    dissolution around 490 m below sea floor (bsf) corresponds to an interval of waning porosity-decline, and even the occurrence of proper stylolites from 830 m bsf is accompanied by only minor porosity reduction. Because opal is present, the pore-water is relatively rich in Si which through the formation of Ca......-silica complexes causes an apparent super-saturation of Ca and retards cementation. The onset of massive pore-filling cementation at 1100 m bsf may be controlled by the temperature-dependent transition from opal-CT to quartz. In the stylolite-bearing chalk of two wells in the Gorm and Tyra fields, the nannofossil...... matrix shows recrystallization but only minor pore-filling cement, whereas microfossils are cemented. Cementation in Gorm and Tyra is thus partial and has apparently not been retarded by opal-controlled pore-water. A possible explanation is that, due to the relatively high temperature, silica has...

  5. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  6. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Zhang, Rufan; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.; Fellinger, Tim-Patrick

    2016-01-01

    ) performance at a neutral pH is needed for efficient energy production. Here we show a nitrogen doped (≈4 wt%) ionothermal carbon aerogel (NDC) with a high surface area, large pore volume, and hierarchical porosity, with good electrocatalytic properties for ORR

  7. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    KAUST Repository

    Maliva,, Robert G.

    2011-03-01

    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  8. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    KAUST Repository

    Maliva,, Robert G.; Budd, David A.; Clayton, Edward A.; Missimer, Thomas M.; Dickson, John Anthony D

    2011-01-01

    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  9. Development of a Ni-based superalloy with cellular structure and interconnected micro porosity

    International Nuclear Information System (INIS)

    Bernabe, A.; Lopez, E.; Gil-Sevillano, J.

    1998-01-01

    A cellular metallic material with interconnected porosity of controlled size of an order of 10 μm has been developed by electrochemical dissolution of tungsten grains in a W-Ni-Fe heavy alloy. The nickel superalloy with sponge structure and high surface/volume ratio can also be processed recycling chips from heavy metal machining (Patent number p9700191, 1997). Applications for the new materials could be found as support for catalysts, high temperature filters for corrosive fluids, burners, etc. (Author) 10 refs

  10. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification

  11. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    P. Sanchez

    2001-01-01

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M and O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M and O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M and O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M and O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses

  12. Friction-stir processing of a high-damping Mn-Cu alloy used for marine propellers

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, S.P.; Edwards, D.P.; Majumdar, A. [Defence Science and Technology Organisation, Melbourne (Australia); Moutsos, S. [Centre for Advanced Materials Technology, Monash Univ. (Australia); Mahoney, M.W. [Rockwell Scientific, Thousand Oaks (United States)

    2003-07-01

    Mn-Cu alloys are used for specialised applications, such as marine propellers, where high noise-damping characteristics are required. These alloys tend to have more severe shrinkage porosity than conventional propeller alloys, and the corrosion resistance (including stress-corrosion and corrosion-fatigue resistance) of the alloys is not as high as desirable. Friction-stir processing (FSP) trials on one such alloy (tradename Sonoston) have shown that near-surface porosity can be eliminated and that the coarse, as-cast microstructure can be significantly refined. The corrosion resistance of processed material is substantially improved provided a heat treatment to relieve residual stress is carried out after FSP. (orig.)

  13. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  14. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  15. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Danilevicius, Paulius; Georgiadi, Leoni [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Pateman, Christopher J.; Claeyssens, Frederik [Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Department of Materials Science and Technology, University of Crete, PO Box 2208, 71303 Heraklion (Greece); Farsari, Maria, E-mail: mfarsari@iesl.forth.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece)

    2015-05-01

    Highlights: • We studied the porosity of laser-made 3D scaffolds on MC3T3-E1 pre-osteoblastic cells. • We made polylactide 3D scaffolds with pores 25–110 μm. - Abstract: The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds’ porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  16. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors

    Science.gov (United States)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng

    2018-01-01

    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  17. Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components

    Science.gov (United States)

    Iebba, Maurizio; Astarita, Antonello; Mistretta, Daniela; Colonna, Ivano; Liberini, Mariacira; Scherillo, Fabio; Pirozzi, Carmine; Borrelli, Rosario; Franchitti, Stefania; Squillace, Antonino

    2017-08-01

    This paper aims to study the genesis of defects in titanium components made through two different additive manufacturing technologies: selective laser melting and electron beam melting. In particular, we focussed on the influence of the powders used on the formation of porosities and cavities in the manufactured components. A detailed experimental campaign was carried out to characterize the components made through the two additive manufacturing techniques aforementioned and the powders used in the process. It was found that some defects of the final components can be attributed to internal porosities of the powders used in the manufacturing process. These internal porosities are a consequence of the gas atomization process used for the production of the powders themselves. Therefore, the importance of using tailored powders, free from porosities, in order to manufacture components with high mechanical properties is highlighted.

  18. Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites

    International Nuclear Information System (INIS)

    Chen Dongyue; Li Zhengcao; Miao Wei; Zhang Zhengjun

    2012-01-01

    Nuclear graphite endures gas oxidation in High Temperature Gas-cooled Reactor (HTGR), which may threaten the safety of reactor. To study the oxidation behavior of nuclear graphite, weight loss curve is usually measured through Thermo Gravimetric Analysis (TGA) method. In this work, three brands of nuclear graphite for HTGR (i.e., HSM-SC, IG-11, and NBG-18) are oxidized under 873 and 1073 K in open air, and their weight loss curves are obtained. The acceleration of oxidizing rate is observed for both HSM-SC and IG-11, and is attributed to the large porosity increase during oxidation process. For HSM-SC, the porosity increase comes from preferential binder oxidation, and thus its binder quality shall be improved to obtain better oxidation resistance. Temperature effects on oxidation for HSM-SC are also studied, which shows that oxidizing gas tends to be exhausted at graphite surface at high temperature instead of penetrate into the interior of bulk. (author)

  19. Durability Indicators in High Absorption Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Luis F. Jiménez

    2015-01-01

    Full Text Available The use of recycled aggregates in structural concrete production has the inconvenience of increasing the fluid transport properties, such as porosity, sorptivity, and permeability, which reduces the resistance against penetration of environmental loads such as carbon dioxide and chloride ion. In this paper, behavior of ten concrete mixtures with different percentages of coarse aggregate replacement was studied. The recycled material was recovered by crushing of concrete rubble and had high absorption values. The results showed that it is possible to achieve good resistance to carbonation and chloride penetration with up to 50% replacement of recycled coarse aggregate for 0.5 water/cement ratio. Finally, new indexes for porosity and sorptivity were proposed to assess the quality of concrete.

  20. The effect of high temperatures on concrete incorporating ultrafine ...

    African Journals Online (AJOL)

    In this work, several concrete formulations have been tested and multi-scale observation of high-temperature behavior of ordinary concrete (compressive strength of 48 MPa) and HPC (compressive strength 75 MPa) were adopted. On the scale of the material, the identification of trends with temperature data such as porosity ...

  1. Impact of gamma irradiation on porosity and pore distribution of poly [ethylene-oxide] films: correlation with dielectric and microstructural properties

    Science.gov (United States)

    Saha, Mou; Mukhopadhyay, Madhumita; Ray, Ruma

    2018-03-01

    The structure and morphology of polymers are significantly altered upon exposure to high energy gamma irradiation either through bond breakage i.e. scission or cross-linkage. The present article reports the influence of gamma radiation (1-20 kGy) on the distribution of molecular weight and porosity of the films prepared using irradiated and unirradiated poly-[ethylene oxide] (PEO) powder. The PEO films exhibit pore dimension in the range of 20-500 nm. Selective irradiation is capable of tailoring the pore-size and reducing the multimodal trait to uni-or bimodal upon high energy perturbation. The porosity of PEO films is determined from both 2D-pore surface calculation from SEM images and compared with 3D-BET porosity. Correlation is established among dielectric constant (ɛ') and porosity. The magnitude of ɛ' increases sharply towards low frequency due to electrode polarization effects. Relaxation time is found to be highest and comparable for 1 and 10 KGy. With increase in irradiation dose, scission is predominant, owing to which smaller polymer fragments are produced which are able to follow fast frequency regime and thereby relax at lesser time.

  2. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    Zou, C.; Li, B.; Zhang, C.; Wang, S.; Marrow, T.J.; Reinhard, C.

    2016-01-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  3. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  4. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    Science.gov (United States)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  5. SALTSTONE VARIABILITY STUDY - MEASUREMENT OF POROSITY

    International Nuclear Information System (INIS)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R

    2007-01-01

    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast (∼15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For mixes

  6. Linking air and water transport in intact soils to macro-porosity by combining laboratory measurements and X-ray Computed Tomography

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Norgaard, Trine; Møldrup, Per

    -porosity (R2 = 0.80 for air permeability: R2= 0.61 for 5% arrival time) and macro-porosity of the restricting layer (R2=0.83 for air permeability: R2= 0.71 for 5% arrival time) over air-filled porosity and all the correlations were positive. The high positive correlation these air and water transport...... functions with macro-porosity stressed the importance of continuity and tortuosity of pores in air, water and solute flow and transport through the soils. Negative correlations of air permeability, 5% arrival time of tracer and macro-porosity were obtained with bulk density whereas with other soil physical......With an objective to link the hydraulic properties of soil with the soil structural properties, air permeability and 5% arrival time of a conservative tracer was measured for large undisturbed soil columns from the same agricultural field. The same soil columns were scanned with a medical scanner...

  7. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  8. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner

    International Nuclear Information System (INIS)

    Cheng, Alice; Boyan, Barbara D; Humayun, Aiza; Cohen, David J; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. (paper)

  9. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.

    Science.gov (United States)

    Cheng, Alice; Humayun, Aiza; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2014-10-07

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.

  10. High Temperature Exposure of HPC – Experimental Analysis of Residual Properties and Thermal Response

    Directory of Open Access Journals (Sweden)

    Pavlík Zbyšek

    2016-01-01

    Full Text Available The effect of high temperature exposure on properties of a newly designed High Performance Concrete (HPC is studied in the paper. The HPC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000°C respectively. Among the basic physical properties, bulk density, matrix density and total open porosity are measured. The mechanical resistivity against disruptive temperature action is characterised by compressive strength, flexural strength and dynamic modulus of elasticity. To study the chemical and physical processes in HPC during its high-temperature exposure, Simultaneous Thermal Analysis (STA is performed. Linear thermal expansion coefficient is determined as function of temperature using thermodilatometry (TDA. In order to describe the changes in microstructure of HPC induced by high temperature loading, MIP measurement of pore size distribution is done. Increase of the total open porosity and connected decrease of the mechanical parameters for temperatures higher than 200 °C were identified.

  11. Porosity and Health: Perspective of Traditional Persian Medicine

    Science.gov (United States)

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  12. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    International Nuclear Information System (INIS)

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-01-01

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 μm) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  13. Device for investigation of the porosity of geological formations

    International Nuclear Information System (INIS)

    Tittman, J.; Hickman, W.J.

    1978-01-01

    A device for neutron well logging is described in which errors due to caked drilling mud on the walls of the hole are compensated for. This is achieved by using two neutron sources and two detectors. One of the neutron sources emits neutrons with so high energy, about 3 or 4 MeV, that their slowing down length is much greater than the thickness of the drilling mud, while the other emits neutrons with an energy of about 240 KeV (lithium-plutonium) or 25 KeV (antimony - beryllium), ie they have a very high probability of interacting with the material in the drilling mud. The detectors are adjusted to react selectively to neutrons of epithermal energy, and the difference in the signals represents the porosity, or hydrocarbon content of the geological formation. (JIW)

  14. Instability of an infiltration-driven dissolution-precipitation front with a nonmonotonic porosity profile

    Science.gov (United States)

    Kondratiuk, Paweł; Dutka, Filip; Szymczak, Piotr

    2016-04-01

    Infiltration of a rock by an external fluid very often drives it out of chemical equilibrium. As a result, alteration of the rock mineral composition occurs. It does not however proceed uniformly in the entire rock volume. Instead, one or more reaction fronts are formed, which are zones of increased chemical activity, separating the altered (product) rock from the yet unaltered (primary) one. The reaction fronts propagate with velocities which are usually much smaller than those of the infiltrating fluid. One of the simplest examples of such alteration is the dissolution of some of the minerals building the primary rock. For instance, calcium carbonate minerals in the rock matrix can be dissolved by infiltrating acidic fluids. In such a case the product rock has higher porosity and permeability than the primary one. Due to positive feedbacks between the reactant transport, fluid flow, and porosity generation, the reaction fronts in porosity-generating replacement systems are inherently unstable. An arbitrarily small protrusion of the front gets magnified and develops into a highly porous finger-like or funnel-like structure. This feature of dissolution fronts, dubbed the "reactive-infiltration instability" [1], is responsible for the formation of a number of geological patterns, such as solution pipes or various karst forms. It is also of practical importance, since spontaneous front breakup and development of localized highly porous flow paths (a.k.a. "wormholes") is favourable by petroleum engineers, who apply acidization to oil-bearing reservoirs in order to increase their permeability. However, more complex chemical reactions might occur during infiltration of a rock by a fluid. In principle, the products of dissolution might react with other species present either in the fluid or in the rock and reprecipitate [2]. The dissolution and precipitation fronts develop and and begin to propagate with equal velocities, forming a single dissolution-precipitation front

  15. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    Science.gov (United States)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  16. Activated polyaniline-based carbon nanoparticles for high performance supercapacitors

    International Nuclear Information System (INIS)

    Zhou, Jin; Zhu, Tingting; Xing, Wei; Li, Zhaohui; Shen, Honglong; Zhuo, Shuping

    2015-01-01

    Polyaniline (PANI) nanoparticles have been prepared by disperse polymerization of aniline in the presence of poly(4-styrenesulfonate). The PANI nanoparticles are further subjected to pyrolysis treatment and chemical-activation to prepare the activated nitrogen-doped carbon nanoparticles (APCNs). The porosity, structure and nitrogen-doped surface chemistry are analyzed by a varies of means, such as scanning electron microscopy, transition electron microscopy, N 2 sorption, X-ray diffraction and X-ray photoelectron spectroscopy. The capacitive performance of the APCNs materials are test in 6 M KOH electrolyte. Benefitting from the abundant micropores with short length, large specific surface area, hierarchical porosity and heteroatom-doped polar pore surface, the APCNs materials exhibit v exhibit very high specific capacitance up to 341 F g −1 , remarkable power capability and excellent long-term cyclic stability (96.6% after 10 000 cycles). At 40 A g −1 , APCN-2 carbon shows a capacitance of 164 F g −1 , responding to a high energy and power densities of 5.7 Wh kg −1 and 10 000 W kg −1

  17. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  18. Porosity structure of green polybag of medium density fiberboard from seaweed waste

    Science.gov (United States)

    Alamsjah, M. A.; Subekti, S.; Lamid, M.; Pujiastuti, D. Y.; Kurnia, H.; Rifadi, R. R.

    2018-04-01

    The last decade shown that the needs Medium Density Fibreboard (MDF) rapidly growing in Asia Pacific and Europe up to more 15 % per year. MDF made up of fibers lignoselulosa which combined with synthetic resin or tied other suitable but high temperatures and pressure. Technology engineering for green polybag of MDF from seaweed waste of Kappaphycus alvarezii and Gracilaria verrucosa is an alternative effort for ecosystem stability and technological innovations that is environmentally friendly. Structure porosity from the shape of green polybag shows that performance seaweed waste of K. alvarezii is better than seaweed waste of G. verrucosa. The circulation of water happened more optimal in green polybag formed from MDF of seaweed waste of K. alvarezii with size porosity 3.976 µm, while size porosity of seaweed waste of G. verrucosa measurable 4.794 µm. Structure of green polybag of MDF from seaweed waste showed that C components greater 50 % to K. alvarezii while C components less than 50 % to G. verrucosa. This resulted in the ties to structure of MDF stronger found in green polybag derived from seaweed waste of K. alvarezii than G. verrucosa.

  19. The Influence of Heat Treatments on the Porosity of Suspension Plasma-Sprayed Yttria-Stabilized Zirconia Coatings

    Science.gov (United States)

    Ekberg, Johanna; Ganvir, Ashish; Klement, Uta; Creci, Simone; Nordstierna, Lars

    2018-02-01

    Suspension plasma-sprayed coatings are produced using fine-grained feedstock. This allows to control the porosity and to achieve low thermal conductivity which makes the coatings attractive as topcoats in thermal barrier coatings (TBCs). Used in gas turbine applications, TBCs are exposed to high temperature exhaust gases which lead to microstructure alterations. In order to obtain coatings with optimized thermomechanical properties, microstructure alterations like closing of pores and opening of cracks have to be taken into account. Hence, in this study, TBC topcoats consisting of 4 mol.% yttria-stabilized zirconia were heat-treated in air at 1150 °C and thereafter the coating porosity was investigated using image analysis (IA) and nuclear magnetic resonance (NMR) cryoporometry. Both IA and NMR cryoporometry showed that the porosity changed as a result of the heat treatment for all investigated coatings. In fact, both techniques showed that the fine porosity decreased as a result of the heat treatment, while IA also showed an increase in the coarse porosity. When studying the coatings using scanning electron microscopy, it was noticed that finer pores and cracks disappeared and larger pores grew slightly and achieved a more distinct shape as the material seemed to become more compact.

  20. Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability

    Science.gov (United States)

    Owocki, Stanley P.; Sundqvist, Jon O.

    2018-03-01

    We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.

  1. Preliminary investigation on selective laser melting of 17-4ph steel using high laser powers of up to 1500w

    CSIR Research Space (South Africa)

    Makoana, Nkutwane W

    2017-09-01

    Full Text Available High laser powers of up to 1500W were used to additively manufacture 17-4PH samples. Porosity was measured using the image analysis technique, and all samples are fairly dense with a maximum of 0.42 percent porosity....

  2. Thermal conductivity of highly porous mullite material

    International Nuclear Information System (INIS)

    Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar

    2005-01-01

    The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere

  3. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  4. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  5. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Mang, Joseph Thomas [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  6. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  7. Zeolites with continuously tuneable porosity

    OpenAIRE

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Cejka, Jiří; Morris, Russell E

    2014-01-01

    Czech Science Foundation. Grant Number: P106/12/G015 Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneabl...

  8. Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials

    Science.gov (United States)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.

  9. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  10. Method and apparatus for epithermal neutron porosity well logging

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Loomis, W.A.; Wraight, P.

    1991-01-01

    This patent describes a method for investigating the porosity of a subsurface earth formation surrounding a borehole. It comprises repetitively irradiating the borehole and earth formation with discrete bursts of high energy neutrons from a neutron source, which neutrons interact with nuclei of the materials in the borehole and the formation to produce therein populations of epithermal neutrons; detecting the populations of epithermal neutrons at near and far locations in the borehole spaced apart longitudinally by different distances from the neutron source; generating count signals indicative of the magnitudes of the detected epithermal neutron populations at the respective near and far locations; detecting the decay of the epithermal neutron populations following the neutron bursts at least at one location in the borehole and generating signals representative thereof; deriving from the decay signals a signal indicative of the slowing down time of epithermal neutrons in the formation of the at least one location; and deriving from the near and far count signals and the slowing down time signal a measurement signal representative of the porosity of the formation surrounding the borehole inherently compensated for the effects of tool standoff on the responses of the logging tool

  11. Porosity study on free mineral addition cement paste

    International Nuclear Information System (INIS)

    Salgueiro, W.; Somoza, A.; Cabrera, O.; Consolati, G.

    2004-01-01

    A study of the hydration process and the porosity evolution in a cement paste is presented. The analysis of porosity was made in samples with water to cement ratios (w/c) of 0.24, 0.40 and 0.60 at age of 3, 7, 28 and 365 days, respectively. Information on the evolution of total porosity and on the strength of the paste were obtained using positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical tests (compression and flexion) and water absorption techniques. Specifically, positron lifetime technique allowed us to analyze the evolution of gel and capillary porosity during the hydration process. Using a simple function proposed, reasonable fits to the experimental data of the porosity evolution as a function of the compression strength were obtained

  12. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    Science.gov (United States)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.

  13. Characterization of porosity in a 19th century painting ground by synchrotron radiation X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Claire [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland); Bern University of the Arts, Bern (Switzerland); Boon, Jaap J. [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland); JAAP Enterprise for MOLART Advice, Amsterdam (Netherlands); Marone, Federica [Paul Scherrer Institute, Swiss Light Source (SLS), Villigen (Switzerland); Ferreira, Ester S.B. [Swiss Institute for Art Research (SIK-ISEA), Zuerich (Switzerland)

    2013-04-15

    The study of the early oeuvre of the Swiss painter Cuno Amiet (1868-1961) has revealed that, up to 1907, many of his grounds were hand applied and are mainly composed of chalk, bound in protein. These grounds are not only lean and absorbent, but also, as Synchrotron radiation X-ray microtomography has shown, porous. Our approach to the characterization of pore structure and quantity, their connectivity, and homogeneity is based on image segmentation and application of a clustering algorithm to high-resolution X-ray tomographic data. The issues associated with the segmentation of the different components of a ground sample based on X-ray imaging data are discussed. The approach applied to a sample taken from ''Portrait of Max Leu'' (1899) by Amiet revealed the presence of three sublayers within the ground with distinct porosity features, which had not been observed optically in cross-section. The upper and lower layers are highly porous with important connectivity and thus prone to water uptake/storage. The middle layer however shows low and nonconnected porosity at the resolution level of the X-ray tomography images, so that few direct water absorption paths through the entire sample exist. The potential of the method to characterize porosity and to understand moisture-related issues in paint layer degradation are discussed. (orig.)

  14. Characterization of porosity in a 19th century painting ground by synchrotron radiation X-ray tomography

    International Nuclear Information System (INIS)

    Gervais, Claire; Boon, Jaap J.; Marone, Federica; Ferreira, Ester S.B.

    2013-01-01

    The study of the early oeuvre of the Swiss painter Cuno Amiet (1868-1961) has revealed that, up to 1907, many of his grounds were hand applied and are mainly composed of chalk, bound in protein. These grounds are not only lean and absorbent, but also, as Synchrotron radiation X-ray microtomography has shown, porous. Our approach to the characterization of pore structure and quantity, their connectivity, and homogeneity is based on image segmentation and application of a clustering algorithm to high-resolution X-ray tomographic data. The issues associated with the segmentation of the different components of a ground sample based on X-ray imaging data are discussed. The approach applied to a sample taken from ''Portrait of Max Leu'' (1899) by Amiet revealed the presence of three sublayers within the ground with distinct porosity features, which had not been observed optically in cross-section. The upper and lower layers are highly porous with important connectivity and thus prone to water uptake/storage. The middle layer however shows low and nonconnected porosity at the resolution level of the X-ray tomography images, so that few direct water absorption paths through the entire sample exist. The potential of the method to characterize porosity and to understand moisture-related issues in paint layer degradation are discussed. (orig.)

  15. Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites

    Directory of Open Access Journals (Sweden)

    José-Miguel Molina

    2017-02-01

    Full Text Available The effect of porosity on the thermal conductivity and the coefficient of thermal expansion of composites obtained by infiltration of Al-12 wt % Si alloy into graphite particulate preforms has been determined. Highly irregular graphite particles were used to fabricate the preforms. The thermal conductivity of these composites gradually increases with the applied infiltration pressure given the inherent reduction in porosity. A simple application of the Hasselman-Johnson model in a two-step procedure (that accounts for the presence of both graphite particles and voids randomly dispersed in a metallic matrix offers a good estimation of the experimental results. As concerns the coefficient of thermal expansion, the results show a slight increase with saturation being approximately in the range 14.6–15.2 × 10−6 K−1 for a saturation varying from 86% up to 100%. Results lie within the standard Hashin-Strikman bounds.

  16. Porosity Effect on Thermal Properties of Al-12 wt % Si/Graphite Composites.

    Science.gov (United States)

    Molina, José-Miguel; Rodríguez-Guerrero, Alejandro; Louis, Enrique; Rodríguez-Reinoso, Francisco; Narciso, Javier

    2017-02-14

    The effect of porosity on the thermal conductivity and the coefficient of thermal expansion of composites obtained by infiltration of Al-12 wt % Si alloy into graphite particulate preforms has been determined. Highly irregular graphite particles were used to fabricate the preforms. The thermal conductivity of these composites gradually increases with the applied infiltration pressure given the inherent reduction in porosity. A simple application of the Hasselman-Johnson model in a two-step procedure (that accounts for the presence of both graphite particles and voids randomly dispersed in a metallic matrix) offers a good estimation of the experimental results. As concerns the coefficient of thermal expansion, the results show a slight increase with saturation being approximately in the range 14.6-15.2 × 10 -6 K -1 for a saturation varying from 86% up to 100%. Results lie within the standard Hashin-Strikman bounds.

  17. Synthesis of metal-adeninate frameworks with high separation capacity on C{sub 2}/C{sub 1} hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-Ping, E-mail: hyp041@163.com [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Nan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Hunan GuangYi Experimental Middle School, Changsha, Hunan 410014 (China); Tan, Yan-Xi; Wang, Fei; Zhang, Jian [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-06-15

    By introducing isophthalic acid or 2,5-thiophenedicarboxylic acid to assemble with adenine and cadmium salt, two isostructural and anionic porous metal-organic frameworks (1 and 2) possessing the novel (4,8)-connected sqc topology are presented here. 1 shows permanent porosity with Langmuir surface area of 770.1 m{sup 2}/g and exhibits high separation capacity on C{sub 2}/C{sub 1} hydrocarbons. - Graphical abstract: The assembly between isophthalic acid, adenine ligands and Cd{sup 2+} ions leads to an anionic porous metal-organic frameworks, which shows permanent porosity and exhibits high C{sub 2}/C{sub 1} hydrocarbons separation capacity. Display Omitted.

  18. Particle track membranes with higher porosity

    International Nuclear Information System (INIS)

    Heinrich, B.; Gemende, B.; Lueck, H.B.

    1992-01-01

    Possibilities of improvement of flux and dirt loading capacity of particle track membranes have been examined. Three different ways were investigated: using a divergent ion beam for the irradiation; enlarging the surface porosity through a conical pore shape; creating an asymmetrical membrane structure with two different porosities. Mathematical models and experimental results have been discussed. 9 figs, 3 tabs

  19. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  20. Low serum vitamin D is associated with higher cortical porosity in elderly men.

    Science.gov (United States)

    Sundh, D; Mellström, D; Ljunggren, Ö; Karlsson, M K; Ohlsson, C; Nilsson, M; Nilsson, A G; Lorentzon, M

    2016-11-01

    Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P vitamin D levels compared to the highest. In men with vitamin D deficiency (6.8 pmol L -1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R 2 = 1.1%, P = 0.024), area (β = 0.123, R 2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R 2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R 2 = 0.9%, P = 0.04). Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry. © 2016 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  1. Instability of supercritical porosity in highly doped ceria under reduced oxygen partial pressure

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Esposito, Vincenzo

    2015-01-01

    The thermomechanical behavior and microstructural evolution of low relative density (∼0.40) gadolinium-doped ceria are characterized under oxidative and reducing conditions at high temperatures. The electronic defects generated in the structure by Ce4+ to Ce3+ reduction play an important role on ...

  2. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    OpenAIRE

    Fidancevska E.; Mangutova B.; Milosevski D.; Milosevski M.; Bossert J.

    2003-01-01

    Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss) of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  3. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  4. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jianjun, E-mail: huangjj@szu.edu.cn [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang Fan; Liu Ying; Jiang Shishou; Wang Xisheng; Qi Bing; Gao Liang [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2011-07-01

    Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 {mu}m. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.

  5. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  6. Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production.

    Science.gov (United States)

    Duyckaerts, Nicolas; Bartsch, Mathias; Trotuş, Ioan-Teodor; Pfänder, Norbert; Lorke, Axel; Schüth, Ferdi; Prieto, Gonzalo

    2017-09-11

    Tandem catalysis is an attractive strategy to intensify chemical technologies. However, simultaneous control over the individual and concerted catalyst performances poses a challenge. We demonstrate that enhanced pore transport within a Co/Al 2 O 3 Fischer-Tropsch (FT) catalyst with hierarchical porosity enables its tandem integration with a Pt/ZSM-5 zeolitic hydrotreating catalyst in a spatially distant fashion that allows for catalyst-specific temperature adjustment. Nevertheless, this system resembles the case of close active-site proximity by mitigating secondary reactions of primary FT α-olefin products. This approach enables the combination of in situ dewaxing with a minimum production of gaseous hydrocarbons (18 wt %) and an up to twofold higher (50 wt %) selectivity to middle distillates compared to tandem pairs based on benchmark mesoporous FT catalysts. An overall 80 % selectivity to liquid hydrocarbons from syngas is attained in one step, attesting to the potential of this strategy for increasing the carbon efficiency in intensified gas-to-liquid technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Numerical Simulation of the Dynamic Performance of the Ceramic Material Affected by Different Strain Rate and Porosity

    International Nuclear Information System (INIS)

    Wang Zhen; Mei, H; Lai, X; Liu, L S; Zhai, P C; Cao, D F

    2013-01-01

    Ceramic materials are frequently used in protective armor applications for its low-density, high elastic modulus and high strength. It may be subject to different ballistic impacts in many situations, thus many studies have been carried out to explore the approach to improve the mechanical properties of the ceramic material. However, the materials manufactured in real world are full of defects, which would involve in variable fractures or damage. Therefore, the defects should be taken into account while the simulations are performed. In this paper, the dynamic properties of ceramic materials (Al 2 O 3 ) affected by different strain rate (500–5000) and porosity (below 5%) are investigated. Foremost, the effect of strain rate was studied by using different load velocities. Then, compression simulations are performed by setting different porosities and random distribution of pores size and location in ceramic materials. Crack extensions and failure modes are observed to describe the dynamic mechanical behavior.

  8. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.

    Science.gov (United States)

    Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J

    2004-05-01

    An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.

  9. Porosity, permeability, and their relationship in granite, basalt, and tuff

    International Nuclear Information System (INIS)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report

  10. Measurement of the open porosity of agricultural soils with acoustic waves

    Science.gov (United States)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    The space between agricultural soil aggregates is defined as structural porosity. It plays important roles in soil key functions that an agricultural soil performs in the global ecosystem. Porosity is one of the soil properties that affect plant growth along with soil texture, aggregate size, aeration and water holding capacity (Alaoui et al. 2011). Water supplies regulation of agricultural soil is related to the number of very small pores present in a soil due to the effect of capillarity. Change of porosity also affect the evaporation of the water on the surface (Le Maitre et al. 2014). Furthermore, soil is a habitat for soils organisms, and most living organisms, including plant roots and microorganisms require oxygen. These organisms breathe easier in a less compacted soil with a wide range of pores sizes. Soil compaction by agricultural engine degrades soil porosity. At the same time, fragmentation with tillage tools, creation of cracks due to wetting/drying and freezing/thawing cycles and effects of soil fauna can regenerate soil porosity. Soil compaction increases bulk density since soil grains are rearranged decreasing void space and bringing them into closer contact (Hamza & Anderson 2005). Drainage is reduced, erosion is facilitated and crop production decreases in a compacted soil. Determining soil porosity, giving insight on the soil compaction, with the aim to provide advices to farmers in their soil optimization towards crop production, is thus an important challenge. Acoustic wave velocity has been correlated to the porosity and the acoustic attenuation to the water content (Oelze et al. 2002). Recent studies have shown some correlations between the velocity of acoustic waves, the porosity and the stress state of soil samples (Lu et al. 2004; Lu 2005; Lu & Sabatier 2009), concluding that the ultrasonic waves are a promising tool for the rapid characterisation of unsaturated porous soils. Propagation wave velocity tends to decrease in a high porous

  11. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.

    Science.gov (United States)

    Landete-Castillejos, T; Currey, J D; Ceacero, F; García, A J; Gallego, L; Gomez, S

    2012-01-01

    It is well known that porosity has an inverse relationship with the mechanical properties of bones. We examined cortical and trabecular porosity of antlers, and mineral composition, thickness and mechanical properties in the cortical wall. Samples belonged to two deer populations: a captive population of an experimental farm having a high quality diet, and a free-ranging population feeding on plants of lower nutritive quality. As shown for minerals and mechanical properties in previous studies by our group, cortical and trabecular porosity increased from the base distally. Cortical porosity was always caused by the presence of incomplete primary osteons. Porosity increased along the length of the antler much more in deer with lower quality diet. Despite cortical porosity being inversely related to mechanical properties and positively with K, Zn and other minerals indicating physiological effort, it was these minerals and not porosity that statistically better explained variability in mechanical properties. Histochemistry showed that the reason for this is that Zn is located around incomplete osteons and also in complete osteons that were still mineralizing, whereas K is located in non-osteonal bone, which constitutes a greater proportion of bone where osteons are incompletely mineralized. This suggests that, K, Zn and other minerals indicate reduction in mechanical performance even with little porosity. If a similar process occurred in internal bones, K, Zn and other minerals in the bone may be an early indicator of decrease in mechanical properties and future osteoporosis. In conclusion, porosity is related to diet and physiological effort in deer. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.

    Science.gov (United States)

    Violay, M; Heap, M J; Acosta, M; Madonna, C

    2017-08-09

    Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

  13. Effects of long-term exposure of tuffs to high-level nuclear waste-repository conditions. Preliminary report

    International Nuclear Information System (INIS)

    Blacic, J.; Carter, J.; Halleck, P.; Johnson, P.; Shankland, T.; Andersen, R.; Spicochi, K.; Heller, A.

    1982-02-01

    Tests have been performed to explore the effects of extended exposure of tuffs from the southwestern portion of the Nevada Test Site to temperatures and pressures similar to those that will be encountered in a high-level nuclear waste repository. Tuff samples ranging from highly welded, nonzeolitized to unwelded, highly zeolitized varieties were subjected to temperatures of 80, 120, and 180 0 C; confining pressures of 9.7 and 19.7 MPa; and water-pore pressures of 0.5 to 19.7 MPa for durations of 2 to 6 months. The following basic properties were measured before and after exposure and compared: tensile strength, uniaxial compressive strength, grain density, porosity, mineralogy, permeability, thermal expansion, and thermal conductivity. Depending on rock type and exposure conditions, significant changes in ambient tensile strength, compressive strength, grain density, and porosity were measured. Mineralogic examination, permeability, and thermal property measurements remain to be completed

  14. Porosity measurements of crystalline rocks by laboratory and geophysical methods

    International Nuclear Information System (INIS)

    Alexander, J.; Hall, D.H.; Storey, B.C.

    1981-12-01

    Porosity values of igneous and metamorphic crystalline rocks have been determined from core samples taken at specific depths from Altnabreac, by a combination of laboratory and geophysical techniques. Using resaturation and mercury injection methods in three laboratories within I.G.S., porosity values have been derived and the effect of variations in the measuring techniques and results obtained have been compared. Comparison of inter-laboratory porosity values illustrates that systematic errors are present, resulting in higher porosity values for samples subjected to re-testing. This is considered to be caused by the variable nature of the initial samples combined with the inability to completely dry or resaturate samples during a second testing. Geophysical techniques for determining in situ porosity using the neutron log have been carried out in borehole ALA. The neutron log has been calibrated with laboratory derived porosity values and an empirical formula derived enabling porosity values to be ascribed throughout the logged borehole ALA. Comparison of the porosity results from Altnabreac with crystalline samples elsewhere in America, Europe and the U.K. suggest that porosities at Altnabreac are lower than average. However, very few publications concerned with water movement in crystalline areas actually state the method used. (author)

  15. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  16. Electrical impedance spectroscopy as a potential tool for recovering bone porosity

    International Nuclear Information System (INIS)

    Bonifasi-Lista, C; Cherkaev, E

    2009-01-01

    This paper deals with the recovery of porosity of bone from measurements of its effective electrical properties. The microstructural information is contained in the spectral measure in the Stieltjes representation of the bone effective complex permittivity or complex conductivity and can be recovered from the measurements over a range of frequencies. The problem of reconstruction of the spectral measure is very ill-posed and requires the use of regularization techniques. We apply the method to the effective electrical properties of cancellous bone numerically calculated using micro-CT images of human vertebrae. The presented method is based on an analytical approach and does not rely on correlation analysis nor on any a priori model of the bone micro-architecture. However the method requires a priori knowledge of the properties of the bone constituents (trabecular tissue and bone marrow). These properties vary from patient to patient. To address this issue, a sensitivity analysis of the technique was performed. Normally distributed random noise was added to the data to simulate uncertainty in the properties of the constituents and possible experimental errors in measurements of the effective properties. The values of porosity calculated from effective complex conductivity are in good agreement with the true values of bone porosity even assuming high level errors in the estimation of the bone components. These results prove the future potential of electrical impedance spectroscopy for in vivo monitoring of level and treatment of osteoporosis.

  17. Porosity characterization of biodegradable porous poly (L-lactic acid) electrospun nanofibers

    Science.gov (United States)

    Valipouri, Afsaneh; Gharehaghaji, Ali Akbar; Alirezazadeh, Azam; Ravandi, Seyed Abdolkarim Hosseini

    2017-12-01

    Poly-L lactic acid (PLLA) is one of the mostly used fibers in biomedical applications as a biodegradable and biocompatible material. Porosity and fiber diameter distribution are governing factors that determine the performance of nanofibers. Present work aims at investigating the process parameters that are affecting porosity and diameter distribution of PLLA nanofibers. PLLA nanofibers were fabricated through electrospinning method using the solution of PLLA polymer/dichloromethane (DCM). Nanofibers with various fiber diameter distribution and porosity were made by changing of process parameters such as spinning distance (5, 10 and 15 cm), voltage (11 and 15 kV), solution concentration (10, 11 and 12 wt%) and feeding rate (0.3, 0.4 and 0.7 ml h-1). Image processing techniques (with Matlab R2017), surface analysis (with Mountainsmap7) and diameter distribution analysis (with Measurement software) were used to examine surface morphology of samples. The results showed that the fiber diameter distribution becomes wider with increasing the applied voltage and reducing the spinning distance. In the other hand, coarse fibers possessed larger pores while having irregular and fewer pores in comparison to fine fibers. The most uniform nano-web with high porous nanofibers was attained by the choice of the process parameters at the voltage of 11 kV, spinning distance of 15 cm, feeding rate of 0.4 ml h-1 and solution concentration of 10 wt%.

  18. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    Directory of Open Access Journals (Sweden)

    Fidancevska E.

    2003-01-01

    Full Text Available Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  19. High-performance super capacitors based on activated anthracite with controlled porosity

    Science.gov (United States)

    Lee, Hyun-Chul; Byamba-Ochir, Narandalai; Shim, Wang-Geun; Balathanigaimani, M. S.; Moon, Hee

    2015-02-01

    Mongolian anthracite is chemically activated using potassium hydroxide as an activation agent to make activated carbon materials. Prior to the chemical activation, the chemical agent is introduced by two different methods as follows, (1) simple physical mixing, (2) impregnation. The physical properties such as specific surface area, pore volume, pore size distribution, and adsorption energy distribution are measured to assess them as carbon electrode materials for electric double-layer capacitors (EDLC). The surface functional groups and morphology are also characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses respectively. The electrochemical results for the activated carbon electrodes in 3 M sulfuric acid electrolyte solution indicate that the activated Mongolian anthracite has relatively large specific capacitances in the range of 120-238 F g-1 and very high electrochemical stability, as they keep more than 98% of initial capacitances until 1000 charge/discharge cycles.

  20. Small angle scattering methods to study porous materials under high uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Le Floch, Sylvie, E-mail: sylvie.le-floch@univ-lyon1.fr; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)

    2015-02-15

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  1. Porosity characterization for heterogeneous shales using integrated multiscale microscopy

    Science.gov (United States)

    Rassouli, F.; Andrew, M.; Zoback, M. D.

    2016-12-01

    Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements

  2. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    Science.gov (United States)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  3. High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature

    International Nuclear Information System (INIS)

    Kumar, Devender; Singh, K.

    2016-01-01

    WC-Co nanocomposites with variable VC content are synthesized by liquid phase sintering at two different temperatures. The as synthesized samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and optical microscope. The mechanical properties are obtained by Vickers indentation method. The high content of VC, lead to high porosity when sintering temperature is increased from 1350 to 1400 °C. The relative density of all the samples is more than 95%. Microstructure reveals that agglomeration of W-Co-C and V-W-C increases at 1400 °C, which generates layered interfaces in radial direction and hence the material inhomogeneity. XRD pattern shows that the formation of η phase increases at 1400 °C, which is responsible to decrease the fracture toughness of the present samples. The average particle size of 102 nm, highest hardness of 1870.6 kgf/mm"2 with fracture toughness of 14.4 MN/mm"3"/"2 is observed in sample having 7.5 wt% VC, sintered at 1350 °C for one minute. This combination shows the highest hardness and reasonably high toughness as compared to conventionally sintered materials reported so far.

  4. Fabrication of dual porosity electrode structure

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  5. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    Science.gov (United States)

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  6. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  7. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  8. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  9. Nonstationary porosity evolution in mixing zone in coastal carbonate aquifer using an alternative modeling approach.

    Science.gov (United States)

    Laabidi, Ezzeddine; Bouhlila, Rachida

    2015-07-01

    In the last few decades, hydrogeochemical problems have benefited from the strong interest in numerical modeling. One of the most recognized hydrogeochemical problems is the dissolution of the calcite in the mixing zone below limestone coastal aquifer. In many works, this problem has been modeled using a coupling algorithm between a density-dependent flow model and a geochemical model. A related difficulty is that, because of the high nonlinearity of the coupled set of equations, high computational effort is needed. During calcite dissolution, an increase in permeability can be identified, which can induce an increase in the penetration of the seawater into the aquifer. The majority of the previous studies used a fully coupled reactive transport model in order to model such problem. Romanov and Dreybrodt (J Hydrol 329:661-673, 2006) have used an alternative approach to quantify the porosity evolution in mixing zone below coastal carbonate aquifer at steady state. This approach is based on the analytic solution presented by Phillips (1991) in his book Flow and Reactions in Permeable Rock, which shows that it is possible to decouple the complex set of equation. This equation is proportional to the square of the salinity gradient, which can be calculated using a density driven flow code and to the reaction rate that can be calculated using a geochemical code. In this work, this equation is used in nonstationary step-by-step regime. At each time step, the quantity of the dissolved calcite is quantified, the change of porosity is calculated, and the permeability is updated. The reaction rate, which is the second derivate of the calcium equilibrium concentration in the equation, is calculated using the PHREEQC code (Parkhurst and Apello 1999). This result is used in GEODENS (Bouhlila 1999; Bouhlila and Laabidi 2008) to calculate change of the porosity after calculating the salinity gradient. For the next time step, the same protocol is used but using the updated porosity

  10. Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging

    Science.gov (United States)

    Halisch, M.; Müller, C.

    2012-04-01

    Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this

  11. Global Characteristics of Porosity and Density Stratification Within the Lunar Crust from GRAIL Gravity and Lunar Orbiter Laser Altimeter Topography Data

    Science.gov (United States)

    Han, Shin-Chan; Schmerr, Nicholas; Neumann, Gregory; Holmes, Simon

    2014-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission is providing unprecedentedly high-resolution gravity data. The gravity signal in relation to topography decreases from 100 km to 30 km wavelength, equivalent to a uniform crustal density of 2450 kg/cu m that is 100 kg/cu m smaller than the density required at 100 km. To explain such frequency-dependent behavior, we introduce rock compaction models under lithostatic pressure that yield radially stratified porosity (and thus density) and examine the depth extent of porosity. Our modeling and analysis support the assertion that the crustal density must vary from surface to deep crust by up to 500 kg/cu m. We found that the surface density of mega regolith is around 2400 kg/cu m with an initial porosity of 10-20%, and this porosity is eliminated at 10-20 km depth due to lithostatic overburden pressure. Our stratified density models provide improved fits to both GRAIL primary and extended mission data.

  12. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    in MFCs. While the two-dimensional electrospun carbon fiber mat (2D-ECFM) which was prepared by normal electrospinning only allows growth of microorganism on the surface with thin layer owing to the low porosity and small pore size in the mat. With the concept of increasing the power density of MFCs by increase of microorganism density in the anode, two novel 3D electrospun carbon fiber mats, porous three-dimensional electrospun carbon fiber mat (3D-ECFM) and layered 3D-ECFM, were developed. The porous 3D-ECFM made by GE-spinning shows high specific surface area due to small fiber diameter of about 1{mu}m, stable highly porous structure with high porosity of 99%, big pore size of around 5.8 {mu}m in the mat and very low density of 18 kg.m{sup -3}. The porous 3D-ECFM anode is very suitable for microbial biofilms growth and generates very high geometric current density of 3.0 mA.cm{sup -2}, and super-high weight current density of 714 mA.g{sup -1}. The layered 3D-ECFM made by layer-by-layer electrospinning also shows high porosity of 98.5% which mainly come from the void-space between layers, and high specific area due to small electrospun carbon fibers on each layer. This layered design is suitable for layer-by-layer growth of biofilm and generates geometric current density of 2.0 mA.cm{sup -2} and weight current density of 294 mA.g{sup -1}. Though the porosity and pore size in the mats are high enough for penetration single small microorganism, the tendency of biofilms formation makes the biofilm is unable to be grown in whole mat but only in the upper layer about several hundreds micrometers. Because the growth of biofilm is affected by multiple factors, e.g nutrition transfer, but they are greatly hindered by the biofilm formed in the upper layer. The current density of 3D-ECFM anode could be further improved by further increasing porosity and introducing large holes or channels in the mats for sufficient nutrition transportation to inside the mats. According to

  13. Modulating structural hierarchies of manganese oxide in morphology and porosity by marine biopolymer for improved supercapacitors

    International Nuclear Information System (INIS)

    Zong, Lu; Wu, Xiaochen; You, Jun; Li, Mingjie; Li, Chaoxu

    2016-01-01

    Nanostructured MnO 2 is one of the most promising electrode materials for supercapacitors (SCs) on account of its exceptional properties including high theoretical capacitance, natural abundance, environmental safety and low cost. However its merits cannot be fully embodied by its current synthesis approaches, since most of them were normally tedious, costly, low yield or environment unfriendly, and poor in controlling multiple parameters of MnO 2 . Inspired by biopolymer-assisted synthesis of hierarchical inorganic materials in living systems, a marine biopolymer was used for structure-controllable synthesis of MnO 2 in this study. Functioning as the reductant, surfactant and directing agent, alginate could tune the hierarchical architecture of MnO 2 in multiple parameters including the dimension, nanometric size, crystallographic form and porosity, where δ-MnO 2 nanocrystals with the size of 5 ∼ 10 nm first assembled into nanosheets, and then flower-like structure with particle size tunable within 40 ∼ 200 nm as well as micro- and mesopores. Due to these unique hierarchies in both the morphology and porosity, as-prepared MnO 2 exhibited excellent performance as SC electrode, e.g. high power density (32.5 kW kg −1 ), high energy density (75.1 Wh kg −1 ) and great cycling stability. Given the green, low-temperature and scalable one-step process, this synthesis may pave a highly promising way to massive production of MnO 2 electrode materials for SCs.

  14. Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction

    Science.gov (United States)

    Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi

    2017-11-01

    Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

  15. Electro-location, tomography and porosity measurements in geotechnical centrifuge models based on electrical resistivity concepts

    Science.gov (United States)

    Li, Zhihua

    This research was focused on the development of electrical techniques for soil characterization and soil dynamic behavior assessment. The research carried out mainly includes (1) development of a needle probe tool for assessment of soil spatial variability in terms of porosity with high-resolution in the centrifuge testing; (2) development of an electro-location technique to accurately detect buried objects' movements inside the soil during dynamic events; (3) collaborative development of a new electrode switching system to implement electrical resistivity tomography, and electro-location with high speed and high resolution. To assess soil spatial variability with high-resolution, electrical needle probes with different tip shapes were developed to measure soil electrical resistivity. After normalizing soil resistivity by pore fluid resistivity, this information can be correlated to soil porosity. Calibrations in laboratory prepared soils were conducted. Loosening due to insertion of needle probes was evaluated. A special needle probe tool, along with data acquisition and data processing tools were developed to be operated by the new NEES robot on the centrifuge. The needle probes have great potential to resolve interfaces between soil layers and small local porosity variations with a spatial resolution approximately equal to the spacing between electrodes (about half of the probe diameter). A new electrode switching system was developed to accurately detect buried objects' movements using a new electro-location scheme. The idea was to establish an electromagnetic field in a centrifuge model by injecting low-frequency alternating currents through pairs of boundary electrodes. The locations of buried objects are related to the potentials measured on them. A closed form expression for the electric field in a rectangular specimen with insulated boundaries was obtained based on the method of images. Effects of sampling parameters on spatial resolution and tradeoffs

  16. Pressure and Stress Prediction in the Nankai Accretionary Prism: A Critical State Soil Mechanics Porosity-Based Approach

    Science.gov (United States)

    Flemings, Peter B.; Saffer, Demian M.

    2018-02-01

    We predict pressure and stress from porosity in the Nankai accretionary prism with a critical state soil model that describes porosity as a function of mean stress and maximum shear stress, and assumes Coulomb failure within the wedge and uniaxial burial beneath it. At Ocean Drilling Program Sites 1174 and 808, we find that pore pressure in the prism supports 70% to 90% of the overburden (λu = 0.7 to 0.9), for a range of assumed friction angles (5-30°). The prism pore pressure is equal to or greater than that in the underthrust sediments even though the porosity is lower within the prism. The high pore pressures lead to a mechanically weak wedge that supports low maximum shear stress, and this in turn requires very low basal traction to remain consistent with the observed narrowly tapered wedge geometry. We estimate the décollement friction coefficient (μb) to be 0.08-0.38 (ϕb' = 4.6°-21°). Our approach defines a pathway to predict pressure in a wide range of environments from readily observed quantities (e.g., porosity and seismic velocity). Pressure and stress control the form of the Earth's collisional continental margins and play a key role in its greatest earthquakes. However, heretofore, there has been no systematic approach to relate material state (e.g., porosity), pore pressure, and stress in these systems.

  17. Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities

    Science.gov (United States)

    Zhang, Xuefeng; Liu, Bo; Wang, Jieqiong; Zhang, Zhe; Shi, Kaibo; Wu, Shuanglin

    2014-08-01

    Commonly used petrological quantification methods are visual estimation, counting, and image analyses. However, in this article, an Adobe Photoshop-based analyzing method (PSQ) is recommended for quantifying the rock textural data and porosities. Adobe Photoshop system provides versatile abilities in selecting an area of interest and the pixel number of a selection could be read and used to calculate its area percentage. Therefore, Adobe Photoshop could be used to rapidly quantify textural components, such as content of grains, cements, and porosities including total porosities and different genetic type porosities. This method was named as Adobe Photoshop Quantification (PSQ). The workflow of the PSQ method was introduced with the oolitic dolomite samples from the Triassic Feixianguan Formation, Northeastern Sichuan Basin, China, for example. And the method was tested by comparing with the Folk's and Shvetsov's "standard" diagrams. In both cases, there is a close agreement between the "standard" percentages and those determined by the PSQ method with really small counting errors and operator errors, small standard deviations and high confidence levels. The porosities quantified by PSQ were evaluated against those determined by the whole rock helium gas expansion method to test the specimen errors. Results have shown that the porosities quantified by the PSQ are well correlated to the porosities determined by the conventional helium gas expansion method. Generally small discrepancies (mostly ranging from -3% to 3%) are caused by microporosities which would cause systematic underestimation of 2% and/or by macroporosities causing underestimation or overestimation in different cases. Adobe Photoshop could be used to quantify rock textural components and porosities. This method has been tested to be precise and accurate. It is time saving compared with usual methods.

  18. Colloidal silica films for high-capacity DNA arrays

    Science.gov (United States)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  19. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength

    Directory of Open Access Journals (Sweden)

    Y. Luna-Galiano

    2016-09-01

    Full Text Available The main contribution of this paper relates to the development of a systematic study involving a set of parameters which could potentially have an impact on geopolymer properties: curing temperature, type of activating solution, alkali metal in solution, incorporation of slag (Ca source and type of slag used. The microstructures, degrees of reaction, porosities and compressive strengths of geopolymers have been evaluated. Geopolymers prepared with soluble silicate presented a more compacted and closed structure, a larger amount of gel, lower porosity and greater compressive strength than those prepared with hydroxides. On the other hand, Na-geopolymers were more porous but more resistant than K-geopolymers. Although there is an inverse relation between degree of reaction and porosity, between compressive strength and porosity it is not always inversely proportional and could, in some cases, be masked by changes produced in other influencing parameters.

  20. Porous structure analysis of large-scale randomly packed pebble bed in high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Liu, Zhiyong; Sun, Yanfei; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Key Laboratory of Advanced Reactor Engineering and Safety; Li, Congxin [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Nuclear and Radiation Safety Center

    2015-02-15

    A three-dimensional pebble bed corresponding to the randomly packed bed in the heat transfer test facility built for the High Temperature Reactor Pebble bed Modules (HTR-PM) in Shandong Shidaowan is simulated via discrete element method. Based on the simulation, we make a detailed analysis on the packing structure of the pebble bed from several aspects, such as transverse section image, longitudinal section image, radial and axial porosity distributions, two-dimensional porosity distribution and coordination number distribution. The calculation results show that radial distribution of porosity is uniform in the center and oscillates near the wall; axial distribution of porosity oscillates near the bottom and linearly varies along height due to effect of gravity; the average coordination number is about seven and equals to the maximum coordination number frequency. The fully established three-dimensional packing structure analysis of the pebble bed in this work is of fundamental significance to understand the flow and heat transfer characteristics throughout the pebble-bed type structure.

  1. A comparison of estimated and calculated effective porosity

    Science.gov (United States)

    Stephens, Daniel B.; Hsu, Kuo-Chin; Prieksat, Mark A.; Ankeny, Mark D.; Blandford, Neil; Roth, Tracy L.; Kelsey, James A.; Whitworth, Julia R.

    Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil-water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil-water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50-90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de

  2. Influence of Fuel Meat Porosity on Heat Capacities of Fuel Element Plate U3Si2-Al

    International Nuclear Information System (INIS)

    Ginting, Aslina Br.; Supardjo; Sutri Indaryati

    2007-01-01

    Analyze of heat capacities of Al powder, AIMg 2 cladding, U 3 Si 2 powder and PEB U 3 Si 2 -Al with the meat porosity of 4.9; 5.53 ; 6.25 ; 6.95 %; 7.90; 8.66% have been done. Analysis was conducted by using Differential Scanning Calorimeter (DSC) at temperature 30℃ to 450℃ with heating rate 1℃ /minute in Argon gas media. The purpose of analyze is to know the influence of increasing of fuel meat porosity on heat capacities because increasing of percentage of meat porosity will cause degradation the of heat capacities of PEB U 3 Si 2 -Al. Result of analysis showed that the heat capacities of Al powder, AIMg 2 cladding increase by temperature, while heat capacities of U 3 Si 2 powder was stable with increasing of temperature up to 450℃. Analysis of heat capacities toward PEB U 3 Si 2 -Al indicate that increasing of fuel meat porosity of caused degradation of the heat capacities of PEB U 3 Si 2 -Al. Data obtained were expected to serve the purpose of input to fabricator of research reactor fuel in for design of fuel element type silicide with high loading. (author)

  3. Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance

    International Nuclear Information System (INIS)

    Zhou, Jin; Zhang, Zhongshen; Xing, Wei; Yu, Jing; Han, Guoxing; Si, Weijiang; Zhuo, Shuping

    2015-01-01

    Graphical abstract: N-doped hierarchical porous carbons with high rate capacitive performance are prepared by a combination method of nano-SiO 2 template/KOH activation. - Highlights: • A mass produced nano-SiO 2 is used to prepared hierarchical porous carbon. • N-doped hierarchical porous carbon materials are easily prepared. • The NHPCs materials exhibit a very high capacitance of up to 260.5 F g −1 . • The NHPC-800 sample shows very high rate capability. • Hierarchical porosity and N-doping synergistically enhances the whole capacitance. - Abstract: In this work, nitrogen-doped hierarchical porous carbon materials (NHPCs) are prepared by a two-step method combined of a hard template process and KOH-activation treatment. Low cost and large-scale commercial nano-SiO 2 are used as a hard template. The hierarchical porosity, structure and nitrogen-doped surface chemical properties are proved by a varies of means, such as scanning electron microscopy, transition electron microscopy, N 2 sorption, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. When the prepared NHPCs materials are used as the electrode materials for supercapacitors in KOH electrolyte, they exhibit very high specific capacitance, good power capability and excellent cyclic stability. NHPC-800 carbon shows a high capacitance of 114.0 F g −1 at the current density of 40 A g −1 , responding to a high energy and power densities of 4.0 Wh kg −1 and 10 000 W kg −1 , and a very short drain time of 1.4 s. The excellent capacitive performance may be due to the synergistic effect of the hierarchical porosity, high effective surface area and heteroatom doping, resulting in both electrochemical double layer and Faradaic capacitance contributions

  4. Relationship between micro-porosity and tensile properties of 6063 alloy

    Directory of Open Access Journals (Sweden)

    Li Xiehua

    2013-01-01

    Full Text Available The micro-porosity is usually present in the as-cast microstructure, which decreases the tensile strength and ductility and therefore limit the application of cast aluminum parts. Although much work has been done to investigate the effects of various casting parameters on the formation of porosity in various aluminum alloys, up to now, little information has been available for the relationship between micro-porosity and tensile properties of 6063 alloy. In this study, the influences of size and area fraction of micro-porosity on the tensile properties and fracture behavior of 6063 aluminum alloy were investigated by means of tensile testing, optical microscopy (OM, and scanning electron microscopy (SEM. The tensile tests were conducted in air at 100 ℃, 200 ℃ and 300 ℃, respectively. Results show that the large micro-porosity with sizes between 100 μm and 800 μm located at the center and top of the ingot, while the small micro-porosity with size between 2 μm and 60 μm distributed at the edge and bottom of the ingot. The area fraction of micro-porosity at the center of the ingot is much bigger than that at the edge of the ingot. When tested at 100 ℃, with the decrease in the area fraction of micro-porosity from the top of the ingot to the bottom of the ingot, the ultimate tensile strength, yield strength and the elongation are increased from 82 to 99 MPa, 32 to 66 MPa and 7% to 11%, respectively. When the temperature is no more than 200 ℃, the strain hardening exponent decreases with an increase in the area fraction of micro-porosity; while the deviation disappears when the temperature reaches 300 ℃. The fracture mode of the alloy is greatly influenced by the size and area fraction of the micro-porosity.

  5. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process

    NARCIS (Netherlands)

    Hou, Q.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Three-dimensional degradable porous polymeric structures with high porosities (93-98%) and well-interconnected pore networks have been prepared by freeze-drying polymer solutions in the presence of a leachable template followed by leaching of the template. Templates of the pore network were prepared

  6. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    Science.gov (United States)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  7. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability

    DEFF Research Database (Denmark)

    Laursen, Anders B.; Vesborg, Peter C. K.; Chorkendorff, Ib

    2013-01-01

    This work describes a highly active and stable acid activated carbon fibre and amorphous MoSx composite hydrogen evolution catalyst. The increased electrochemical-surface area is demonstrated to cause increased catalyst electrodeposition and activity. These composite electrodes also show...

  8. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Wei, Z.J.; Wong, M.H.

    2011-01-01

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L -1 ) and a soil pot trail (control, 60 mg As kg -1 ). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O 2 kg -1 root d.w. d -1 ), As uptake (e.g., 8.8-151 mg kg -1 in shoots in 0.8 mg As L -1 treatment), translocation factor (2.1-47% in 0.8 mg As L -1 ) and tolerance (29-106% in 0.8 mg As L -1 ). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: → There is significant correlation between the porosity of roots and rates of ROL. → The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. → The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  9. Battery with a microcorrugated, microthin sheet of highly porous corroded metal

    Science.gov (United States)

    LaFollette, Rodney M.

    2005-09-27

    Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.

  10. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian, E-mail: dazhijian.ripp@sinopec.com

    2016-09-30

    Highlights: • Hierarchical zeolite Y was prepared by citric acid treatment and alkaline treatment with NaOH&TBPH. • The addition of TBPH during desilication process transferred the bridge bonded OH− to the terminal P−OH group. • Moderate Brønsted acid sites could be created with phosphorus modification. • Zeolite with hierarchical porosity and appropriated acidities favored high conversion of 1,3,5-TIPB. - Abstract: The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH{sub 3}-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  11. Mathematical aspects of multi-porosity continua

    CERN Document Server

    Straughan, Brian

    2017-01-01

    This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wa...

  12. Effect of Matrix-Wellbore Flow and Porosity on Pressure Transient Response in Shale Formation Modeling by Dual Porosity and Dual Permeability System

    Directory of Open Access Journals (Sweden)

    Daolun Li

    2015-01-01

    Full Text Available A mathematical dual porosity and dual permeability numerical model based on perpendicular bisection (PEBI grid is developed to describe gas flow behaviors in shale-gas reservoirs by incorporating slippage corrected permeability and adsorbed gas effect. Parametric studies are conducted for a horizontal well with multiple infinite conductivity hydraulic fractures in shale-gas reservoir to investigate effect of matrix-wellbore flow, natural fracture porosity, and matrix porosity. We find that the ratio of fracture permeability to matrix permeability approximately decides the bottom hole pressure (BHP error caused by omitting the flow between matrix and wellbore and that the effect of matrix porosity on BHP is related to adsorption gas content. When adsorbed gas accounts for large proportion of the total gas storage in shale formation, matrix porosity only has a very small effect on BHP. Otherwise, it has obvious influence. This paper can help us understand the complex pressure transient response due to existence of the adsorbed gas and help petroleum engineers to interpret the field data better.

  13. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  14. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  15. How burial diagenesis of chalk sediments controls sonic velocity and porosity

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2003-01-01

    Based on P-wave velocity and density data, a new elastic model for chalk sediments is established. The model allows the construction of a series of isoframe (IF) curves, each representing a constant part of the mineral phase contributing to the solid frame. The IF curves can be related to the pro......Based on P-wave velocity and density data, a new elastic model for chalk sediments is established. The model allows the construction of a series of isoframe (IF) curves, each representing a constant part of the mineral phase contributing to the solid frame. The IF curves can be related.......1 or higher. Upon burial, the sediments lose porosity by mechanical compaction, and concurrently, the calcite particles recrystallize into progressively more equant shapes. High compaction rates may keep the particles in relative motion, whereas low compaction rates allow the formation of contact cement...... this process testifies to the absence of chemical compaction by calcite-calcite pressure dissolution, as well as to the porosity-preserving effect of contact cementation. At sufficient burial stress, the presence of stylolites indicates that pressure dissolution takes place between calcite., and silicates...

  16. Causes and remedies for porosity in composite manufacturing

    Science.gov (United States)

    Fernlund, G.; Wells, J.; Fahrang, L.; Kay, J.; Poursartip, A.

    2016-07-01

    Porosity is a challenge in virtually all composite processes but in particular in low pressure processes such as out of autoclave processing of prepregs, where the maximum pressure is one atmosphere. This paper discusses the physics behind important transport phenomena that control porosity and how we can use our understanding of the underlying science to develop strategies to achieve low porosity for these materials and processes in an industrial setting. A three step approach is outlined that addresses and discusses: gas evacuation of trapped air, volatiles and off-gassing, and resin infiltration of evacuated void space.

  17. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  18. Modelling of pore coarsening in the high burn-up structure of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Tarasov, V.I., E-mail: tarasov@ibrae.ac.ru

    2017-05-15

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO{sub 2} fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  19. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition.

    Science.gov (United States)

    Diez-Escudero, A; Espanol, M; Beats, S; Ginebra, M-P

    2017-09-15

    The capacity of calcium phosphates to be replaced by bone is tightly linked to their resorbability. However, the relative importance of some textural parameters on their degradation behavior is still unclear. The present study aims to quantify the effect of composition, specific surface area (SSA), and porosity at various length scales (nano-, micro- and macroporosity) on the in vitro degradation of different calcium phosphates. Degradation studies were performed in an acidic medium to mimic the osteoclastic environment. Small degradations were found in samples with interconnected nano- and micropores with sizes below 3µm although they were highly porous (35-65%), with maximum weight loss of 8wt%. Biomimetic calcium deficient hydroxyapatite, with high SSA and low crystallinity, presented the highest degradation rates exceeding even the more soluble β-TCP. A dependence of degradation on SSA was indisputable when porosity and pore sizes were increased. The introduction of additional macroporosity with pore interconnections above 20µm significantly impacted degradation, more markedly in the substrates with high SSA (>15m 2 /g), whereas in sintered substrates with low SSA (calcium deficient hydroxyapatite did not increase its degradation rate. Overall, the study highlights the importance of textural properties, which can modulate or even outweigh the effect of other features such as the solubility of the compounds. The physicochemical features of calcium phosphates are crucial to tune biological events like resorption during bone remodeling. Understanding in vitro resorption can help to predict the in vivo behavior. Besides chemical composition, other parameters such as porosity and specific surface area have a strong influence on resorption. The complexity of isolating the contribution of each parameter lies in the close interrelation between them. In this work, a multiscale study was proposed to discern the extent to which each parameter influences degradation in

  20. High capacity getter pump for UHV operation

    International Nuclear Information System (INIS)

    Manini, P.; Marino, M.; Belloni, F.; Porro, M.

    1993-01-01

    UHV pumps based on non-evaporable getter coated strips find widespread use in particle accelerators, synchrotron radiation machines and nuclear fusion experimental devices. Depending on the geometric constraints, pressure operation conditions and the foreseen gas loads, optimized getter structures, such as modules and cartridges, can be designed and assembled into a high-efficiency pump. In the present paper, the design and performance of a newly conceived High Capacity Getter Pump (HCGP) based on sintered getter bodies, in the shape of blades instead of strips, is illustrated. The porosity and the specific surface area of the blades and their arrangement in the cartridge have been optimized to significantly increase sorption capacity at a given speed. These pumps are well suited for those applications where a very high gas load is expected during the machine operation. The sintered getter bodies increase surface area and capacity, requiring less frequent reactivation and facilitating greater overall life of the pump. A discussion of the experimental results in terms of sorption speed and capacity for various gases is presented

  1. Characterization of the porosity distribution in the upper part of the karst Biscayne aquifer using common offset ground penetrating radar, Everglades National Park, Florida

    Science.gov (United States)

    Mount, Gregory J.; Comas, Xavier; Cunningham, Kevin J.

    2014-07-01

    the direct porosity values from the whole-core samples confirms the ability of GPR common offset surveys to provide rapid characterization of porosity variability in the Biscayne aquifer. The common offset survey method has several advantages: (1) improved time efficiency in comparison to other GPR acquisition modes such as common midpoints; and (2) enhanced lateral continuity of porosity estimates, particularly when compared to porosity measurements on 1-D samples such as rock cores. The results also support the presence of areas of low EM wave velocity or high porosity under saturated conditions, causing velocity pull-down areas and apparent sag features in the reflection record. This study shows that GPR can be a useful tool for improving understanding of the petrophysical properties of highly heterogeneous systems such as karst aquifers, and thus may assist with the development of more accurate groundwater flow models, such as those used for restoration efforts in the Everglades.

  2. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  3. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  4. Chalk porosity and sonic velocity versus burial depth

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne

    2008-01-01

    Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show th...... for fluid pressure because the cementing ions originate from stylolites, which are mechanically similar to fractures. We find that cementation occurs over a relatively short depth interval.......Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show...... that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...

  5. Porosity Variation in Cenozoic and Upper Chalk from the Ontong Java Pleateau

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine

    1997-01-01

    Porosity was obtained from matrix- and intraparticle porosity assessed from image analysis of backscattered electron micrographs of 3000x and 300x magnification. Comparing porosity assessed from image analysis with porosity measured by index properties, it was seen that image analysis data at 300...

  6. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  7. Porosity in Ocean Racing Yacht Composites: a Review

    Science.gov (United States)

    Baley, Christophe; Lan, Marine; Davies, Peter; Cartié, Denis

    2015-02-01

    Ocean racing yachts are mainly manufactured from carbon/epoxy composites similar to those used by the aeronautical industry but, with some exceptions such as masts, these structures are not produced in autoclaves. This leads to the presence of higher porosity levels. This paper will first present the different types of porosity found in traditional racing yacht structures. Difficulties in evaluating defect levels will then be discussed and published work characterizing the influence of defects will be reviewed. Current developments to improve racing yacht composite quality such as thin ply technology, out-of-autoclave processing and automated fibre placement will then be described, and their implications for porosity will be discussed.

  8. Optimization of Arc-Sprayed Ni-Cr-Ti Coatings for High Temperature Corrosion Applications

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-04-01

    High Cr content Ni-Cr-Ti arc-spray coatings have proven successful in resisting the high temperature sulfidizing conditions found in black liquor recovery boilers in the pulp and paper industry. The corrosion resistance of the coatings is dependent upon the coating composition, to form chromium sulfides and oxides to seal the coating, and on the coating microstructure. Selection of the arc-spray parameters influences the size, temperature and velocity of the molten droplets generated during spraying, which in turn dictates the coating composition and formation of the critical coating microstructural features—splat size, porosity and oxide content. Hence it is critical to optimize the arc-spray parameters in order to maximize the corrosion resistance of the coating. In this work the effect of key spray parameters (current, voltage, spray distance and gas atomizing pressure) on the coating splat thickness, porosity content, oxide content, microhardness, thickness, and surface profile were investigated using a full factorial design of experiment. Based on these results a set of oxidized, porous and optimized coatings were prepared and characterized in detail for follow-up corrosion testing.

  9. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: lssyzhh@mail.sysu.edu.c [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wei, Z.J. [School of Information and Technology, Guangdong University of Foreign Studies, Guangzhou 510275 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2011-01-15

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L{sup -1}) and a soil pot trail (control, 60 mg As kg{sup -1}). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O{sub 2} kg{sup -1} root d.w. d{sup -1}), As uptake (e.g., 8.8-151 mg kg{sup -1} in shoots in 0.8 mg As L{sup -1} treatment), translocation factor (2.1-47% in 0.8 mg As L{sup -1}) and tolerance (29-106% in 0.8 mg As L{sup -1}). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: There is significant correlation between the porosity of roots and rates of ROL. The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  10. Porosity, Fracturing and Alteration of Young Oceanic Crust: New Seismic Analyses at Borehole 504B

    Science.gov (United States)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2017-12-01

    DSDP/ODP borehole 504B, drilled 2111 m into 6.9 Ma oceanic crust, provides in-situ core and logging measurements of the lithology, fracturing and porosity of crust originally formed at the Costa Rica Rift and its subsequent alteration by hydrothermal fluids. A recent active seismic survey over the borehole and surrounding area reveals wider spatial variations in velocity that can be related to this porosity and fracturing. Over 10,000 airgun shots were fired in a 30 x 30 km grid over the borehole region, using both high-frequency and low-frequency airgun arrays. The shots were recorded on a 4.5 km-long streamer and 24 ocean-bottom seismographs, each equipped with a three-component geophone and an hydrophone. A vertical hydrophone array recorded the downgoing source wavelet, and underway gravity, magnetic field and multibeam bathymetry data were also recorded. This combined dataset enables the most comprehensive geophysical analysis of this area of crust to date, while the ground-truthing provided by 504B enables us to address the questions of what do the seismic oceanic crustal layers represent and what controls their characteristics as the crust ages? Wide-angle seismic modelling with a Monte Carlo based uncertainty analysis reveals new 2D and 3D Vp and Vs models of the area, which show relatively homogeneous crust around borehole 504B, and place the seismic layer 2B/2C, and seismic layer 2/3 boundaries coincident with fracturing and alteration fronts rather than the lithological boundaries between lavas and dykes, and dykes and gabbros, respectively. Analysis of Poisson's ratio, seismic anisotropy and particle motions reveal patterns in fracturing and porosity across the survey area, and locate possible fossilised hydrothermal circulation cells. These cells appear to have influenced the porosity of the crust through alteration and mineralisation processes, with faults inherited from initial crustal accretion influencing basement topographic highs and providing

  11. Investigation of very high burnup UO{sub 2} fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, Fabiola

    2017-03-27

    Historically, the average discharge burnup of Light Water Reactor (LWR) fuel has increased almost continuously. On one side, increase in the average discharge burnup is attractive because it contributes to decrease part of the fuel cycle costs. On the other side, it raises the practical problem of predicting the performance, longevity and properties of reactor fuel elements upon accumulation of irradiation damage and fission products both during in-reactor operation and after discharge. Performance of the fuel and structural components of the core is one of the critical areas on which the economic viability and public acceptance of nuclear energy production hinges. Along the pellet radius, the fuel matrix is subjected to extremely heterogeneous alteration and damage, as a result of temperature and burnup gradients. In particular, in the peripheral region of LWR UO{sub 2} fuel pellets, when the local burnup exceeds 50-70 GWd/tHM, a microstructural transformation starts to take place, as a consequence of enhanced accumulation of radiation damage, fission products and limited thermal recovery. The newly formed structure is commonly named High Burnup Structure (HBS). The HBS is characterised by three main features: (a) formation of submicrometric grains from the original grains, (b) depletion of fission gas from the fuel matrix, (c) steep increase in the porosity, which retains most of the gas depleted from the fuel matrix. The last two aspects rose significant attention because of the important impact of the fission gas behaviour on integral fuel performance. The porosity increase controls the gas-driven swelling, worsening the cladding loading once the fuel-cladding gap is closed. Another concern is that the large retention of fission gas within the HBS could lead to significant release at high burnups through the degradation of thermal conductivity or contribute to fuel pulverisation during accidental conditions. Need of more experimental investigations about the

  12. Influence of High Temperature Treatment on Mechanical Behavior of a Coarse-grained Marble

    Science.gov (United States)

    Rong, G.; Peng, J.; Jiang, M.

    2017-12-01

    High temperature has a significant influence on the physical and mechanical behavior of rocks. With increasing geotechnical engineering structures concerning with high temperature problems such as boreholes for oil or gas production, underground caverns for storage of radioactive waste, and deep wells for injection of carbon dioxides, etc., it is important to study the influence of temperature on the physical and mechanical properties of rocks. This paper experimentally investigates the triaxial compressive properties of a coarse-grained marble after exposure to different high temperatures. The rock specimens were first heated to a predetermined temperature (200, 400, and 600 oC) and then cooled down to room temperature. Triaxial compression tests on these heat-treated specimens subjected to different confining pressures (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 MPa) were then conducted. Triaxial compression tests on rock specimens with no heat treatment were also conducted for comparison. The results show that the high temperature treatment has a significant influence on the microstructure, porosity, P-wave velocity, stress-strain relation, strength and deformation parameters, and failure mode of the tested rock. As the treatment temperature gradually increases, the porosity slightly increases and the P-wave velocity dramatically decreases. Microscopic observation on thin sections reveals that many micro-cracks will be generated inside the rock specimen after high temperature treatment. The rock strength and Young's modulus show a decreasing trend with increase of the treatment temperature. The ductility of the rock is generally enhanced as the treatment temperature increases. In general, the high temperature treatment weakens the performance of the tested rock. Finally, a degradation parameter is defined and a strength degradation model is proposed to characterize the strength behavior of heat-treated rocks. The results in this study provide useful data for

  13. Radiographically detectable intracortical porosity

    International Nuclear Information System (INIS)

    Meema, H.E.

    1986-01-01

    Since the measurement of intracortical resorptive spaces by histologic methods is difficult and very few data are available in normal humans, we have measured their lengths and widths and calculated the intracortical porosity in metacarpals and phalanges of 79 normal women and 69 normal men, using fine-detail radiographs of the hands and a computerized semi-automatic image analysis system (Zeiss MOP-3), this being the first study of this kind. Several methodological problems were solved satisfactorily, and the results of this study could serve as a data bank for further investigations concerned with intracortical resorption. Significant differences were found between age and sex versus several intracortical resorptive parameters; also significant correlations were found with age in some cases. Normal intracortical porosity was found to be about three times greater in the proximal phalanges than in the metacarpals. It is concluded that this methodology could be used for further studies of intracortical resorption in osteoporosis and other metabolic bone diseases. (orig.)

  14. Determination of residual boron in thermally treated controlled-porosity glasses, by colorimetry, spectrography and isotachophoresis

    International Nuclear Information System (INIS)

    Dawidowicz, A.L.; Matusewicz, J.; Wysocka-Lisek, J.

    1989-01-01

    Controlled-porosity glasses (CPGs) are often applied as sorbents in chromatography. Besides having high thermal, chemical and mechanical resistance they are characterized by a very narrow pore-size distribution and the choice of mean pore diameter and porosity covers a wide range. In spite of these advantages, their range of use in chromatography is restricted because of their strong adsorption properties, which are connected with the presence of residual boron atoms in the porous CPG skeleton. The boron concentration on the CPG surface can be increased by proper thermal treatment. When CPGs are heated in the range 400-800 0 the residual boron atoms in the network diffuse from the bulk to the surface. The paper discusses the boron content in porous glasses of different mean pore diameters and the determination of the enrichment of boron on the GPG surface, by three independent methods: colorimetry, spectrography and isotachophoresis. (author)

  15. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  16. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    Science.gov (United States)

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-10-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.

  17. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

    Science.gov (United States)

    Kerckhofs, G.; Durand, M.; Vangoitsenhoven, R.; Marin, C.; Van der Schueren, B.; Carmeliet, G.; Luyten, F. P.; Geris, L.; Vandamme, K.

    2016-01-01

    High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging. PMID:27759061

  18. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  19. High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds.

    Science.gov (United States)

    Ambrosi, Moira; Santoni, Sergio; Giorgi, Rodorico; Fratini, Emiliano; Toccafondi, Nicola; Baglioni, Piero

    2014-10-15

    The technological characteristics of porcelain stoneware tiles make them suitable for a wide range of applications spanning far beyond traditional uses. Due to the high density, porcelain stoneware tiles show high bending strength, wear resistance, surface hardness, and high fracture toughness. Nevertheless, despite being usually claimed as stain resistant, the surface porosity renders porcelain stoneware tiles vulnerable to dirt penetration with the formation of stains that can be very difficult to remove. In the present work, we report an innovative and versatile method to realize stain resistant porcelain stoneware tiles. The tile surface is treated by mixtures of nanosized zirconium hydroxide and nano- and micron-sized glass frits that thanks to the low particle dimension are able to penetrate inside the surface pores. The firing step leads to the formation of a glass matrix that can partially or totally close the surface porosity. As a result, the fired tiles become permanently stain resistant still preserving the original esthetical qualities of the original material. Treated tiles also show a remarkably enhanced hardness due to the inclusion of zirconium compounds in the glass coating. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Porosity measurement of amorphous materials by gamma ray transmission

    International Nuclear Information System (INIS)

    Poettker, Walmir Eno

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  1. Three dimensional fracture aperture and porosity distribution using computerized tomography

    Science.gov (United States)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the

  2. Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties.

    Science.gov (United States)

    Kong, Meng; Li, Mingjie; Shang, Ruoxu; Wu, Jingyu; Yan, Peisong; Xu, Dongmei; Li, Chaoxu

    2018-01-24

    Marine shells not only represent a rapidly accumulating type of fishery wastes but also offer a unique sort of hybrid nanomaterials produced greenly and massively in nature. The elaborate "brick and mortar" structures of nacre enabled the synthesis of carbon nanomeshes with <1 nm thickness, hierarchical porosity, and high specific surface area through pyrolysis, in which two-dimensional (2D) organic layers served as the carbonaceous precursor and aragonite platelets as the hard template. Mineral bridges within 2D organic layers templated the formation of mesh pores of 20-70 nm. In contrast to other hydrophobic carbon nanomaterials, these carbon nanomeshes showed super dispersibility in diverse solvents and thus processability for membranes through filtration, patterning, spray-coating, and ink-writing. The carbon membranes with layered structures were capable of serving not only for high-flux filtration and continuous flow absorption but also for electrochemical and strain sensing with high sensitivity. Thus, utilization of marine shells, on one hand, relieves the environmental concern of shellfish waste, on the other hand, offers a facile, green, low-cost, and massive approach to synthesize unique carbon nanomeshes alternative to graphene nanomeshes and applicable in environmental adsorption, filtration, wearable sensors, and flexible microelectronics.

  3. Porosity estimation by semi-supervised learning with sparsely available labeled samples

    Science.gov (United States)

    Lima, Luiz Alberto; Görnitz, Nico; Varella, Luiz Eduardo; Vellasco, Marley; Müller, Klaus-Robert; Nakajima, Shinichi

    2017-09-01

    This paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Görnitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.

  4. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  5. Thermal energy storages analysis for high temperature in air solar systems

    International Nuclear Information System (INIS)

    Andreozzi, Assunta; Buonomo, Bernardo; Manca, Oronzio; Tamburrino, Salvatore

    2014-01-01

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  6. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    2008-01-01

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...

  7. Ultra-thin solution-based coating of molybdenum oxide on multiwall carbon nanotubes for high-performance supercapacitor electrodes

    KAUST Repository

    Shakir, Imran; Nadeem, Muhammad Tahir; Shahid, Muhammad; Kang, Dae Joon

    2014-01-01

    . The ultrathin MoO3 coating enables a fast and reversible redox reaction which improves the specific capacitance by utilizing the maximum number of active sites for the redox reaction, while the high porosity of the MWCNTs facilitates ion migration

  8. Integrated design of castings: effect of porosity on mechanical performance

    International Nuclear Information System (INIS)

    Hardin, R A; Beckermann, C

    2012-01-01

    Porosity can significantly reduce the strength and durability of castings in service. An integrated design approach has been developed where casting simulation is combined with mechanical performance simulations. Predictions of the porosity distribution from the casting process simulation are transferred to and used in stress and fatigue life simulations. Thus, the effect of casting quality on service performance can be evaluated. Results of a study are presented where the measured porosity distribution in cast steel specimens is transferred to an elasto-plastic finite-element stress analysis model. Methods are developed to locally reduce the mechanical properties according to the porosity present, without having to resolve individual pores. Plastic deformation is modeled using porous metal plasticity theory. The predictions are compared to tensile measurements performed on the specimens. The complex deformations and the reductions in the ductility of the specimens due to porosity are predicted well. The predicted stresses are transferred to a fatigue analysis code that takes the porosity distribution into account as well. The measured and predicted fatigue lives are also in good agreement. Finally, the results of a case study are presented that illustrate the utility of the present integrated approach in optimizing the design of a steel casting.

  9. High Temperature Ultrasonic Transducer for Real-time Inspection

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  10. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  11. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  12. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  13. On the Use of Surface Porosity to Reduce Unsteady Lift

    Science.gov (United States)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.

    2001-01-01

    An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.

  14. Ultrasonic Characterization of Water Saturated Double Porosity Media

    Science.gov (United States)

    Bai, Ruonan; Tinel, Alain; Alem, Abdellah; Franklin, Hervé; Wang, Huaqing

    Wave propagation through a multilayered structure consisting of a water saturated double porosity medium in an aluminum rectangular box immersed in water is studied. By assuming a plane incident wave from water onto the structure, the reflection and transmission coefficients are derived by application of the boundary conditions at each interface. Numerical computations are done for two particular double porosity media, ROBU® and Tobermorite 11 Å, that are assumed to obey Berryman's extension of Biot's theory [Berryman 1995, 2000]. The influence of the thickness of double porosity medium is investigated. To compare experiments to computations, two comparison coefficients Cnum and Cexp are introduced. The theoretical one Cnum is defined as the ratio of the transmission coefficient of the structure to the transmission coefficient of the box filled exclusively with water. The experimental comparison coefficient Cexp is defined as the ratio of the Fourier transforms of the transmitted signals by the box filled with the double porous medium to that of the transmitted signals by the box filled with water. A method of minimization based on a gradient descent algorithm is used to optimize some of the parameters of the double porosity media such as the bulk moduli.

  15. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  16. Porosity effects during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Espinosa P, G.; Vazquez R, A.

    2015-09-01

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  17. Porosity effects during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  18. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  19. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite

    International Nuclear Information System (INIS)

    Hussain, Abid; Tso, C.Y.; Chao, Christopher Y.H.

    2016-01-01

    It is necessary for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to have a highly efficient thermal management system to maintain high powered lithium ion batteries within permissible temperature limits. In this study, an efficient thermal management system for high powered lithium ion batteries using a novel composite (nickel foam-paraffin wax) is designed and investigated experimentally. The results have been compared with two other cases: a natural air cooling mode and a cooling mode with pure phase change materials (PCM). The results indicate that the safety demands of lithium ion batteries cannot be fulfilled using natural air convection as the thermal management mode. The use of PCM can dramatically reduce the surface temperature within the permissible range due to heat absorption by the PCM undergoing phase change. This effect can be further enlarged by using the nickel foam-paraffin composite, showing a temperature reduction of 31% and 24% compared to natural air convection and pure PCM, respectively under 2 C discharge rate. The effect of the geometric parameters of the foam on the battery surface temperature has also been studied. The battery surface temperature decreases with the decrease of porosity and the pore density of the metal foam. On the other hand, the discharge capacity increases with the increase in porosity, but decreases with pore density. - Highlights: • Thermal management for Li-ion batteries using nickel-paraffin is studied. • The temperature is reduced by 31% as compared to natural air cooling mode. • The temperature increases with increase of porosity and pore density of metal foam. • Battery discharge capacity increases with the increase in porosity. • Battery discharge capacity increases with the decreases in pore density.

  20. The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Ge [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Jianzhong; Tang, Huiping [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2017-04-06

    The compressive mechanical properties of the sintered sheets of continuous stainless steel fibers with different fiber diameters (8 µm, 12 µm, 28 µm) are investigated at temperatures from 298 K to 1073 K. The stress-strain curves of metal fiber sintered sheet (MFSS) are obtained by testing under uniaxial compression and 0.2% offset yield stress are determined. Inner micro-structures of the material are revealed by using scanning electron microscope (SEM) and microscopic computer tomography. The results indicates that fabrication technique and porosity are two principle factors affecting the yield strength of MFSS and the strength of MFSS is insensitive to the temperature below 873 K while softening occurs at temperature 1073 K. At relative high porosity (e.g. 77%), the material with small diameter fibers tends to have higher yield strength while at low porosity, MFSS's yield strength becomes high with the increase of the fiber diameter, which is probably attributed to the joint size, the surface appearance of fibers and prehardening generated during the manufacturing of MFSS. A simplified structure model taking joint size into consideration is established to explain the influence of the joint size on the yield strength of MFSS.

  1. Mathematical modeling of porosity formation in die cast A356 wheels

    International Nuclear Information System (INIS)

    Maijer, D.; Cockcroft, S.L.; Wells, M.A.; Luciuk, T.; Hermesmann, C.

    2000-01-01

    In an effort to leverage recent advances in modeling and process simulation tools, a mathematical model has been developed to predict porosity formation in die cast A356 wheels as part of a collaborative research agreement between researchers at the University of British Columbia and Canadian Autoparts Toyota Incorporated. The heat transfer model represents a three-dimensional, 30 o , slice of the wheel and die and is based on the commercial finite element code ABAQUS. Extensive temperature measurements in the die and in the wheel taken over several cycles in the casting process were used to fine tune and validate the model. Initial work on predicting porosity formation has focused on using the Niyama parameter as a measure of the probability of porosity. To date Niyama porosity predictions agree well with plant experience and show promise for reducing losses associated with porosity. (author)

  2. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    OpenAIRE

    Raffi Mohammed; G. Madhusudhan Reddy; K. Srinivasa Rao

    2017-01-01

    High nitrogen stainless steel (HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poo...

  3. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace

    Energy Technology Data Exchange (ETDEWEB)

    Dolberg, David M.

    1998-12-31

    This presentation relates to porosity prediction from seismic inversion. The porosity prediction concerns the Lavrans Field of the Halten Terrace on the Norwegian continental shelf. The main themes discussed here cover seismic inversion, rock physics, statistical analysis - verification of well trends, upscaling/sculpting, and implementation. 2 refs., 6 figs.

  4. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  5. Particle porosity at plasma are spraying of metals

    International Nuclear Information System (INIS)

    Petrunichev, V.A.; Koroleva, E.B.; Pushilin, N.P.

    1985-01-01

    Quantitative dependences of porosity and character of pore distribution in particles of different materials on particle size and composition of atmosphere in a working chamber are studied experimentally as applied to the process of plasma wire sputtering. Wires 1.2 mm in diameter made of tungsten, molybdenum, Kh20N80 alloy, and zirconium served as sputtering materials. It is shown that pore size and character of their distribution in particles of powders obtained by the method of plasma wire sputtering are dependent on sizes of forming particles and determined by conditions of their cooling. Intensive porosity formation is characteristic of wire sputtering in argon plasma with nitrogen additions, but there are critical values of nitrogen concentration in plasma, above which intensive porosity formation in forming particles stops

  6. THE EFFECT OF HIGH TEMPERATURES ON CONCRETE INCORPORATING ULTRAFINE SILICA AND POLYPROPYLENE FIBERS

    Directory of Open Access Journals (Sweden)

    M. Benkaddour

    2016-05-01

    Full Text Available In recent years, lots of studies have attempted to examine the possible causes for the thermal instability of ordinary concrete and high performance. However, we still do not know the exact terms of phenomena taking place during exposure to high temperature and the technological solutions that exist (polypropylene fibres, thermal reported are not always well controlled.In this work, several concrete formulations have been tested and multi-scale observation of high-temperature behavior of ordinary concrete (compressive strength of 48 MPa and HPC (compressive strength 75 MPa were adopted. On the scale of the material, the identification of trends with temperature data such as porosity and particularly the mechanical properties allow us to better understand the behaviour of concrete at high temperature differential thermal analysis have been also made.

  7. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  8. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    International Nuclear Information System (INIS)

    Varghese, Jini; Varghese, K.T.

    2015-01-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr  > GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min"−"1 corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  9. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Jini, E-mail: jini.nano@gmail.com; Varghese, K.T., E-mail: ktvscs@gmail.com

    2015-11-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr <<< GCZ >> GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min{sup −1} corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  10. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1992-01-01

    Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  11. Tunable-Porosity Membranes From Discrete Nanoparticles

    Science.gov (United States)

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  12. Influence of fabrication parameter on the nanostructure and photoluminescence of highly doped p-porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaoyuan [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Ma, Wenhui, E-mail: mwhsilicon@163.com [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Yang, E-mail: zhouyangnano@163.com [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chen, Xiuhua [Faculty of Physical Science and Technology, Yunnan University, Kunming 650091 (China); Ma, Mingyu [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xiao, Yongyin [Faculty of Physical Science and Technology, Yunnan University, Kunming 650091 (China); Xu, Yaohui [National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Metallurgical and energy engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2014-02-15

    Porous silicon (PS) was prepared by anodizing highly doped p-type silicon in the solution of H{sub 2}O/ethanol/HF. The effects of key fabrication parameters (HF concentration, etching time and current density) on the nanostructure of PS were carefully investigated by AFM, SEM and TEM characterization. According to the experimental results, a more full-fledged model was developed to explain the crack behaviors on PS surface. The photoluminescence (PL) of resulting PS was studied by a fluorescence spectrophotometer and the results show that PL peak positions shift to shorter wavelength with the increasing current density, anodisation time and dilution of electrolyte. The PL spectra blue shift of the sample with higher porosity is confirmed by HRTEM results that the higher porosity results in smaller Si nanocrystals. A linear model (λ{sub PL/nm}=620.3–0.595P, R=0.905) was established to describe the correlation between PL peak positions and porosity of PS. -- Highlights: • The effect of fabrication parameter on the nanostructure of PS is investigated. • The influence of nanostructure on the photoluminescence behaviors is studied • A full-fledged model for expounding the crack behaviors of PS is presented. • The correlation between the porosity and PL peak blue shift is described by a linear model.

  13. Effect of porosity on dielectric properties and microstructure of porous PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Praveen [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kumar, H.H. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)]. E-mail: dkkharat@rediffmail.com

    2006-02-25

    Porous piezoelectric materials are of great interest because of their high hydrostatic figure of merit and low sound velocity, which results in to low acoustic impedance and efficient coupling with medium. Porous lead zirconate titanate (PZT) ceramics with varying porosity was developed using polymethyl methacrylate by burnable plastic spheres (BURPS) process. The porous PZT ceramics were characterized for dielectric constant ({epsilon}), dielectric loss factor (tan {delta}), hydrostatic charge (d {sub h}) and voltage (g {sub h}) coefficients and microstructure. The effect of the porous microstructure on the dielectric constant and loss factor at frequencies of 10-10{sup 5} Hz are discussed in this paper.

  14. High power valve regulated lead-acid batteries for new vehicle requirements

    Science.gov (United States)

    Trinidad, Francisco; Sáez, Francisco; Valenciano, Jesús

    The performance of high power VRLA ORBITAL™ batteries is presented. These batteries have been designed with isolated cylindrical cells, providing high reliability to the recombination process, while maintaining, at the same time, a very high compression (>80 kPa) over the life of the battery. Hence, the resulting VRLA modules combine a high rate capability with a very good cycle performance. Two different electrochemically active material compositions have been developed: high porosity and low porosity for starting and deep cycle applications, respectively (depending on the power demand and depth of discharge). Although, the initial performance of the starting version is higher, after a few cycles the active material of the deep cycle version is fully developed, and this achieves the same high rate capability. Both types are capable of supplying the necessary reliability for cranking at the lowest temperature (-40°C). Specific power of over 500 W/kg is achievable at a much lower cost than for nickel-metal hydride systems. Apart from the initial performance, an impressive behaviour of the cycling version has been found in deep cycle applications, due to the highly compressed and high density active material. When submitted to continuous discharge-charge cycles at 75% (IEC 896-2 specification) and 100% (BCI deep cycle) DoD, it has been found that the batteries are still healthy after more than 1000 and 700 cycles, respectively. However, it has been proven that the application of an IUi algorithm (up to 110% of overcharging) with a small constant current charging period at the end of the charge is absolutely necessary to achieve the above results. Without the final boosting period, the cycle life of the battery could be substantially shortened. The high specific power and reliability observed in the tests carried out, would allow ORBITAL™ batteries to comply with the more demanding requirements that are being introduced in conventional and future hybrid electric

  15. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission

    International Nuclear Information System (INIS)

    Martins de Oliveira, Jose; Andreo Filho, Newton; Vinicius Chaud, Marco; Angiolucci, Tatiana; Aranha, Norberto; Germano Martins, Antonio Cesar

    2010-01-01

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of 241 Am (photons of 59.6 keV and an activity of 3.7x10 9 Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies.

  16. Fabrication of FeAl Intermetallic Foams by Tartaric Acid-Assisted Self-Propagating High-Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Karczewski

    2018-04-01

    Full Text Available Iron aluminides are intermetallics with interesting applications in porous form thanks to their mechanical and corrosion resistance properties. However, making porous forms of these materials is not easy due to their high melting points. We formed FeAl foams by elemental iron and aluminum powders sintering with tartaric acid additive. Tartaric acid worked as an in situ gas-releasing agent during the self-propagating high-temperature synthesis of FeAl intermetallic alloy, which was confirmed by X-ray diffraction measurements. The porosity of the formed foams was up to 36 ± 4%. In the core of the sample, the average equivalent circle diameter was found to be 47 ± 20 µm, while on the surface, it was 35 ± 16 µm; thus, the spread of the pore size was smaller than reported previously. To investigate functional applications of the formed FeAl foam, the pressure drop of air during penetration of the foam was examined. It was found that increased porosity of the material increased the flow of the air through the metallic foam.

  17. An empirical formulation to describe the evolution of the high burnup structure

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-15

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  18. ABSTRACT: CONTAMINANT TRAVEL TIMES FROM THE NEVADA TEST SITE TO YUCCA MOUNTAIN: SENSITIVITY TO POROSITY

    International Nuclear Information System (INIS)

    Karl F. Pohlmann; Jianting Zhu; Jenny B. Chapman; Charles E. Russell; Rosemary W. H. Carroll; David S. Shafer

    2008-01-01

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as a geologic repository for spent nuclear fuel and high-level radioactive waste. In this study, we investigate the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to the YM area by estimating the timeframe for advective travel and its uncertainty resulting from porosity value uncertainty for hydrogeologic units (HGUs) in the region. We perform sensitivity analysis to determine the most influential HGUs on advective radionuclide travel times from the NTS to the YM area. Groundwater pathways and advective travel times are obtained using the particle tracking package MODPATH and flow results from the Death Valley Regional Flow System (DVRFS) model by the U.S. Geological Survey. Values and uncertainties of HGU porosities are quantified through evaluation of existing site porosity data and expert professional judgment and are incorporated through Monte Carlo simulations to estimate mean travel times and uncertainties. We base our simulations on two steady state flow scenarios for the purpose of long term prediction and monitoring. The first represents pre-pumping conditions prior to groundwater development in the area in 1912 (the initial stress period of the DVRFS model). The second simulates 1998 pumping (assuming steady state conditions resulting from pumping in the last stress period of the DVRFS model). Considering underground tests in a clustered region around Pahute Mesa on the NTS as initial particle positions, we track these particles forward using MODPATH to identify hydraulically downgradient groundwater discharge zones and to determine which flowpaths will intercept the YM area. Out of the 71 tests in the saturated zone, flowpaths of 23 intercept the YM area under the pre-pumping scenario. For the 1998 pumping scenario, flowpaths from 55 of the 71 tests intercept the YM area. The results illustrate that mean

  19. A method for determining an effective porosity correction factor for thermal conductivity in fast reactor uranium-plutonium oxide fuel pellets

    International Nuclear Information System (INIS)

    Inoue, Masaki; Abe, Kazuyuki; Sato, Isamu

    2000-01-01

    A reliable method has been developed for determining an effective porosity correction factor for calculating a realistic thermal conductivity for fast reactor uranium-plutonium (mixed) oxide fuel pellets. By using image analysis of the ceramographs of transverse sections of mixed-oxide fuel pellets, the fuel morphology could be classified into two basic types. One is a 'two-phase' type that consists of small pores dispersed in the fuel matrix. The other is a 'three-phase' type that has large pores in addition to the small pores dispersed in the fuel matrix. The pore sizes are divided into two categories, large and small, at the 30 μm area equivalent diameter. These classifications lead to an equation for calculating an effective porosity correction factor by accounting for the small and large pore volume fractions and coefficients. This new analytical method for determining the effective porosity correction factor for calculating the realistic thermal conductivity of mixed-oxide fuel was also experimentally confirmed for high-, medium- and low-density fuel pellets

  20. A quantitative comparison of moldic and vuggy porosity structure in karst aquifers using image and geospatial analysis

    Science.gov (United States)

    Culpepper, A. R.; Manda, A. K.

    2011-12-01

    Limestone aquifers are vital sources of groundwater for domestic and industrial use throughout the world. To sustain rising population throughout the southeastern United States, aquifers are increasingly exploited to provide the populace clean and reliable water resources. The moldic Castle Hayne and the vuggy Biscayne aquifer systems are two highly productive aquifers that provide critical water resources to millions of citizens in eastern North Carolina and southeastern Florida, respectively. In order to better understand karst aquifers and evaluate the potential for contaminant transport, detailed investigation of 2D porosity and pore geometry using image and geospatial analysis were undertaken. The objective of this study is to compare and contrast the porosity structure of moldic and vuggy karst aquifers by quantifying 2D porosity and pore geometry from images of slabbed core samples and optical televiewer images. Televiewer images and images of painted core samples from the Spring Garden Member of the Castle Hayne aquifer and Miami Limestone Formation of the Biscayne aquifer were acquired for analysis of porosity structure. The procedure for converting images of slabbed core and televiewer images to a GIS useable format consisted of rectification, calibration, image enhancement, classification, recoding and filtering. In GIS, raster or vector formats were used to assess pore attributes (e.g., area and perimeter) and structure. Preliminary results show that both pore area and perimeter for the Spring Garden Member of the Castle Hayne and Miami Limestone Formation of the Biscayne aquifers can be described by exponential distributions. In both sets of slabbed core images the relatively small pores have the highest occurrence, whereas larger pores occur less frequently. However, the moldic Spring Garden Member of the Castle Hayne aquifer has larger pore sizes derived from cores images than the vuggy Miami Limestone Formation of Biscayne aquifer. Total porosity

  1. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Energy Technology Data Exchange (ETDEWEB)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.

    2009-02-15

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  2. Shrinkage and porosity evolution during air-drying of non-cellular food systems: Experimental data versus mathematical modelling.

    Science.gov (United States)

    Nguyen, Thanh Khuong; Khalloufi, Seddik; Mondor, Martin; Ratti, Cristina

    2018-01-01

    In the present work, the impact of glass transition on shrinkage of non-cellular food systems (NCFS) during air-drying will be assessed from experimental data and the interpretation of a 'shrinkage' function involved in a mathematical model. Two NCFS made from a mixture of water/maltodextrin/agar (w/w/w: 1/0.15/0.015) were created out of maltodextrins with dextrose equivalent 19 (MD19) or 36 (MD36). The NCFS made with MD19 had 30°C higher Tg than those with MD36. This information indicated that, during drying, the NCFS with MD19 would pass from rubbery to glassy state sooner than NCFS MD36, for which glass transition only happens close to the end of drying. For the two NCFS, porosity and volume reduction as a function of moisture content were captured with high accuracy when represented by the mathematical models previously developed. No significant differences in porosity and in maximum shrinkage between both samples during drying were observed. As well, no change in the slope of the shrinkage curve as a function of moisture content was perceived. These results indicate that glass transition alone is not a determinant factor in changes of porosity or volume during air-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of static porosity fluctuations on reactive transport in a porous medium

    Science.gov (United States)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  4. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  5. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  6. Influences of the Air in Metal Powder High Velocity Compaction

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2017-01-01

    Full Text Available During the process of metal powder high velocity impact compaction, the air is compressed sharply and portion remains in the compacts. In order to study the Influences, a discrete density volleyball accumulation model for aluminium powder was established with the use of ABAQUS. Study found that the powder porosity air obstruct the pressing process because remaining air reduced strength and density of the compacts in the current high-speed pressing (V≤100m/s. When speed further increased (V≥100m/s, the temperature of the air increased sharply, and was even much higher than the melting point of the material. When aluminium powder was compressed at a speed of 200m/s, temperatures of air could reach 2033 K, far higher than the melting point of 877 K. Increased density of powders was a result of local softening and even melt adhesive while air between particles with high temperature and pressure flowed past.

  7. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-03-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  8. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    Science.gov (United States)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-06-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  9. Development of high-performance sintered friction material for synchronizer ring; Koseino shoketsu synchronizer ring masatsu zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K; Fuwa, Y; Okajima, H; Yoshikawa, K [Toyota Motor Corp., Aichi (Japan); Nakamura, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Increasing vehicle speed and power, high-performance synchronizer ring of manual transmission is required. We develop double layer sintered synchronizer ring for high performance and cost reduction. The main structure is consisted of ferrous sinter for high strength. In this paper, friction materials of sintered synchronizer ring are studied. We can get the good friction and anti-wear property by means of hard particles (FeTi, ZrO2), solid lubricant (Graphite) and suitable porosity in brass sinter matrix. And we also achieve high joining strength between double layers adding Cu-P material. 6 refs., 13 figs., 2 tabs.

  10. Influence of spray forming process parameters on the microstructure and porosity of Mg{sub 2}Si rich aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stelling, O.; Hehl, A. von [Foundation Institute for Material Science, Bremen (Germany); Uhlenwinkel, V. [University of Bremen, FB4 FG01 Department Process and Chemcial Engineering, Bremen (Germany); Krug, P. [PEAK Werkstoff GmbH, Velbert (Germany); Ellendt, N.

    2010-07-15

    Due to high cooling rates spray forming is an appropriate process to produce aluminum alloys with a high content of Mg{sub 2}Si. Compared to common casting processes, a fine microstructure can be achieved yielding in improved mechanical properties. In this work, billets were spray formed from the two alloys AlMg15Si8Cu2 (22 mass-% Mg{sub 2}Si) and AlMg20.5Si11Cu2 (30 mass-% Mg{sub 2}Si) under different spraying conditions. The analysis of the microstructure showed that the size of Mg{sub 2}Si dispersoids is very sensitive to process parameters. Besides the well known thermal effects of melt superheat (carried out from -40 K to +170 K) and GMR (varied from 2.0 to 6.3) a strong influence of the scanning frequency of the atomizer nozzle (7 Hz and 15 Hz) could be observed. Similar effects could be found for the occurrence of porosity. A new parameter, the enthalpy flow to gas flow ratio (EGR), was defined from these two parameters of which correlations of Mg{sub 2}Si dispersoid size and amount of porosity were found. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    chemical analysis to evaluate the PorosityN(ox thermal neutron porosity linked to neutron capture (Schlumberger's Nuclear Parameter Code, SNUPAR. A calibration curve (Fig. 1 between the (Sigmamac macroscopic capture cross-section and the PorosityN neutron porosity enabled us to determine the PorosityN(ox neutron capture porosity for all samples. The macroscopic capture cross-section of the Beauvoir granite, compared to other rocks (Table 2, is very high, about 86 cu. For the Beauvoir granite, the neutron capture porosity was estimated at about 2. 7% (Table 4. The lithium, with Li2O contents varying from 0. 3 to 1. 7%, is the one element which accounts for 85% of this effect (Table 3. Although the response of a neutron tool is not linear for low porosities (especially lower than 5% and although in some cases the neutron effect of the matrix highly depends on the hydrogen index (close imbrication of neutron slowing and capture phenomena, we restored the PorosityNR total neutron porosity of the Beauvoir granite by stacking n, PorosityN(OH- and PorosityN(ox linearly. This porosity is 9% on the average. For this granite, the PorosityNma neutron matrix effect (PorosityNma = PorosityN(OH- + PorosityN(ox is significant and accounts for 75% of the PorosityNR total neutron porosity corresponding to about 7%. This porosity thus cannot be neglected if the objective is to obtain representative water content values of the granite from neutron porosity log. This is why the second part of our project took up the problem of calibrating neutron tool for analyzing a granitic formation. For the Beauvoir granite, the neutron porosity data were obtained from standard calibration in limestone blocks. As the neutron effect of the granite matrix was not negligible, we performed our own calibration using seven granite samples with a perfectly well-known total neutron porosity (free water content and neutron matrix effect. We determined a PorosityNg granitecalibration neutron porosity. For this, the

  12. Changes in porosity of graphite caused by radiolytic gasification by carbon dioxide

    International Nuclear Information System (INIS)

    Murdie, Neil; Edwards, I.A.S.; Marsh, Harry

    1986-01-01

    Methods have been developed to study porosity in nuclear grade graphite. The changes induced during the radiolytic gasification of graphite in carbon dioxide have been investigated. Porosity in radiolytically gasified graphite (0-22.8% wt. loss) was examined by optical microscopy and scanning electron microscopy (SEM). Each sample was vacuum impregnated with a slow-setting resin containing a fluorescent dye. Optical microscopy was used to study pores >2 μm 2 c.s.a. A semi-automatic image analysis system linked to the optical microscope enabled pore parameter data including cross-sectional areas, perimeters, Feret's diameters and shape factors, to be collected. The results showed that radiolytic gasification produced a large increase in the number of pores 2 c.s.a. New open pores 2 c.s.a. were developed by gasification of existing open porosity into the closed porosity ( 2 c.s.a.) within the binder-coke. Open pores, 2-100 μm 2 c.s.a., which were gasified within the coarse-grained mosaics of the binder-coke. In the gasification process to 22.8% wt. loss, the apparent open pore volume increased from 6.6 to 33.8% and the apparent closed pore volumes decreased from approx. 3% to 0.1%. The increase in apparent open porosity from 6.6% (virgin) to 33.8% resulted from gasification within original open porosity and by the opening and development of closed porosity. There was no evidence for creation of porosity from within the 'bulk' graphite, it being developed from existing fine porosity. The structure of pores > 100 μm 2 c.s.a. showed no change because of the inhibition of oxidation by deposition of carbonaceous species from the CH 4 inhibitor. Such species diffuse to the pore wall and are sacrificially oxidised. (author)

  13. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  14. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  15. A review of porosity-generating mechanisms in crustal shear zones

    Science.gov (United States)

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.

    2009-04-01

    Knowledge of the spatiotemporal characteristics of permeability is critical for the understanding of fluid migration in rocks. In diagenetic and metamorphic rocks different porosity-generating mechanisms contribute to permeability and so influence fluid migration and fluid/rock interaction. However, little is known about their relative contributions to the porosity architecture of a rock in a tectono-metamorphic environment. This presentation reviews porosity-generating mechanisms that affect fluid migration in shear zones, the most important crustal fluid conduits, in the context of the tectonometamorphic evolution of rocks. Mechanisms that generate porosity can be classified in a) those that involve the direct action of a fluid, b) processes in which a fluid partakes or that are supported by a fluid or c) mechanism that do not involve a fluid. a) Hydraulic fracturing, where it happens through the formation of tensile fractures, occurs where pore fluid pressures equalize the combined lithostatic pressure and strength of the rock (Etheridge et al., 1984, Cox & Etheridge, 1989, Oliver, 1996). Here an internally released (devolatilisation reactions, e.g., Rumble, 1994, Hacker, 1997, Yardley, 1997 and references therein) or externally derived (infiltrating from metamorphic, magmatic or meteoric sources, Baumgartner et al., 1997, Jamtveit et al., 1997, Thompson, 1997, Gleeson et al., 2003) fluid directly causes the mechanical failure of a rock. Where a fluid is in chemical disequilibrium with a rock (undersaturated with regard to a chemical species) minerals will be dissolved, generating dissolution porosity. Rocks ‘leached' by the removal of chemical components by vast amounts of fluid are reported to lose up to 60% of their original volume (e.g., Kerrich et al., 1984, McCaig 1988). Dissolution porosity is probably an underrated porosity-generating mechanism. It can be expected along the entire metamorphic evolution, including diagenesis (Higgs et al., 2007) and

  16. Building the UPPA high capacity tensiometer

    Directory of Open Access Journals (Sweden)

    Mendes Joao

    2016-01-01

    Full Text Available High capacity tensiometers (HCTs are sensors capable of directly measuring tensile pore water pressure (suction in soils. HCTs are typically composed of a casing that encapsulates a high air entry value ceramic filter, a water reservoir and a pressure sensing element. Since the creation of the first HCT by Ridley and Burland in 1993 at Imperial College London, HCTs have been almost exclusively built and used in academic research. The limited use in industrial applications can be explained by a lack of unsaturated soil mechanics knowledge among engineering practitioners but also by the technical difficulties associated to the direct measurement of tensile water pressures beyond the cavitation limit of -100kPa. In this paper, we present the recent design and manufacture of a new HCT at the Université de Pau et des Pays de l’Adour (UPPA in France. Different prototypes were tried by changing the main components of the device including the type of ceramic filter, pressure transducer and geometry of the external casing. In particular, two ceramic filters of distinct porosity, three pressure transducers with distinct materials/geometries and four casing designs were tested.

  17. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.

    Science.gov (United States)

    Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet

    2011-02-01

    We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.

  18. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  19. High Nitrogen Fertilization of Tobacco Crop in Headwater Watershed Contaminates Subsurface and Well Waters with Nitrate

    Directory of Open Access Journals (Sweden)

    D. R. Kaiser

    2015-01-01

    Full Text Available Our hypothesis was that subsurface and well waters in watershed with shallow, stony soils, steep landscapes, and cropped to tobacco are contaminated by nitrate. Nitrate in soil solution was monitored in (0.20 m and below (0.5 m root zone with tension lysimeters, in five transects. Water from two wells (beneath tobacco field and in native forest used for human consumption was also analyzed for nitrate. Soil bulk density, porosity, and saturated hydraulic conductivity were evaluated. Soil physical and hydrological properties showed great variation at different landscape positions and soil depths. Soil coarse grain size, high porosity, and saturated hydraulic conductivity favored leaching nitrate. Nitrate in soil solution from tobacco fields was greater than in natural environment. Nitrate reached depths bellow rooting zone with values as high as 80 mg L−1 in tobacco plantation. Water well located below tobacco plantation had high nitrate concentration, sometimes above the critical limit of 10 mg L−1. Tobacco cropping causes significant water pollution by nitrate, posing risk to human health. A large amount of nitrogen fertilizers applied to tobacco and nitrate in subsurface waters demonstrate the unsustainability of tobacco production in small farming units on steeps slopes, with stony and shallow soils.

  20. Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.

    2017-03-01

    In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.

  1. Time course of fibronectin in the peri-implant tissue and neointima formation after functional implantation of polyester-based vascular prostheses with different porosity in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Patrzyk, Maciej; Hoene, Andreas [Department of Surgery, Ernst Moritz Arndt University Greifswald, Friedrich-Loeffler-Str. 23, D-17489 Greifswald (Germany); Jarchow, Raymond [Computation Centre, Ernst Moritz Arndt University Greifswald, Felix-Hausdorff-Str. 12, D-17489 Greifswald (Germany); Wilhelm, Lutz [Department of Surgery, Hospital Demmin, Loitzer Str. 1, D-17109 Demmin (Germany); Walschus, Uwe; Schlosser, Michael [Research Group of Predictive Diagnostics of the Department of Medical Biochemistry and Molecular Biology and Institute of Pathophysiology, Ernst Moritz Arndt University Greifswald, Greifswalder Str. 11c, D-17495 Karlsburg (Germany); Zippel, Roland, E-mail: schlosse@uni-greifswald.d [Department of Surgery, Elbland Hospital Center, Weinbergstr. 8, D-01589 Riesa (Germany)

    2010-10-01

    Intima hyperplasia, resulting from extracellular matrix (ECM) secretion, can lead to vascular prosthesis occlusion and is a major problem in vascular surgery. Fibronectin might contribute to ongoing ECM secretion. However, the exact role of fibronectin and its influence on neointima formation remains unclear. This study was aimed at investigating the time course of the fibronectin area fraction and neointima formation following the functional implantation of three different polyester vascular prostheses into pigs. The infrarenal aorta from 15 animals (n = 5/group) was replaced by prosthesis segments with low, medium and high primary porosity. After 7, 14, 21, 28 and 116 days, the prostheses were morphometrically examined. Overall, the fibronectin area fraction was inversely correlated with the neointima thickness, demonstrating high fibronectin levels in the early phase (days 7 and 14) and low levels in the later phase with almost complete neointima formation (days 21-116). Throughout the study, fibronectin levels were highest at the proximal anastomosis region. The low porosity prosthesis had the highest fibronectin area fraction and a delayed neointima formation in the middle phase (days 21 and 28) but the highest neointima lining on day 116. The results indicate a relationship between fibronectin and neointima formation with the prosthesis porosity, demonstrating the importance of the textile design for tissue reactions following implantation.

  2. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  3. Porosity-depth trends of carbonate deposits along the northwest shelf of Australia (IODP Expedition 356)

    Science.gov (United States)

    Lee, Eun Young; Kominz, Michelle; Reuning, Lars; Takayanagi, Hideko; Knierzinger, Wolfgang; Wagreich, Michael; Expedition 356 shipboard scientists, IODP

    2017-04-01

    The northwest shelf (NWS) of Australia extends from northern tropical to southern temperate latitudes situated offshore from the low-moderate-relief and semi-arid Australian continent. The shelf environment is dominated throughout by carbonate sedimentation with warm-water and tropical carbonate deposits, connected to the long-term northward drift of Australia bringing the NWS into tropical latitudes. IODP expedition 356 cored seven sites (U1458-U1464) covering a latitudinal range of 29°S-18°S off the NWS. This study focuses on porosity-depth trends of the Miocene - Pleistocene carbonate sediment on the NWS. The NWS is an ideal area to study regional (and furthermore general) carbonate porosity-depth relationships, because it contains a nearly continuous sequence of carbonate sediment ranging in depth from the surface to about 1,100m and in age from Pleistocene to Miocene. Porosity-depth trends of sedimentary rocks are generally controlled by a variety of factors which govern the rates of porosity loss due to mechanical compaction and of porosity loss (or gain) due to chemical processes during diagenesis. This study derives porosity data from Moisture and Density (MAD) technique conducted during IODP Expedition 356. MAD samples were collected from packstone (44%), wackestone (27%), mudstone (15%) and grainstone (7%), with the rest from floatstone, rudstone, dolostone, sandstone and other subordinate lithologies. To understand porosity-depth trends, the porosity data are arranged both exponentially and linearly, and correlated with age models and lithologic descriptions provided by IODP shipboard scientists. Porosity(%)-depth(m) trends of all the porosity data are Porosity=52e-0.0008/Depth (exponential) and Porosity=-0.03Depth+52 (linear). Porosities near surface and in the deepest parts of each well are least well represented by these trend lines. Porosity values of Pleistocene sediment are generally higher than those of Miocene - Pliocene sediment. The initial

  4. Poroelasticity of high porosity chalk under depletion

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2013-01-01

    on mechanical test results is found to be low-er than the pretest dynamic Biot coefficient determined from elastic wave propagation for the loading path and with less deviation under depletion. The calculated lateral stress is lower than the experimentally measured lateral stress depending on loading path...

  5. Prediction of porosity of food materials during drying: Current challenges and directions.

    Science.gov (United States)

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  6. Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.

    Science.gov (United States)

    Yang, Lin; Somesfalean, Gabriel; He, Sailing

    2014-02-10

    An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.

  7. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  8. Influence of the Porosity of the TiO2 Film on the Performance of the Perovskite Solar Cell

    Directory of Open Access Journals (Sweden)

    Xiaodan Sun

    2017-01-01

    Full Text Available The structure of mesoporous TiO2 (mp-TiO2 films is crucial to the performance of mesoporous perovskite solar cells (PSCs. In this study, we fabricated highly porous mp-TiO2 films by doping polystyrene (PS spheres in TiO2 paste. The composition of the perovskite films was effectively improved by modifying the mass fraction of the PS spheres in the TiO2 paste. Due to the high porosity of the mp-TiO2 film, PbI2 and CH3NH3I could sufficiently infiltrate into the network of the mp-TiO2 film, which ensured a more complete transformation to CH3NH3PbI3. The surface morphology of the mp-TiO2 film and the photoelectric performance of the perovskite solar cells were investigated. The results showed that an increase in the porosity of the mp-TiO2 film resulted in an improvement in the performance of the PSCs. The best device with the optimized mass fraction of 1.0 wt% PS in TiO2 paste exhibited an efficiency of 12.69%, which is 25% higher than the efficiency of the PSCs without PS spheres.

  9. Conceptual modeling coupled thermal-hydrological-chemical processes in bentonite buffer for high-level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Young; Park, Jin Young [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Ryu, Ji Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

  10. Mesoporous Bragg reflectors: block-copolymer self-assembly leads to building blocks with well defined continuous pores and high control over optical properties

    KAUST Repository

    Guldin, S.

    2011-08-19

    Mesoporous distributed Bragg re ectors (MDBRs) exhibit porosity on the sub-optical length scale. This makes them ideally suited as sensing platforms in biology and chemistry as well as for light management in optoelectronic devices. Here we present a new fast forward route for the fabrication of MDBRs which relies on the self-assembling properties of the block copolymer poly(isoprene-block -ethylene oxide) (PI-b -PEO) in combination with sol-gel chemistry. The interplay between structure directing organic host and co-assembled inorganic guest allows the ne tuning of refractive index in the outcome material. The refractive index dierence between the high and low porosity layer can be as high as 0.4, with the optical interfaces being well dened. Following a 30 min annealing protocol after each layer deposition enables the fast and reliable stacking of MDBRs which exhibit a continuous TiO2 network with large accessible pores and high optical quality.

  11. Influence of porosity on artificial deterioration of marble and limestone by heating

    Science.gov (United States)

    Sassoni, Enrico; Franzoni, Elisa

    2014-06-01

    Testing of stone consolidants to be used on-site, as well as research on new consolidating products, requires suitable stone samples, with deteriorated but still uniform and controllable characteristics. Therefore, a new methodology to artificially deteriorate stone samples by heating, exploiting the anisotropic thermal deformation of calcite crystals, has recently been proposed. In this study, the heating effects on a variety of lithotypes was evaluated and the influence of porosity in determining the actual heating effectiveness was specifically investigated. One marble and four limestones, having comparable calcite amounts but very different porosity, were heated at 400 °C for 1 hour. A systematic comparison between porosity, pore size distribution, water absorption, sorptivity and ultrasonic pulse velocity of unheated and heated samples was performed. The results of the study show that the initial stone porosity plays a very important role, as the modifications in microstructural, physical and mechanical properties are way less pronounced for increasing porosity. Heating was thus confirmed as a very promising artificial deterioration method, whose effectiveness in producing alterations that suitably resemble those actually experienced in the field depends on the initial porosity of the stone to be treated.

  12. Influence of porosity on mechanical properties of tetragonal stabilized zirconia

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Soprani, Stefano

    2018-01-01

    3YSZ specimens with variable open porosity (1–57%) were fabricated, and the stiffness, strength and fracture properties (fracture toughness and R-curve) were measured to investigate their potential use as support structures for solid oxide fuel or electrolysis cells. The ball-on-ring test was used...... to characterize Young's modulus and Weibull strength. The variation of fracture toughness with porosity was investigated and modelled using the results from fracture mechanical testing. A distinct R-curve behaviour was observed in dense 3YSZ specimens, in samples with a porosity around 15% and in some...... supports for SOFC/SOECs from a mechanical point of view....

  13. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  14. Critically Tapered Wedges and Critical State Soil Mechanics: Porosity-based Pressure Prediction in the Nankai Accretionary Prism.

    Science.gov (United States)

    Flemings, P. B.; Saffer, D. M.

    2016-12-01

    We predict pore pressure from porosity measurements at ODP Sites 1174 and 808 in the Nankai Accretionary prism, offshore Japan. For a range of friction angles (5-30 degrees), we estimate that the pore pressure ratio (λ*) ranges from 0.5 to 0.8: the pore pressure supports 50% to 80% of the overburden. Higher friction angles result in higher pressures. For the majority of the scenarios, pressures within the prism parallel the lithostat and are greater than the pressures beneath it. Our results support previous qualitative interpretations at Nankai and elsewhere suggesting that lower porosity above the décollement than below reflects higher mean effective stress there. By coupling a critical state soil model (Modified Cam Clay), which describes porosity as a function of mean and deviator stress, with a stress model that considers the difference in stress states above and below the décollement, we quantitatively show that the prism porosities record significant overpressure despite their lower porosity. As the soil is consumed by the advancing prism, changes in both mean and shear stress drive overpressure generation. Even in the extreme case where only change in mean stress is considered (a vertical end cap model), significant overpressures are generated. The high pressures we predict require an effective friction coefficient (µb') at the décollement of 0.023-0.038. Assuming that the pore pressure at the décollement lies between the values we report for the wedge and the underthrusting sediments, these effective friction coefficients correspond to intrinsic friction coefficients of µb= 0.08-0.38 (f = 4.6 - 21°). These values are comparable to friction coefficients of 0.1-0.4 reported for clay-dominated fault zones in a wide range of settings. By coupling the critical wedge model with an appropriate constitutive model, we present a systematic approach to predict pressure in thrust systems.

  15. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  16. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  17. Analytical and numerical study of radiation effect up to high burnup in power reactor fuels

    International Nuclear Information System (INIS)

    Lemes, M; Denis, A; Soba, A

    2012-01-01

    In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)

  18. Hierarchical Porous Carbon Spheres for High-Performance Na-O2 Batteries.

    Science.gov (United States)

    Sun, Bing; Kretschmer, Katja; Xie, Xiuqiang; Munroe, Paul; Peng, Zhangquan; Wang, Guoxiu

    2017-12-01

    As a new family member of room-temperature aprotic metal-O 2 batteries, Na-O 2 batteries, are attracting growing attention because of their relatively high theoretical specific energy and particularly their uncompromised round-trip efficiency. Here, a hierarchical porous carbon sphere (PCS) electrode that has outstanding properties to realize Na-O 2 batteries with excellent electrochemical performances is reported. The controlled porosity of the PCS electrode, with macropores formed between PCSs and nanopores inside each PCS, enables effective formation/decomposition of NaO 2 by facilitating the electrolyte impregnation and oxygen diffusion to the inner part of the oxygen electrode. In addition, the discharge product of NaO 2 is deposited on the surface of individual PCSs with an unusual conformal film-like morphology, which can be more easily decomposed than the commonly observed microsized NaO 2 cubes in Na-O 2 batteries. A combination of coulometry, X-ray diffraction, and in situ differential electrochemical mass spectrometry provides compelling evidence that the operation of the PCS-based Na-O 2 battery is underpinned by the formation and decomposition of NaO 2 . This work demonstrates that employing nanostructured carbon materials to control the porosity, pore-size distribution of the oxygen electrodes, and the morphology of the discharged NaO 2 is a promising strategy to develop high-performance Na-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from the Lesser Antilles, southern Caribbean

    Science.gov (United States)

    Spiske, Michaela; Böröcz, Zoltán; Bahlburg, Heinrich

    2008-04-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Parameters useful for distinguishing between hurricane and tsunami origins include distance of a deposit from the coast, boulder weight and inferred wave height. In order to investigate the role of porosity on boulder transport and elucidate the distinction between tsunami and hurricane impacts, we performed Archimedean and optical 3D-profilometry measurements for the determination of accurate physical parameters for porous reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles, Leeward Islands). Subsets of different coral species and lithotypes constituting the boulders were sampled, the physical parameters of boulders were analyzed, and each boulder component was attributed to a certain range of porosity and density. Lowest porosities were observed in calcarenite (5-8%), whereas highest porosities were measured for serpulid reef rock (47-68%). Porous serpulid reef rock (0.8-1.2 g/cm 3) and the coral Diploria sp. (0.6-1.0 g/cm 3) possess the lowest bulk densities, while less porous calcarenite (2.0-2.7 g/cm 3) and the coral Montastrea cavernosa yield the highest bulk density values (1.6-2.7 g/cm 3). The obtained physical parameters were used to calculate boulder weights and both hurricane and tsunami wave heights necessary to initiate transport of these boulders. Boulders are up to 5.6 times lighter than given in previously published data, and hence required minimum hurricane or tsunami waves are lower than hitherto assumed. The calculated wave heights, the high frequency of tropical storms and hurricanes in the southern Caribbean and the occurrence of boulders exclusively on the windward sides of the islands, implicate that for boulders on the ABC Islands a hurricane origin is more likely than a tsunami origin.

  20. High resolution aquifer characterization using crosshole GPR full-waveform tomography

    Science.gov (United States)

    Gueting, N.; Vienken, T.; Klotzsche, A.; Van Der Kruk, J.; Vanderborght, J.; Caers, J.; Vereecken, H.; Englert, A.

    2016-12-01

    Limited knowledge about the spatial distribution of aquifer properties typically constrains our ability to predict subsurface flow and transport. Here, we investigate the value of using high resolution full-waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along cross-sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classification is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual facies show some overlap and the absolute hydraulic conductivities from the different methods (direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few decimeters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.

  1. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Kohei Tanaka

    Full Text Available Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1 covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes, and 2 open nests, in which eggs are exposed in the nest and brooded (as in most birds. Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1 covered nests are likely the primitive condition for dinosaurs (and probably archosaurs, and 2 open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment

  2. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Science.gov (United States)

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  3. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  4. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  5. Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-09-01

    In this article, the size-dependent and porosity-dependent vibrational behavior of magneto-electro-elastic functionally graded (MEE-FG) nanoscale beams on two-parameter elastic substrate is presented via a third-order shear deformation beam model. Porosity-dependent material coefficients of the nanobeam are compositionally graded throughout the thickness according to a modified power-law model. Incorporation of small size effect is carried out based on Eringen's nonlocal elasticity theory. Through Hamilton's principle, derivation of nonlocal governing equations is performed. After analytically solving these equations, the influences of porosity, elastic foundation, magnetic potential, applied voltage, scale coefficient, material gradation and slenderness ratio on the frequencies of the porous MEE-FG nanobeams are examined.

  6. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    Science.gov (United States)

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may

  7. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO_2 storage have been characterized and reacted at reservoir conditions with an impure CO_2 stream and low salinity brine. Cores from a target CO_2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO_2-brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO_2-brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO_2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap

  8. Establishing empirical relationships to predict porosity level and corrosion rate of atmospheric plasma-sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-06-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. In this work, empirical relationships were developed to predict the porosity and corrosion rate of alumina coatings by incorporating independently controllable atmospheric plasma spray operational parameters (input power, stand-off distance and powder feed rate using response surface methodology (RSM. A central composite rotatable design with three factors and five levels was chosen to minimize the number of experimental conditions. Within the scope of the design space, the input power and the stand-off distance appeared to be the most significant two parameters affecting the responses among the three investigated process parameters. A linear regression relationship was also established between porosity and corrosion rate of the alumina coatings. Further, sensitivity analysis was carried out and compared with the relative impact of three process parameters on porosity level and corrosion rate to verify the measurement errors on the values of the uncertainty in estimated parameters.

  9. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    CSIR Research Space (South Africa)

    Govender, G

    2007-07-01

    Full Text Available components. The low porosity levels in SSM high pressure die castings (HPDC) improves the weldability of these components. The aim of the current research was to perform a comparative study of laser and TIG welding of SSM HPDC aluminium alloy A356. SSM...

  10. Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy

    DEFF Research Database (Denmark)

    Karczewski, Jakub; Dunst, Katarzyna; Jasinski, Piotr

    2017-01-01

    Protective coatings for porous alloys for high temperature use are relatively new materials. Their main drawback is high temperature corrosion. In this work protective coatings based the on Y-precursor infiltrated into the sintered Ni22Cr alloys are studied at 700°C. Effects of the amount...... of the protective phase on the resulting corrosion properties are evaluated in air and humidified hydrogen. Weight gain of the samples, their open porosities and microstructures are analyzed and compared. Results show, that by the addition of even a minor amount of the Y-precursor corrosion rates can be decreased...

  11. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  12. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  13. Microstructural evaluation of a varistor block utilized in high voltage surge arresters

    International Nuclear Information System (INIS)

    Andrade, J.M. de; Dias, R.; Furtado, J.G. de M.; Assuncao, F.C.R.

    2010-01-01

    Varistor is a semiconductor ceramic device characterized to have a high non-linear electrical resistance, it is used as active element of surge arresters with purpose of protecting of electro-electronics systems. Its properties are directly dependents of chemical composition and microstructural characteristics, such as grain size, porosity, twins and phases distribution. This work has the objective to characterize microstructurally a commercial varistor block of ZnO used in high voltage surge arrest and from this characterization to infer aspects about of its electrical macroscopic performance. DRX and SEM-EDS were used for microstructural analysis. The microstructural evaluation allows pointing the critical points of microstructure and, suggest relevant aspects to the improvement of commercial varistor microstructure, optimizing the electrothermal behavior of the device. (author)

  14. Development of highly efficient solid oxide electrolyzer cell systems

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk

    on the allowed average (exit) CO concentration was quite high (from 22 to 32 %). The effective diffusion in the fuel electrode was investigated with a Wicke-Kallenbach set up. Combined with measurements of the thickness, porosity and pore size, the tortuosity of the material was calculated. This made it possible...... in the future energy system. The overall objective of the thesis was to investigate the limits for the allowed CO concentration during electrolysis of CO2 in SOECs and how the limit could be increased. A high CO concentration is desired because it lowers the strain on the separation unit and amount of recycle......, when SOECs are used in systems like Haldor Topsoe A/S’s “eCOs”. In this way, the overall eÿciency of SOEC systems are increased. The CO concentration was limited by carbon formation via the Boudouard reaction, a non-uniform flow in the fuel channels over the fuel electrode, and the di˙usion in the fuel...

  15. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2016-08-11

    Microbial fuel cells (MFCs) can generate electricity from the oxidation of organic substrates using anodic exoelectrogenic bacteria and have great potential for harvesting electric energy from wastewater. Improving oxygen reduction reaction (ORR) performance at a neutral pH is needed for efficient energy production. Here we show a nitrogen doped (≈4 wt%) ionothermal carbon aerogel (NDC) with a high surface area, large pore volume, and hierarchical porosity, with good electrocatalytic properties for ORR in MFCs. The MFCs using NDC air cathodes achieved a high maximum power density of 2300 mW m−2, which was 1.7 times higher than the most commonly used Pt/C air cathodes and also higher than most state-of-the-art ORR catalyst air cathodes. Rotating disk electrode measurements verified the superior electrocatalytic activity of NDC with an efficient four-electron transfer pathway (n=3.9). These findings highlight NDC as a better-performing and cost-efficient catalyst compared with Pt/C, making it highly viable for MFC applications.

  16. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    Science.gov (United States)

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with size<10 μm are demonstrated. Possible applications in filtering, sensing, electro-optical modulation, solar cells, and photocatalysis are envisioned.

  17. A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations

    Science.gov (United States)

    Guinot, Vincent

    2017-11-01

    The validity of flux and source term formulae used in shallow water models with porosity for urban flood simulations is assessed by solving the two-dimensional shallow water equations over computational domains representing periodic building layouts. The models under assessment are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP) models. 9 different geometries are considered. 18 two-dimensional initial value problems and 6 two-dimensional boundary value problems are defined. This results in a set of 96 fine grid simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP flux and source term models outperform those of the SP and IP models when the Riemann problem is aligned with the main street directions, (ii) all models give erroneous flux closures when is the Riemann problem is not aligned with one of the main street directions or when the main street directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time when the street directions are orthogonal and the Riemann problem is aligned with one of them, (iv) a momentum balance confirms the existence of the transient momentum dissipation model presented in the DIP model, (v) none of the source term models presented so far in the literature allows all flow configurations to be accounted for(vi) future laboratory experiments aiming at the validation of flux and source term closures should focus on the high-resolution, two-dimensional monitoring of both water depth and flow velocity fields.

  18. Double porosity models for the description of water infiltration in wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2004-01-01

    In this paper some of the possibilities of applying double porosity and permeability models to the problem of water infiltration in wood are explored. It is shown that the double porosity model can capture a number of commonly reported anomalies including two-stage infiltration...

  19. Study of an Al-Si-Cu HPDC alloy with high Zn content for the production of components requiring high ductility and tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Vicario, Iban; Egizabal, Pedro; Galarraga, Haize; Plaza, Luis Maria; Crespo, Inigo [Fundacion Tecnalia Research and Innovation, Donostia-San Sebastien (Spain). Dept. of foundry processes

    2013-04-15

    Conventional high-pressure die casting aluminium components present certain limitations in terms of mechanical properties attainable due to the intrinsic porosity of the castings as well as the presence of iron-based brittle intermetallic phases. The present work approaches the increase in ductility and tensile strength through the analysis of the effect of the alloying elements of AlSi alloys used for high-pressure die casting. The combination of alloying elements providing the best results in terms of ductility and tensile strength were eventually selected to produce a batch of components that were thoroughly tested. The final alloy had a composition of Si 8.21, Fe 0.78, Cu 1.53, Mn 0.64, Mg 0.46, Ni 0.07, Zn 3.37, Pb 0.34, Sn 0.27, Ti 0.18 and Cr 0.04wt.%. The selected alloy performance was compared to that of the commercial AlSi9Cu3 and Silafont {sup registered} 36 alloys.

  20. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images

    International Nuclear Information System (INIS)

    N'Diaye, Mambaye; Degeratu, Cristinel; Bouler, Jean-Michel; Chappard, Daniel

    2013-01-01

    Porous structures are becoming more and more important in biology and material science because they help in reducing the density of the grafted material. For biomaterials, porosity also increases the accessibility of cells and vessels inside the grafted area. However, descriptors of porosity are scanty. We have used a series of biomaterials with different types of porosity (created by various porogens: fibers, beads …). Blocks were studied by microcomputed tomography for the measurement of 3D porosity. 2D sections were re-sliced to analyze the microarchitecture of the pores and were transferred to image analysis programs: star volumes, interconnectivity index, Minkowski–Bouligand and Kolmogorov fractal dimensions were determined. Lacunarity and succolarity, two recently described fractal dimensions, were also computed. These parameters provided a precise description of porosity and pores' characteristics. Non-linear relationships were found between several descriptors e.g. succolarity and star volume of the material. A linear correlation was found between lacunarity and succolarity. These techniques appear suitable in the study of biomaterials usable as bone substitutes. Highlights: ► Interconnected porosity is important in the development of bone substitutes. ► Porosity was evaluated by 2D and 3D morphometry on microCT images. ► Euclidean and fractal descriptors measure interconnectivity on 2D microCT images. ► Lacunarity and succolarity were evaluated on a series of porous biomaterials

  1. Unconfined versus confined speleogenetic settings: variations of solution porosity.

    Directory of Open Access Journals (Sweden)

    Klimchouk Alexander

    2006-01-01

    Full Text Available Speleogenesis in confined settings generates cave morphologies that differ much from those formed in unconfined settings. Cavesdeveloped in unconfined settings are characterised by broadly dendritic patterns of channels due to highly competing development.In contrast, caves originated under confined conditions tend to form two- or three-dimensional mazes with densely packed conduits.This paper illustrates variations of solution (channel porosity resulted from speleogenesis in unconfined and confined settings by theanalysis of morphometric parameters of typical cave patterns. Two samples of typical cave systems formed in the respective settingsare compared. The sample that represents unconfined speleogenesis consists of solely limestone caves, whereas gypsum cavesof this type tend to be less dendritic and more linear. The sample that represents confined speleogenesis consists of both limestoneand gypsum maze caves. The comparison shows considerable differences in average values of some parameters between thesettings. Passage network density (the ratio of the cave length to the area of the cave field, km/km2 is one order of magnitudegreater in confined settings than in unconfined (average 167.3 km/km2 versus 16.6 km/km2. Similarly, an order of magnitudedifference is observed in cave porosity (a fraction of the volume of a cave block, occupied by mapped cavities; 5.0 % versus 0.4 %.This illustrates that storage in maturely karstified confined aquifers is generally much greater than in unconfined. The average areal coverage (a fraction of the area of the cave field occupied by passages in a plan view is about 5 times greater in confined settingsthan in unconfined (29.7 % versus 6.4 %. This indicates that conduit permeability in confined aquifers is appreciably easier to targetwith drilling than the widely spaced conduits in unconfined aquifers.

  2. Porosity, petrophysics and permeability of the Whitby Mudstone (UK)

    Science.gov (United States)

    Houben, M.; Barnhoorn, A.; Hardebol, N.; Ifada, M.; Boersma, Q.; Douma, L.; Peach, C. J.; Bertotti, G.; Drury, M. R.

    2016-12-01

    Typically pore diameters in shales range from the µm down to the nm scale and the effective permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural fracture network present. The length and spacing of mechanical induced and natural fractures is one of the factors controlling gas produtivity from unconventional reservoirs. Permeability of the Whitby Mudstone measured on 1 inch cores was linked to microstructure and combined with natural fracture spacing present in outcrops along the Yorkshire coast (UK) to get insight into possible fluid pathways from reservoir to well. We used a combination of different techniques to characterize the porosity (gas adsorption, Scanning Electron Microscopy), mineralogy (X-Ray Fluorescence, X-Ray Diffraction, Scanning Electron Microscopy) and permeability (pressure step decay) of the Whitby Mudstone. In addition, we mapped the natural fracture network as present in outcrops along the Yorkshire coast (UK) at the 10-2-101m scale. Mineralogically we are dealing with a rock that is high in clay content and has an average organic matter content of about 10%. Results show a low porosity (max. 7%) as well as low permeability for the Whitby Mudstone. The permeability, measured parallel to bedding, depends on the confining pressure and is 86 nanodarcy at 10 MPa effective confining pressure and decreases to 16 nanodarcy at 40 MPa effective confining pressure. At the scale of observation the average distance to nearest natural fracture is in the order of 0.13 meter and 90 percent of all matrix elements are spaced within 0.4 meter to the nearest fracture. By assuming darcy flow, a permeability of 100 nanodarcy and 10% of overpressure we calculated that for the Whitby mudstone most of the gas resides in the matrix for less than 60 days until it reaches the fracture network.

  3. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity

    International Nuclear Information System (INIS)

    Xu Bin; Wu Feng; Su Yuefeng; Cao Gaoping; Chen Shi; Zhou Zhiming; Yang Yusheng

    2008-01-01

    This work is focused on the competitive effects on the performance of the electric double layer capacitors (EDLCs) between porosity increase and simultaneous conductivity decrease for KOH-activated carbon nanotubes (CNTs). A series of the CNTs have been activated with KOH to enhance their surface areas for application in EDLCs. The microstructure of the activated carbon nanotubes (ACNTs) is characterized with N 2 adsorption, transmission electron microscopy (TEM) observation and electric conductivity measurement. Their electrochemical performances are evaluated in aqueous KOH electrolyte with galvanostatic charge/discharge, cyclic voltammetry, and ac impedance spectroscopy. It is found that the KOH activation enhances the specific surface area of the CNTs and its specific capacitance but decreases its electric conductivity and the rate performance in EDLC. By controlling the activation of the CNTs to balance the porosity and conductivity, ACNTs with both high capacitance and good rate performance are obtained

  4. High-level radioactive waste incorporation into (special) cements

    International Nuclear Information System (INIS)

    Roy, D.M.; Gouda, G.R.

    1978-01-01

    A feasibility study has demonstrated that very strong, durable, relatively impermeable cylinders may be prepared by hot pressing combinations of cements with simulated radioactive waste solids. While the properties have not been studied exhaustively, the results suggest an optional method for immobilization and isolation of radioactive waste. Samples prepared with calcium aluminate cements appeared to have properties superior to those with Portland cements. Four simulated radioactive waste compositions having high rare-earth oxide contents, and some containing a large excess of NaNO 3 , were studied. Modest temperatures [423 to 673 K (150 to 400 0 C)] were used for hot pressing at pressures from 178 to 345 MPa. Dense strong very low porosity specimens resulted when mixtures containing from 10 to 50% waste were hot pressed, incorporating also a small percentage of water. In addition, high-strength cement cylinders were prepared with the waste solid (approximately 20 wt% waste) in a separate core and were very resistant to leaching by water near its boiling point. With this configuration, even the NaNO 3 -containing wastes were resistant to leaching by water

  5. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  6. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering.

    Science.gov (United States)

    Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo

    2017-01-02

    Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors.

    Science.gov (United States)

    Sevilla, Marta; Fuertes, Antonio B

    2014-05-27

    An easy, one-step procedure is proposed for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes. The procedure is based on the carbonization of an organic salt, i.e., potassium citrate, at a temperature in the 750-900 °C range. In this way, carbon particles made up of interconnected carbon nanosheets with a thickness of <80 nm are obtained. The porosity of the carbon nanosheets consists essentially of micropores distributed in two pore systems of 0.7-0.85 nm and 0.95-1.6 nm. Importantly, the micropore sizes of both systems can be enlarged by simply increasing the carbonization temperature. Furthermore, the carbon nanosheets possess BET surface areas in the ∼1400-2200 m(2) g(-1) range and electronic conductivities in the range of 1.7-7.4 S cm(-1) (measured at 7.1 MPa). These materials behave as high-performance supercapacitor electrodes in organic electrolyte and exhibit an excellent power handling ability and a superb robustness over long-term cycling. Excellent results were obtained with the supercapacitor fabricated from the material synthesized at 850 °C in terms of both gravimetric and volumetric energy and power densities. This device was able to deliver ∼13 Wh kg(-1) (5.2 Wh L(-1)) at an extremely high power density of 78 kW kg(-1) (31 kW L(-1)) and ∼30 Wh kg(-1) (12 Wh L(-1)) at a power density of 13 kW kg(-1) (5.2 kW L(-1)) (voltage range of 2.7 V).

  8. Determination of reservoir effective porosity using nuclear magnetic logging data

    International Nuclear Information System (INIS)

    Aksel'rod, S.M.; Danevich, V.I.; Sadykov, D.M.

    1979-01-01

    In connection with the development of nuclear magnetic logging (NML) the possibility has occurred to determine the effective porosity coefficient for rocks directly under the conditions of their occurrence. The initial amplitude of a signal of free precession of NML is proportional to the quantity of free fluid in the rock volume, which is determined by the index of free fluid (IFF). On the basis of the laboratory studies it is shown that the relation between IFF and free water content is always linear and doesn't depend on lithological characteristics of rocks, porous dimensions and distribution. Using this relation it's possible to estimate bound water content. While filling the reservoir with weakly mineralized water the IFF value coincides numerically with the effective porosity coefficient. Otherwise the content of hydrogen nuclei in a volume unit is much less; while calculating the effective porosity coefficient this fact is recorded by the index of the amplitude decrease which depends on temperature and increases with its growth (for oils). In strata containing intercalations of reservoirs and non-reservoirs the averaged according to stratum IFF value determines the mean-weighted values of effective porosity

  9. Micrographic study on distribution of fission products in high burn-up metallic alloy fuel

    International Nuclear Information System (INIS)

    Kolay, S.; Basu, M.; Das, D.

    2012-01-01

    One of the important mandates in the three-stage nuclear power generation programme of India is to utilize uranium-plutonium based alloy fuels in enabling shorter doubling time for breeding of the fissile isotopes ( 239 Pu and 233 U ) to be used in thorium based driver fuel in the third stage. Reported information shows the successful performance of alloy fuel with somewhat porous matrix in achieving 10-15 atom% burnup. The porosity and microstructure of these alloys are strongly dependent on their composition and phases present. Porosity also influences the extent of fuel swelling and gas release. So to assess fuel performance and fuel integrity under high burn-up condition it is essential to have knowledge about the new phases formed and their redistribution that occurs as a result of inter-diffusion and temperature gradient. This study addresses these issues taking the base alloy U-10 wt %Zr

  10. Metamorphosis in the Porosity of Recycled Concretes Through the Use of a Recycled Polyethylene Terephthalate (PET) Additive. Correlations between the Porous Network and Concrete Properties.

    Science.gov (United States)

    Mendivil-Escalante, José Miguel; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Cabrera-Covarrubias, Francisca Guadalupe

    2017-02-14

    In the field of construction, sustainable building materials are currently undergoing a process of technological development. This study aims to contribute to understanding the behavior of the fundamental properties of concretes prepared with recycled coarse aggregates that incorporate a polyethylene terephthalate (PET)-based additive in their matrix (produced by synthesis and glycolysis of recycled PET bottles) in an attempt to reduce their high porosity. Techniques to measure the gas adsorption, water porosity, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to evaluate the effect of the additive on the physical, mechanical and microstructural properties of these concretes. Porosity reductions of up to 30.60% are achieved with the addition of 1%, 3%, 4%, 5%, 7% and 9% of the additive, defining a new state in the behavioral model of the additive (the overdosage point) in the concrete matrix; in addition, the porous network of these concretes and their correlation with other physical and mechanical properties are also explained.

  11. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    Science.gov (United States)

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  12. 2.5-D poroelastic wave modelling in double porosity media

    Science.gov (United States)

    Liu, Xu; Greenhalgh, Stewart; Wang, Yanghua

    2011-09-01

    To approximate seismic wave propagation in double porosity media, the 2.5-D governing equations of poroelastic waves are developed and numerically solved. The equations are obtained by taking a Fourier transform in the strike or medium-invariant direction over all of the field quantities in the 3-D governing equations. The new memory variables from the Zener model are suggested as a way to represent the sum of the convolution integrals for both the solid particle velocity and the macroscopic fluid flux in the governing equations. By application of the memory equations, the field quantities at every time step need not be stored. However, this approximation allows just two Zener relaxation times to represent the very complex double porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The 2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much more computationally efficient than the full 3-D solution. As an illustrative example, we firstly show the computed 2.5-D wavefields in a homogeneous single porosity model for which we reformulated an analytic solution. Results for a two-layer, water-saturated double porosity model and a laterally heterogeneous double porosity structure are also presented.

  13. Hyporheic less-mobile porosity and solute transport in porous media

    Science.gov (United States)

    MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.

    2017-12-01

    Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.

  14. Acoustic properties in travertines and their relation to porosity and pore types

    NARCIS (Netherlands)

    Soete, J.; Kleipool, L.M.; Claes, H.; Claes, S.; Hamaekers, H.; Kele, S.; Özkul, M.; Foubert, A.; Reijmer, J.J.G.; Swennen, R.

    2015-01-01

    Sonic velocities of Pleistocene travertines were measured under variable confining pressures. Combined with petrographical characteristics and petrophysical data, i.e. porosity, permeability and density, it was determined that travertine porosity, pore types and cementation control

  15. Local porosity analysis of pore structure in cement paste

    International Nuclear Information System (INIS)

    Hu Jing; Stroeven, Piet

    2005-01-01

    Three-dimensional (3-D) local porosity theory (LPT) was originally proposed by Hilfer and recently used for the analysis of pore space geometry in model sandstone. LPT pursues to define the probability density functions of porosity and porosity connectivity. In doing so, heterogeneity differences in various sandstone samples were assessed. However, fundamental issues as to the stochastic concept of geometric heterogeneity are ignored in Hilfer's LPT theory. This paper focuses on proper sampling procedures that should be based on stochastic approaches to multistage sampling and geometric heterogeneity. Standard LPT analysis provides a 3-D microscopic modeling approach to materials. Traditional experimental techniques yield two-dimensional (2-D) section images, however. Therefore, this paper replaces the method for assessing material data in standard LPT theory to a more practical one, based on stereological, 3-D interpretation of quantitative image analysis data. The developed methodology is used to characterize the pore structure in hardened cement paste with various water/cement ratios (w/c) at different hydration stages

  16. Polyfurfuryl alcohol derived activated carbons for high power electrical double layer capacitors

    International Nuclear Information System (INIS)

    Ruiz, V.; Pandolfo, A.G.

    2010-01-01

    Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m 2 g -1 , and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et 4 NBF 4 /ACN) is investigated. Carbon materials with a low average pore size ( -1 at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg -1 and 38 kW kg -1 on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g -1 at current densities as high as 250 A g -1 . The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.

  17. Porosity study of synthetic sandstones by non-destructive nuclear techniques

    International Nuclear Information System (INIS)

    Marques, Leonardo Carmezini

    2008-01-01

    In this paper, nuclear techniques have been used to describe structural characteristics of ceramic samples. These samples were produced to serve as simulates of sandstones and their mainly component was silica (SiO 2 ). Three sets of these samples with different characteristics were analyzed with the gamma ray transmission and the X-ray microtomography. They had the function to describe parameters as porosity point to point and total average porosity, for the transmission case, and 2D sections average porosity, total average porosity and size porous distribution for microtomography, as well as to investigate possible irregularities in bulk sample. The experimental set up for the Gamma Ray Transmission technique consisted of: a 2'' x 2'' crystal NaI(Tl) detector, an 241 Am radioactive source (59.54 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Lead collimators with 2 mm diameter were placed on the source way out and on the detector entrance. The microtomographic measurements were done with a Skyscan system, model 1172, with a X -ray tube with 20 - 100 kV of voltage range and a CCD camera. Employing gamma ray transmission method was possible to obtain overall porosity values from 25.8 to 34.0 % and from 24.8 to 29.2 % for samples with parallelepiped and cylinder shape, respectively, for ceramic I set; from 58.5 to 61.0 % and from 57.1 to 61.7 % for the same geometric shape of ceramic II set. The samples analyzed by the microtomography achieved resolutions of 1.73 μm, 0.64 μm and 1.28 μm for samples of ceramic set I, II and III, respectively. This methodology provided average total porosity values from 26.6 to 29.4 %, from 48.4 to 51.0 % and from 28.2 to 30.6 % to I, II and III ceramic sets, respectively. The porous size profiles of each ceramic sample were also measured. (author)

  18. Estimation of water-filled and air-filled porosity in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1993-01-01

    Water content and porosity vary considerably within the unsaturated zone at Yucca Mountain. Measurement of these quantities has been based on core samples. A log-based approach offers the advantage of in-situ measurements, continuous throughout the borehole. This paper describes an algorithm which determines the air-filled and water-filled porosities from density and dielectric logs. The responses of density and dielectric logs are formulated in terms of the matrix properties, air-filled porosity and water-filled porosity. Porosity values obtained from logs from borehole USW G-2 are in reasonable agreement with estimates from core determinations

  19. High resolution 3D laboratory x-ray tomography data of femora from young, 1–14 day old C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Emely L. Bortel

    2015-09-01

    Full Text Available This data article contains high resolution (1.2 µm effective pixel size lab-based micro-computed tomography (µCT reconstructed volume data of the femoral mid-shafts from young C57BL/6 mice. This data formed the basis for the analyses of bone structural development in healthy mice, including closed and open porosity as reported in Bortel et al. [1]. The data reveals changes seen in bone material and porosity distribution observed when mouse bones transform from porous scaffolds into solid structures during normal organogenesis.

  20. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    OpenAIRE

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  1. Influence of coal preoxidation on the porosity of the activated carbons with steam activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuwen; Gao, Jihui; Sun, Fei; Li, Yang; Wu, Shaohua; Qin, Yukun [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    Activated carbons have been prepared from a low ash content anthracite preoxidized in air to different degrees. Steam has been used as activating agent to prepare different burn-off samples. The preoxidation effect on the physico-chemical characteristics of the resulting chars and activated carbons were comparatively studied. The surface area and porosity of sample was studied by N{sub 2} adsorption at 77 0A0;K. The results show that introduced oxygen in coal structure had a great influence on the carbonization and subsequent activation process. The carbonization of oxidized coal exhibited a broader volatile evolution with respect to temperature, and the resulting chars had a larger microporosity. The porosity of the char is a primary foundation to develop more microporosity upon activation. Activation of char from oxidized coal facilitated development of small scale micropore, however, the micropore widening was also observed at high burn-offs. Compared with development of supermicropore, the evolution of mesoporosity is hindered strongly by preoxidation treatment. The quantity of basic surface sites in activated carbons increased with an increase in oxidation degree, while the quantity of acidic sites appeared equivalent. It seemed that the amount of surface groups and the microporosity mainly developed in a parallel way.

  2. Experimental studies on a new highly porous hydroxyapatite matrix for obliterating open mastoid cavities.

    Science.gov (United States)

    Punke, Christoph; Zehlicke, Thorsten; Boltze, Carsten; Pau, Hans Wilhelm

    2008-09-01

    In an initial preliminary study, the applicability of a new high-porosity hydroxyapatite (HA) ceramic for obliterating large open mastoid cavities was proven and tested in an animal model (bulla of guinea pig). Experimental study. NanoBone, a highly porous matrix consisting of 76% hydroxyl apatite and 24% silicone dioxide fabricated in a sol-gel technique, was administered unilaterally into the opened bullae of 30 guinea pigs. In each animal, the opposite bulla was filled with Bio-Oss, a bone substitute consisting of a portion of mineral bovine bone. Histologic evaluations were performed 1, 2, 3, 4, 5, and 12 weeks after the implantation. After an initial phase in which the ceramic granules were surrounded by inflammatory cells (1-2 wk), there were increasing signs of vascularization. Osteoneogenesis and-at the same time-resorption of the HA ceramic were observed after the third week. No major difference in comparison to the bovine bone material could be found. Our results confirm the favorable qualities of the new ceramic reported in association with current maxillofacial literature. Conventional HA granules used for mastoid obliteration to date often showed problems with prolonged inflammatory reactions and, finally, extrusions. In contrast to those ceramics, the new material seems to induce more osteoneogenesis and undergoes early resorption probably due to its high porosity. Overall, it is similar to the bovine bone substance tested on the opposite ear in each animal. Further clinical studies may reveal whether NanoBone can be an adequate material for obliterating open mastoid cavities in patients.

  3. Impact of cover crops and tillage on porosity of podzolic soil

    Science.gov (United States)

    Błażewicz-Woźniak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  4. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  5. Characterization of bentonite pore structure by combining chloride porosity and SAXS measurements

    International Nuclear Information System (INIS)

    Muurinen, A.

    2010-01-01

    Document available in extended abstract form only. The total water porosity, chloride porosity and the microstructure were studied in compacted samples prepared from MX-80 and Deponit bentonites equilibrated through filter plates with 0.1 M NaCl solution for 12.5 months. The dry densities of the samples varied approximately from 0.7 to 1.55 g/cm 3 . XRD and SAXS (Small Angle X-ray Scattering) were used to study the microstructure of the bentonites. It was obvious that the chloride porosity was lower than the water porosity in both clays, which indicates the exclusion caused by the negatively charged montmorillonite surfaces. In the XRD and SAXS measurements the measured basal spaces represented by the diffraction peaks were smaller than the theoretical ones assuming a homogenous microstructure. This indicates that there was a substantial amount of water also in the pores, which were not represented by the peaks. This could explain the difference between the measured chloride porosity and the modelling curve obtained with the Donnan model. By combining the information from the SAXS measurements and the chloride exclusion measurements, it was possible to evaluate the volumes of the soft and dense fractions and the pore sizes in each fraction for MX-80. The chloride porosity was mostly caused by the pores in the soft clay where the pore size is larger. The volume of the soft fraction decreased and its density increased with increasing density of the sample. (authors)

  6. The effect of porosity on energetic porous silicon solid propellant micro-propulsion

    International Nuclear Information System (INIS)

    Churaman, Wayne A; Morris, Christopher J; Ramachandran, Raghav; Bergbreiter, Sarah

    2015-01-01

    Energetic porous silicon is investigated as an actuator for micro-propulsion based on thrust and impulse measurements for a variety of porous silicon porosity conditions. Porosity of 2 mm diameter, porous silicon microthruster devices was varied by changing the concentration of hydrofluoric acid and ethanol in an etch solution, by changing porous silicon etch depth, and by changing the resistivity of silicon wafers used for the etch process. The porosity varied from 30% to 75% for these experiments. The highest mean thrust and impulse values measured with a calibrated Kistler 9215 force sensor were 674 mN and 271 μN s, respectively, with a 73% porosity, 2 mm diameter porous silicon device etched in a 3 : 1 etch solution on a 3.6 Ω cm wafer to a target etch depth of 30 μm. As a result of changing porosity, a 23×  increase in thrust performance and a 36×  increase in impulse performance was demonstrated. Impulse values were also validated using a pendulum experiment in which the porous silicon microthruster was unconstrained, but several non-linearities in the pendulum experimental setup resulted in less consistent data than when measured by the force sensor for microthrusters at this size scale. These thrust and impulse results complement previous work in determining the effect of porosity on other porous silicon reaction metrics such as flame speed. (paper)

  7. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  8. Measurement of the porosity of amorphous materials by gamma ray transmission methodology

    International Nuclear Information System (INIS)

    Pottker, Walmir Eno; Appoloni, Carlos Roberto

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV ), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  9. 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT.

    Science.gov (United States)

    Dewanckele, J; De Kock, T; Boone, M A; Cnudde, V; Brabant, L; Boone, M N; Fronteau, G; Van Hoorebeke, L; Jacobs, P

    2012-02-01

    Weathering processes have been studied in detail for many natural building stones. The most commonly used analytical techniques in these studies are thin-section petrography, SEM, XRD and XRF. Most of these techniques are valuable for chemical and mineralogical analysis of the weathering patterns. However, to obtain crucial quantitative information on structural evolutions like porosity changes and growth of weathering crusts in function of time, non-destructive techniques become necessary. In this study, a Belgian historical calcareous sandstone, the Lede stone, was exposed to gaseous SO(2) under wet surface conditions according to the European Standard NBN EN 13919 (2003). Before, during and after the strong acid test, high resolution X-ray tomography has been performed to visualize gypsum crust formation to yield a better insight into the effects of gaseous SO(2) on the pore modification in 3D. The tomographic scans were taken at the Centre for X-ray Tomography at Ghent University (UGCT). With the aid of image analysis, partial porosity changes were calculated in different stadia of the process. Increasing porosity has been observed visually and quantitatively below the new superficial formed layer of gypsum crystals. In some cases micro-cracks and dissolution zones were detected on the grain boundaries of quartz. By using Morpho+, an in-house developed image analysis program, radial porosity, partial porosity, ratio of open and closed porosity and equivalent diameter of individual pore structures have been calculated. The results obtained in this study are promising for a better understanding of gypsum weathering mechanisms, porosity changes and patterns on natural building stones in four dimensions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  11. Preparation and Adsorption Performances of Phragmites australis Activated Carbon with High Acidity

    Directory of Open Access Journals (Sweden)

    FU Cheng-kai

    2017-03-01

    Full Text Available For removal of heavy metals from wastewater and recycling the wetland plants, the present study investigated the viability of using silage of Phragmites australis (PA to prepare activated carbons (ACs with high acidity. BET surface area, porous texture and surface functional characteristics of ACs were analyzed by N2 adsorption/desorption, elemental analysis and Boehm titration method. ACs presented well-developed micro-porosity and favorable surface acidity. The sorption equilibrium data for Ni (Ⅱ and Cd (Ⅱ sorption onto ACs were analyzed by the Langmuir and Freundlich models. The Langmuir model was fitted well to the adsorption behavior. The properties of high surface acidity promoted the adsorption of heavy metals by the silage-treated ACs and the chemical sorption played the key role in the sorption process.

  12. Evaluation of Foaming Behavior of Glass Melts by High-Temperature Microscopy

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    2016-01-01

    Optical monitoring techniques can record in situ the size of glass samples during a dynamic heating process. This allowed us to study sintering and expansion rate of panel glass from cathode ray tube using MnO2 as foaming agent. We show the maximum expansion rate of glass melt foaming (in situ va...... such as type and concentration of foaming agent, glass composition and particle size to obtain foam glass with high porosity and closed pores. Using this approach we show that the foaming of bottle glass is preferentially conducted at a SiC concentration of 1‒4 wt%....

  13. Quantifying Porosity through Automated Image Collection and Batch Image Processing: Case Study of Three Carbonates and an Aragonite Cemented Sandstone

    Directory of Open Access Journals (Sweden)

    Jim Buckman

    2017-08-01

    Full Text Available Modern scanning electron microscopes often include software that allows for the possibility of obtaining large format high-resolution image montages over areas of several square centimeters. Such montages are typically automatically acquired and stitched, comprising many thousand individual tiled images. Images, collected over a regular grid pattern, are a rich source of information on factors such as variability in porosity and distribution of mineral phases, but can be hard to visually interpret. Additional quantitative data can be accessed through the application of image analysis. We use backscattered electron (BSE images, collected from polished thin sections of two limestone samples from the Cretaceous of Brazil, a Carboniferous limestone from Scotland, and a carbonate cemented sandstone from Northern Ireland, with up to 25,000 tiles per image, collecting numerical quantitative data on the distribution of porosity. Images were automatically collected using the FEI software Maps, batch processed by image analysis (through ImageJ, with results plotted on 2D contour plots with MATLAB. These plots numerically and visually clearly express the collected porosity data in an easily accessible form, and have application for the display of other data such as pore size, shape, grain size/shape, orientation and mineral distribution, as well as being of relevance to sandstone, mudrock and other porous media.

  14. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh; Hadwiger, Markus; Ben Romdhane, Mohamed; Behzad, Ali Reza; Madhavan, Poornima; Nunes, Suzana Pereira

    2016-01-01

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore

  15. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  16. High-Resolution Physical Properties Logging of the AND-1B Sediment Core - Opportunity for Detecting High-Frequency Signals of Paleoenvironmental Changes

    Science.gov (United States)

    Niessen, F.; Magens, D.; Kuhn, G.; Helling, D.

    2008-12-01

    Within the ANDRILL-MIS Project, a more than 1200 m long sediment core, dating back to about 13 Ma, was drilled beneath McMurdo Ice Shelf near Ross Island (Antarctica) in austral summer 2006/07 with the purpose of contributing to a better understanding of the Late Cenozoic history of the Antarctic Ice Sheet. One way to approach past ice dynamics and changes in the paleoenvironment quantitatively, is the analysis of high- resolution physical properties obtained from whole-core multi-sensor core logger measurements in which lithologic changes are expressed numerically. This is especially applicable for the repeating sequences of diatomites and diamictites in the upper half of the core with a prominent cyclicity between 140-300 mbsf. Rather abrupt high-amplitude variations in wet-bulk density (WBD) and magnetic susceptibility (MS) reflect a highly dynamic depositional system, oscillating between two main end-member types: a grounded ice sheet and open marine conditions. For the whole core, the WBD signal, ranging from 1.4 kg/cu.m in the diatomites to 2.3 kg/cu.m in diamictites from the lower part of the core, represents the influence of three variables: (i) the degree of compaction seen as reduction of porosities with depth of about 30 % from top to bottom, (ii) the clast content with clasts being almost absent in diatomite deposits and (iii) the individual grain density (GD). GD itself strongly reflects the variety of lithologies as well as the influence of cement (mainly pyrite and carbonate) on the matrix grain density. The calculation of residual porosities demonstrates the strong imprint of glacial loading for especially diamictites from the upper 150 m, pointing to a significant thickness of the overriding Pleistocene ice sheet. MS on the other hand mainly documents a marine vs. terrestrial source of sediments where the latter can be divided into younger local material from the McMurdo Volcanic Province and basement clasts from the Transantarctic Mountains

  17. Determination of Porosity in Shale by Double Headspace Extraction GC Analysis.

    Science.gov (United States)

    Zhang, Chun-Yun; Li, Teng-Fei; Chai, Xin-Sheng; Xiao, Xian-Ming; Barnes, Donald

    2015-11-03

    This paper reports on a novel method for the rapid determination of the shale porosity by double headspace extraction gas chromatography (DHE-GC). Ground core samples of shale were placed into headspace vials and DHE-GC measurements of released methane gas were performed at a given time interval. A linear correlation between shale porosity and the ratio of consecutive GC signals was established both theoretically and experimentally by comparing with the results from the standard helium pycnometry method. The results showed that (a) the porosity of ground core samples of shale can be measured within 30 min; (b) the new method is not significantly affected by particle size of the sample; (c) the uncertainties of measured porosities of nine shale samples by the present method range from 0.31 to 0.46 p.u.; and (d) the results obtained by the DHE-GC method are in a good agreement with those from the standard helium pycnometry method. In short, the new DHE-GC method is simple, rapid, and accurate, making it a valuable tool for shale gas-related research and applications.

  18. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  19. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    Directory of Open Access Journals (Sweden)

    S. Vignesh

    2017-04-01

    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  20. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  1. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.; Kirk, G. J. D.; Jones, D. L.; Wissuwa, M.; Roose, T.

    2011-01-01

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  2. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  3. Highly porous polymer-derived wollastonite-hydroxycarbonate apatite ceramics for bone regeneration.

    Science.gov (United States)

    Fiocco, L; Li, S; Bernardo, E; Stevens, M M; Jones, J R

    2016-04-12

    A novel strategy was employed to synthesize highly porous wollastonite-hydroxycarbonate apatite ceramic scaffolds for bone regeneration. A commercial liquid preceramic polymer filled with micro-CaCO3 powders was foamed at low temperature (at 350 °C), using the decomposition of a hydrazine additive, and then converted into ceramic by a treatment at 700 °C. Hydroxycarbonate apatite was later developed by a phosphatization treatment of ceramized foams, in a P-rich solution, while wollastonite was obtained by a second firing, at 900 °C. The effectiveness of the method was proven by x-ray diffraction analysis, showing the presence of the two expected crystalline phases. Porosity, interconnect size distribution and mechanical strength were in the range that is thought to be suitable for bone regeneration in non-load bearing sites (compressive strength ≈ 3 MPa, porosity ≈ 90%, modal interconnect diameter ≈ 130-160 μm). In addition, bioactivity and ion release rate were assessed in simulated body fluid (SBF). MC3T3 osteoblast precursor cells were able to colonize the material in vitro through the pore architecture and expressed osteogenic markers.

  4. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A New, General Strategy for Fabricating Highly Concentrated and Viscoplastic Suspensions Based on a Structural Approach To Modulate Interparticle Interaction.

    Science.gov (United States)

    Sakurai, Shunsuke; Kamada, Fuminori; Kobashi, Kazufumi; Futaba, Don N; Hata, Kenji

    2018-01-24

    We report a general strategy to fabricate highly concentrated, viscoplastic and stable suspensions by designing the particle surface structure to control the interparticle attractive forces. Unlike conventional methods, where the choice of solvent is critical in balancing interparticle interactions, suspensions showing excellent stability and viscoplastic properties were made using various solvents. We demonstrated this approach using highly sparse agglomerates of carbon nanotubes (CNTs) as the particles. Our results revealed that the essential feature of the CNT agglomerate to fabricate these suspensions was high porosity with a spacing size much smaller than the overall size, which was only possible using long single-walled carbon nanotubes (SWNTs). In this way, the agglomerate surface was characterized by fine network of CNT bundles. These suspensions exhibited solid-like behavior at rest (characterized by a high yield stress of c.a. 100 Pa) and a liquid-like behavior when subjected to a stress (characterized by a significant drop of an apparent viscosity to 1 Pa·s at a shear rate of 1000 s -1 ). Furthermore, in contrast to conventionally fabricated suspensions, these "CNT pastes" exhibited exceptional stability at rest, under flow, and at extremely high concentrations during the drying process, with only a weakly observable dependence on solvent type. As a result, highly uniform micrometer-thick SWNT films were successfully fabricated by dried blade-coated films of these pastes. Finally, we developed a simple, semiempirical model and clarified the importance of the CNT agglomerate microstructure (the ratio of spacing size/particle size and porosity) on tailoring the cohesive forces between particles to fabricate stable viscoplastic suspensions.

  6. Fracture toughness of Dy123 low porosity bulks at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Murakami, A.; Otaka, K.; Miura, T.; Iwamoto, A.

    2011-01-01

    Fracture toughness values were measured for Dy123 bulks. Fracture toughness was improved by reducing porosity. Fracture toughness values at 77 K were higher than those at room temperature. Fracture toughness was also improved by Ag addition. In order to evaluate the fracture toughness of DyBa 2 Cu 3 O x (Dy123) low porosity bulks, bending tests of V-notched specimens cut from the bulks were carried out. Fracture toughness evaluations of a conventional Dy123 bulk which had pores were also carried out and effects of elimination of pores on the fracture toughness were investigated. Fracture toughness values at 77 K of the low porosity bulks were higher than those of the porous bulk. These fracture toughness values at 77 K were higher than the values at room temperature. Fracture toughness of the low porosity bulk was improved by Ag addition.

  7. Development of high purity large forgings for nuclear power plants

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-01-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  8. Development of high purity large forgings for nuclear power plants

    Science.gov (United States)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  9. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui

    2018-02-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  10. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui; Sun, Ying; Yuan, Zhong-Yong; Zhu, Yun-Pei; Ma, Tianyi

    2018-01-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  11. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom

    Science.gov (United States)

    Fishman, Neil S.; Hackley, Paul C.; Lowers, Heather; Hill, Ronald J.; Egenhoff, Sven O.; Eberl, Dennis D.; Blum, Alex E.

    2012-01-01

    Analyses of organic-rich mudstones from wells that penetrated the Upper Jurassic Kimmeridge Clay Formation, offshore United Kingdom, were performed to evaluate the nature of both organic and inorganic rock constituents and their relation to porosity in this world-class source rock. The formation is at varying levels of thermal maturity, ranging from immature in the shallowest core samples to mature in the deepest core samples. The intent of this study was to evaluate porosity as a function of both organic macerals and thermal maturity. At least four distinct types of organic macerals were observed in petrographic and SEM analyses and they all were present across the study area. The macerals include, in decreasing abundance: 1) bituminite admixed with clays; 2) elongate lamellar masses (alginite or bituminite) with small quartz, feldspar, and clay entrained within it; 3) terrestrial (vitrinite, fusinite, semifusinite) grains; and 4) Tasmanites microfossils. Although pores in all maceral types were observed on ion-milled surfaces of all samples, the pores (largely nanopores with some micropores) vary as a function of maceral type. Importantly, pores in the macerals do not vary systematically as a function of thermal maturity, insofar as organic pores are of similar size and shape in both the immature and mature Kimmeridge rocks. If any organic pores developed during the generation of hydrocarbons, they were apparently not preserved, possibly because of the highly ductile nature of much of the rock constituents of Kimmeridge mudstones (clays and organic material). Inorganic pores (largely micropores with some nanopores) have been observed in all Kimmeridge mudstones. These pores, particularly interparticle (i.e., between clay platelets), and intraparticle (i.e., in framboidal pyrite, in partially dissolved detrital K-feldspar, and in both detrital and authigenic dolomite) are noteworthy because they compose much of the observable porosity in the shales in both

  12. Porosity determination of alumina and boron carbide ceramic samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo; Appoloni, Carlos Roberto

    2009-01-01

    The aim of this work is to apply the Gamma Ray Transmission (GRT), a non destructive technique, for structural characterization of ceramic samples. With this technique, the porosity of Alumina (Al 2 O 3 ) and Boron Carbide (B 4 C) ceramic samples, in tablet format, was determined. The equipment employed is constituted by a 241 Am gamma ray source (59.6 keV and 100mCi), a 2''x2'' diameter NaI (Tl) scintillation detector coupled to a standard gamma ray transmission electronic and a micrometric and automated table for sample movement. The porosity profile of the samples shows a homogeneous porosity distribution, within the spatial resolution of the employed transmission system. The mean porosity determined for Al 2 O 3 and B 4 C were 17.8±1.3% and 3.87±0.43%, respectively. A statistical treatment of these results was performed and showed that the mean porosity values determinate by the GRT are the same as those supplied by the manufacturer. (author)

  13. Holey graphene frameworks for highly selective post-combustion carbon capture

    Science.gov (United States)

    Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2016-02-01

    Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.

  14. Cigarette Design Features in Low-, Middle-, and High-Income Countries

    Directory of Open Access Journals (Sweden)

    Rosalie V. Caruso

    2012-01-01

    Full Text Available Previous studies have shown that country income grouping is correlated with cigarette engineering. Cigarettes (=111 brands were purchased during 2008–2010 from 11 low-, middle-, and high-income countries to assess physical dimensions and an array of cigarette design features. Mean ventilation varied significantly across low- (7.5%, middle- (15.3%, and high-income (26.2% countries (≤0.001. Differences across income groups were also seen in cigarette length (=0.001, length of the tipping paper (=0.01, filter weight (=0.017, number of vent rows (=0.003, per-cigarette tobacco weight (=0.04, and paper porosity (=0.008. Stepwise linear regression showed ventilation and tobacco length as major predictors of ISO tar yields in low-income countries (=0.909, 0.047, while tipping paper (<0.001, filter length (<0.001, number of vent rows (=0.014, and per-cigarette weight (=0.015 were predictors of tar yields in middle-income countries. Ventilation (<0.001, number of vent rows (=0.009, per-cigarette weight (<0.001, and filter diameter (=0.004 predicted tar yields in high-income countries. Health officials must be cognizant of cigarette design issues to provide effective regulation of tobacco products.

  15. Characterization of microstructure and surface properties of hybrid coatings of WC-CoCr prepared by laser heat treatment and high velocity oxygen fuel spraying

    International Nuclear Information System (INIS)

    Zhang Shihong; Cho, Tong-Yul; Yoon, Jae-Hong; Fang, Wei; Song, Ki-O; Li Mingxi; Joo, Yun-Kon; Lee, Chan Gyu

    2008-01-01

    The microstructure and microhardness of high velocity oxygen fuel-sprayed WC-CoCr coatings were comparatively studied both before and after laser heat treatment of the coatings. Optical microscopy, scanning electron microscopy, X-ray diffraction and microhardness testing were applied to investigate the microstructure, phase composition, porosity and microhardness. The results indicate that WC is still present, and W 2 C has appeared, while neither cobalt nor σ-CrCo is detectable. Co 4 W 2 C has appeared in the high velocity oxygen fuel-sprayed coating after laser heat treatment as compared to the coating before laser treatment. The relative content of the W 2 C has not increased with laser treatment, but the laser treatment has essentially eliminated the porosity almost entirely, providing a more homogeneous and densified microstructure. The laser heat treatment has effected the formation of a denser compact coating on the substrate. After laser heat treatment, the thickness of the coating has decreased from 300 μm to 225 μm. This corresponds to an average porosity in the high velocity oxygen fuel-sprayed coating that is approximately five times greater than that in the subsequently laser heat-treated coating. The laser treatment has also resulted in an increased hardness of the coating near the surface, where the average value increased from Hv 0.2 = 1262.4 in the coating before laser heat treatment to Hv 0.2 = 1818.7 after laser heat treatment

  16. From picture to porosity of river bed material using Structure-from-Motion with Multi-View-Stereo

    Science.gov (United States)

    Seitz, Lydia; Haas, Christian; Noack, Markus; Wieprecht, Silke

    2018-04-01

    Common methods for in-situ determination of porosity of river bed material are time- and effort-consuming. Although mathematical predictors can be used for estimation, they do not adequately represent porosities. The objective of this study was to assess a new approach for the determination of porosity of frozen sediment samples. The method is based on volume determination by applying Structure-from-Motion with Multi View Stereo (SfM-MVS) to estimate a 3D volumetric model based on overlapping imagery. The method was applied on artificial sediment mixtures as well as field samples. In addition, the commonly used water replacement method was applied to determine porosities in comparison with the SfM-MVS method. We examined a range of porosities from 0.16 to 0.46 that are representative of the wide range of porosities found in rivers. SfM-MVS performed well in determining volumes of the sediment samples. A very good correlation (r = 0.998, p < 0.0001) was observed between the SfM-MVS and the water replacement method. Results further show that the water replacement method underestimated total sample volumes. A comparison with several mathematical predictors showed that for non-uniform samples the calculated porosity based on the standard deviation performed better than porosities based on the median grain size. None of the predictors were effective at estimating the porosity of the field samples.

  17. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  18. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  19. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  20. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  1. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  2. Porosity and permeability evolution of vesicular basalt reservoirs with increasing depth: constraints from the Big Island of Hawai'i

    Science.gov (United States)

    Millett, John; Haskins, Eric; Thomas, Donald; Jerram, Dougal; Planke, Sverre; Healy, Dave; Kück, Jochem; Rossetti, Lucas; Farrell, Natalie; Pierdominici, Simona

    2017-04-01

    Volcanic reservoirs are becoming increasingly important in the targeting of petroleum, geothermal and water resources globally. However, key areas of uncertainty in relation to volcanic reservoir properties during burial in different settings remain. In this contribution, we present results from borehole logging and sampling operations within two fully cored c. 1.5 km deep boreholes, PTA2 and KMA1, from the Humúula saddle region on the Big Island of Hawai'i. The boreholes were drilled as part of the Humu'ula Groundwater Research Project (HGRP) between 2013-2016 and provide unique insights into the evolution of pore structure with increasing burial in a basaltic dominated lava sequence. The boreholes encounter mixed sequences of 'a'ā, pāhoehoe and transitional lava flows along with subsidiary intrusions and sediments from the shield to post-shield phases of Mauna Kea. Borehole wireline data including sonic, spectral gamma and Televiewer imagery were collected along with density, porosity, permeability and ultrasonic velocity laboratory measurements from core samples. A range of intra-facies were sampled for analysis from various depths within the two boreholes. By comparison with core data, the potential for high resolution Televiewer imaging to reveal spectacular intra-facies features including individual vesicles, vesicle segregations, 'a'ā rubble zones, intrusive contacts, and intricate pāhoehoe lava flow lobe morphologies is demonstrated. High quality core data enables the calibration of Televiewer facies enabling improved interpretation of volcanic reservoir features in the more common exploration scenario where core is absent. Laboratory results record the ability of natural vesicular basalt samples to host very high porosity (>50%) and permeability (>10 darcies) within lava flow top facies which we demonstrate are associated with vesicle coalescence and not micro-fractures. These properties may be maintained to depths of c. 1.5 km in regions of limited

  3. Analysis of Electrochemical Porosity of Phosphatized Coatings on Galvanized Steel Substrate

    Directory of Open Access Journals (Sweden)

    Ponte Haroldo de Araújo

    2002-01-01

    Full Text Available This work refers to the application of a Voltammetric Anodic Dissolution (VAD Technique in the analysis of coating discontinuities, focusing on pores and cracks that exposed the substrate. An evaluation was made of the influence of several parameters, such as the concentration of the passivation solution and sweep rate (SR, on the substrate passivation process and on the porosity indexes of tricationic phosphate coatings of Fe/Zn/Mn. The phosphatization process used was a commercial tricationic Fe/Zn/Mn phosphate bath applied on a galvanized steel (GS substrate. Once the best experimental conditions for the use of the VAD technique had been defined, the grain size and layer weight were related to porosity indexes. The porosity was found to show a tendency to decrease with increasing grain size. The VAD technique consists of the anodic polarization of the substrate/coating system and measurement of the charge density involved in the substrate passivation process. A quantitative porosity index was obtained by comparing the passivation charge density of the substrate without coating (standard passivation charge density and the passivation charge of the coated substrate.

  4. Porosity in fiber laser formation of 5A06 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu [HUST, Wuhan (China)

    2010-05-15

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  5. Porosity in fiber laser formation of 5A06 aluminum alloy

    International Nuclear Information System (INIS)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu

    2010-01-01

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  6. Optimization and Development of Swellable Controlled Porosity ...

    African Journals Online (AJOL)

    Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...

  7. Structure and magnetic properties of highly textured nanocrystalline Mn–Zn ferrite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jaison, E-mail: jaisonjosephp@gmail.com [Department of Physics, Goverment College, Khandola, Goa 403107 India (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 India (India); Pillai, V.P. Mahadevan [Department of Optoelectronics, University of Kerala,Thiruvananthapuram, Kerala 695581 India (India); Choudhary, R.J.; Phase, D.M.; Ganeshan, V. [UGC-DAE-CSR Indore, Madhya Pradesh 452017 India. (India)

    2015-01-01

    Nanoparticles of Mn{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} were chemically synthesized by co-precipitating the metal ions in aqueous solutions in a suitable alkaline medium. The identified XRD peaks confirm single phase spinal formation. The nanoparticle size authentication is carried out from XRD data using Debye Scherrer equation. Thin film fabricated from this nanomaterial by pulse laser deposition technique on quartz substrate was characterized using XRD and Raman spectroscopic techniques. XRD results revealed the formation of high degree of texture in the film. AFM analysis confirms nanogranular morphology and preferred directional growth. A high deposition pressure and the use of a laser plume confined to a small area for transportation of the target species created certain level of porosity in the deposited thin film. Magnetic property measurement of this highly textured nanocrystalline Mn–Zn ferrite thin film revealed enhancement in properties, which are explained on the basis of texture and surface features originated from film growth mechanism.

  8. Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance.

    Science.gov (United States)

    Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T

    2018-01-22

    Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.

  9. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao

    2017-01-01

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm–3, which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm–3. The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications. PMID:28580142

  10. Effect of Different Manufacturing Methods on the Conflict between Porosity and Mechanical Properties of Spiral and Porous Polyethylene Terephthalate/Sodium Alginate Bone Scaffolds

    Directory of Open Access Journals (Sweden)

    Ching-Wen Lou

    2015-12-01

    Full Text Available In order to solve the incompatibility between high porosity and mechanical properties, this study fabricates bone scaffolds by combining braids and sodium alginate (SA membranes. Polyethylene terephthalate (PET plied yarns are braided into hollow, porous three dimensional (3D PET braids, which are then immersed in SA solution, followed by cross-linking with calcium chloride (CaCl2 and drying, to form PET bone scaffolds. Next, SA membranes are rolled and then inserted into the braids to form the spiral and porous PET/SA bone scaffolds. Samples are finally evaluated for surface observation, porosity, water contact angle, compressive strength, and MTT assay. The test results show that the PET bone scaffolds and PET/SA bone scaffolds both have good hydrophilicity. An increasing number of layers and an increasing CaCl2 concentration cause the messy, loose surface structure to become neat and compact, which, in turn, decreases the porosity and increases the compressive strength. The MTT assay results show that the cell viability of differing SA membranes is beyond 100%, indicating that the PET/SA bone scaffolds containing SA membranes are biocompatible for cell attachment and proliferation.

  11. Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC - effect of carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, J.; Canizares, P.; Rodrigo, M.A.; Ubeda, D.; Pinar, F.J.; Linares, J.J. [Department of Chemical Engineering, University of Castilla-La Mancha, Av. Camilo Jose Cela, n 12. 13071, Ciudad Real (Spain)

    2010-10-15

    This work aims at studying the role of the microporous layer (MPL) in electrodes prepared for high temperature PBI-based PEMFC. The two main components of this layer are carbon black and a polymeric binder (Teflon). This work addresses the effect of the MPL carbon amount on the performance of a high temperature PEMFC. Thus, gas diffusion layers (GDLs) containing MPL with different carbon contents (from 0.5 to 4 mg cm{sup -2}) were prepared. Firstly, they were physically characterised by Hg-porosimetry measuring pore size distribution, porosity, tortuosity and mean pore size. Permeability measurements were also performed. The higher the carbon content was the lower both porosity and permeability were. Afterwards, electrodes were prepared with these GDLs and were electrochemically characterised. Electrochemical surface area (ESA) was determined and fuel cell performance was evaluated under different fuel and comburent stoichiometries, supporting these results with impedance spectra. This made it possible to see the benefits of the MPL inclusion in the electrode structure, with a significant increase in the fuel cell performance and ESA. Once the goodness of the MPL was confirmed, result analysis led to an optimum MPL composition of 2 mg cm{sup -2} of carbon for both electrodes, anode and cathode. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork

    International Nuclear Information System (INIS)

    Mei Xi; Ren Lin; Xu Qiang; Liu Zhi-Cheng; Zheng Wei

    2015-01-01

    As the aqueous humor leaves the eye, it first passes through the trabecular meshwork (TM). Increased flow resistance in this region causes elevation of intraocular pressure (IOP), which leads to the occurrence of glaucoma. To quantitatively evaluate the effect of high IOP on the configuration and hydraulic permeability of the TM, second harmonic generation (SHG) microscopy was used to image the microstructures of the TM and adjacent tissues in control (normal) and high IOP conditions. Enucleated rabbit eyes were perfused at a pressure of 60 mmHg to achieve the high IOP. Through the anterior chamber of the eye, in situ images were obtained from different depths beneath the surface of the TM. Porosity and specific surface area of the TM in control and high IOP conditions were then calculated to estimate the effect of the high pressure on the permeability of tissue in different depths. We further photographed the histological sections of the TM and compared the in situ images. The following results were obtained in the control condition, where the region of depth was less than 55 μm with crossed branching beams and large pores in the superficial TM. The deeper meshwork is a silk-like tissue with abundant fluorescence separating the small size of pores. The total thickness of pathway tissues composed of TM and juxtacanalicular (JCT) is more than 100 μm. After putting a high pressure on the inner wall of the eye, the TM region progressively collapses and decreases to be less than 40 μm. Fibers of the TM became dense, and the porosity at 34 μm in the high IOP condition is comparable to that at 105 μm in the control condition. As a consequent result, the permeability of the superficial TM decreases rapidly from 120 μm 2 to 49.6 μm 2 and that of deeper TM decreases from 1.66 μm 2 to 0.57 μm 2 . Heterogeneity reflected by descent in permeability reduces from 12.4 μm of the control condition to 3.74 μm of the high IOP condition. The persistently high IOP makes the

  13. Study of the porosity of synthetic sandstones by nondestructive nuclear techniques

    International Nuclear Information System (INIS)

    Marques, Leonardo Carmezini

    2008-01-01

    In this paper, nuclear techniques have been used to describe structural characteristics of ceramic samples. These samples were produced to serve as simulates of sandstones and their mainly component was silica (SiO 2 ). Three sets of these samples with different characteristics were analyzed with the gamma ray transmission and the X-ray microtomography. They had the function to describe parameters as porosity point to point and total average porosity, for the transmission case, and 2D sections average porosity, total average porosity and size porous distribution for microtomography, as well as to investigate possible irregularities in bulk sample. The experimental set up for the gamma ray transmission technique consisted of: a 2 x 2 crystal NaI(Tl) detector, an 241 Am radioactive source (59.54 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Lead collimators with 2 mm diameter were placed on the source way out and on the detector entrance. The microtomographic measurements were done with a Skyscan system, model 1172, with a X-ray tube with 20-100 kV of voltage range and a CCD camera. Employing gamma ray transmission method was possible to obtain overall porosity values from 25.8 to 34.0 % and from 24.8 to 29.2 % for samples with parallelepiped and cylinder shape, respectively, for ceramic I set; from 58.5 to 61.0 % and from 57.1 to 61.7 % for the same geometric shape of ceramic II set. The samples analyzed by the microtomography achieved resolutions of 1.73 μm, 0.64 μm and 1.28 μm for samples of ceramic set I, II and III, respectively. This methodology provided average total porosity values from 26.6 to 29.4 %, from 48.4 to 51.0 % and from 28.2 to 30.6 % to I, II and III ceramic sets, respectively. The porous size profiles of each ceramic sample were also measured. (author)

  14. High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac resin containing peptide linkage

    OpenAIRE

    Kim, Yong Jung; Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Oka, Takuyuki; Iinou, Satoshi; Komori, Yasuhiro; Kozutsumi, Toshihiko; Hashiba, Takashi; Kim, Yoong Ahm; Endo, Morinobu

    2010-01-01

    We fabricated nitrogen-decorated porous carbon exhibiting high capacitance per unit volume and unit weight via chemical activation of novolac resin containing peptide linkage. The porosity and the amount of nitrogen atoms were controlled by changing the molecular weight of novolac resin, the added amount of potassium hydroxide, or both. After chemical activation, positively charged nitrogen atoms (i.e., pyridine/pyrrole) at 400.3 eV in photoemission spectra contributed to both a shift in the ...

  15. High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac resin containing peptide linkage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jung [Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Oka, Takuyuki [Department of Electric and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Iinou, Satoshi [MEFS, Co. Ltd. Choei Nagano, Higasiguchi Bldg, 2F, 1000-1 Gentakubo, Kurita, Nagano 380-0921 (Japan); Komori, Yasuhiro; Kozutsumi, Toshihiko; Hashiba, Takashi [SHOWA HIGHPOLYMER, Co., Ltd. 1021 Tomizuka-cho, Isesaki-City, Gunma 372-0833 (Japan); Kim, Yoong Ahm, E-mail: yak@endomoribu.shinshu-u.ac.j [Department of Electric and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Endo, Morinobu [Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)] [Department of Electric and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2010-08-01

    We fabricated nitrogen-decorated porous carbon exhibiting high capacitance per unit volume and unit weight via chemical activation of novolac resin containing peptide linkage. The porosity and the amount of nitrogen atoms were controlled by changing the molecular weight of novolac resin, the added amount of potassium hydroxide, or both. After chemical activation, positively charged nitrogen atoms (i.e., pyridine/pyrrole) at 400.3 eV in photoemission spectra contributed to both a shift in the point of zero charge toward negative potential and the generation of pseudocapacitance. Suitably developed pores and the positively charged nitrogen atoms make nitrogen-decorated novolac resin-derived porous carbon a promising material for electrodes in high-performance supercapacitors.

  16. OBSERVATION AND ANALYSIS OF A PRONOUNCED PERMEABILITY AND POROSITY SCALE-EFFECT IN UNSATURATED FRACTURED TUFF

    Energy Technology Data Exchange (ETDEWEB)

    V. VESSELINOV; ET AL

    2001-01-01

    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  17. Large-scale treatment of high-salt, high-pH wastewater for 137Cs and 90Sr removal, using crystalline silicotitanate resin

    International Nuclear Information System (INIS)

    Taylor, P.A.; Walker, J.F.; Lee, D.D.

    1998-04-01

    A full-scale demonstration of cesium removal technology has been conducted at Oak Ridge National Laboratory (ORNL). This demonstration utilized a modular, mobile ion-exchange system and existing facilities for the off-gas system, secondary containment, and utilities. The ion-exchange material, crystalline silicotitanate (CST), was selected on the basis of its effectiveness in laboratory tests. The CST, which was developed through a Cooperative Research and Development Agreement between DOE and private industry, is highly selective for removing cesium from solutions containing high concentrations of other contaminants, such as sodium and potassium. Approximately 116,000 liters of supernate was processed during the demonstration with ∼ 1,142 Ci of 137 Cs removed from the supernate and loaded onto 266 liters of the CST sorbent. The supernate processed had a high salt content, about 4 M NaNO 3 and a pH of 12 to 13. The CST also loaded Ba, Pb, Sr, U and Zn. Analysis of the spent sorbent has shown that it is not hazardous under the Resource Conservation and Recovery Act (RCRA). The cesium breakthrough curves for the lab and full-scale columns agreed very well, suggesting that lab-scale tests can be used to predict the performance of larger systems. The cesium breakthrough curves for runs at different flowrates show that film diffusion is significant in controlling the mass transfer process. Operational factors that increase the effect of film diffusion include the small size and high porosity of the CST sorbent, and the relatively low liquid velocity through the sorbent

  18. Multiscale study of the porosity of carbon deposits collected in Tore Supra

    International Nuclear Information System (INIS)

    Martin, C.; Richou, M.; Saikaily, W.; Pegourie, B.; Brosset, C.; Roubin, P.

    2007-01-01

    Carbon deposits collected in Tore Supra, on the neutralisers and on the toroidal pump limiter, are analysed by adsorption isotherm measurements and electron microscopy. Both techniques are suitable to study the porosity in a multiscale range and allow the characterisation of the volume and the structure of the pore network. The neutraliser deposits show an oval shape structure and a high specific surface area. This area corresponds to microporosity, i.e. pores with a typical size lower than 2 nm, (∼11%), mesoporosity (∼5%) and macroporosity, i.e. pores with a typical size more than 50 nm. Surprisingly, transmission electron microscopy performed on thin foils cut from an oval reveals a regular network of parallel slit-shaped mesopores (size ∼ 10 nm) and macropores (size ∼ 100 nm), with a well-defined orientation with respect to the oval axis

  19. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    Science.gov (United States)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  20. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials.

    Science.gov (United States)

    Amin Yavari, S; Ahmadi, S M; Wauthle, R; Pouran, B; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-03-01

    Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 10(6) loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R(2)>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials

  1. Effect of radiation on the laminar convective heat transfer through a layer of highly porous medium

    International Nuclear Information System (INIS)

    Lee, K.; Howell, J.R.

    1986-01-01

    A numerical investigation is reported of the coupled forced convective and radiative transfer through a highly porous medium. The porosity range investigated is high enough that the fluid inertia terms in the momentum equation cannot be neglected; i.e., the simple form of Darcy's law is invalid. The geometry studied is a plane layer of highly porous medium resting on one impermeable boundary and exposed to a two-dimensional laminar external flow field. The objective is to determine the effective overall heat transfer coefficients for such a geometry. The results are applicable to diverse situations, including insulation batts exposed to external flow, the heat loss and drying rates of grain fields and forest areas, and the drying of beds of porous material exposed to convective and radiative heating

  2. Oxygen plasma treatment of HKUST-1 for porosity retention upon exposure to moisture.

    Science.gov (United States)

    Bae, Jaeyeon; Jung, Jin-Woo; Park, Hyo Yul; Cho, Chang-Hee; Park, Jinhee

    2017-11-07

    Despite their remarkable properties, metal-organic frameworks (MOFs) present vulnerable structures that are sensitive to moisture; therefore, their application to real field situations is challenging. Herein, an O 2 plasma technique was introduced as a new method for the activation and protection of porosity in HKUST-1. In an unprecedented manner, O 2 plasma-treated HKUST-1 retains its porosity after a long exposure to moisture as compared to pristine HKUST-1. Porosity retention was examined by N 2 adsorption/desorption measurements of non-activated HKUST-1 after exposure to moisture.

  3. Diffusion-Coefficients of Sulfate and Methane in Marine-Sediments - Influence of Porosity

    DEFF Research Database (Denmark)

    IVERSEN, N.; JØRGENSEN, BB

    1993-01-01

    diffusion coefficients can be related to the diffusion coefficient in free solution by D(s) = D(o)/theta2, where theta is the tortuosity of the sediment. The sediment tortuosity calculated from this equation showed a linear relationship with sediment porosity (phi) over the porosity range of 0.4-0.9. From...

  4. How Deformation Behavior Controls Product Performance After Twin Screw Granulation With High Drug Loads and Crospovidone as Disintegrant.

    Science.gov (United States)

    Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2017-01-01

    This study addresses the quantitative influence of 12 different materials (active pharmaceutical ingredients and excipients as surrogate active pharmaceutical ingredients) on the critical quality attributes of twin screw granulated products and subsequently produced tablets. Prestudies demonstrated the significant influence of the chosen model materials (in combination with crospovidone) on the disintegration behavior of the resulting tablets, despite comparable tablet porosities. This study elucidates possible reasons for the varying disintegration behavior by investigating raw material, granule, and tablet properties. An answer could be found in the mechanical properties of the raw materials and the produced granules. Through compressibility studies, the materials could be classified into materials with high compressibility, which deform rather plastically under compression stress, and low compressibility, which display breakages under compression stress. In general, and apart from (pseudo)-polymorphic transformations, brittle materials featured excellent disintegration performance, even at low resulting tablet porosities plastically deformable materials mostly did not reveal any disintegration. These findings must be considered in the development of simplified formulations with high drug loads, in which the active pharmaceutical ingredient predominantly defines the deformation behavior of the granule. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Effect of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 aluminum alloys

    International Nuclear Information System (INIS)

    Ma, Z.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S.

    2002-01-01

    The present study was carried out to investigate the effects of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 alloys. Both experimental and industrial 319 alloys (containing 0.1 and 0.4 wt% Mg) and industrial 356 alloys were used, with 200-300 ppm strontium additions to study the modification effect. The Fe content was varied from 0.2 to 0.8 wt% in the 319 alloys, and from 0.1 to 0.6 wt% in the 356 alloy in keeping with Fe levels observed in industry. An end-chilled mold was employed to obtain directionally solidified castings, where the cooling rate varied with the height of the casting. Tensile and microstructural samples were sectioned at heights corresponding to dendrite arm spacings of ∼23 to ∼83 μm. The microstructures were examined using optical- and scanning electron microscopy. The effect of Fe content and cooling rate was investigated through measurements of the β-Al 5 FeSi platelets, using image analysis. Porosity measurements were also made. Phase identification was done using EPMA, EDX and XRD. The results show that the β-Al 5 FeSi platelet size has a significant effect on ductility and tensile strength up to sizes of ∼100 μm in the 319 alloys and ∼70 μm in the 356 alloy, but has no significant effect on the yield strength. While tensile properties are interpreted by means of UTS vs. log Elongation plots (after the Quality index concept of Drouzy et al. (5)), in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log Elongation plots, where the properties increased linearly within low cooling rate-high Fe and high cooling rate-low Fe condition extremities. The results are explained in terms of the β-Al 5 FeSi platelet size and porosity values obtained. (author)

  6. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2at room temperature

    KAUST Repository

    Li, Peng

    2014-11-13

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

  7. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2at room temperature

    KAUST Repository

    Li, Peng; He, Yabing; Zhao, Yunfeng; Weng, Linhong; Wang, Hailong; Krishna, Rajamani A A; Wu, Hui; Zhou, Wei; O'Keeffe, Michael A.; Han, Yu; Chen, Banglin

    2014-01-01

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

  8. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  9. Relationship between soil aggregate strength, shape and porosity for soils under different long-term management

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard J; Deen, Bill

    2016-01-01

    were mouldboard ploughing (MP) and no-tillage (NT). The soil coreswere exposed to a drop shatter test and airdried before separation into different size fractions. Ten aggregates fromthe 4–9.2mmsize fraction per core sample (i.e. 320 in all)were X-ray micro-CT scanned. The size, shape and porosity...... porosity and more rounded aggregates than the continuous corn rotation. Surprisingly, therewas no treatment effect on X-ray micro-CT resolvable porosities. Aggregate strength decreased with both total and X-ray micro-CT resolvable porosity even though the correlations were weak. Significant correlation...

  10. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching

    International Nuclear Information System (INIS)

    Geyer, Nadine; Wollschläger, Nicole; Tonkikh, Alexander; Berger, Andreas; Werner, Peter; Fuhrmann, Bodo; Leipner, Hartmut S; Jungmann, Marco; Krause-Rehberg, Reinhard

    2015-01-01

    A systematic method to control the porosity of silicon nanowires is presented. This method is based on metal-assisted chemical etching (MACE) and takes advantage of an HF/H_2O_2 etching solution and a silver catalyst in the form of a thin patterned film deposited on a doped silicon wafer. It is found that the porosity of the etched nanowires can be controlled by the doping level of the wafer. For low doping concentrations, the wires are primarily crystalline and surrounded by only a very thin layer of porous silicon (pSi) layer, while for highly doped silicon, they are porous in their entire volume. We performed a series of controlled experiments to conclude that there exists a well-defined critical doping concentration separating the crystalline and porous regimes. Furthermore, transmission electron microscopy investigations showed that the pSi has also a crystalline morphology on a length scale smaller than the pore size, determined from positron annihilation lifetime spectroscopy to be mesoscopic. Based on the experimental evidence, we devise a theoretical model of the pSi formation during MACE and apply it for better control of the nanowire morphology. (paper)

  11. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  12. Porosity formation in Al-Si casting alloys: role of Sr oxide

    International Nuclear Information System (INIS)

    Liu, L.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S.

    2002-01-01

    The strength and quality of an Al-Si alloy casting are determined by its microstructure and the amount of porosity present in the casting. Modification is one of the processes used to improve the microstructural quality, where the addition of a modifying agent alters the shape of the eutectic Si from an acicular to a fibrous form that is extremely beneficial to the mechanical properties. Among various modifiers, strontium, although easy to handle and resistant to fading, also causes porosity formation in these alloys, attributed variously to an increase in the hydrogen level of the melt, feedability problems in the mushy zone, changes in the mode of eutectic nucleation, etc. The present study shows how the presence of oxides is responsible for the porosity formation, and that the difference in porosity characteristics with the addition of Sr depends on the amount of Sr oxides present the solidified structure. Both Sr and Al oxides are favourable sites for the nucleation of other microconstituents. A number of experimental (binary Al-Si) and industrial (319 and 356) alloys have been studied, to cover various alloy freezing ranges. Thermal analysis, optical microscopy, SEM/EDX and EPMA analyses were employed to obtain the results. (author)

  13. Sewage sludge ash (SSA in high performance concrete: characterization and application

    Directory of Open Access Journals (Sweden)

    C. M. A. Fontes

    Full Text Available ABSTRACT Sewage sludge originated from the process of treatment of wastewater has become an environmental issue for three main reasons: contains pathogens, heavy metals and organic compounds that are harmful to the environmental and human health; high volumes are daily generated; and shortage of landfill sites for proper disposal. This research deals with the viability study of sewage sludge utilization, after calcination process, as mineral admixture in the production of concrete. High-performance concretes were produced with replacement content of 5% and 10% by weight of Portland cement with sewage sludge ash (SSA. The influence of this ash was analyzed through physical and mechanical tests. Analysis showed that the mixtures containing SSA have lower values of compressive strength than the reference. The results of absorptivity, porosity and accelerated penetration of chloride ions, presents that mixtures containing ash showed reductions compared to the reference. This indicates that SSA provided refinement of the pore structure, which was confirmed by mercury intrusion porosimetry test.

  14. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.

    Science.gov (United States)

    Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng

    2016-10-05

    The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.

  15. Industrial waste utilization in the panels production for high buildings facade and socle facing

    Science.gov (United States)

    Vitkalova, Irina; Torlova, Anastasiya; Pikalov, Evgeniy; Selivanov, Oleg

    2018-03-01

    The research presents comprehensive utilization of such industrial waste as galvanic sludge, broken window glass as functional additives for producing ceramics for facade and socle paneling in high-rise construction. The basic charge component is low-plasticity clay, which does not allow producing high-quality products if used without any functional additives. The application of the mentioned above components broadens the resource base, reduces production cost and the mass of the products in comparison with the currently used facing ceramics. The decrease of product mass helps to reduce the load on the basement and to use ceramic material in high-rise construction more effectively. Additional advantage of the developed composition is the reducing of production energy intensity due to comparatively low pressing pressure and firing temperature thus reducing the overall production cost. The research demonstrates the experimental results of determining density, compressive strength, water absorption, porosity and frost resistance of the produced ceramic material. These characteristics prove that the material can be applied for high buildings outdoor paneling. Additional research results prove ecologic safety of the produced ceramic material.

  16. High resolution imaging of vadose zone transport using crosswell radar and seismic methods; TOPICAL

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E.; Daley, Thomas E.

    2001-01-01

    The summary and conclusions are that overall the radar and seismic results were excellent. At the time of design of the experiments we did not know how well these two methods could penetrate or resolve the moisture content and structure. It appears that the radar could easily go up to 5, even 10 meters between boreholes at 200 Mhz and even father (up to 20 to 40 m) at 50 Mhz. The seismic results indicate that at several hundred hertz propagation of 20 to 30 meters giving high resolution is possible. One of the most important results, however is that together the seismic and radar are complementary in their properties estimation. The radar being primarily sensitive to changes in moisture content, and the seismic being primarily sensitive to porosity. Taken in a time lapse sense the radar can show the moisture content changes to a high resolution, with the seismic showing high resolution lithology. The significant results for each method are: Radar: (1) Delineated geological layers 0.25 to 3.5 meters thick with 0.25 m resolution; (2) Delineated moisture movement and content with 0.25 m resolution; (3) Compared favorably with neutron probe measurements; and (4) Penetration up to 30 m. Radar results indicate that the transport of the riverwater is different from that of the heavier and more viscous sodium thiosulfate. It appears that the heavier fluids are not mixing readily with the in-situ fluids and the transport may be influenced by them. Seismic: (1) Delineated lithology at .25 m resolution; (2) Penetration over 20 meters, with a possibility of up to 30 or more meters; and (3) Maps porosity and density differences of the sediments. Overall the seismic is mapping the porosity and density distribution. The results are consistent with the flow field mapped by the radar, there is a change in flow properties at the 10 to 11 meter depth in the flow cell. There also appears to be break through by looking at the radar data with the denser sodium thiosulfate finally

  17. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber

    2017-04-13

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed channel porosity is required to understand and improve the hydrodynamics of spiral-wound membrane systems applied for desalination and wastewater reuse. The objectives of this study were to assess the accuracy of porosity measurement techniques for feed spacers differing in geometry and thickness and the consequences of using an inaccurate method on hydrodynamic predictions, which may affect permeate production. Six techniques were applied to measure the porosity namely, three volumetric calculations based on spacer strand count together with cuboidal (SC), cylindrical (VCC) and ellipsoidal volume calculation (VCE) and three independent techniques based on volume displacement (VD), weight and density (WD) and computed tomography scanning (CT). The CT method was introduced as an alternative for the other five already existing and applied methods in practice.Six feed spacers used for the porosity measurement differed in filament thickness, angle between the filaments and mesh-size. The results of the studies showed differences between the porosities, measured by the six methods. The results of the microscopic techniques SC, VCC and VCE deviated significantly from measurements by VD, WD and CT, which showed similar porosity values for all spacer types.Depending on the maximum deviation of the porosity measurement techniques from –6% to +6%, (i) the linear velocity deviations were −5.6% and +6.4% respectively and (ii) the pressure drop deviations were –31% and +43% respectively, illustrating the importance of an accurate porosity measurement. Because of the accuracy and standard deviation, the VD and WD method should be applied for the porosity determination of spacer-filled channels, while the CT method is recommended for

  18. Defect, Microstructure, and Mechanical Property of Ti-6Al-4V Alloy Fabricated by High-Power Selective Laser Melting

    Science.gov (United States)

    Cao, Sheng; Chen, Zhuoer; Lim, Chao Voon Samuel; Yang, Kun; Jia, Qingbo; Jarvis, Tom; Tomus, Dacian; Wu, Xinhua

    2017-12-01

    To improve the selective laser melting (SLM) productivity, a high laser power and accordingly adjusted parameters are employed to facilitate a high build rate. Three distinct processing strategies with incremental build rate are developed for SLM Ti-6Al-4V. Various types of defects are investigated. Further studies were carried out by heat-treatment and hot isostatic pressing to evaluate the influence of microstructure and porosity on mechanical properties. The anisotropic mechanical property in horizontally and vertically build samples were observed, which was attributable to the columnar grains and spatial arrangement of defects. Regardless of anisotropy, a post-SLM heat-treatment at 800°C for 2 h produces a combined high strength and ductility.

  19. Porosity of Lead Agglomerate as Function of CaO and SiO2 Proportion

    OpenAIRE

    , A. Haxhiaj; , A. Terziqi; , E. Haxhiaj

    2016-01-01

    Agglomerate porosity is correlated with strength of its pieces and it is main parameter for reductive melting process in Water-jacket furnace. Treatment is oriented toward achieving porosity and optimal strength. The paper deals with the process in te-mperature about 9000C and with less than 10% composition CaO in rapport with lead. In order to achieve optimal results of agglomerate porosity and quality, it is necessary during the roasting process of lead concentration to correlate the conten...

  20. Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching

    Directory of Open Access Journals (Sweden)

    Ilya Borisov

    2017-02-01

    Full Text Available For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4. Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change. The modifications led to surface roughness decrease, which is of great importance for further thin film composite (TFC membranes fabrication by dense selective layer coating, and also reduced water and ethylene glycol contact angle values for modified hollow fibers surface. Furthermore, the membranes surface energy increased two-fold. The Piranha mixture chemical modification did not change the membranes average pore size and gas permeance values, while air plasma treatment increased pore size 1.5-fold and also 2 order enhanced membranes surface porosity. Since membranes surface porosity increased due to air plasma treatment the modified membranes were used as efficient supports for preparation of high permeance TFC membranes by using poly[1-(trimethylsilyl-1-propyne] as an example for selective layer fabrication.

  1. Quality-assured evaluation of effective porosity using fit-for-purpose estimates of clay-mineral volume fraction

    Science.gov (United States)

    Worthington, Paul F.

    2010-05-01

    Reservoirs that contain dispersed clay minerals traditionally have been evaluated petrophysically using either the effective or the total porosity system. The major weakness of the former is its reliance on "shale" volume fraction ( Vsh) as a clay-mineral indicator in the determination of effective porosity from well logs. Downhole clay-mineral indicators have usually delivered overestimates of fractional clay-mineral volume ( Vcm) because they use as a reference nearby shale beds that are often assumed to comprise clay minerals exclusively, whereas those beds also include quartzitic silts and other detritus. For this reason, effective porosity is often underestimated significantly, and this shortfall transmits to computed hydrocarbons in place and thence to estimates of ultimate recovery. The problem is overcome here by using, as proxy groundtruths, core porosities that have been upscaled to match the spatial resolutions of porosity logs. Matrix and fluid properties are established over clean intervals in the usual way. Log-derived values of Vsh are tuned so that, on average, the resulting log-derived porosities match the corresponding core porosities over an evaluation interval. In this way, Vsh is rendered fit for purpose as an indicator of clay-mineral content Vcm for purposes of evaluating effective porosity. The method is conditioned to deliver a value of effective porosity that shows overall agreement with core porosity to within the limits of uncertainty of the laboratory measurements. This is achieved through function-, reservoir- and tool-specific Vsh reduction factors that can be applied to downhole estimates of clay-mineral content over uncored intervals of similar reservoir character. As expected, the reduction factors can also vary for different measurement conditions. The reduction factors lie in the range of 0.29-0.80, which means that in its raw form, log-derived Vsh can overestimate the clay-mineral content by more than a factor of three. This

  2. Determination of Meteorite Porosity Using Liquid Nitrogen

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  3. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Abreu, Carlos, E-mail: carlos.rodriguez@inl.int [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)

    2011-10-17

    Highlights: {yields} Polystyrene-divinylbenzene-iron oxide nanocomposites. {yields} Porous magnetic nanocomposites from highly concentrated emulsions. {yields} Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m{sup -3}, which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  4. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    International Nuclear Information System (INIS)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita; Rodriguez-Abreu, Carlos

    2011-01-01

    Highlights: → Polystyrene-divinylbenzene-iron oxide nanocomposites. → Porous magnetic nanocomposites from highly concentrated emulsions. → Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m -3 , which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  5. The effect of limestone aggregate porosity and saturation degree on the interfacial zone

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Le Saout, G.; Devillers, P.; Garcia-Diaz, E.

    2015-01-01

    The recycling of concrete wastes concerns the nuclear industry as many nuclear facilities will have to be dismantled and the reduction and reuse of the decommissioning concrete wastes in order to minimize the total waste volume is a key issue. The recycled aggregates have the potential to replace natural resources however it is necessary to assess the effect of recycled aggregates on the final concrete. One important issue to be addressed to achieve the required mechanical properties is the water absorption of the recycled aggregates. As a first step, we have used in this study limestone aggregates with different porosities (total porosity from 2 to 20 %) and have investigated the influence of the porosity and the initial saturation degree of these aggregates on the porosity of the interfacial transition zone (ITZ) using scanning electron microscope. The equation of Feret for the strength-porosity relationship of our mortars was applied σ = K(100-p) 2 where σ is the compressive strength in MPa, p is the capillary pore volume in % and K a constant. Aggregates with lower porosity follow the same law characterized by a K value higher than the value for the more porous aggregate law. The K parameter is not dependent of the humidity degree of the aggregate: for a given aggregate, family mortars made with dry and wet aggregate follow the same law. But for porous aggregates as the meso-porosity of the ITZ for a given time of hydration is higher for mortars made with wet aggregates, the compressive strength of these mortars is less than those of mortars made with dry aggregates. Contrary to the low porous aggregate, it was not possible for porous limestone aggregates, and with a calculation based on the saturated surface dry state as reference state to obtain the same net water to cement ratio with wet and dry aggregates. This study reflects the difficulty to control the amount of efficient water in concrete when using porous aggregates and its influence on compressive

  6. First steps towards modelling high burnup effect in UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    O` Carroll, C; Lassmann, K; Laar, J Van De; Walker, C T [CEC Joint Research Centre, Karlsruhe (Germany)

    1997-08-01

    High burnup initiates a process that can lead to major microstructural changes near the edge of the fuel: formation of subgrains, the loss of matrix fission gas and an increase in porosity. A consequence of this, is a decrease of thermal conductivity near the edge of the fuel which may be major implications for the performance of LWR fuels at higher burnup. The mechanism for the changes in grain structure, the apparent depletion of Xe and increase in porosity is associated with the high fission density at the fuel periphery. This is in turn due to the preferential capture of epithermal neutrons in the resonances of {sup 238}U. The new model TUBRNP predicts the radial burnup profile as a function of time together with the radial profile of plutonium. The model has been validated with data from LWR UO{sub 2} fuels with enrichments in the range 2 to 8.25% and burnups between 21 to 75 Gwd/t. It has been reported that at high burnup EPMA measures a sharp decrease in the concentration of Xe near the fuel surface. This loss of Xe is interpreted as a signal that the gas has been swept out of the original grains into pores: this ``missing`` Xe has been measured by XRF. It has been noted experimentally that the restructuring (Xe depletion and changes in grain structure) have an onset threshold local burnup in the region of 70 to 80 GWd/t: a specific value was taken for use in the model. For a given fuel TUBRNP predicts the local burnup profile, and the depth corresponding to the threshold value is taken to be the thickness of the Xe depleted region. The theoretical predictions have been compared with experimental data. The results are presented and should be seen as a first step in the development of a more detailed model of this phenomenon. (author). 22 refs, 9 figs, 2 tabs.

  7. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  8. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  9. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation

    Science.gov (United States)

    Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie

    2016-01-01

    Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery. PMID:27272562

  10. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  11. Report on Evaluation, Verification, and Assessment of Porosity Migration Model in Fast Reactor MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Novascone, Stephen Rhead [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Abstract This report documents the progress of simulating pore migration in ceramic (UO2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-diffusion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of the fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.

  12. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    Science.gov (United States)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  13. A study on density, porosity and grain size of unirradiated ROX fuels and simulated ROX fuels

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Shirasu, Noriko; Ohmichi, Toshihiko

    1999-05-01

    The unirradiated ROX fuels made of (1) 23wt%PuO 2 -17wt%SZR-56wt%Al 2 O 3 -4wt%MgO (ROX-SZR) and (2) 20wt%PuO 2 -29wt%ThO 2 -48wt%Al 2 O 3 -3wt%MgO (ROX-ThO 2 ) were fabricated by JAERI. Additionally, 9 simulated ROX fuels (used UO 2 instead of PuO 2 ) were fabricated by NFI. Densities, porosity and grain sizes of those were studied. Obtained results are: (1) ROX fuels: The estimated theoretical density (TD) was 5.6g/cc for the ROX-SZR and 6.2g/cc for the ROX-ThO 2 . Those were about half of that in UO 2 (10.96g/cc). As-fabricated density determined was 4.6g/cc (82%TD) for the former and 5.2g/cc (83%TD) for the latter. The %TD of those was low than that of UO 2 (95%TD). One of main reason is that the ROX fuels were sintered at temperature of 1,400degC while UO 2 was sintered at temperature of 1,700degC. The average pore diameter was about 3 μm and the porosity was 17-18%, implying that the ROX fuels were resulted in containing a lot of small pores 2 . As-fabricated density determined in the present study was about 4.5-5.5g/cc. The %TD of the simulated ROX fuels ranged about 94-98%TD. They were in the same as that of UO 2 because as high sintering temperature of 1,750degC as UO 2 . The average pore diameter was about 4-8 μm and the porosity was <6%. Grain size was revealed to be about 1-4 μm. (author)

  14. Impact of anode catalyst layer porosity on the performance of a direct formic acid fuel cell

    International Nuclear Information System (INIS)

    Bauskar, Akshay S.; Rice, Cynthia A.

    2012-01-01

    Highlights: ► Lithium carbonate is used as a pore-former to increase porosity of anode catalyst layer. ► Maximum power density increased by 25%. ► Onset potential for formic acid electro-oxidation reduced by 30 mV for anode catalyst layer with 17.5 wt% pore-former. ► Electrochemical impedance spectra confirm increased formic acid concentration inside the anode catalyst layer pores. - Abstract: Direct formic acid fuel cells (DFAFCs) have attracted much attention in the last few years for portable electronic devices, due to their potential of being high efficiency power sources. They have the potential to replace the state-of-the-art batteries in cell phones, PDAs, and laptop computers if their power density and durability can be improved. In the present investigation, the influence of increased anode catalyst layer porosity on DFAFC power density performance is studied. Lithium carbonate (Li 2 CO 3 ) was used as a pore-former in this study because of its facile and complete removal after catalyst layer fabrication. The anode catalyst layers presented herein contained unsupported Pt/Ru catalyst and Li 2 CO 3 (in the range of 0–50 wt%) bound with proton conducting ionomer. Higher DFAFC performance is obtained because of the increased porosity within the anode catalyst layer through enhanced reactant and product mass transport. The maximum power density of DFAFC increased by 25% when pore-former was added to the anode catalyst ink. The formic acid onset potential for the anode catalyst layer with 17.5 wt% pore-former was reduced by 30 mV. A constant phase element based equivalent-circuit model was used to investigate anode impedance spectra. Fitted values for the anode impedance spectra confirm the improvement in performance due to an increase in formic acid concentration inside the anode catalyst layer pores along with efficient transport of reactants and products.

  15. Polyfurfuryl alcohol derived activated carbons for high power electrical double layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, V. [CSIRO Division of Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia); Pandolfo, A.G., E-mail: tony.pandolfo@csiro.a [CSIRO Division of Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia)

    2010-10-30

    Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m{sup 2} g{sup -1}, and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et{sub 4}NBF{sub 4}/ACN) is investigated. Carbon materials with a low average pore size (<{approx}0.6 nm) exhibited electrolyte accessibility issues and an associated decrease in capacitance at high charging rates. PFA carbons with larger average pore sizes exhibited greatly improved performance, with specific electrode capacitances of 150 F g{sup -1} at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg{sup -1} and 38 kW kg{sup -1} on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g{sup -1} at current densities as high as 250 A g{sup -1}. The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.

  16. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net

    International Nuclear Information System (INIS)

    Abdel-Ghany, A.M.; Al-Helal, I.M.

    2011-01-01

    Plastic nets with opaque threads are frequently used for shading agricultural structures under high solar radiation conditions. A parameter that is often used to define a net is the net porosity (Π). Value of Π is usually estimated by one of three methods: image processing, direct beam transmittance, or solar radiation balance (hereafter radiation balance). Image processing is a rather slow process because it requires scanning the net sample at high resolution. The direct beam transmittance and radiation balance methods greatly overestimate Π because some of the solar radiation incident on the thread surfaces is forward scattered and add a considerable amount of radiation to that transmitted from the net pores directly. In this study, the radiation balance method was modified to estimate Π precisely. The amount of solar radiation scattered forward on the thread surfaces was estimated separately. Thus, the un-scattered solar radiation transmitted from the net pores directly, which describes the net porosity, Π could be estimated. This method, in addition to the image processing and the direct beam transmittance methods were used to estimate Π for different types of nets that are commonly used for shading structures in summer. Values of Π estimated by using the proposed method were in good accordance with those measured by the image processing method at a resolution of 4800 dpi. The direct beam transmittance and the radiation balance methods resulted in overestimation errors in the values of Π. This error strongly depends on the color of the net. The estimated errors were +14% for a green net and +37% for a white net when using the radiation balance method, and were +16% and +38%, respectively, when using the direct beam transmittance method. In the image processing method, a resolution of 2400 dpi is sufficient to estimate Π precisely and the higher resolutions showed no significant effect on the value of Π.

  17. Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Lee, Sungsik; Brown, Dennis E.; Zhao, Hairui; Li, Xinsong; Jiang, Daqiang; Hao, Shijie; Zhao, Yongxiang; Cong, Daoyong; Zhang, Xin; Ren, Yang

    2016-09-01

    Ultrafine manganese oxide-decorated carbon nanofibers (MnOn-CNF) as a new type of electrode materials are facilely fabricated by direct conversion of Mn, Zn-trimesic acid (H3BTC) metal organic framework fibers (Mn-ZnBTC). The construction and evolution of Mn-ZnBTC precursors are investigated by SEM and in situ high-energy XRD. The manganese oxides are highly dispersed onto the porous carbon nanofibers formed simultaneously, verified by TEM, X-ray absorption fine structure (XAFS), Raman, ICP-AES and N2 adsorption techniques. As expected, the resulting MnOn-CNF composites are highly stable, and can be cycled up to 5000 times with a high capacitance retention ratio of 98% in electrochemical capacitor measurements. They show a high capacitance of up to 179 F g–1 per mass of the composite electrode, and a remarkable capacitance of up to 18290 F g–1 per active mass of the manganese(IV) oxide, significantly exceeding the theoretical specific capacitance of manganese(IV) oxide (1370 F g–1). The maximum energy density is up to 19.7 Wh kg–1 at the current density of 0.25 A g–1, even orders higher than those of reported electric double-layer capacitors and pseudocapacitors. The excellent capacitive performance can be ascribed to the joint effect of easy accessibility, high porosity, tight contact and superior conductivity integrated in final MnOn-CNF composites.

  18. Large-scale treatment of high-salt, high-pH wastewater for {sup 137}Cs and {sup 90}Sr removal, using crystalline silicotitanate resin

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.; Walker, J.F.; Lee, D.D.

    1998-04-01

    A full-scale demonstration of cesium removal technology has been conducted at Oak Ridge National Laboratory (ORNL). This demonstration utilized a modular, mobile ion-exchange system and existing facilities for the off-gas system, secondary containment, and utilities. The ion-exchange material, crystalline silicotitanate (CST), was selected on the basis of its effectiveness in laboratory tests. The CST, which was developed through a Cooperative Research and Development Agreement between DOE and private industry, is highly selective for removing cesium from solutions containing high concentrations of other contaminants, such as sodium and potassium. Approximately 116,000 liters of supernate was processed during the demonstration with {approximately} 1,142 Ci of {sup 137}Cs removed from the supernate and loaded onto 266 liters of the CST sorbent. The supernate processed had a high salt content, about 4 M NaNO{sub 3} and a pH of 12 to 13. The CST also loaded Ba, Pb, Sr, U and Zn. Analysis of the spent sorbent has shown that it is not hazardous under the Resource Conservation and Recovery Act (RCRA). The cesium breakthrough curves for the lab and full-scale columns agreed very well, suggesting that lab-scale tests can be used to predict the performance of larger systems. The cesium breakthrough curves for runs at different flowrates show that film diffusion is significant in controlling the mass transfer process. Operational factors that increase the effect of film diffusion include the small size and high porosity of the CST sorbent, and the relatively low liquid velocity through the sorbent.

  19. Possibilities of obtaining and controlling high-quality pressure castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-07-01

    Full Text Available The paper presents the influence of the type of furnace charging melting, refining and modification silumins 226 and 231 on the porosity and microstructure of castings. It was shown that in order to reduce or eliminate the porosity of the castings is necessary to the refining ECOSAL-AL113 of liquid silumin both in the melting furnace, and in the ladle and an additional nitrogen, in the heat furnace modified and refining with nitrogen. To control the effects of refining and modifying the TDA method was used. It was found that based on crystal- lization curve can be qualitatively assess the gas porosity of the castings. In order to control and quality control silumins author developed a computer program using the method of TDA, which sets out: Rm, A5, HB and casting porosity P and the concentration of hydrogen in them. The program also informs the technological procedures to be performed for liquid silumin improper preparation.

  20. Effective diffusion coefficients and porosity values for argillaceous rocks and bentonite: measured and estimated values for the provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Van Loon, L.R.

    2014-11-01

    In Stage 2 of the Sectoral Plan for Deep Geological Repositories, safety analyses have to be performed. Geochemical parameters describing the transport and retardation of radionuclides in the argillaceous rocks considered and in compacted bentonite are required. In the present report, diffusion parameters for all clay host rocks, confining units and compacted bentonite are derived. Diffusion of tritiated water (HTO), "3"6Cl"- and "2"2Na"+ was studied. The measurements gave values for effective diffusion coefficients (D_e) and diffusion accessible porosities. The general observed trend "N"aD_e > "H"T"OD_e > "C"lD_e is in agreement with the expected behaviour of the three species in clay materials: ion exchanging cations show an enhanced mobility due to surface diffusion effects and anions are slowed down due to anion exclusion. Due to the negatively charged clay surfaces, anionic species are repelled from these surfaces resulting in an accessible porosity that is smaller than the total porosity as measured with HTO. The effect of porewater composition on the diffusion of HTO, "3"6Cl"- and "2"2Na"+ in Opalinus Clay was investigated. For ionic strength (IS) values between 0.17 M and 1.07 M, no significant effect on D_e could be observed. In the case of "3"6Cl"-, no effect on the accessible porosity was observed. The anion diffusion accessible porosity equals 50-60 % of the total porosity, independent on the ionic strength of the porewater. The diffusion parameters were measured on sedimentary rocks such as chalk, clay and limestone rocks. All data could be described by one single modified version of Archie's relation (extended Archie's relation). For values of porosity greater than about 0.1, the classical Archie's relation was valid. For values smaller than 0.1, the data deviated from the classical Archie's relation; this can be explained by additional changes of tortuosity with porosity values. At high porosity values (low density rocks), the microfabric of the clay